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Abstract
Renewable energy is significant for addressing climate change and energy security. This 
study focused on the drivers of China’s renewable energy consumption (REC) by an 
extended production-theoretical decomposition analysis and emphasized REC technical 
efficiency and technological change in 28 provinces during 1997–2017. We then projected 
China’s REC to 2030 based on nine scenarios using a Monte Carlo simulation approach 
and specifically considering the impacts of the COVID-19 pandemic on the national econ-
omy. The decomposition results showed that economic growth and population scale gen-
erally contributed to an increase in REC at national and provincial levels over the period 
while the overall technical efficiency and technological change in REC played limited roles 
in prompting REC nationally. The projection results indicated that the target that generates 
50% of its electricity from renewable energy sources for China, could be achieved by 2030 
if enough actions are taken to accelerate renewable energy development. Finally, we pro-
vided policy proposals that support our findings.

Keywords  Renewable energy consumption · COVID-19 pandemic · Production-theoretical 
decomposition analysis · Monte Carlo simulation

1  Introduction

Renewable energy has been widely regarded as an efficient tool for mitigating climate 
change and achieving energy security (Akintande et al., 2020; Anton & Nucu, 2020; Chen 
& Lin, 2020; Ozcan & Ozturk, 2019; Steffen et al., 2020). Due to the significant decrease 
in costs of renewable power generation recently (International Renewable Energy Agency, 
IRENA, 2020), global renewable energy consumption (REC) has been growing rapidly, for 
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example, at an annual growth rate of 13.7% over 2008–2018 (British Petroleum Company, 
BP, 2020).

This is particularly true for China, the largest developing country and energy consumer. 
The country consumed 22.9% of global renewable energy in 2019, which was approxi-
mately the sum of the annual REC in the UK, Italy, Japan, Australia, South Africa, France, 
Germany, and Canada in 2019 (BP, 2020). Therefore, the research on China’s REC is of 
significance theoretically and practically.

To achieve emission reduction and energy transformation, the Chinese government has 
issued a series of renewable energy development policies. In 2005, the first Renewable 
energy law of the People’s Republic of China was issued; it was amended in 2009. This law 
is the basis for renewable energy development and utilization in China, including resource 
investigation and development planning, industrial guidance and technical support, pro-
motion and application, price management and cost sharing, and economic incentives and 
supervision measures. In 2020, renewable energy was listed as the energy development pri-
ority in the first draft of the Energy law of the People’s Republic of China (National energy 
administration, NEA, 2020). The country will formulate medium and long-term targets for 
the total amount of renewable energy development and utilization, as well as the target 
for the proportion of REC in primary energy consumption, which will be included in the 
national economic and social development plan as well as annual binding targets; it will 
also be broken down into provinces for easier implementation.

As early as 2016, the Thirteenth Five-Year Plan for Renewable Energy Development 
set a national target of 1.9 trillion kwh of renewable energy power generation by 2020, 
accounting for 27% of the total power generation (NEA, 2016). The National strategy on 
energy production and consumption revolution (2016–2030) has set the goal of achieving 
50% (as much as possible) of all non-fossil energy power generation by 2030 in the coun-
try (NDRC, 2016). However, although China formulated a renewable energy development 
roadmap, the dominance of thermal power generation has not fundamentally changed in 
the current stage and the share of renewable energy in the total power generation remains 
low, affected by factors like the slow diffusion of renewable energy technologies (Chen & 
Lin, 2020) and growing environmental challenges (Wang et al., 2018). In this respect, it is 
necessary to study the driving forces behind the changes in China’s REC to better facilitate 
renewable energy development.

The existing literature has mainly focused on the relationship between REC and some 
socioeconomic variables such as GDP (Ozcan & Ozturk, 2019; Rahman & Velayutham, 
2020), CO2 emissions (Jebli et al., 2020; Karasoy & Akçay, 2019), foreign direct invest-
ment (FDI) (Fan & Hao, 2020), urbanization (Bao & Xu, 2019; Chen, 2018), financial 
development (Anton & Nucu, 2020; Eren et al., 2019), and income inequality (Topcu & 
Tugcu, 2020; Uzar, 2020). The conclusions vary from studies focusing on REC and vari-
ables nexus above. For example, in terms of the relationship between economic growth and 
REC, Ozcan and Ozturk (2019) showed that there is not any mutual nexus between REC 
and GDP, in nearly all emerging market economies, whereas, Rahman and Velayutham 
(2020) found that there is a unidirectional causality running from the economic growth to 
REC in five South Asian countries. In terms of REC and income inequality nexus, Topcu 
and Tugcu (2020) found that REC reduces income inequality while Uzar (2020) discovered 
that a decline in income inequality help to improve REC. As for the REC and urbaniza-
tion nexus, Bao and Xu (2019) found that there is no causality relationship between REC 
and urbanization for most provinces in China, while Chen (2018) found that changes in 
urbanization level affect REC. In terms of FDI and REC nexus, Fan and Hao (2020) con-
cluded that there is long-run equilibrium between REC and FDI for China. However, there 
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is nearly no debate that REC contributed to decrease in CO2 emission (Jebli et al., 2020; 
Karasoy & Akçay, 2019).

On the other hand, some studies analyzed a specific topic on renewable energy. For 
example, in terms of the renewable energy technologies, Gallagher et  al. (2019) showed 
that the lowest environmental burdens per kilowatt‐hour of electricity generation was hydro 
in comparison with other two renewable energy technologies. Steffen et al. (2020) found 
that dynamic cost of operation and maintenance of renewable energy technologies need to 
be considered in energy system modeling. In the field of renewable energy policy, Mamat 
et al. (2019) found that the barriers of renewable energy policy implementation were social, 
political and economic pressures in Southeast Asia. The similar studies can also be seen in 
Gungah et al. (2019) and Fraundorfer and Rabitz (2020). As for the renewable energy sup-
ply chain, studies like Fernando et al. (2018) showed that renewable energy supply chain 
management enables companies to achieve competitiveness in Malaysia. In addition, other 
studies assessed the determinants of REC (Akintande et al., 2020; Wang et al., 2018). They 
found that socioeconomic factors such as population growth and human capital are the 
main determinants of REC in Africa (Akintande et al., 2020) and showed that energy secu-
rity was the major drivers contributing to REC development in China (Wang et al., 2018).

However, although REC is particularly important for climate change mitigation and 
energy security, the research on the socioeconomic determinants of REC are far from con-
clusive, especially for China. Although several studies analyzed the determinants of REC 
(e.g., Akintande et  al., 2020), the roles of REC technical efficiency and technological 
change which are important for improving REC performance, have been ignored to a large 
extent. Moreover, although REC has been projected by statistical model or scenario analy-
sis (Wang et al., 2018; Wu et al., 2019), the uncertainties of key variables have received lit-
tle attention for projecting REC. More importantly, few scenario analyses have been com-
bined with the realizability of national REC targets in China in particular. Achieving these 
goals would be important for China to achieve leapfrog development of renewable energy 
and mitigate climate change during its energy transformation.

With the context above, this study first focused on the determinants of China’s REC 
from a production perspective using an extended production-theoretical decomposi-
tion analysis (PDA) approach (Zhou & Ang, 2008). In the field of factorial decomposi-
tion, index decomposition analysis (IDA) especially for logarithmic Divisa decomposition 
index analysis (LMDI), structural decomposition analysis (SDA) are widely used in energy 
and emission related studies (e.g., Chen et al., 2021; Lam et al., 2019; Wang et al., 2018). 
Compared with LMDI and SDA, PDA is built on the total-factor framework (Xu, 2020). 
As such, PDA can provide new insights related to technical efficiency and technological 
change for contributing to changes in an aggregate indicator (e.g., energy consumption and 
CO2 emission). PDA has been applied in many energy-related studies (Chen et al., 2021; 
Liu et al., 2018). As discussed above, the roles related to technical efficiency and techno-
logical change were rarely explored for contributing to changes in REC. Therefore, to fill 
that gap, we used an extended PDA approach to quantify and emphasize the roles related 
to technical efficiency and technological change in determining REC for China and helping 
to improve the total-factor performance of REC through improving the production system. 
Moreover, we fully considered uncertainties of key variables and projected China’s REC 
using a Monte Carlo simulation approach (Zaroni et al., 2019; Zhang et al., 2020) with a 
focus on the realizability of China’s REC targets.

In summary, this study contributes to the existing literature as follows:
First, we decomposed China’s REC using an extended PDA approach, where REC 

was incorporated into production process, and emphasized the factors related to REC 
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technical efficiency and technological change for contributing to changes in REC. In 
comparison with previous studies on the determinants of REC (e.g., Akintande et  al., 
2020; Wang et  al., 2018), the REC technical efficiency and technological change, for 
the first time, were quantified and emphasized under the extended PDA framework, 
which could introduce more production-based information to China’s REC. In addi-
tion, unlike many previous studies on economic growth, population, and REC nexus 
using econometric models (Fan & Hao, 2020; Ozcan & Ozturk, 2019; Rahman & Velay-
utham, 2020), we analyzed the impacts of economic growth and population scale on the 
changes in REC using the single decomposition approach (PDA), which can avoid the 
possible problems that are difficult to observe the trends by year or non-linear trends in 
the econometric model.

Second, we projected China’s REC to 2030 using scenario analysis combined with a 
Monte Carlo simulation approach and analyzed the realizability of REC targets set by the 
NDRC (2016). In particular, we considered the impact of the COVID-19 pandemic on the 
economy and adjusted the scenario setting of economic growth according to actual condi-
tions. Moreover, based on scenario analysis, we emphasized the urgency of accelerating 
the development of renewable energy to achieve the national target in which 50% of the 
electricity is derived from renewable energy sources by 2030. Such comprehensive analy-
sis could aid the understanding of the status quo and future trends of REC in China and 
thus could assist in related policymaking.

2 � Methodology and data

2.1 � Non‑radial directional distance function

Data envelopment analysis (DEA) has been widely used in environmental studies for tech-
nical efficiency measurement. Assuming x and y are vectors of inputs and outputs, then the 
production technology can be expressed as

here, we specified the production technologies by incorporating REC, nonrenewable 
energy consumption (NEC), capital (K), and labor (L) as inputs and GDP (Y) as output. 
Notably, although many studies have introduced undesirable outputs (e.g., CO2 emission 
and SO2) into the production theory framework (Wang et al., 2019; Xu, 2020), we focused 
on the technical efficiency of RE and thus followed Liu et al. (2018) only to incorporate Y 
as output. The production technology can be rewritten as

T  is often assumed to a closed and bounded set, indicating that a finite number of inputs 
can only produce a finite number of outputs (Färe & Primont, 1995). Both the Shephard 
distance function and directional distance function are also widely used in the environmen-
tal studies; however, compared with those two distance functions, non-radial directional 
distance function (NDDF) has the advantages of flexible adjustments of inputs and outputs 
including desirable and undesirable outputs. Therefore, this study adopted the NDDF for 
measuring REC efficiency performance.

Referring to Zhou et al. (2012), we defined the NDDF as

(1)P = {(x, y) ∶ x can produce y}

(2)T = {(REC,NEC,K, L, Y) ∶ (REC,NEC,K, L) can produce Y}
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where � is a vector of scaling factors representing slacks of inputs/output and 
� =

(
�REC, �NEC, �K , �L, �Y

)T
≥ 0 , diag(�) means a diagonal matrix of � , WT indi-

cates a normalized weight vector assigned to the numbers of inputs/output and 
WT =

(
wREC,wNEC,wK ,wL,wY

)T , g is an explicit directional vector determining the direc-
tions of scaling inputs/output, and g =

(
−gREC,−gNEC,−gK ,−gL, gY

)
 . The NDDF can be 

solved by following linear programming:

Like Zhang and Choi (2013a) and Chen et  al. (2019), we set 
W = (1∕8, 1∕8, 1∕8, 1∕8, 1∕2) as there are four inputs (REC, NEC, K, and L) and one 
output (Y) in the study. For a robust analysis, we also checked the results under the 
weight vector, W = (1∕4, 1∕4, 0, 0, 1∕2) , as this weight vector reflects the REC and NEC 
performance without changing K and L input (Zhang & Choi, 2013b). The values for 
REC technical efficiency presented a few different values but were generally consist-
ent. Therefore, although this is an overly simplified setting to some extent, we finally 
adopted the former weight vector ( W = (1∕8, 1∕8, 1∕8, 1∕8, 1∕2) ), to avoid different 
scores due to different choices of W  (Lin and Du, 2015).

Similar to Wang et al. (2019), we defined the REC-oriented distance function based 
on slacks as

where �REC,o represents the slack of REC of entity o and the entity o is located on the best 
practice frontier if �REC,o = 0 , REUEo means the REC technical efficiency of entity o with 
respect to the frontier, and 0 < REUEo ≤ 1.

2.2 � Decomposition model on REC

According to Kaya Identity Theory (Kaya, 1990), we decomposed the changes in REC 
at the national level as follows:

(3)
→

D (REC,NEC,K, L, Y;g) = sup
{
WT� ∶ ((REC,NEC,K, L, Y) + g ⋅ diag(�)) ∈ T

}

→

D (REC,NEC,K, L, Y;g) = maxwREC�REC + wNEC�NEC + wK�K + wL�L + wY�Y

(4)s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
i

�iRECi ≤ RECo − �REC ⋅ gREC

�
i

�iNECi ≤ NECo − �NEC ⋅ gNEC

�
i

�iKi ≤ Ko − �K ⋅ gK

�
i

�iLi ≤ Lo − �L ⋅ gL

�
i

�iYi ≥ Yo + �Y ⋅ gY

�i, �REC, �NEC, �K�L, �Y ≥ 0, i = 1,2,⋯ ,N

(5)DREC,o =
1

1 − �REC,o
=

1

REUEo
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where i denotes province i ; and RECi

Yi
 represents the REC intensity, which is similar to the 

widely accepted concept of energy consumption intensity. The larger RECi

Yi
 is, the larger 

REC given GDP and better development of RE; PYi ( 
Yi

Pi

 ) and POPi ( Pi ) reflect GDP per 
capita and population scale.

As discussed above, REC intensity could be reduced by its inefficiency. Therefore, similar 
to Zhou and Ang (2008), we incorporated the distance functions into Eq. (6) as follows:

To avoid arbitrary selection of choosing different production technologies due to periods, 
we followed Zhou and Ang (2008) to use the geometric mean of the production technologies 
taking year t and t + 1 as the reference. Therefore, Eq.  (7) can be rewritten at year t at the 
national level as

where Dt
REC,i

(t) and Dt+1
REC,i

(t) are the REC-oriented distance functions taking year t and 

t + 1 for constructing production technologies; PREIt
i
 ( 

RECt
i

/[
Dt

REC,i
(t)⋅Dt+1

REC,i
(t)
]1∕2

Yt
i

 ) denotes 
potential REC intensity (PREI) in province i at year t , which is similar to Zhou and Ang 

(2008) in the case of energy consumption; REUEt
i
 ( Dt

REC,i
(t) ) and TCREUt

i
 ( 
[
Dt+1

REC,i
(t)

Dt
REC,i

(t)

]1∕2
 ) 

represents the REC technical efficiency and technological change province i at year t [see 
Zhou and Ang (2008) and Wang et al. (2019) for similar examples]; and PYi ( 

Yt
i

Pt
i

 ) and POPi 
( Pt

i
 ) reflect GDP per capita and population scale in province i at year t . A noteworthy point 

is that although the definition of REUEt
i
 is similar to the 

[
Dt

REC,i
(t) ⋅ Dt+1

REC,i
(t)
]1∕2

 in PREIt
i
 

to some extent, they should be treated differently as the former is derived from Malmquist 
productivity index for two-period comparison and the latter is produced for avoiding arbi-
trary selection of choosing different production technologies due to periods (Zhou & Ang, 
2008).

Similarly, RE at year t + 1 at the national level can be decomposed as

(6)

REC =
∑
i

RECi

Yi
×

Yi

Pi

× Pi

=
∑
i

RECi

Yi
× PYi × POPi

(7)REC =
∑
i

RECi

/
DREC,i

Yi
×

Yi

Pi

× Pi × DREC,i

(8)

RECt =
∑
i

RECt
i

/[
Dt

REC,i
(t) ⋅ Dt+1

REC,i
(t)
]1∕2

Yt
i

×
Yt
i

Pt
i

× Pt
i
× Dt

REC,i
(t) ×

[
Dt+1

REC,i
(t)

Dt
REC,i

(t)

]1∕2

=
∑
i

PREIt
i
× PYt

i
× POPt

i
× REUEt

i
× TCREUt

i
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The terms in Eq. (9) can be similarly explained as Eq. (8). As LMDI has many desirable 
properties such as theoretical foundation, adaptivity, easy operation, and readability (Ang, 
2015), we further used LMDI to decompose the changes in national RE as

where

where L() is the weighted function and 
L
(
RECt+1

i
,RECt

i

)
=
(
RECt+1

i
− RECt

i

)/(
lnRECt+1

i
− lnRECt

i

)
 for RECt+1

i
≠ RECt

i
.

2.3 � Scenario design and Monte Carlo simulation approach

Scenario analysis is popularly used in energy and emission projections (Grant et al., 2020; 
Grubler et al. 2018). Given the importance of the share of REC in the total energy con-
sumption (SRT), here, we used the following equation to project REC:

(9)

RECt+1 =
∑
i

RECt+1
i

/[
Dt+1

REC,i
(t + 1) ⋅ Dt

REC,i
(t + 1)

]1∕2

Yt+1
i

×
Yt+1
i

Pt+1
i

× Pt+1
i

× Dt+1
REC,i

(t + 1) ×

[
Dt

REC,i
(t + 1)

Dt+1
REC,i

(t + 1)

]1∕2

=
∑
i

PREIt+1
i

× PYt+1
i

× POPt+1
i

× REUEt+1
i

× TCREUt+1
i

(10)ΔREC = RECt+1 − RECt = ΔPREI + ΔPY + ΔPOP + ΔREUE + ΔTCREU

ΔPREI = L
(
RECt+1

i
,RECt

i

)
× ln

(
PREIt+1

i

PREIt
i

)
,

ΔPY = L
(
RECt+1

i
,RECt

i

)
× ln

(
PYt+1

i

PYt
i

)
,

ΔPOP = L
(
RECt+1

i
,RECt

i

)
× ln

(
POPt+1

i

POPt
i

)
,

ΔREUE = L
(
RECt+1

i
,RECt

i

)
× ln

(
REUEt+1

i

REUEt
i

)
,

ΔTCREU = L
(
RECt+1

i
,RECt

i

)
× ln

(
TCREUt+1

i

TCREUt
i

)
,

(11)REC =
REC

REC + NEC
× (REC + NEC) =

REC

TEC
× TEC
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where TEC denotes the total energy consumption. It should be noted that although energy 
intensity is an important driver for REC, we did not incorporate it into Eq. (11) because of 
research purpose and simplification of scenario analysis. The study established nine differ-
ent scenarios according to different assumptions of economic growth and SRT ( REC

TEC
 ) using 

Eq. (11). Specifically, we calculated the average annual growth rates (AAGRs) of SRT over 
1997–2000, 2001–2005, 2006–2010, 2011–2015, 2011–2017, and 1997–2017. The periods 
were chosen because of different Five-Year Plan (FYP) periods, the overall sample period, 
and a recent period in China [see Lin and Ouyang (2014) for similar application]. We chose 
three AAGRs of SRT according to recent periods as the Low, Middle, and High scenarios 
reflecting the different rates of SRT.

As TEC is logarithmically highly correlated with economic growth, according to 
Fig. 1b, we calculated the AAGRs of economic growth over the different periods above 
and used GDP-based scenario to represent the TEC scenarios. This is because GDP may be 
a more suitable indicator than REC in terms of scenario analysis in the study. We used the 
following regression model to recalculate the AGGRs of TEC:

We emphasized more on the AAGRs of the two drivers in recent periods, which are 
more correlated with future. In terms of AAGR of economic growth, we fully considered 
the recent facts in China. The first is that China’s economy is now experiencing a sud-
den drop because of the COVID-19 pandemic. According to a recent report by the China 
Macroeconomy Forum (2020), China’s economic growth rate will be approximately 3% in 

(12)log (GDP) = �0 + �1 ⋅ log (TEC)

Fig. 1   Renewable energy consumption (REC) trends (a), and its comparison with GDP and total energy 
consumption (TEC) trends in logarithmic forms (b), as well as its decomposition results for the consecutive 
periods (c) and the cumulative periods (d) for China
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2020. Therefore, we calculated the AAGR of economic growth during 13th FYP period 
(2016–2020) based on the historical data from 2016 to 2019 and expected data in 2020. 
However, the negative effect of slow economic growth is likely to be eliminated over 
time and the economy should return to its normal trajectory. The second is that China has 
already entered the new normal economy in which economic growth has slowed (Chen 
et al., 2020). With the context above, we assumed that the AAGR of economic growth over 
the next ten years (2021–2030) will be similar to that during the 13th FYP period. We fol-
lowed Lin and Lin (2016) to set three scenarios of GDP: business-as-usual (BAU), Moder-
ate, and Advanced GDP scenarios. The Moderate and Advanced GDP scenarios are based 
on the BAU GDP scenario with variation ranges at 1.0 percentage increments for AAGRs. 
As there are historical effects and policy implication uncertainties, we next followed Zhang 
et al. (2020) to set three different levels of AAGRs of the two drivers, the Best, Middle, 
and Baseline levels. The Best and Baseline levels are based on the Middle level with the 
variation range of 0.5 percentage of AAGR. The detailed scenario settings can be seen in 
Table 1. Because there are many other alternative choices of scenarios, this study is not 
intended to present accurate estimations of RE based on different economic conditions, but 
to show how the conditions related to economic growth and SRT would affect the RE in 
future.

Monte Carlo simulation has been widely used to analyze the problems related to uncer-
tainty (Zaroni et al., 2019; Zhang et al., 2020). In this study, we adopted the Monte Carlo 
simulation approach to project REC. In general, there are three steps for performing a 
Monte Carlo simulation. The first is to define prior probabilities for the key input param-
eters based on a specific equation. The second is to conduct multiple simulations through 
randomly sampling the parameter space based on the pre-defined probability distributions. 
The third is to calculate the simulation results by frequency distributions with a full spec-
trum of possible output values.

Therefore, using Eq.  (11) and Monte Carlo simulation, we first defined the future 
changes in SRT and TE . The minimum and maximum of ranges as well as the most 
expected values for the two drivers above are certain to some extent; therefore, we followed 
Ramírez et al. (2008) and Zhang et al. (2020) to use the triangular distribution function to 
randomly select the driver change rates. Then we conducted 100,000 Monte Carlo simula-
tions and calculated the potential RE in the future based on the large number of simula-
tion results. As Monte Carlo simulation generated many simulation results, more accurate 
results can be acquired and thus the approach can provide stakeholders with helpful infor-
mation on the frequency and probability distributions for REC.

2.4 � Data

This study covered 28 Chinese provinces excluding Tianjin, Shanghai, Tibet, Hongkong, 
Macao, and Taiwan because of incomplete data during 1997–2017. Renewable energy con-
sumption (REC), nonrenewable energy consumption (NEC), capital (K), labor (L), GDP 
(Y), and population (P) are considered in the study.

Following Destek and Aslan (2017) and Bao and Xu (2019), REC is represented by 
electricity generation from renewable sources in billion kW·h. According to the China 
Energy Statistical Yearbook (CESY), China’s electricity can be generated from six sources: 
thermal power, wind energy, hydro energy, nuclear energy, solar energy, and other energy 
sources. In this study, we classified wind energy, hydro energy, solar energy, and other 
energy sources as REC and classified thermal power and nuclear energy as NEC. In 
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addition, as there was statistical modification (Zheng et al., 2018), the total generation data 
did not be equal to the sum of the six energy categories in CESY for several values. There-
fore, we re-balanced the total generation data according to the non-negative principle of 
electricity generated from other energy sources. As electricity generated from other energy 
sources accounted for little of the total generation, this re-balance can make the data more 
accurate and reasonable while having limited impact.

As there are no official provincial K in China, we estimated by the perpetual inventory 
method (PIM) as described by Li (2010). The key parameter for the depreciation rate was 
set as 10% and was assumed to be unchanged across provinces in accordance with Chen 
et  al. (2017). Data on Y and the fixed asset investment for estimating K were collected 
from National Bureau of Statistics China (NBSC) and adjusted at the 1997 constant price 
index. Data on P were collected from NBSC and data on L were collected from various 
Statistical Yearbooks at provincial levels.

3 � Result and discussion

3.1 � Drivers of renewable energy consumption

Figure  1a shows that REC represented by electricity generated from renewable energy 
in China increased by 8.67 times over the period, from 210.38 billion kW·h in 1997 to 
1,824.71 billion kW·h in 2017. Although the annual growth rates presented a fluctuating 
trend, the average annual growth rate of REC was 11.41% during 1997–2017, indicating 
a relatively fast renewable energy development pathway in the country. Figure 1b further 
suggests that GDP in China is highly correlated with TEC and REC in logarithmic forms, 
which may be because electricity is one of the key powers driving economic growth.

Figure 1c,d depicts the contributions of drivers accounting for the changes in RE during 
consecutive and cumulative periods. Clearly, REC increased yearly, especially for recent 
periods at the largest growth rates, reflecting that renewable energy in China has entered 
a new phase of development. In terms of determinants, GDP per capita and population 
scale were the positive factors driving the increase in REC while the PREI, the RE usage 
technical efficiency (REUE), and the REC technological change (TCREU) made unstable 
impacts on the changes in REC for consecutive periods.

Specifically, GDP per capita effect contributed to the 12.96% increase in REC on aver-
age over the period. This may because economic growth and REC demonstrated bidirec-
tional causality (Lin & Moubarak, 2014; Zafar et  al., 2019). As a country in rapid tran-
sition, China achieved an economic growth rate of 10.74% on average during the study 
period, resulting in a strong rising need of energy consumption. China placed more empha-
sis on developing renewable energy during urbanization and industrialization. For example, 
the country aimed to increase the share of non-fossil energy in primary energy consump-
tion to 20% by 2030 (Qi et al., 2020). Therefore, China’s economic growth and attached 
importance to renewable energy development contributed to a positive rise in REC over the 
period.

Second, population scale effect also accounted for the increase in REC during the con-
secutive periods at the national level; however, its average contribution to POP was 0.75%, 
indicating a very limited role in affecting the changes in REC. This is not a surprising result 
and is consistent with Akintande et al. (2020) who studied the five determinants of REC in 
five countries in Africa. However, compared with Akintande et al. (2020), the impacts of 
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POP on REC are smaller. On the one hand, the overall population scale increased by 0.59% 
on average although the country added 153.82 million persons during 1997–2017 accord-
ing to China’s Statistical Yearbook (2018). However, renewable energy is largely depend-
ent on resource endowments such as the conditions of annual wind, river conditions, and 
light, rather than population, although the distance and size of population will affect the 
final cost of REC.

Third, PREI, REUE, and TCREU contributed to the increase in REC over nearly half of 
the consecutive periods. However, TCREU mainly played a positive role in increasing REC 
for the recent consecutive periods since 2010, indicating the technological change of REC 
was effective recently for increasing REC. REUE showed a positive role in increasing REC 
for the most recent consecutive periods, reflecting the improvement in REUE recently. The 
roles of PREI mainly were negative in increasing REC for the recent consecutive periods, 
suggesting that PREI reduced by REUE still needs to be improved for increasing REC in 
the future. However, in general, the directions of the three drivers above accounting for the 
increase in REC were mixed for different consecutive periods.

Figure 1d confirmed the findings of the roles of PY and POP in affecting the increase 
in REC from the cumulative periods. It also depicted that PREI contributed to the increase 
in REC for most cumulative periods but contributed to the decrease in REC in recent years 
nationally, which was roughly similar to the analysis above. However, REUE contributed 
to the increase in REC during the whole period, although the impact was relatively limited. 
In general, the overall TCREU made a positive impact on increasing REC at the national 
level over the period. However, given the negative impacts of TCREU over some years and 
the relatively small overall contributions of TCREU to changes in REC over the period, the 
overall renewable change technologies diffused slowly (Chen & Lin, 2020).

As there is often heterogeneity across provinces in China for factors like economic 
condition, resource endowment, and technological levels, a further analysis at the pro-
vincial level is necessary. Figure 2 shows that PY and POP were still the positive factors 
driving the increase in REC at provincial levels on average, confirming the results from 
Fig. 1c,d nationally. However, Heilongjiang was the exception in terms of the role of POP 

Fig. 2   Average contributions of decomposed components to changes in REC at the provincial level in China 
(1997–2017)
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in affecting the changes in REC. According to NBSC data, the overall population in Hei-
longjiang decreased over recent years, from 38.35 million people in 2013 to 37.89 million 
people in 2017, opposite the natural population growth rate. Therefore, the emigration of 
the population in Heilongjiang had a small but negative impact on REC.

In addition, provincial differences were still relatively significant in terms of the two 
drivers above. For example, on average, PY contributed to a 51.10% increase in REC in 
Chongqing while accounting for a 9.80% increase in Henan over the same period. In terms 
of POP, Beijing contributed to a 7.61% increase in REC while Jilin accounted for a 0.05% 
increase on average over the period. Those different impacts of PY and POP on REC fur-
ther confirmed the provincial heterogeneity and implied that sustaining economic growth 
and reasonable population growth may be important for promoting REC, especially in the 
long term.

Figure 2 depicts that on average the PREI contributed to a REC increase for most prov-
inces over the study period. For example, PREI contributed to a 13.35% increase in REC 
in Inner Mongolia and 54.87% increase in Hebei on average. As discussed above, PREI 
reflects the renewable consumption intensity of GDP after considering the inefficiency of 
REC during production, which is similar to Zhou and Ang (2008). Therefore, PREI can be 
regarded as an improved indictor representing better REC adjusted by REC inefficiency. 
Therefore, the results of the different roles of PREI in determining changes in REC at 
provincial levels on average may be because of differences in RECs and their technical 
efficiencies.

Figure 2 indicates that the average contributions of TCREU to the increase in REC var-
ied from provinces. In other words, technological changes in renewable energy usage were 
mixed among China’s provinces, which is consistent with the observations of Lin and Zhu 
(2019) using patents as the proxy for REC technological innovations. It is worth noting 
that TCREU reflects the shift in renewable energy usage-side technology, which is similar 
to Zhou and Ang (2008), and therefore, TCREU may not directly reflect the technological 
progress in engineering but represent the technological change of REC under the total-
factor framework. On average, REUE showed the negative impacts on increasing REC 
over the period in sixteen provinces including Hebei, Inner Mongolia, Jilin, Heilongjiang, 
Fujian, Jiangxi, Shandong, Hubei, Hunan, Guangxi, Hainan, Chongqing, Gansu, Qinghai, 
Ningxia, and Xinjiang. With respect to those economically less developed provinces over 
the period, an important understanding is that the renewable energy usage efficiency of 
economically less developed provinces should be more emphasized for further improve-
ment in future.

3.2 � REC projections

Based on the Monte Carlo simulation approach, we projected China’s REC to 2030 under 
nine scenarios (see Fig. 3 for illustrations), which are based on national economic growth 
and SRT growth (the larger the value, the higher level of REC). According to Fig. 4, during 
2018–2030, China’s REC will increase to 4552.71 billion kW·h (by 249.50%) under the 
BAU-Low scenario, 6475.75 billion kW·h (by 354.89%) under the BAU-Middle scenario, 
8003.43 billion kW·h (by 438.61%) under the BAU-High scenario, 5108.04 billion kW·h 
(by 279.94%) under the Moderate-Low scenario, 7267.18 billion kW·h (by 398.26%) under 
the Moderate-Middle scenario, 8981.01 billion kW·h (by 492.19%) under the Moderate-
High scenario, 5727.11 billion kW·h (by 313.86%) under the Advanced-Low scenario, 
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8147.33 billion kW·h (446.50%) under the Advanced-Middle scenario, and 10,065.84 bil-
lion kW·h (551.64%) under the Advanced-High scenario.

According to the NEA (2016), a 27% share of electricity in the total power generation 
should be generated from renewable energy by 2020. Furthermore, based on NDRC (2016), 
50% of electricity will be generated from non-fossil energy sources by 2030, implying a 

Fig. 3   Scenario definitions based 
on economic growth and the 
share of REC in the total energy 
consumption (SRT) in the study

Fig. 4   Historical and projection results of REC in China under different scenarios (1997–2030)
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25% share of non-fossil energy in primary energy consumption. This is a strengthened tar-
get, higher than the 20% share of non-fossil energy in primary consumption by 2030 in the 
Paris Agreement for China (Qi et al., 2020). As the scopes of non-fossil energy and renew-
able energy are largely coincident, the strengthened target also applies to REC in the study. 
Based on the scenarios above, we calculated the SRTs by 2020 and 2030. We showed that 
the 2020 target would be achieved in all scenarios. However, we found, in terms of renew-
able energy development, that the ratio would be 34.61% under the low-speed scenario, 
49.23% under the middle speed scenario, and 60.84% under the high-speed scenario. Given 
that we only considered 28 provinces in China, the projected ratios could be underesti-
mated. Combing the projected REC in 2030 under nine scenarios, we could conclude that 
if there were not enough actions to accelerate the development of renewable energy, China 
may fail the strengthened target in 2030. However, we remain optimistic for China achiev-
ing the strengthened target under the other scenarios, as the projected ratios (49.23% and 
60.84%) would be very close to or would surpass the target by 2030.

The goal of REC is of great significance not only to emission reduction, but also to 
energy security. Unlike previous studies, which have focused on the influencing RE factors 
in energy security [see Wang et al. (2018) for an example], this study targets the realizabil-
ity of REC goals under different scenarios. In addition, the dynamic scenario simulation 
method based on Monte Carlo simulation is used to show the maximum possible future 
REC based on probability distribution, which has important practical significance for quan-
tifying the energy security accessibility of renewable energy in the target year (e.g., 2030). 
Unlike the background in most previous studies, due to the COVID-19 pandemic, the 
global economy is generally affected by slowed economic growth. In the post-pandemic 
era, the challenges between reviving economic growth and accelerating renewable energy 
development will be considerable in addition to improving energy efficiency, which raises 
the requirements for the realization of energy security.

4 � Conclusion and policy implication

4.1 � Conclusion

With growing worldwide attention on sustainable development (Dubey et al., 2019; Tur-
turean et al., 2019), renewable energy is becoming increasingly crucial for climate change 
mitigation and ensuring energy security. This study first focused on the drivers of REC in 
28 China’s provinces during 1997–2017 and emphasized the roles of technical efficiency 
and technological change in REC using an extended PDA approach. The study then pro-
jected China’s REC to 2030 by combining scenario analysis with the Monte Carlo simula-
tion approach and further analyzed the realizability of national REC targets under different 
scenarios. The main findings are listed as follows:

First, economic growth and population scale nearly always contributed to increased 
REC at national and provincial levels over the period. The PREI contributed to the increase 
in REC for most cumulative periods but contributed to the decrease in REC in recent 
years nationally. Second, the overall technical efficiency and technological change of REC 
played limited roles in increasing REC at the national level, in which such impacts were 
mixed across provinces over the period. Third, the expected REC in China ranged from 
4552.71 to 10,065.84 billion kW·h under nine scenarios by 2030. The 2020 target would be 
achieved based on all scenarios. However, the projection results indicated that although the 
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country target of generating 50% electricity from renewable energy sources by 2030 could 
be achieved, it may also fail if there are not enough actions accelerating renewable energy 
development.

4.2 � Policy implication

Based on the results above, we provide the following policy proposals.
First, we suggest that the relevant departments should support advanced renewable 

energy power-generation technologies (such as energy storage technology) by more reason-
able funds and policies to further improve the efficiency of renewable energy power gener-
ation. At the national level, the analysis shows that although China’s renewable energy gen-
eration efficiency and technological progress have a positive role in promoting REC during 
the sample period, the contribution is relatively low overall. Previous studies have shown 
that energy storage technology is of great significance to the development of renewable 
energy power (Arani et al., 2017; Gu et al., 2016). Therefore, focusing on the development 
of advanced technology, especially economically feasible energy storage technology, will 
help to reduce the cost of REC and promote the benign REC cycle. At the provincial level, 
the results show that there was notable heterogeneity in REC use efficiency and technology 
over the period. Given improving energy efficiency is significant for technological develop-
ment (Lu et al., 2017), the key technology support policies for the development of renew-
able energy cannot be "one size fits all", but must fully consider the factors like regional 
resource endowment, technology reserve, and renewable energy development strategy.

Second, we advise that related policymakers should also introduce several policies to 
pay greater emphasis to the role of socio-economic factors (e.g., the scale of renewable 
energy users) in promoting the development of renewable energy in addition to the devel-
opment of renewable energy technology itself. Our results show that economic growth and 
population size can promote RE development. This means that vigorously developing the 
economy and developing the user base is still an important focus of cultivating the REC 
market. For years, the power generation costs of various renewable energy sources in China 
have been significantly reduced. According to IRENA (2020), the weighted-average lev-
elized cost of electricity (LCOE) of newly commissioned utility-scale solar PV projects in 
China decreased from 0.3012 USD/kW·h in 2010 to 0.0541 USD/kW·h in 2019, while the 
weighted-average LCOE of newly commissioned onshore wind projects decreased from 
0.1760 USD/kW·h in 1996 to 0.0470 USD/kW·h in 2019. However, it should be noted 
that at present, China’s renewable energy market is still dependent on government subsi-
dies, which may have a potential adverse impact on the establishment of a benign cycle of 
renewable energy power at competitive prices with no need for national subsidies in the 
market. The market therefore should play a better role in improving REC in the national 
economy.

Third, we believe that the relevant departments should further strengthen interna-
tional cooperation to promote REC. At present, the outbreak of the COVID-19 pan-
demic is deeply affecting many aspects of human society. By early April 2020, for 
example, global CO2 emissions will be reduced by 17% compared with the average in 
2019 (Le Quéré et al., 2020). Although this is only a short-term decline, there may still 
be a rebound in carbon emissions with a relatively high-speed economic recovery in 
the future. However, this provides people with more opportunities to reflect and exam-
ine the feasibility of renewable energy development for emission mitigation except for 
other factors such as emission trading schemes (Liu et al., 2017). On the other hand, the 
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pandemic situation inevitably impacts international cooperation on renewable energy, 
which also has some adverse effects on the domestic renewable energy market. In this 
context, strengthening international cooperation will become a powerful driving force 
for the development of renewable energy.
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