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Abstract
This study aims to examine the issue of cryptocurrency volatility modelling and forecasting 
based on high-frequency data. More specifically, this study assesses whether crisis periods, 
particularly the coronavirus disease pandemic, influence the dynamic of cryptocurrency 
volatility. We investigate the four main cryptocurrency markets (Bitcoin, Ethereum Clas-
sic, Ethereum, and Ripple) from April 2018 to June 2020. The realized volatility meas-
ure is computed and decomposed to various components (continuous versus discontinu-
ous, positive and negative semi-variances, and signed jumps). A variety of heterogeneous 
autoregressive (HAR) models are developed including these components, thereby enabling 
assessment of different assumptions (including persistence and asymmetric dynamic) of 
modelling and volatility forecasting based on in-sample and out-of-sample forecasting 
strategies, respectively. Our results reveal three main findings. First, the extended HAR 
model that includes the positive and negative jumps appears to be the best model for pre-
dicting future volatility for both crisis and non-crisis periods. Second, during the crisis 
period, only the negative jump component is statistically significant. Third, in terms of vol-
atility forecasting, the results show that the extended HAR model that includes positive and 
negative semi-variances outperform the other models.
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1  Introduction

The cryptocurrency market has gained traction among media, policymakers, inves-
tors, academicians, and regulators, especially since the “bubble” experienced in 2017. 
This market has also been a source of criticism and debate regarding its specific styl-
ized facts, notably revived after the contradictory positions of popular Nobel laureates 
Joseph Stiglitz and Robert Shiller. The former suggested that Bitcoin ought to be out-
lawed whereas the latter highlighted that investor interest in the cryptocurrency market 
was due to its anti-government, anti-regulation fee. From an academic perspective, there 
is a huge debate regarding whether cryptocurrency might be considered a currency or an 
asset (Yuneline, 2019; White et al., 2020; among others) as the prices have exhibited a 
significant surge since 2017, accompanied by high volatility. For example, the Bitcoin 
price remained below $1000 before February 2017; however, it reached up to $20,000 
in December 2017, subsequently declining to around $8000 in February 2018. It rose 
again in May 2018 to reach $13,000 and fell rapidly to around $3000 in December 2018. 
During 2019, Bitcoin prices averaged at around $7000. Since 2020 and during the coro-
navirus disease (COVID-19) pandemic, another indication of a price bubble has been 
observed in the Bitcoin market, as is the prices have been around $24,000 (the highest 
since its introduction) in December 2020.

This surge in Bitcoin prices, observed during the COVID-19 pandemic, has been 
accompanied by a significant amount of literature investigating whether cryptocurren-
cies, particularly the bitcoin, might serve as a refuge during a period of turmoil, such 
as the ongoing health crisis (Huynh et al., 2020; Paule-Vianez et al., 2020; Thampanya 
et  al., 2020; Mnif et  al., 2020; Madani et  al., 2021, among others). In this context, it 
might be important to analyse and propose further insights in terms of volatility model-
ling and cryptocurrency market forecasting, especially during crisis periods such as the 
COVID-19 pandemic, allowing investors and hedgers to minimize risks through portfo-
lio diversification and develop appropriate hedging positions, and assist policymakers in 
formulating regulatory policies by refining the asset prices volatility prediction for risk 
assessment. This study aims to contribute to the literature on cryptocurrency market 
volatility modelling and forecasting, particularly during crisis periods.

The empirical literature related to cryptocurrency volatility modelling and forecasting is 
abundant, with a strand of literature adopting the classical time series models, particularly 
the generalized autoregressive conditional heteroscedasticity (GARCH) family of models. 
In this literature, some studies investigated the cryptocurrency volatility modelling based 
on the in-sample forecasting strategy, (Balcilar et al., 2017; Charles & Darné 2019; Cheikh 
et  al., 2020; Chu et  al., 2017; Conrad et  al., 2018; Dyhrberg, 2016; Huynh et  al., 2020; 
Katsiampa, 2017; Naimy & Hayek, 2018; Pichl & Kaizoji, 2017; Gyamerah, 2019; Tiwari 
et al., 2019, among others), and some assessed volatility forecasting based on out-of-sam-
ple strategy for a specific forecasting horizon (Bezerra & Albuquerque, 2017; Catani et al., 
2019; Naimy & Hayek, 2018; Peng et al., 2018; Xiao & Sun, 2020, among others). This 
corpus uses the conventional time series models like the GARCH family models, which 
were extended recently in light of outliers that characterize cryptocurrency markets (Aslan 
& Sensoy, 2020; Charles & Darné, 2019; Catani et al., 2019; Trucíos, 2019, among others). 
A second subset of the literature involves approaches inspired by operations research, such 
as neural networks (Adcock & Gradojevic, 2019; Jay et al., 2020; among others), machine 
learning, and deep learning (Lahmiri & Bekiros, 2019; Patel et al., 2020; Akyildirim et al., 
2020, 2021; Sensoy, 2019; among others).
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A new strand of literature highlighted the role of high frequency data (HFD) in improv-
ing modelling and forecasting volatility (Bollerslev et al., 2020; Patton & Sheppard, 2015). 
Notably, using HFD has several advantages. First, with this kind of data, we might use 
an observed measure of the volatility and not a proxy, which might reduce measurement 
errors. Second, HFD offers more useful information for predicting financial asset volatil-
ity. Third, HFD provides the advantage of disentangling continuous and discontinuous 
components of volatility, which might improve forecasts. Fourth, distinguishing between 
positive and negative returns as well as using all signed information allows us to consider 
the leverage effect that may improve volatility forecasting. As far as we know, only a few 
studies have employed HFD to model and forecast cryptocurrency volatility. Peng et  al. 
(2018) used both daily and hourly data to forecast the volatility of three cryptocurrencies 
(Bitcoin, Ethereum, Dash) and three currencies (Euro, British pound, and Japanese yen in 
US dollars) based on traditional GARCH family models and a combination of the tradi-
tional GARCH model and the machine learning approach to volatility estimation. Their 
results favour the support vector regression–GARCH model. The heterogenous autoregres-
sive (HAR) model proposed by Corsi (2009) was employed by Hu et al. (2019) to model 
and forecast Bitcoin volatility using HFD. The authors assessed the power of prediction 
of the different components of realized volatility (RV) and showed that the future RV has 
a positive relationship with downside risk and a negative relationship with the positive 
jump. They also showed that jump and signed jumps improve volatility forecasting only 
in long horizons. Yu (2019) employed HFD to forecast the Bitcoin volatility by consider-
ing leverage effects and economic policy uncertainty (EPU). It was found that the leverage 
effect might impact future volatility significantly. However, jumps and EPU seem not to 
impact future volatility during the in-sample period. The out-of-sample strategy confirms 
the superiority of the leverage effect model compared to the model including jumps. Shen 
et al. (2020) investigated the Bitcoin volatility model using HFD and different HAR mod-
els. The results favour including jump components to forecast Bitcoin volatility.

Our study relates to this last subset of literature that uses HFD to model and forecast 
the volatility of cryptocurrency markets.1 More interestingly, we aim to contribute to the 
literature on cryptocurrency volatility modelling and forecasting with HFD in at least three 
aspects. First, as far as we know, our study is the first to assess the effect of the COVID-
19 crisis on the dynamic of volatility modelling and forecasting, comparing with the pre-
COVID-19 period using HFD. The underlying issue dealt with studies on bad and good 
volatility by Patton and Sheppard (2015) and Bollerslev et  al. (2020), as during periods 
of turmoil, the negative returns are relatively more frequent than positive ones. We assess 
whether the signed information (positive and negative semi-variances, and signed jumps) 
may be useful during crisis periods in improving modelling and forecasting the crypto-
currency market volatility. Second, contrary to the major cited works dealing with HFD, 
our study investigates the four main cryptocurrency markets—Bitcoin, Ethereum (ETH), 
Ethereum Classic (ETC), and Ripple (XRP)—having 79% of cryptocurrency capitaliza-
tion. Third, our study generates insights for both modelling and forecasting cryptocurrency 
volatility by employing in-sample and out-of-sample forecasting strategies.

1  One of the main stylized facts of the Cryptocurrency markets is the huge volatility, which may affect the 
hedging strategies of investors, or their portfolio allocation. Therefore, dealing with volatility in our study 
allows us to propose some useful risk management insights.
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We use HFD sampled every five minutes2 for four cryptocurrency markets ranged from 
April 2018 to June 2020. This period allows us to assess the effect of the first wave of 
COVID-19. We decompose RV into continuous and discontinuous parts, and subsequently, 
into positive and negative semi-variance, to assess the potential asymmetric dynamic in 
volatility modelling and forecasting. Furthermore, we compute the signed jump based on 
the signed information (positive and negative returns). These components are incorporated 
in the five candidate models inspired by Corsi’s (2009) HAR model. The results of crypto-
currency volatility modelling show that the future RV for all markets being studied, what-
ever the period of analysis, is better explained with the HAR model, and extended with 
positive and negative jumps. Our results during the COVID-19 crisis period demonstrate 
that the studied markets’ future RV is only sensitive to negative jumps. The out-of-sample 
forecasting strategy supports that the best fit model for cryptocurrency volatility is one that 
includes positive and negative semi-variances, highlighting the asymmetric dynamic of 
cryptocurrency markets during crisis periods.

Our study contributes to the literature in several ways. First, we propose new insights for 
cryptocurrency volatility modelling and forecasting by using high frequency data and by 
controlling for different volatility types (continuous, jump, positive jump, negative jumps, 
etc.). Second, we consider that during the crisis period only bad volatility will drive the 
dynamics of the future volatility. Third, our study pioneers an empirical evidence support-
ing the investors’ sensitivity to bad news during a period of turmoil.

The remainder of this paper is organized as follows. Section 2 presents the empirical 
methodology. Section 3 presents the data and descriptive statistics. Section 4 describes the 
empirical framework and discusses the results. Section 5 concludes the paper.

2 � Empirical methodology

In this section, we present the methodology used in our study to identify the best fit model 
for cryptocurrency market volatility forecasting. Specifically, before discussing the candi-
date models, we present their different components (the decomposition of the RV measure 
into its continuous and discontinuous components, the decomposition of the variance into 
positive and negative semi-variances, and the decomposition between positive and nega-
tive jumps). Subsequently, we present the competing models for cryptocurrency market 
volatility forecasting. Finally, we present the forecasting strategy used to disentangle these 
models.

2.1 � The intraday volatility measure

The empirical literature has proposed various volatility measures (Ftiti & Jawadi, 2019). 
Contrary to the traditional measures defined as proxies of an unobserved measure of the 
variability of a time series, the realized volatility (RV) measure introduced by Andersen 
and Bollerslev (1998) is a measure of the observed variability, includes more information, 
and reduces measurement errors (Andersen & Bollerslev, 1998; Ftiti et al., 2016). RV is 
defined as the sum of intraday sampled Δ-period squared returns r2

t+jΔ,Δ
 , as given below:

2  The 5-min sampling frequency is considered the optimal frequency to compute realized bi-power and tri-
power variation measures (Bandi and Russell, 2004a, 2004b; Hansen and Lunde, 2006; Zhang et al., 2005).
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2.2 � Decomposition of RV into continuous and discontinuous components

The decomposition of RV into continuous and jump components is based on jump detec-
tion, for which various tests have been proposed in the literature. In this study, we use jump 
identification methodology of Andersen et al. (2007).

Formally, the decomposition of the related volatility between continuous and jump 
components is based on the concept of bi-power variation ( BV  ), introduced by Barndorff-
Nielsen and Shephard (2004) and defined as follows:

where �1 =
√
2∕�.

Theoretically, a consistent estimator of the jump (J) contribution to the quadratic varia-
tion process is defined based on the difference between the RV  and the BV  . Formally, the 
jump is defined as follows:

To identify statically significant jumps, we use the Z statistic proposed by Huang and 
Tauchen (2005), using the jump-robust realized tri-power quarticity (TQ)3:

If there is no jump, Zt+1(Δ) follows a standard normal distribution. Following Andersen 
et al. (2007) and Giot et al. (2010), we use a significance level (α = 0.01%) to compute the 
jump and the continuous components as follows:

(1)RVt+1(Δ) =

1

Δ∑

j=1

r2
t+jΔ,Δ

(2)BVt+1(Δ) = �−2
1

1

Δ∑

j=2

|||
rt+jΔ,Δ

|||
|||
rt+(j−1)Δ,Δ

|||

(3)Jt+1(Δ) = RVt+1(Δ) − BVt+1(Δ)

(4)Jt+1(Δ) = RVt+1(Δ) − BVt+1(Δ)

(5)TQt+1(Δ) ≡ Δ−1�−3
4

3

(1 − 4Δ)−1

1∕Δ∑

j=5

|||
rt+jΔ,Δ

|||

4∕3|||
rt+(j−2)Δ,Δ

|||

4∕3|||
rt+(j−4)Δ,Δ

|||

4∕3
.

(6)� 4

3

≡ 2
2

3 Γ
(
7

6

)
⋅ Γ

(
1

2

)−1

.

(7)Jt+1,𝛼(Δ) = I
[
Zt+1(Δ) > 𝜑𝛼

]
×
[
RVt+1(Δ) − BVt+1(Δ)

]
.

(8)Ct+1,𝛼(Δ) = I
[
Zt+1(Δ) ≤ Φ𝛼

]
× RVt+1(Δ) + I

[
Zt+1(Δ) > 𝜑𝛼

]
× BVt+1(Δ).

3  To control for microstructure frictions, we used staggered measures of bi-power variation (BV) and the 
tri-power quarticity (TQ) proposed by Huang and Tauchen (2005) and Andersen et al. (2007).
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2.3 � Decomposition of RV into positive and negative semi‑variance

Barndorff-Nielsen et al. (2010) were the first to introduce the concept of realized semi-var-
iance, intuitively inspired from the semi-variance estimators of Markowitz (1952). Nota-
bly, Patton and Sheppard (2015) and Bollerslev et al. (2020) highlighted the importance of 
this estimator for volatility modelling. The positive and the negative realized semi-variance 
estimators are based on disentangling positive and negative intraday returns. Formally, the 
positive and the negative realized semi-variance estimators, as defined by Bollerslev et al. 
(2020) and Patton and Sheppard (2015) are computed as follows:

2.4 � The signed jump

Like the decomposition of RV into continuous and discontinuous components, the real-
ized semi-variance might be decomposed to its continuous and jump components follow-
ing Barndorff-Nielsen et al. (2010), as follows:

The signed jump is defined, based on Barndorff-Nielsen et al. (2010), as the difference 
between the downside realized semi-variance ( RS+ ) and the upside realized semi-variance 
( RS−) . Formally, the signed jump is presented as follows:

Also, we compute the positive ( ΔJ2+ ) and negative jumps ( ΔJ2+ ) as follows:

2.5 � The candidate models for cryptocurrency market volatility forecasting

The cryptocurrency markets have experienced high variability, with the prices moving 
upside and downside. More specifically, some extreme variabilities are observed across 

(9)RS+ =

n∑

i=1

r2
i
I
{
ri > 0

}

(10)RS− =

n∑

i=1

r2
i
I
{
ri < 0

}

(11)RS+
p
→1∕2�

t

0

𝛿2(s)ds +
∑

0≤s≤t
Δp2

s
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p
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∑
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→

∑
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∑
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2
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{(

RS+ − RS−
)
< 0
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trading days. Therefore, we aim to test whether the different components of RV as well as 
those of the semi-realized volatility improve volatility forecasting of the cryptocurrency 
markets. Interestingly, our objective involves assessing whether the jump, positive and 
negative semi-variance components and signed jump perform the volatility modelling and 
forecasting of the cryptocurrency markets.

The empirical literature is rich in terms of volatility modelling and forecasting of time-
series. Here, we do not follow the literature based on the conventional models such as the 
GARCH family models but is based on the strand of literature related to the HAR-RV 
model introduced by Corsi (2009). The HAR-RV model provides the advantage of consid-
ering the investors’ heterogeneity, enabling us to consider high-frequency trading informa-
tion. Formally, the HAR-RV model is defined as follows:

where RV (d)
t+1d is the ex post volatility estimate. 

(
RV

(d)
t

)
 , 
(
RV

(w)
t

)
 , and (RV (m)

t ) denote 
daily, weekly, and monthly structure of the RV. �t+1d denotes the error term. This bench-
mark model can be represented as follows:

Model 1: HAR − RV (Benchmark model)

where i refers to the cryptocurrency markets in our analysis. As we investigate four mar-
kets, therefore, i = Bitcoin, ETH, ETC, and XRP.  [t + 1, t + h] denotes the period of analy-
sis and h denotes the forecasting horizon; �i,t+1 denotes the forecasting error term for the 
market (i) at time (t + 1).

Our second candidate model is an extension of our benchmark model in line with 
Andersen et al. (2007), which involves substituting the RV regressors through its continu-
ous and discontinuous components. More formally, Model 2 is presented as follows:

Model 2 HAR − CV − J

where CV  and J denotes the continuous part and the jump components, respectively.
The third candidate model extends the benchmark model by controlling for potential 

cryptocurrency volatility inertia, decomposing it into positive and negative parts. This 
model is written as follows:

Model 3 HAR − SRV

The next model is an extension of Model 3. After assessing the role of signed informa-
tion in RV, we focus on Model 4 on the role of signed information coming from the jump 
component. Therefore, Model 4 aims to assess the effect of a signed jump, which gives us 
the cryptocurrency volatility forecasting.

(16)RV (d)
t+1d = �0 + �(d)RV

(d)
t + �(w)RV

(w)
t + �(m)RV

(m)
t + �t+1d

(17)RVi,t+1,t+h = �i,0 + �i,1RVi,t+�i,5RVi,t−1,t−4 + �i,22RVi,t−5,t−21 + �i,t+1

(18)RVi,t+1,t+h = �i,0 + �i,1CVi,t+�i,5RVi,t−1,t−4 + �i,22RVi,t−5,t−21 + �i,JJi,t+�i,t+1

(19)RVi,t+1,t+h = �i,0 + �+
i,1
RV+

i,t
+�−

i,1
RV−

i,t
+ �

i,5
RVi,t−1,t−4 + �i,22RVi,t−5,t−21 + �i,t+1
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Model 4: HAR − RV − ΔJ2

Model 5 is intuitively inspired from Model 3 and is an extension of Model 4. The differ-
ence involves considering the potential cryptocurrency volatility inertia of signed informa-
tion in the discontinuous part of the RV (in the jump). This model is defined as follows:

Model 5: HAR − RV − ΔJ2+ΔJ2−

2.6 � The modelling and volatility forecasting of cryptocurrency markets

To assess the predictive power of different components of RV as developed above, we pro-
pose an in-sample and an out-of-sample strategy.

2.6.1 � In‑sample strategy

The in-sample forecasting strategy aims to investigate the appropriate model for cryptocur-
rency volatility modelling. More specifically, we compare the power of prediction among 
the different candidate models. Our estimation employs weighted linear squares regression 
with a fitted value of an OLS regression, after correcting standard errors from further het-
eroscedasticity in the data using the Eicker–White approach.

2.6.2 � Out‑of‑sample strategy

Our objective is to determine which kind of models/information drives better cryptocur-
rency volatility. Specifically, the out-of-sample strategy aims to assess which models out-
perform the cryptocurrency market volatility forecasting, based on the econometrics tests. 
Formally, the five candidate models are estimated over the period4 

(
Ni − h

)
 , and then we 

forecast the volatility of each market for an horizon h. The h-step-ahead dynamic forecasts 
are calculated for t = ki,… , Ti , where ki is the forecasting starting date and Ti is the end 
date of the series for market i.

In line with Corsi’s (2009) model and taking into account the cascade structure of RV 
(daily, weekly, and monthly), we adopt three forecasting horizons: daily ( h = 1) , weekly 
(5 days), and monthly (22 days) in the out-of-sample forecasting exercise. Then, the fore-
casted models are compared based on the forecast accuracy tests. The empirical literature 
may be categorized into two main strands. The first strand of literature is based on pairwise 
accuracy tests, such as those of Diebold and Mariano (2002) and Harvey et  al. (1997). 
The second strand of literature compares between large set of models, using tests such as 

(20)
RVi,t+1,t+h = �i,0 + �i,1BVi,t + �

i,5
RVi,t−1,t−4 + �i,22RVi,t−5,t−21 + �i,J∗ΔJ

2
i,t
+ �i,t+1

(21)
RVi,t+1,t+h = �i,0 + �i,1BVi,t + �

i,5
RVi,t−1,t−4 + �i,22RVi,t−5,t−21 + �i,J+J

2+
i,t

+ �i,J−Δ
|||
J2−
i,t

|||
+ �i,t+1

4  N
i
 is the number of observations for market i  , while h denotes the forecasting horizon.
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the Reality Check (RC) method developed by White (2000), the superior predictive abil-
ity (SPA) test developed by Hansen (2005), and the model confidence set (MCS) method 
of Hansen et al. (2011).5 In our analysis, we adopt the MCS method for several reasons. 
The pairwise comparison tests suffer from a data snooping bias (White, 2000), and the 
MCS method has several advantages compared to the well-known tests of RC and SPA. 
Although the RC method considers data snooping, giving unbiased results, it has limita-
tions in the presence of poor and irrelevant candidate models. This limitation has been 
addressed in the SPA test, allowing simultaneous comparison of a large set of models, 
regardless of whether irrelevant and poor candidate models have been included. However, 
the SPA test cannot discriminate between large competing models. MCS overcomes this 
limit, as it deals with a smaller set of models, called the model confidence set, containing 
the best models providing equal predictive ability at a given level of confidence. The MCS 
method contains the best forecasts, for a given level of confidence, that do not differ signifi-
cantly in terms of their forecast performance.6

3 � Data

Four cryptocurrency markets are investigated in this study—the Bitcoin, the Ethereum 
(ETH), the Ethereum Classic (ETC), and the Ripple (XRP)—representing 79% of the 
global cryptocurrency market capitalization, with a market capitalization over USD 1 bil-
lion each. The period of analysis was from April 2018 to June 2020. The data were col-
lected from Bloomberg database.

To assess the effect of COVID-19, two subsamples are defined: the pre-COVID-19 sam-
ple from April 1, 2018 to December 31, 2019, and the COVID-19 sample from January 
1, 2020 to June 30, 2020. We decided to close our COVID-19 sample period at the end of 
June 2020 to assess the first COVID-19 wave, given that the second wave is in progress.

Table  1 presents the descriptive statistics on the different components of RV for the 
four cryptocurrency markets, revealing some noteworthy aspects. First, we observe that, 
on average, the RV for all cryptocurrency markets rose during the COVID-19 period. 
The more pronounced increase was observed for Bitcoin, as it has approximately twice 
the RV during the COVID-19 period, compared to the pre-COVID-19 period. Interest-
ingly, we observed the intensity of both positive RV and negative RV increased during the 
COVID-19 period, compared to the pre-COVID-19 period. Regarding the jump intensity, 
the results were inconclusive. ETH, ETC, and XRP exhibited a lower jump intensity during 
the COVID-19 period than the pre-COVID-19 period. However, for Bitcoin, the jump dur-
ing the COVID-19 period was more significant than that during the pre-COVID-19 period. 
These findings might be more understandable when distinguishing between positive and 
negative jumps. We observed the intensity of upward or downward jumps were more sig-
nificant during the COVID-19 period than during the pre-COVID-19 period, except in the 
case of XRP. These preliminary observations highlighted the importance of the different 
components of RV measures in explaining risk in cryptocurrency markets.

5  For more information about these two subsets of the literature, please see Jawadi et al. (2019, pp. 132–
133).
6  The MCS procedure is a model selection algorithm, filtering a set of competitors from a given large set of 
models.
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4 � Empirical analysis

4.1 � The dynamic of cryptocurrency market volatility over the entire sample

4.1.1 � In‑sample forecasting results

The first step of our econometric analysis is to assess the best fit model in cryptocurrency 
volatility modelling based on the estimation of the original HAR-RV and the proposed four 
extended models. Table 2 presents the results of the in-sample forecasting strategy for the 
four markets during the complete period of study, ranging from April 2018 to June 2020. 
Two interesting findings are shown in this table. First, we note the decomposition of vola-
tility into continuous and discontinuous components improves the cryptocurrency volatility 
modelling. Moreover, Model 2 has a higher adjusted R-squared than the original HAR-RV. 
Second, taking into account the potential asymmetric dynamic of the volatility is an impor-
tant issue, as we show that the models including the decomposition of RV into positive 
and negative volatility (Models 3 and 4) as well as the model decomposing the volatility 
into positive and negative jumps (Model 5) perform better the other models, in term of the 
adjusted R-squared.

Although Model 5 seems to be the best fit model in modelling the cryptocurrency mar-
ket volatility, two notable facts need to be highlighted. First, the positive and negative 
jumps included in Model 5 are both significant in the case of ETC and XRP. However, in 
the case of Bitcoin, only the negative jumps may affect the realized volatility. Second, we 
observed some heterogeneous results in terms of the sensitivity of cryptocurrency market 
volatility to positive and negative jumps across the four markets. For example, the volatility 
sensitivity of the Bitcoin and the ETC to negative jumps is substantially more important 
compared to positive jumps. In the case of ETH, Model 4 exhibits the highest R-squared 
followed by Model 5. This finding also highlights the asymmetric dynamics of the ETH 
volatility, as the signed jump distinguishes between positive and negative returns.

Overall, our findings highlighted negative jumps (abrupt price decrease) during the pre-
vious trading day raised the volatility of the cryptocurrency market; however, past positive 
jumps (abrupt price increase) reduced cryptocurrency market volatility. These heterogenei-
ties might be explained based on the crisis period included in our sample, i.e., the COVID-
19 pandemic, which might substantially affect the dynamic of cryptocurrency volatility. 
Therefore, dividing our sample into pre-COVID-19 and COVID-19 periods is crucial to 
assess cryptocurrency volatility.

4.1.2 � The out‑of‑sample results

The second step involves assessing the best fit accuracy of the candidate models based on 
the out-of-sample forecasting strategy for the three horizons: 1 month, 1 week, and 1 day. 
The comparison between the forecasting performance of the candidate models is based 
on the MCS methods, presented in Table  3. The results indicate some noteworthy find-
ings. For the horizons 1 week and 1 day, the best fit model for Bitcoin and XRP is Model 
5. This finding highlights that the dynamic of Bitcoin and XRP volatility has an asym-
metric dynamic based on the discontinuous components (jumps). However, for the ETC 
and ETH volatilities, the best fit model is Model 3. This result shows that ETH and ETC 
volatility is more pronounced based on the asymmetric dynamic, which in turn depends on 
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distinguishing between positive and negative RV. For the relatively long-term forecasting 
horizon (1 month), the results of the best fit model were homogenous across all the mar-
kets, as MCS showed the superiority of Model 2. This finding highlights the importance 
of considering the discontinuous and continuous components of volatility in the interest of 
the long-term investors.

4.2 � The dynamic of cryptocurrency market volatility during the pre‑COVID crisis

4.2.1 � In sample forecasting results

Table 4 presents the results of the estimation of the five candidate models for volatil-
ity modelling for the four cryptocurrency markets, during the pre-COVID-19 period. 
Two main differences were observed compared to the results of the whole sample. First, 
Model 5 becomes the best fit model for cryptocurrency volatility modelling for all the 

Table 3   Results of forecasting accuracy tests

Numbers reported in this table denote the values of the mean squared error (MSE) loss function. Values 
in (.) denote the (10−3) value of the MCS procedure. The MCS p-values are computed based on 10,000 
bootstrap samples with MSE as a loss function (The results of the loss functions based on MSE are not 
presented to save space but are available upon request). The confidence level for MCS is 90%. Models 1 
through 5 denote HAR − RV  , HAR − CV − J , HAR − SRV  , HAR − RV − ΔJ2 , and HAR − RV − ΔJ2+ΔJ2− , 
respectively

Candidate models Bitcoin Ethereum

1 month 1 week 1 day 1 month 1 week 1 day

Model 1 0.00242 0.00123 0.00128 0.00419 0.00263 0.00219
(0.0024) (0.0164) (0.0000) (0.0023) (0.0088) (0.0000)

Model 2 0.00157 0.00058 0.00091 0.00241 0. 00,127 0.00156
(1.0000) (0.1582) (0.0000) (1.0000) (0.3821) (0.0000)

Model 3 0.00757 0.00022 0.00014 0.01135 0.00084 0.00037
(0.3157) (0.6631) (0.0000) (0.3992) (1.0000) (1.0000)

Model 4 0.00586 0.00023 0.00016 0.00924 0.00098 0.00048
(0.3175) (0.6631) (0.0000) (0.3992) (0.0088) (0.0000)

Model 5 0.00943 0.00019 0.00007 0.00998 0.0098 0.00047
(0.1903) (1.0000) (1.0000) (0.3992) (0.00088) (0.0000)
Ethereum classic XRP

Model 1 0.01391 0.00895 0.00494 0.00559 0.00409 0.00409
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Model 2 0.00546 0.00423 0.00341 0.00253 0.00216 0.00297
(1.0000) (0.0000) (0.0000) (1.0000) (0.0000) (0.0000)

Model 3 0.00952 0.00252 0.00159 0.00320 0.000190 0.00236
(0.6226) (1.0000) (1.0000) (0.6211) (0.0000) (0.0000)

Model 4 0.00847 0.00307 0.00197 0.00303 0.00196 0.00245
(0.6226) (0.0000) (0.0000) (0.6211) (0.0000) (0.0000)

Model 5 0.00959 0.00284 0.00178 0.00357 0.00116 0.00154
(0.6226) (0.0000) (0.0000) (0.6225) (1.0000) (1.0000)
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markets. Second, we did not observe a divergence in terms of cryptocurrency volatil-
ity sensitivity across positive and negative jumps in the case of Bitcoin and ETH. The 
sensitivity of their volatility to positive and negative jumps were similar in the absolute 
value. However, there is an asymmetric sensitivity of XRP volatility in favour of nega-
tive jumps. Finally, ETC was only sensitive to negative jumps.

4.2.2 � The out‑of‑sample results

In terms of forecasting performance, Model 3 is the best fit model for Bitcoin and ETH 
for the 1-week and 1-day forecasting horizons (Table 5). However, for XRP and ETC, 
the best fit model varies across the forecasting horizons. Notably, the best fit model 
of ETC volatility forecasting is Model 5 and Model 3 for the 1-month and 1-day fore-
casting horizons, respectively. For the XRP volatility forecasting, the best fit model is 
Model 5 for the 1-week and 1-day forecasting horizons.

Table 5   Results of forecasting accuracy tests

Numbers reported in this table denote the values MSE loss function. Values in (.) denote the (10−3) value 
of the MCS procedure. The MCS p-value are computed based on 10,000 bootstrap samples with mean 
squared errors as a loss function (The results of the loss functions based on MAE are not presented to save 
place but are available upon request). The confidence level for MCS is 90%. Models 1 through 5 represent 
HAR − RV  , HAR − CV − J , HAR − SRV  , HAR − RV − ΔJ2 , and HAR − RV − ΔJ2+ΔJ2− , respectively

Candidate models Bitcoin Ethereum

1 month 1 week 1 day 1 month 1 week 1 day

Model 1 0.00185 0.00106 0.00062 0.00229 0.00200 0.00152
(0.8350) (0.0000) (0.0000) (0.0110) (0.0000) (0.0000)

Model 2 0.00169 0.00040 0.00046 0.00103 0. 00,072 0.00092
(0.8350) (0.0635) (0.0000) (0.9928) (0.0000) (0.0000)

Model 3 0.00202 0.00035 0.00037 0.00102 0.00066 0.00087
(0.7547) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Model 4 0.00169 0.00039 0.00044 0.00113 0.00075 0.00096
(0.8350) (0.0635) (0.0000) (0.1708) (0.0000) (0.0000)

Model 5 0.00167 0.00047 0.00051 0.00124 0.00089 0.00111
(1.0000) (0.0000) (0.0000) (0.0853) (0.0000) (0.0000)
Ethereum classic XRP

Model 1 0.00631 0.01280 0.001494 0.00291 0.00106 0.00165
(0.1700) (1.0000) (0.0000) (0.1381) (0.0000) (0.0000)

Model 2 0.00467 0.01612 0.00090 0.00257 0.00058 0.00135
(0.7483) (0.4763) (1.0000) (1.0000) (0.4272) (0.0000)

Model 3 0.00766 0.02820 0.00097 0.00344 0.00077 0.00156
(0.2776) (0.3526) (0.0000) (0.0930) (0.0079) (0.0000)

Model 4 0.00572 0.01990 0.00123 0.00330 0.00064 0.00146
(0.2426) (0.5375) (0.0000) (0.0930) (0.0216) (0.0000)

Model 5 0.00449 0.01388 0.00188 0.00527 0.00024 0.00051
(1.0000) (0.5375) (0.0000) (0.1589) (1.0000) (1.0000)
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4.3 � The dynamic of cryptocurrency market volatility during the COVID‑19 crisis 
period

4.3.1 � In‑sample forecasting results

The COVID-19 period volatility modelling results are presented in Table  6. The results 
present some specificities compared to the other samples. Although Model 5 exhibits the 
highest adjusted R-squared, the dynamic of the volatility modelling of the four markets 
has changed. For the four markets, only the volatility is statistically significant for negative 
jumps. In other words, during periods of turmoil, only bad jumps impacted the cryptocur-
rency market volatility, which were insensitive to good jumps. This result showed that dur-
ing crisis periods, the investors in the cryptocurrency market were very stressed which led 
them to over-react to negative news.

More interestingly, we observed a high adjusted R-squared for all models and specifi-
cally for Model 5, compared to previous samples. Our findings show that the power of 
prediction of the best fit model during the crisis period was around 80% for Bitcoin, ETH, 

Table 7   Results of the forecasting accuracy tests

Numbers reported in this table denote the values of MSE loss function. Values in (.) denote the (10−3) value 
of the MCS procedure. The MCS p-value are computed based on 10,000 bootstrap samples with mean 
squared errors as a loss function (The results of the loss functions based on MSE are not presented to save 
space but are available upon request). The confidence level for MCS is 90%. Models 1 through 5 represent 
HAR − RV  , HAR − CV − J , HAR − SRV  , HAR − RV − ΔJ2 , and HAR − RV − ΔJ2+ΔJ2− , respectively

Candidate models Bitcoin Ethereum

1 month 1 week 1 day 1 month 1 week 1 day

Model 1 0.00919 0.00508 0.00410 0.01405 0.00788 0.00561
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Model 2 0.00276 0.00243 0.00299 0.00514 0. 00,420 0.00434
(1.0000) (0.0000) (0.0000) (1.0000) (0.0326) (0.0000)

Model 3 0.01784 0.00208 0.00001 0.04135 0.00167 0.00018
(0.5278) (0.4512) (1.0000) (0.2981) (1.0000) (1.0000)

Model 4 0.01427 0.00027 0.00002 0.03410 0.00184 0.00023
(0.5278) (1.0000) (0.0000) (0.3823) (0.1111) (0.0000)

Model 5 0.01825 0.00039 0.00001 0.07389 0.00199 0.00019
(0.1025) (0.4512) (0.0000) (0.1492) (0.1496) (0.0000)
Ethereum classic XRP

Model 1 0.01330 0.01256 0.00779 0.01037 0.00504 0.00436
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Model 2 0.00690 0.00814 0.00636 0.00317 0.00229 0.00314
(1.0000) (0.0000) (0.0000) (1.0000) (0.0622) (0.0000)

Model 3 0.02437 0.00047 0.00006 0.1067 0.00076 0.00031
(0.5377) (1.0000) (1.0000) (0.6201) (1.0000) (1.0000)

Model 4 0.02050 0.00050 0.00015 0.01967 0.00079 0.00033
(0.5159) (0.3734) (0.0000) (0.6201) (0.1878) (0.0000)

Model 5 0.01438 0.00063 0.00033 0.01443 0.00085 0.00042
(0.6225) (0.1530) (0.0000) (0.6233) (0.4504) (0.0000)



686	 Annals of Operations Research (2023) 330:665–690

1 3

and XRP volatility modelling, and around 62% for XRP volatility modelling. This result 
was important for investors and hedgers in terms of portfolio diversification and develop-
ing hedging strategies during crisis periods.

Overall, our findings during the crisis period showed some notable aspects, leading to 
explain the divergence on the dynamic of cryptocurrency volatility observed during the 
whole period sample. Indeed, we showed only the occurrence of negative jumps (abrupt 
price decrease) during the previous trading day raised the cryptocurrency market volatil-
ity; however, past positive jumps (abrupt price increase) did not impact the cryptocurrency 
market volatility.

4.3.2 � The out‑of‑sample results

In terms of the forecast accuracy performance, the results were mostly in favour of Model 3 
across all forecasting horizons, thereby revealing the importance of considering the asym-
metric dynamic in cryptocurrency market forecasting (Table 7). More interestingly, Model 
5 is usually retained, across all horizons, in the set of models performing the cryptocur-
rency market forecasting. However, Model 3 is ranked the best model in the set of models.

From an economic point of view, our findings seemed to provide useful insights in line 
with a previous study (Huynh et  al., 2020). Huynh et  al. (2020) shows that alternatives 
coins send market signals faster than the largest market capitalization coin (Bitcoin). Our 
findings highlighted that the responses of altcoins were likely the reverse of Bitcoin (during 
the whole period of analysis), especially the negative jumps. This result shows that the alt-
coins were both sensitive to bad and good signals (signals) from the market and they were 
repercussed on their volatility. However, Bitcoin was more sensitive to bad signals (news). 
Our findings added to the literature showing that during period of turmoil, the volatility 
sensitivity of main coin and altcoin converge were only affected by bad signals (news).

Overall, our results contributed to the literature in two aspects. First, we showed that the 
predictability of cryptocurrency volatility was performed based on the HAR model, which 
was extended by including positive and negative jumps. More specifically, we showed that 
during the crisis period, only negative jumps had a predictive power concerning future real-
ized volatility. This finding was important as it might explain the results of previous find-
ings (Shen et al., 2020; Yu, 2019) that show the jumps do not have a predictive power for 
future volatility. In other words, these studies, by omitting the decomposition of jumps into 
positive and negative jumps, might have diluted the effect on jumps. Second, our results 
proposed new insights regarding cryptocurrency volatility forecasting, as we show that the 
best fit model was the model that takes into account the inertia effect of the volatility in 
the semi-variance components. It is important to consider the asymmetric behaviour while 
investigating the future dynamic of volatility.

For robustness check, have run our empirical analysis based on the upper and lower 
sampling frequency of 10-min and 1-min respectively. The results were still globally 
unchanged.7

7  Tables results are not reported to save space. Results are available upon authors request.
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5 � Conclusion

The stylized facts of the cryptocurrency market show it was characterized by abrupt price 
movements and high uncertainty, raising the question of volatility forecasting during crisis 
periods. This study investigates the volatility dynamics of four major cryptocurrency mar-
kets: Bitcoin, ETC, ETH, and XRP. It is based on the recent literature on use of HFD in 
modelling and forecasting the volatility of financial assets. Particularly, our study contrib-
utes to the literature on cryptocurrency by investigating volatility forecasting in the context 
of the current COVID-19 crisis. After computing the different components of the RV—CV, 
jumps, positive and negative semi-variances, and signed jumps—we developed various 
candidate models, extending the original HAR model of Corsi (2009). Subsequently, both 
in-sample and out-of-sample strategies were performed to propose further insights in terms 
of modelling and forecasting cryptocurrency volatility during non-crisis and crisis periods.

Our findings showed the difference in the dynamic of cryptocurrency volatility across 
the study samples (non-crisis and crisis periods). The extended HAR model that includes 
the positive and negative jumps appears to be the best model for predicting future volatility 
in both periods. However, the difference was that during the crisis period, only the nega-
tive jump component was statistically significant. This result implied future volatility was 
explained by bad volatility during crisis periods. Turmoil periods led cryptocurrency mar-
ket investors to be very stressed and over-react to negative news. In terms of volatility fore-
casting, the results showed that globally, the extended HAR model, which includes positive 
and negative semi-variances, performed better than other models. These findings might aid 
investors and hedgers in refining their forecasting to execute their portfolio diversification 
strategy and perform better at hedging strategies, respectively.

It should be noted that in this study, we focused on whether the signed jump had predic-
tive power in modelling and forecasting cryptocurrency volatility, during a turmoil period 
like the COVID-19 outbreak. We did not look for the predictive power of COVID-19 indi-
cators such infected patients or deaths. Ftiti et  al. (2021) have proposed useful insights 
showing the role of non-fundamental news in predicting the stock market returns volatility. 
Future research should clarify our results that showed the volatility was sensitive only to 
bad jumps during the health crisis through the medium of fundamental and non-fundamen-
tal news. More interestingly, we did not develop a risk management strategy based on dis-
tinguishing between bad and good volatility. Therefore, future studies should focus on port-
folio optimization by considering our results. It merits further investigation into whether 
the optimization portfolio is based only on bad risk, and this may improve portfolio alloca-
tion and hedging strategy.
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