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Abstract A classical problem in the study of an infeasible system of linear in-
equalities is to determine irreducible infeasible subsystems of inequalities (IISs),
i.e., infeasible subsets of inequalities whose proper subsets are feasible. In this ar-
ticle, we examine a particular situation where only a given subsystem is of interest
for the analysis of infeasibility. For this, we define relatively irreducible infeasible
subsystems (RIISs) as infeasible subsystems of inequalities that are irreducible
with respect to a given subsystem. It is a generalization of the definition of an IIS,
since an IIS is irreducible with respect to the full system. We provide a practical
characterization of RIISs, making the link with the alternative polyhedron com-
monly used in the detection of IISs. We then turn to the study of the RIISs that
can be obtained from the Phase I of the simplex algorithm. We answer an open
question regarding the covering of the clusters of IISs and show that this result
cannot be generalized to RIISs. We thus develop a practical algorithm to find a
covering of the clusters of RIISs. Our findings are numerically illustrated on the
Netlib infeasible linear programs.

Keywords Systems of linear inequalities - Irreducible infeasible set - Conflict
analysis - Linear programming

1 Introduction

When faced with a large system of inequalities, the knowledge that it is infeasible
can be overwhelming if the analysis cannot be narrowed to smaller subsystems of
infeasible inequalities. The best that can be done in this direction is identifying
irreducible infeasible subsystems (IISs), i.e., infeasible subsystems whose proper
subsystems are all feasible. The isolation of infeasibility has an obvious application
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in the diagnosis of infeasibility for practitioners who would like to understand why
their model is infeasible.

IISs returned by large systems of inequalities typically contain many elements,
making it hard to understand the source of infeasibility. It is thus essential to
distinguish those inequalities that must be satisfied, because they describe the
physics of a system, from those that can possibly be relaxed, for instance, involving
some penalty or expansion cost. For example, transportation problems usually
require flow conservation constraints and non-negativity constraints that cannot
be excluded. In this case, the user is only interested in the constraints that are not
intrinsic to the problem. Another example arises in supply chain problems where
complex products are built through different steps to be ultimately shipped to
clients. While the constraints describing the production can hardly be relaxed, the
client demands are typically not hard constraints and they should, therefore, be
the primary focus in understanding the system infeasibility.

The above observations led (Chinneck and Dravnieks| (1991) to split the prob-
lem constraints into, on the one hand, bounds and non-negativity constraints, and
on the other hand, all other inequalities, called functional constraints therein. They
then look for IISs that contain a minimal number of functional constraints. As find-
ing minimum cardinality 1ISs is NP-hard (Amaldi et al.| (2003))), so is the problem
of finding IISs with few functional constraints. |(Chinneck| (1997) thus presents dif-
ferent heuristic algorithms based on the deletion filtering method from |Chinneck!
and Dravnieks| (1991)). This idea was further exploited by |Chinneck| (2008a), who
details how guide codes can be used to enforce some constraints to hold. The no-
tion of splitting constraints into those that must be enforced, and those that can
possibly be relaxed has been used in other works on IISs, including |Codato and
Fischetti| (2006) and [Pfetsch| (2008]).

The purpose of this study is three-fold. First we wish to move one step be-
yond |Chinneck| (2008a); |Chinneck and Dravnieks| (1991) in formalizing the search
of particular infeasible subsystems of inequalities when not every inequality is rel-
evant to the analysis of infeasibility. Specifically, let S be an infeasible system
of inequalities and assume that we wish to focus our analysis on some subsystem
of S, denoted B: we define a relatively irreducible infeasible subsystem (denoted
RIIS hereafter) as a subsystem of S that becomes feasible if any inequality of B
is removed from it. Introducing RIISs formally allows to achieve minimality with
respect to the subsystem of interest. Second, we detail the link between RIISs and
the projection of the alternative polyhedron introduced in the study of IISs (e.g.
in [Pfetsch| (2008)). We illustrate numerically on classical instances how working
with the projection of this alternative polyhedron can be useful from a practical
point of view. Last, we focus on the IISs and RIISs that can be obtained from the
optimal solution of the Phase I of the simplex algorithm. We prove that these IISs
cover all clusters of IISs, thus answering a conjecture of |Chinneck and Dravnieks
(1991). We exhibit a counter-example showing that this result does not generalize
to RIISs. We thus develop an algorithm that computes a covering of the clusters
of RIISs and illustate its execution on a classical benchmark.

The remainder of the paper is structured as follows. The next section recalls
the definition of an IIS and its dual characterization. The concept of RIIS is
then introduced in Section [3} and the alternative characterization is discussed
in Section [dl Section [5] then turns to the Phase I of the simplex algorithm. Our
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computational experiments are presented in Section@ and concluding remarks are
provided in Section [7]

1.1 Notations

In the remainder of the article, we will consider an infeasible system of m linear
inequalities with unknown =z € R"™:

S:Ar <a,Bx<b,

where A € R"AX" B e R™B*" q e R™A b e R™5 and my +mp = m.
For a more concise presentation, we will also use the following notations.

— The systems {Az < a} and {Bz < b} are respectively denoted A and B.

— The matrix consisting of the rows of some matrix M indexed by a set I is
denoted M; and the vector consisting of the elements of some vector y indexed
by a set I is denoted yj.

— The support of a vector z is denoted as o(z).

— The subsystem of B that consists of the inequalities Byx < by is denoted as
Bj. By extension, the subsystem A; UBj of S is {Ajz < aj,Bjx <bj}.

2 Irreducible infeasible subsystems of linear inequalities

We first formally define feasible and infeasible systems of linear inequalities, be-
fore giving the definition of an irreducible infeasible subsystem. The same notion
can also be found under the names of irreducibly inconsistent subsystem (van Loon
(1981)) and minimally infeasible subsystem (Gleeson and Ryan| (1990)).

Definition 1 Let S : {Az < a, Bx < b} be a system of m linear inequalities. System
S is feasible if there exists x such that Az < a and Bx < b, and it is infeasible
otherwise.

Definition 2 Let S be a system of linear inequalities. A subsystem S’ of S is an
irreducible infeasible subsystem of inequalities (IIS) if S’ is infeasible, but every
proper subsystem of S’ is feasible.

It is well-known that IISs can be extracted from infeasible subsystems of linear
inequalities using, for instance, the filtering algorithm of |Chinneck and Dravnieks
(1991)), which iteratively constructs an IIS by removing constraints from an in-
feasible set. Thus, the identification of one IIS can be done in polynomial time.
The inverse approach can also be followed to build an IIS in an additive algo-
rithm (Tamiz et al| (1996])) that starts from the empty set and iteratively adds
inequalities that trigger infeasibility. These two algorithms have been at the origin
of a series of computational improvements reviewed by [Chinneck| (2008b)). This
has led to the implementation of filtering techniques in most commercial linear
programming solvers (Chinneck| (1997)).

In methods where the identification of IISs is necessary, but is not the final
goal, it is in general more fruitful to rely on the following dual characterization of
the set of IISs.
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Theorem 1 (Gleeson and Ryan| (1990)) The indices of the IISs of S are in one-
to-one correspondence with the supports of the vertices of the alternative polyhedron

P = {(y,z) eR™A x R™E | ATy+BTz:O,aTy+sz§—LyZO,ZZO}

In particular, the nonzero components of any vertex of P index an IIS.

Sketch of proof Farkas theorem of the Alternative shows that the support of any
point of P describes an infeasible subsystem of S. The second step of the proof uses
the characterization of an extreme point to show that an infeasible subsystem of S is
irreducible if and only if it corresponds to the support of a verter of P.

See the original publication by|Gleeson and Ryan| (1990) for the complete proof. 0O

A corollary of this characterization is that one IIS can be found by solving the
linear program (LP)

min{cTy +dTz: ATy +BT, = 0, aTy +bl2 < -1,y >0, z >0},

where ¢ € R™4and d € R™2. If ¢ and d are set to nonnegative values the above
LP has an optimal solution, and any extreme optimal solution is a vertex of P.

Fischetti et al.| (2010) heuristically search for an IIS that includes a minimum
number of disjunctive constraints by setting the corresponding dual costs to 1 for
all such constraints and to 0 otherwise. In our formalism, the disjunctive con-
straints are given by Bz < b, so we would set d = 1 and ¢ = 0. Another important
application of the identification of IISs is the generation of the minimum cardi-
nality set of constraints that need to be removed to recover the feasibility of the
system. This problem is equivalent to a minimum weight IISs cover. To solve this
problem, [Parker and Ryan| (1996)) compute a minimum weight cover of a small set
of IISs and then iteratively generate IISs that do not contain any inequality be-
longing to the cover. The generation of 1ISs is also carried out by solving a variant
of the above LP.

3 Relatively irreducible infeasible subsystems

What we intend to accomplish is analyse the infeasibility of S with a focus on the
role of the inequalities of B. Specifically, we assume that inequalities of A hold and
wish to understand how subsets of inequalities of B lead to infeasibilities. In the
remainder of the article, we thus assume that S is infeasible, but A is feasible.

Definition 3 Let B be a subsystem of B. We say that B is a relatively irreducible
infeasible subsystem of inequalities (with respect to B) if and only if it satisfies

AU Bj is infeasible and A U By is feasible, VJ' C J (1)
In the remainder of the article, we will call such subsystem an RIIS.

The above definition allows to generalize that of an IIS, because an IIS is
actually irreducible with respect to the complete system S. We illustrate in the
the following example the relationship between IISs and RIISs.
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Fig. 1 Graphic representation of A and B (Example 1.)

Ezample 1 Let S be defined by the subsystems

-1 <0
< —
x1_2 —3z1 — 29 < -3
A:¢ —20<0 and B:
_ < _ 2
22 <1 1Ty
1
—961+112§§

A graphic representation of the inequalities of A and B appears in Figure [I}
The enumeration of the IISs of the complete system provides the following five
sets of inequalities.

—{—w1 42 <5, —w1+a2> 3},
— {21 > 0,22 <1,—21 + 22 > 5},

— {z1 < 3,22 < 1,321 + 22 > 3},
— {21 < §,—z1 422 < 3,321 + 22 > 3},
—{z2 <1, —z1 422 > %739614—132 >3}

In contrast, there are only two RIISs:

—{—z1+z2 > %}, and
— {3321 + x2 > 3}.

In this example, we observe that the last IIS of the list would not be as helpful as
an RIIS in an analysis of infeasiblity that focuses on B since it contains the whole
system B. Also, the first two IISs would actually provide redundant information
with respect to B. ad
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Remark 1 By definition, for all RIIS, B, there exists an IIS of S, A; U B;. Con-
versely, there is no guarantee that B is an RIIS if A; U By is an IIS of S. This is
illustrated in the last IIS from Example [T}

For illustration, we treat several simple cases. Given that S is infeasible and A
is feasible,

— if B =0, then the feasibility of A is in contradiction with the infeasibility of S.
— if A =0, then the search for an RIIS comes down to the search of an IIS of S.
— if B consists of a single inequality, then 5 is the only RIIS.

Moreover, in the case where A is infeasible, then there is no RIIS, because for
every subsystem B; of B, {z | Az <a,Byz<bj} = 0 . As a consequence, the
second part of condition can never be satisfied. In contrast, the case where B is
infeasible does not exhibit particular properties in general. For instance, one can
readily construct examples similar to the one above where IISs and RIISs yield
different information.

4 Alternative polyhedron and the filtering method

Let P := {(y,z) eR™ xR™E | yTA4+2"B=0,yTa+2Tb<-1,y>0, 2> 0},
be the alternative polyhedron that appears in the dual characterization of The-
orem |1} We have seen that an extreme point of P can be found by minimizing
¢I'y 4+ d*'z subject to (y,z) € P for any nonnegative cost vectors ¢ and d. [Fischetti
et al.| (2010) and |Codato and Fischetti (2006) suggest different values of ¢ and d in
heuristic algorithms that aim at producing IISs that include a minimum number of
inequalities of B. In particular, |Codato and Fischetti| (2006) set ¢ = 0 and sample
random nonnegative vectors d to generate several distinct IISs. In this section, we
study how the dual characterization of IISs can be adapted to narrow the search
for RIISs. This yields a clear connection between the heuristic algorithm of|Codato
and Fischetti| (2006]) and the extreme points of the projection of P on the space
of z variables.

Given that we are interested in the support of variables z, it is natural to study
the projection of P on the space of variables z,

Proj,(P) := {z >0 1] Jy=>0, yTA4+:"B=0,yTa+2Tb< —1} .
As a projection of P on a linear subspace, for all extreme points of Proj,(P), z,
there is g such that (g, 2) is an extreme point of P. However, it is not true that for

all extreme point of P, (g, %), 2 is an extreme point of Proj,(P). One can consider
the projection of a pyramid on the plane of its base for a counterexample.

4.1 Link between the vertices of Proj,(P) and RIISs

We investigate next whether Theorem[I]can be adapted to characterize RIISs. The
following result shows that any RIIS corresponds to an extreme point of Proj, (P).
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Proposition 1 Let B; be an RIIS, then there is an extreme point of Proj,(P) whose
support coincides with J.

Proof If By is an RIIS, there is I C {1,...,m4} such that A; UB; is an IIS of S.
By Theorem |1} there is an extreme point (g, 2) of P whose support is given by
ITUJ. Given that 2 is in Proj,(P), it can be writen as a combination of K < mp+1
extreme points, z', ..., 2, and one ray r of Proj,(P):

K K
=Y 0 +8r, Y o =1,0<0,<Lk=1,...,K, >0
k=1 k=1

Let k € {1,...,K}. Since z > 0 for all z € Proj,(P) and r > 0 for every ray of
Proj,(P), the support of 2F s necessarily included in that of Z, i.e., a(zk) C J.
Besides, there is y* such that (yk, zk) is an extreme point of P, s0 A, (k) UBy (k) is
an IIS of S. Given that B is an RIIS of S, we get that J C o(z*), hence o(z¥) = J.

As a conclusion, either 2 is an extreme point of Proj,(P) with support equal
to J, or any extreme point of Proj,(P) among 2', ..., 2% is supported by J. ad

Proposition [I| guarantees that we can focus on the vertices of Proj, (P) instead
of those of P, since no RIIS will be left aside by doing so. Unfortunately, the
converse of the proposition does not hold as there may exist a vertex of Proj, (P)
that is not supported by an RIIS. This is illustrated in the example below.

Ezample 2 Let S be defined by the subsystems

and B:

1
A {291 <1 [w] x1 — 22 < 3 [21]
T2 < Y2 —x1 —x2 <=3 [2]

The alternative polyhedron is given by

1
P:{(y,z)20:y1+21—22ZO,y2—21—22:0,y1+y2—521—322S—l}.

This polyhedron has two vertices, (0, %, %, %) and (1,1,0,1) whose projections on

the space of z variables are (2, %) and (0,1). It so happens that (2, 2) and (0,1)

33 373
are also the only vertices of Proj, (P). However, there is only one RIIS that consists
of the last constraint of B: {—x1 —z2 < —3}. O

There are also cases where all vertices of Proj,(P) lead to RIISs, as shown
in the example below. The following example also illustrates that there are cases
where A; U By is an IIS of S, but no vertex of Proj,(P) is supported by J. By
Proposition [I] such subsystem Bj; cannot be an RIIS, so we will need to apply
some filtering algorithm to retrieve an RIIS from it. Given that this subsystem
will not appear if we consider only the extreme points of Proj, (P), this shows that
there can be a benefit in focussing on the vertices of Proj,(P) instead of those
of P.
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Example 3 We consider once again the system defined in Example

—r1 <0 [y1]
1
< =
= 2 [y2] —3r1 — 22 < -3 [21]
A:¢ —29<0 [y3] and B: -
oy < 1 ] 71 —22< —5 [z2]
1
—z1+ 22 < 3 [ys]

The alternative polyhedron is given by

(y,z)€R5><R2 c—y1 +y2 —ys — 321 + 220 =0,
—y3+ys+ys —21—22=0,

1 1 3
_ _ — J— < —
2y2+y4+2y5 321 572 < 1,

y=>0,2>0

Using the Polyhedraﬂ and CDDLilﬂ packages of the Julia language (Bezanson
et al.| (2017))), we enumerate the vertices of P as (0,0,0,0,1,0,1), (2,0,0,2,0,0,2),
(0,6,0,2,0,2,0),(0,8,0,0,2,2,0) and (0,0, 0, %, 0, %, %)7 whose supports correspond
exactly to the IISs enumerated in Example [Il The projection of these vertices on
z variables yield three subsystems of B: {—3z1 — 22 < =3}, {z1 — 22 < —%} and
{-3z1—22 < -3,21—22 < f%} In contrast, Proj, (P), has only two vertices, (2,0)
and (0, 1), whose supports correspond exactly to the RIISs of the system. O

4.2 Generalization of the filtering and additive methods

Let o, (P) be the set of supports of the projection of the extreme points of P on
the space of variables z, and let o(Proj,(P)) be the set of supports of the extreme
points of Proj,(P). As discussed in the previous section, o(Proj,(P)) C o.(P)
and every RIIS is indexed by an element of o(Proj,(P)). Moreover, there are
cases where o(Proj,(P)) C o(P). As a consequence, focusing on Proj,(P) rather
than P, we possibly dodge some extreme points that do not correspond to RIISs.
This motivates the following result which shows that vertices of Proj,(P) can be
computed just like those of P, i.e., by solving

min{cTy +dFz: ATy +BTz=0, aTy +oT2< 1, y >0, z>0}. (2)

The only specificity is that ¢ should be set to zero and d needs to be generated
randomly from a vector of continuous random variables.

Proposition 2 Let d be a vector of mp mutually independent non-negative continuous
random variables. Then, if (§,%) € argmin{d” z : (y,z) € P}, % is a vertex of Proj_(P)
with probability 1.

1 https://github.com/JuliaPolyhedra/Polyhedra.jl
2 https://github.com/JuliaPolyhedra/CDDLib. j1
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Proof Let d € R'® be a realization of d. Given that P # () and z > 0 for all (y, 2) €
P, then the linear program min{d” z : (y,2) € P} is feasible and bounded. As a
consequence, argmin{JTz : (y,z) € P} is a nonempty face of P whose projection
on the space of z is denoted as Zz. More formally,

Zj = Proj, (argmin{de 1 (y,2) € P}) # 0.

Assume that Zj is reduced to one point £ (i.e., dim(Z;) = 0). Given that
(9,%) € P, 2 € Proj,(P). So, if z is not a vertex of Proj,, (P), there exist two distinct
points 2! and 2? of Proj, (P) such that 2 = az' + (1 —a)z? for some a €]0, 1[. This
is possible only if dT 2! = d*22 = min{d” z : (y, z) € P}, a contradiction.

If dim (Z7) > 1, then Z; contains two distinct points z1 and z2 such that
JT(ZQ — 21) = 0. Since d is a vector of continuous random variables, for any two
given vectors z1, z2 in Proj,(P), the probability that d” (za — z1) = 0 is zero. As
a consequence, if we denote F' a face of P whose projection on the space of z has
nonzero dimension, then P (argmin{de : (y,2) € P} = F) = 0. Given that P has

a finite number of faces, this yields
P(dim(Z4) > 1) =0.

We deduce that with probability 1, argmin{d” z : (y,2) € P} is reduced to one
vertex of Proj, (P). O

The significance of Proposition [2] is that it provides a practical method for
computing a vertex of Proj,(P). Indeed, when compared to the computation of
a vertex of P, the only additional operation is the random generation of the cost
vector d.

Remark 2 Tolerances in optimality and feasibility will necessarily yield a nonzero
probability that the solution of min{d” z : (y,z) € P} be not a vertex of Proj, (P).
In practice though, if is solved with a simplex or a crossover algorithm, we still
obtain a vertex of P from which an RIIS can be found by filtering.

Once a vertex has been found, an RIIS can be found using, for instance, by
the filtering algorithm described in Algorithm [I] A similar filtering algorithm has
already been described by |Chinneck| (2008b)), Section 6.2.6, where the constraints
can be labeled to guide the isolation of infeasibility. An RIIS can be otained with
this code by protecting the inequalities of A from elimination with the relevant
label. The specificity of Algorithm [I]is that we start the filtering algorithm from
the support of a vertex Proj, (P). We also show that it guarantees the identification
of an RIIS in Proposition

Proposition 3 Let By be a subsystem of B such that {x | Az <a,Bjx <bj} =0,
then it is possible to extract at least one RIIS, J' C J.

Proof We show the result by induction on the size of B;. If B; consists of only
one inequality, then it is an RIIS. Now, assume that B; includes more than one
constraint. If there exists J' C J such that {z | Az <a,Byz<by} = (), then
apply the induction hypothesis on Bj,. Otherwise, B; is an RIIS (by definition).

O
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Input: The systems A : Az < a and B : Bz < b;

1 Solve for random c and d // ¢ =0 if we seek an extreme point of Proj,(P)
2 Let (y*, z*) be an optimal extreme solution and Z + o(z*);
3 J <+ Z;
a4 for j € Z do
5 if j € J then
6 J' = I\ {ih
7 Solve
(LP /) <+ min{cTy—&—d?;,z : ATy—i-B?,z =0, aTy—&-ij,z <-1,y>0,z >0}
8 if (LP /) is feasible // i.e., AUBj is infeasible
9 then
10 (y', 2') + an optimal extreme solution of (LP j/);
11 J <« o(2') // j is excluded from J and we perform an
opportunistic removal of other elements from J if o(z’) C J’

12 return J;

Algorithm 1: Filtering algorithm to find an RIIS

A similar result is also valid for the generalization of the additive methods
of [Tamiz et al.| (1996)). Since the feasibility of a system of linear inequalities can
be verified in polynomial time, this is also true for the extraction of one RIIS from
a subsystem of B.

The next section turns to the analysis of the IISs and RIISs that can be deduced
from the solution of the Phase I LP.

5 Phase I sensitivity analysis

In the search for an initial feasible solution for the primal simplex algorithm, it
is classical to solve a so-called Phase I LP (see e.g. Dantzig and Thapal (1997) for
a complete description). The idea is to add one non-negative artificial variable to
each constraint so that a trivial feasible solution appears, and minimize the sum
of these variables. A nonzero optimal value then means that the LP is infeasible.
Chinneck and Dravnieks| (1991) discuss how this applies to the search for an IIS
of the system {z > 0, Bz < b}, where Bz < b are called functional constraints in
opposition to the nonnegativity constraints. This formalism is a specific case of
ours, where A : z < 0 and B : Bx < b. In their work, |(Chinneck and Dravnieks
(1991)) introduce the concept of irreducible inconsistent set of functional constraints
(IISF) as the complete subset of functional constraints involved in an IIS. However,
they do not investigate the minimality of such TISF.

Taking the more general framework of this article, where A : Az < a can be
any feasible system of linear inequalities, the Phase I LP considered by |Chinneck
and Dravnieks| (1991)) is

min 1°s
subject to Az < a, [y]
Bz —s<b, [7]
s>0

LPI .
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where 1 is a vector of ones with the appropriate dimension. The dual LP of the
above can be equivalently written as

— min aTy +b72
LD : { subject to ATy + BT = 0,
y>0,0<2<1

Given that A is feasible, LP; and LD both have optimal solutions. In the remain-
der of this section, (z*,s*) is an extreme optimal solution of LPy and (y*,2") is a
complementary extreme optimal solution of LDj. |Chinneck and Dravnieks| (1991))
show several properties for the system {z > 0,Bz < b} that straightforwardly
generalize as follows.

Property 1

1. o(s*) is an RIIS cover, i.e., for all RIIS J, o(s*) N J # 0;
2. s7 > 0 only if Bjz < b; belongs to an IIS;

3. y; > 0 only if A;xz < a; belongs to an IIS;

4. if J = o(z"), then J contains an RIIS.

One related observation is that the infeasibility analysis of a system may be
simplified when the set of IISs can be partitioned into independent subsets called
clusters. More precisely, the clusters are the minimal sets of IISs such that two
IISs sharing at least one constraint belong to the same cluster. In what follows,
we establish in Theorem [2| that the support of (y*,2*) contains the indices of at
least one IIS from each cluster, as conjectured by |Chinneck and Dravnieks| (1991)).
We then generalize the definition of a cluster to RIISs, and we exhibit a counter-
example showing that there can be a cluster of RIISs containing no RIIS whose
indices are included in the support of z*.

Lemma 1 Let ! € {1,...,mp} be such that s; > 0. There exists at least one IIS of
S, ArUBy, such thatl € J, y; >0,Vi€ I, and z; > 0,Yj € J.

Proof By complementarity of the primal and dual solutions, we know that for all
l € o(s*), 1 € o(z). Let LP1 be the LP obtained from LP; by keeping only the
constraints of A indexed by o(y*) and those of B indexed by o(z*). Denoting

s(z+), one can readily verify that (z%,5) is an

s = 8:.(2*), 17 = y;(y*) and z = ZU’(Z

optimal solution of LPy, by complementarity with the dual solution (g, z).

Now, let I € {1,...,mp} such that s] > 0. Given that 5 = s;(z*) and [ € o(2%),
the application of item 2 of Property [I| to LP; guarantees that B;z < b belongs
to an IIS, Aj U By, of the constraints of LP;. By definition of LPy, we necessarily

have I C o(y*) and J C o(2"). m]

Theorem 2 The support of (y*,2%), o(y*) Ua(z"), contains the indices of at least
one IIS from each cluster of IISs.

Proof Let C be a cluster of IISs and TUJ € C. From item 1 of Property [, we know
that there is { € {1,...,mp} such that s; > 0 and ! € J. Now, from Lemma [}
there is an IIS, Ay U By, such that I’ C o(y*), J' C o(2*) and I € J'. Since !
indexes an inequality involved in at least one IIS of C, A, UB; must also belong
to C, which concludes the proof. |
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We now wish to see how this result generalizes to RIISs. For this we start by
defining clusters of RIISs.

Definition 4 A set C of RIISs of S is a cluster of RIISs if and only if:

- C#£0;
— if By and By are two RIISs and By € C, then

(ByjnBy #0) = (ByeC).

The motivation for considering clusters of RIISs is that they can be more
numerous than clusters of IISs. Indeed, two RIISs J; and J2 can belong to different
clusters of RIISs even though every pair of IISs, A;, UB;, and Aj, UBy,, belong
to the same cluster of IISs.

Remark 3 One consequence of Theorem [2| is that for each cluster C' of IISs there
is an RIIS that is included in an IIS of C' and in o(z*). Indeed, this RIIS may be
extracted from any IIS of C that is included in o(y*) U a(2*).

Unfortunately, Theorem [2] does not generalize to RIISs. The following example
shows there there is no guarantee that for each cluster of RIISs there is one RIIS

included in o(z*).

Exzample 4 Consider a system S defined by the following two subsystems.

—x1 —x2 < —2 [Z1]
—21 <0 [y1]

A and B:{z1+xz2< -2 [22]
—22<0 [y

1 +a2 <1 [23]

The systems contains two RIIS: {—x1 —22 < —2,21 422 < 1} and {z1 + 22 < —2}.
Given that the RIISs have empty intersections, they define two clusters of RIISs.
Now, the corresponding Phase I LP is:

min 17
subject to —ax1 —x2 —s1 < -2 [z1]
LP;: T, + x2 — 89 < —2 [22]
r1+a2—53<1 [23]
z,s >0

Solving LP; with a simplex algorithm, we get the extreme optimal solution z* =
(0,0) and s* = (2,2,0) with complementary dual solution z* = (1, -1,0). We see
that the indices of the RIIS {—z1 —z9 < —2, 71 +z2 < 1} are not included in o(2*),
so no RIIS of the corresponding cluster is included in o(z*).

In the following result, we specify how the optimal dual vector z* can be decom-
posed as the combination of extreme points of Proj,(P) and an additional vector z
whose support indexes a feasible subsystem. The result and its constructive proof
yield an algorithm that can produce several RIISs (at least one per cluster of 11Ss)
from the solution of one Phase I LP.
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Theorem 3 The projection of the optimal dual solution on z wvariables, z*, can be
decomposed as

K
Z* = Z akzk + 2, (3)
k=1

where K < |o(2")| and, for allk € {1,..., K},

— o >0,

— 2¥ is an extreme point of Proj,(P),
— B, (.xy is an RIIS,

— there is j € o(2F) such that 57> 0.

Moreover, AU B, (3 is a feasible subsystem of S.

Proof Let z := 2*. From the assumption that S is not feasible, we know that
aly* + 672" = aly* +b7Z < 0. As a consequence, Ag(y+y UBg(z) is an infeasible
subsystem of S, and so is A U B (z). This implies that there is an RIIS B; such
that J C o(Z).

By Proposition [} we know that there is an extreme point z* of Proj,(P) such
that o(z') = J. First, (z*,s%) is an optimal solution of LP; so Az* < a and
Bz* — s* <b. In particular, we have Az* < a and B, 1yz" — 521y < bo(z1)- But,
AU Bg(.1y is an infeasible subsytem of S, so there must be j € o(z') such that
s5 > 0. Second, we have o(2') C (2) so there is a1 > 0 such that

o(z—aiz') Co(2),

Efalzlzo

Updating z as zZ < Z — a1 2%, we can apply the above process recursively until
AUB; (3 is feasible. This yields the required decomposition in K steps. Moreover,
the cardinality of the support of z decreases at each step of the recursion so
K <|o(z")]. O

The decomposition given in Theorem [3| and the recursion used in its proof
provide a method for identifying a set of RIISs as described in Remark [3] Setting
A =0 and B = S, the decomposition can also provide at least one IIS per cluster
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of 1ISs, as guaranteed by Theorem [2| To build this decomposition in practice, we
can follow the algorithm below.

Input: A system S = AU B;

(z*,s™) < an optimal extreme solution of LPry;

(y*,z) + a complementary dual solution;

Z+o(z), T« 0, k<0

while A U By is infeasible do

k+k+1;

// get one one RIIS from Z

J « extract an RIIS from A U Bz with Algorithm
8 | T+ JU{Bs};

// get a vertex of Proj,(P)

o A W N =

~

9 Sample {d;};cs from i.i.d. positive continuous distributions;
10 (y*, 2%) « an optimal extreme solution of
11 min{dgzj : ATy + szz!] =0, aTy + b?z,] =-1,y>0, z;y >0}
// update Zz
12 Q= minjeJ{%,};
13 Z4—ZzZ— akzk;

14 Z + o(z);
15 return J;

Algorithm 2: Identification of RIISs using Phase I sensitivity analysis

Corollary 1 At the end of Algorithm[g, for each cluster C of IISs there is at least one
IIS A UBjy € C such that By € J.

Proof First observe that Algorithm [2| follows exactly the recursive process de-
scribed in the proof of Theorem[3] At each step, Algorithm [I]is executed to get an
RIIS whose support is included in o(z), and an LP is solved to get a dual solution
(y*, 2¥) such that o(z*) C (2). Moreover, by Proposition z¥ is an extreme point
of Proj,(P). Notice also that o(z¥) = J as By is an RIIS. Therefore, one readily
verifies that the choice of oy, guarantees that

o(z — akzk) C a(2),

E—akzk >0.

As a consequence, Algorithm 2] yields

K
2F = Z akzk +z,
k=1

where for all k € {1,...,K}, a > 0 and B
feasible subsystem of S.

Now, let C' be a cluster of IISs. By Theorem [2] there is A; U By € C such
that J C o(2"). Given that A U B, is feasible, there must be j € J such that
Jj € o(2") \ o(2). By definition of the decomposition, this means that there is
ke {1,...,K} such that j € o(z*), hence J N o (z*) # 0. Since o(z*) is an RIIS,
this means that o(z*) € C. ]

k) is an RIIS, and AU B,z is a

o(z
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Stated otherwise, Corollary guarantees that Algorithm provides at least as
many independent RIISs as the number of clusters of IISs. This is not sufficient
though to get one RIIS per cluster of RIISs. For this, we must iteratively call
Algorithm [2] after removing the supports of the returned RIISs until none can be
found. This is detailed in Algorithm

Input: A system S = AUB
J « result of Algorithm [2[ with input S = AU B;
Trus + 0;
J«—A{1,...,mp};
while J # () do
Jriis < Jris U J;
// remove covered inequalities of B
J J\ (UBJGJ J)’
// run another Phase I analysis
7 J < result of Algorithm [2| with input S = AU Bj;
8 return JRiis;

Algorithm 3: Identification of at least one RIIS per cluster of RIISs

[ ST NI VI

=]

Proposition 4 At the end of Algorithm[3, for each cluster C' of RIISs there is at least
one RIIS By € Jris such that By € C.

Proof Observe that at the end of Algorithm

J={1,...,mp}\ U

BjeJrus

So, if a cluster of RIISs is not covered by Jriis, it must include only RIISs whose
indices belong to J. But, Algorithm [3]ends when Algorithm [2] cannot extract any
RIIS from Bjy. Hence, Jriis contains at least one RIIS per cluster of RIISs.

6 Computational experiments

We detail below the results of our experiments realized on infeasible instances
made available by Csaba Mészé.rosatEl, mentioned in |Chinneck| (2008b)), among
others. As these instances consider classical IISs, instead of RIISs, we need to
create a decomposition of the linear systems involved into subsystems A and B. For
this, we consider that the inequalities that are most likely to represent structural
constraints are the variable bounds and the inequalities with right-hand-side equal
to 0. As a consequence, we initialize A with a feasible set of variable bounds. In
most cases, this is just the set of all variable bounds, but when a set of bounds
is inconsistent, we solve a Phase I problem and keep only the bound inequalities
with a zero artificial slack variable. If it does not make A infeasible, we then add
all the equalities with a zero right-hand-side. Likewise, we finally add to A all the
inequalities with a zero right-hand-side if the system remains feasible after this.

3 Every instance can be downloaded at http://old.sztaki.hu/~meszaros/public_ftp/
lptestset/infeas/


http://old.sztaki.hu/~meszaros/public_ftp/lptestset/infeas/
http://old.sztaki.hu/~meszaros/public_ftp/lptestset/infeas/
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name #var #ctr  #ctrA  #ctrB [TIS] lo(z)] |RIIS| | reduction (%)
bgdbgl 407 800 526 274 5.0 1.4 1.4 0.0
bgetam 688 1305 1280 25 20.7 3.1 1.0 67.7
bgindy 10116 12787 10713 2074 | 154.0 3.0 3.0 0.0
bgprtr 34 54 42 12 12.3 6.1 5.0 18.0
box1 261 492 261 231 9.3 8.3 8.0 3.6
ceria3d 824 3576 3381 195 | 149.9 8.9 4.0 55.1
chemcom 720 1152 1114 38 36.5 4.0 2.0 50.0
ex72a 215 412 215 197 59.2 58.2 58.2 0.0
ex73a 211 404 211 193 25.3 24.3 24.0 1.2
forest6 95 166 160 6 94.0 6.0 3.0 50.0
galenet 8 24 20 4 6.0 2.0 1.0 50.0
gams30am 181 714 362 352 61.0 10.5 1.0 90.5
gams60am 361 1434 722 712 | 121.0 21.8 1.0 95.4
gosh 10733 14283 14234 49 9.0 1.0 1.0 0.0
greenbea 5405 8200 5878 2322 55.0 7.2 1.0 86.1
itest2 4 13 6 7 3.0 1.0 1.0 0.0
itest6 8 19 11 8 3.8 2.7 1.2 55.6
kleinl 54 108 104 4 55.0 4.0 4.0 0.0
klein2 54 531 517 14 55.0 3.0 1.0 66.7
klein3 88 1082 89 993 89.0 87.0 78.4 9.9
mondou2 604 1520 1332 188 47.8 24.4 21.0 13.9
pang 460 862 817 45 35.0 2.0 2.0 0.0
pilot4i 1000 1599 1436 163 | 198.3 20.7 1.0 95.2
qual 464 1037 931 106 | 241.9 17.0 8.0 52.9
reactor 637 1505 1199 306 9.2 1.0 1.0 0.0
voll 464 1037 931 106 | 235.1 14.5 8.0 44.8
woodinfe 89 138 103 35 2.0 1.0 1.0 0.0
33.6

Table 1 Instance characteristics, averages sizes of IISs and RIISs.

All other inequalities and equalities form the system B, where each equality is
replaced by two inequalities. The resulting instances are described in Table

We used the dual simplex of Gurobi solveIE| to get extreme solutions of all the
linear programs solved in Algorithm [[]and [2} All our algorithms are implemented
with the Julia language. The code and the instances are publicly available on a
git repositor

The purpose of our numerical experiments is three-fold. First, we illustrate
the size of the RIISs we obtain for each instance with Algorithm [I} comparing
these with the IISs we obtain by solving the dual problem . Second, we assess
the interest of working with the projected polyhedron. For this, we set ¢ = 0 and
sample d randomly when searching for an RIIS. Third, we exemplify the clusters
of RIISs obtained with Algorithm

The main motivation behind the introduction of RIISs is the size of the in-
feasible systems that need to be analyzed, often manually, by the modelers and
decision makers. To study this, we generate 100 IISs by solving with 100 dif-
ferent random cost functions sampled independently (not necessarily focussing on
the projection, e.g., ¢ may be different from 0). We then extract one RIIS from
each IIS with the filtering algorithm described in Algorithm [} Table [I]reports the

4 See https://www.gurobi.com

5 See https://gitlab.insa-rennes.fr/Jeremy.Omer/RIIS_public.git. Notice that these
instances are actually a superset of the original netlib set available at http://www.netlib.
org/lp/infeas/| where a couple of additional files have been added.


https://www.gurobi.com
https://gitlab.insa-rennes.fr/Jeremy.Omer/RIIS_public.git
http://www.netlib.org/lp/infeas/
http://www.netlib.org/lp/infeas/
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lo(2)] |RIIS| #it reductions (%)
name P  Proj,(P)| P Proj,(P)| P Proj,(P)|lo(z)| |RIIS|  #it
bgdbgl 1.4 1.3 1.4 1.3 1.4 1.3 7.1 7.1 7.1

bgetam | 3.1 3.0 1.0 1.0 3.0 3.0 3.2 0.0 0.0
bgindy | 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0
bgprtr 6.1 6.7 5.0 5.0 6.0 6.2 —9.8 0.0 =33
box1 8.3 8.0 8.0 8.0 8.2 8.0 3.6 0.0 24
ceriadd | 8.9 5.2 4.0 4.2 5.3 4.4 416 —5.0 17.0
chemcom | 4.0 3.6 2.0 2.0 4.0 3.6 10.0 0.0 10.0
ex72a [58.2 58.2 58.2 58.2 58.2 58.2 0.0 0.0 0.0
ex73a [24.3 24.0 24.0 24.0 24.2 24.0 1.2 0.0 0.8
forest6 6.0 6.0 3.0 3.0 6.0 6.0 0.0 0.0 0.0
galenet | 2.0 1.7 1.0 1.0 2.0 1.7 15.0 0.0 15.0
gams30am |10.5 1.0 1.0 1.0 2.0 1.0 90.5 0.0 50.0
gams60am|21.8 1.0 1.0 1.0 2.0 1.0 95.4 0.0 50.0
gosh 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
greenbea | 7.2 1.0 1.0 1.0 2.5 1.0 86.1 0.0 60.0
itest2 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
itest6 2.7 1.6 1.2 1.4 2.0 1.5 40.7 —-16.7 25.0
kleinl 4.0 4.0 4.0 4.0 4.0 4.0 0.0 0.0 0.0
klein2 3.0 1.0 1.0 1.0 2.1 1.0 66.7 0.0 52.4
klein3 |87.0 83.9 78.4 76.2 81.7 79.9 3.6 2.8 2.2
mondou2 (24.4 22.8 21.0 20.3 23.6 22.6 6.6 3.3 4.2
pang 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0
pilot4i |20.7 1.6 1.0 1.0 2.6 1.6 92.3 0.0 38.5
qual 17.0 16.5 8.0 8.0 14.0 13.8 2.9 0.0 1.4
reactor | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
voll 14.5 15.2 8.0 8.0 13.3 13.7 —4.8 00 —=3.0
woodinfe | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0
average 20.4 —0.3 12.2

Table 2 Obtaining RIISs from extreme points of P or Proj, (P).

average number of constraints returned in IISs (|IIS|), constraints of the IIS that
belong to B (|o(2)|), and constraints in RIISs (JRIIS|). The last column illustrates
the effect of Algorithm [1} that is, the relative reduction obtained by filtering the
constraints returned in o(z). These results illustrate two things. First, with the
above definitions of A and B, there are many more constraints in the IISs than in
the RIISs. More importantly, our results highlight the substantial reduction in the
number of constraints that are obtained by filtering the set o(z) returned by the
IISs.

We illustrate in Table [2] the benefit of starting with an extreme point of
Proj, (P) rather than P. In both cases, we compute 100 RIISs by filtering from 100
IISs obtained by solving with random costs. To ensure that we get an extreme
point of Proj,(P), we set to 0 the cost of variables y (¢ = 0) in the former case.
In contrast, we sample ¢ randomly to get arbitrary extreme points of P. Table
provides for each approach the average size of the RIISs (|RIIS|) and the cardi-
nality of the support of z in the solutions of (lo(2)]), as well as the number
of iterations (#it) required by Algorithm [1} The last three columns compute the
relative reductions in the sizes of RIISs, number of iterations, and support of z
when setting ¢ = 0. The results illustrate the rather consistent decrease in the car-
dinality of the support of z when ¢ = 0, with 16 out of the 27 instances witnessing
a reduction and only two witnessing an increase (of less than 10%). The numbers
of iterations follow a similar trend. The size of resulting RIISs are only marginally
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name #RIIS  |RIIS|  #clusters
bgdbgl 12 2.0 12
bgetam 1 1.0 1
bgindy 1 3.0 1
bgprtr 1 5.0 1
box1 1 144.0 1
ceria3d 2 5.5 2
chemcom 1 2.0 1
ex72a 1 73.0 1
ex73a 1 24.0 1
forest6 1 3.0 1
galenet 1 1.0 1
gams30am 1 1.0 1
gams60am 1 1.0 1
gosh 1 1.0 1
greenbea 2 3.0 2
itest2 2 2.0 2
itest6 3 1.3 3
kleinl 1 4.0 1
klein2 3 1.0 3
klein3 6 80.0 1
mondou2 3 34.0 3
pang 1 2.0 1
pilot4i 1 1.0 1
qual 1 8.0 1
reactor 2 1.0 2
voll 1 8.0 1
woodinfe 2 1.0 2

Table 3 RIISs obtained through Algorithm

affected by setting ¢ = 0. Overall, Table [2] illustrates that, while working with the
projection may be a bit faster than working with the full polyhedron when looking
for an RIIS, the projection does not necessarily lead to smaller RIISs.

Table [3] illustrates Algorithm [3] on the same instances as before. The table
reports the number of RIISs (#RIIS) found by the algorithm and their average
sizes (|RIIS|). In addition, in the last column, we report the number of clusters of
RIISs returned by the algorithm.

To better discuss the results reported in the table, we draw attention on another
classical issue in infeasibility analysis. It is often of interest to identify minimal sub-
sets of constraints that need to be removed from S to recover feasibility (Chinneck|
2008a)). Those coincide with sets of constraints that cover all IISs. This definition
naturally extends to our context, leading to covers of RIISs. Now, observe that
the numbers of RIISs (#RIIS) and clusters of RIISs displayed in Table |3 coin-
cide for all but one instance (klein3). Hence, for all these instances, the RIISs
returned by Algorithm [3] are disjoint, and thus minimum covers must contain at
least one constraint that belongs to each one of these RIISs. Stated otherwise, the
result reported in column #RIIS provides a lower bound on the cardinality of the
minimum RIIS cover for each instance except klein3.

Comparing column #clusters of Table [3] with column “Minimum cover cardi-
nality” of Table 7.1 from |Chinneck| (2008al), we see that for three of these instances
(itest6, klein2, and reactor) the cardinality of the minimum cover is larger for RIISs
than for IISs, because one or more of the constraints in the IISs cover are in set A.

Therefore, in the context where the constraints of A are known to be mandatory
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in the description of the problem, the results for these three instances indicate
that repairing (for instance, by removing) the constraints included in a minimum
IIS cover would not be enough to recover feasibility. In contrast, a minimum RIIS
cover is composed of a set of constraints that can be repaired to recover feasibility.

7 Conclusion

In this work, we have formalized the concept of RIIS, discussing how it is related
to the classical IIS, and providing a practical algorithm to compute them. We have
also focused on the IISs and RIISs that can be obtained from the Phase I of the
simplex algorithm, answering a question raised by |Chinneck and Dravnieks| (1991))
related to the covering of clusters of IISs.

While our motivation has been driven by detecting infeasibility in linear pro-
grams, we believe RIISs can also be useful in integer programming wherein un-
derstanding infeasibility is also at the core of several cutting planes algorithms.
For instance, |(Codato and Fischetti (2006); |[Fischetti et al.| (2010)) solve a specific
Benders’ decomposition that keeps all the binary variables in the master prob-
lem and search for particular IISs in the subproblem. Another application is in
sparse approximation problems, which are typically cast as MILPs that minimize
the number of binary variables taking a value different from 0. Enforcing these
variables to be equal to 0 leads to a linear system where the latter constraints be-
long to B. Developing efficient cutting plane algorithms leveraging the cuts derived
from the RIISs could be an interesting venue for future work.
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