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Abstract

This paper proposes a novel mean-field matrix-analytic method in the study of

bike sharing systems, where the Markovian environment is constructed to well ex-

press time-inhomogeneity and asymmetry of the processes that the customers rent

and return the bikes. To achieve effective computability of this mean-field method,

this paper provides a unified framework through three basic steps: The first one is to

deal with a major challenge encountered in setting up the mean-field block-structured

equations in more general bike sharing systems. Here we provide an effective tech-

nique to establish a necessary reference system which is a time-inhomogeneous queue

with block structure. The second step is to prove the asymptotic independence (or

propagation of chaos) in terms of the martingale limits. Note that the asymptotic

independence ensures and supports that we can construct a nonlinear QBD process

such that the stationary probability of problematic stations can be computed under a

unified nonlinear QBD framework. Finally, in the third step we use some numerical

examples to show effectiveness and computability of this mean-field matrix-analytic

method, and also give valuable observation on influence of some key parameters on

system performance. We hope the methodology and results given in this paper are

applicable in the study of more general large-scale bike sharing systems.

Keywords: Bike sharing system; mean-field matrix-analytic method; Markovian

environment; time-inhomogeneous queue; nonlinear QBD process; probability of prob-

lematic stations.
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1 Introduction

In this paper, we apply the mean-field theory, combining Markov processes with time-

inhomogeneous queues, to study a complicated bike sharing system with user’s finite

waiting rooms under a Markovian environment. To this end, we develop a novel mean-

field matrix-analytic method in the study of more general bike sharing systems as follows:

Setting up a block-structured system of mean-field equations by constructing a refer-

ence system: The time-inhomogeneous MAP(t)/MAP(t)/1/K+2L+1 queue; proving the

asymptotic independence by means of the martingale limits; establishing a nonlinear QBD

process such that the fixed point can be computed numerically; and using some numeri-

cal examples to give valuable observation of influence of some key parameters on system

performance.

During the last decades the bike sharing systems have emerged as a public transport

mode devoted to short trips, and they have widely been deployed in more than 900 major

cities around the world. So far the bike sharing systems have been regarded as a promising

solution to reduce traffic congestion, parking difficulties, automobile exhaust pollution,

transportation noise and so on. For the history and survey papers, readers may refer to,

such as, DeMaio [6], Shaheen et al. [40], Meddin and DeMaio [32], Shu et al. [42], Fishman

et al. [7], Labadi et al. [18], Kaspi et al. [17] and the references therein.

For design and operations of the bike sharing systems, it has become a basic and

interesting topic to assess and ensure the quality of service (abbreviated as QoS) from

a user’s perspective, e.g., see Kaspi et al. [17] for necessary interpretation. In general,

the QoS of a bike sharing system may be evaluated from two basic points: (a) The bike

non-empty. Some bikes have been parked at the stations such that any arriving customer

can rent a bike from his entering station. (b) The parking non-full. Some parking places

(or lockers) become empty and available so that a rider can immediately return his bike

at a destination station. Based on the two points, the bike-empty or parking-full stations

are called problematic stations, while the probability of problematic stations can be used

to measure the QoS of the bike sharing system. In general, computing the probability of

problematic stations is always very difficult and challenging. To indicate the major reason

of such difficulties, from a physical point of view, Li et al. [26, 27] transformed the more

general bike sharing system into a complicated closed queueing network whose customers

and nodes are all virtual from the bikes, from the stations and from the roads, and provided
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an effective method to compute the stationary probability of problematic stations through

deriving the product-form solution of joint stationary distribution of queue lengths. On

the other hand, it is worthwhile to note that recent interesting research of bike sharing

systems is also related to the probability of problematic stations. Readers may refer to, for

example, the inventory management by Raviv and Kolka [36] and Schuijbroek et al. [41],

optimization of the bike fleet sizes by Fricker and Gast [8], and influence of the unusable

bikes by Kaspi et al. [17].

Little work has been done on numerical computation of the probability of problematic

stations through applications of queueing theory and Markov processes. Important exam-

ples in the recent literature are classified as the following two aspects. (a) Simple queues:

Leurent [20] used the M/M/1/C queue to study a vehicle-sharing system. Schuijbroek

et al. [41] first evaluated the service level by means of the transient distribution of the

M/M/1/C queue, and then established some optimal problems with respect to the vehicle

routing. Raviv et al. [37] and Raviv and Kolka [36] employed the transient distribution

of the M(t)/M(t)/1/C queue to compute the expected number of bike shortages at each

station. (b) Closed queueing networks: Adelman [1] used a closed queueing network to

set up an internal pricing mechanism for managing a fleet of service units, and provided

a price-based policy for the vehicle redistribution. George and Xia [16] used some simple

closed queueing networks to study the vehicle rental systems, and determined the optimal

number of parking places in each rental location. Waserhole et al. [47] and Waserhole and

Jost [46] used a simple closed queueing network, combining with the fluid approximation,

to establish the Markov decision models in order to determine the optimal policy of the

bike sharing system. Li et al. [26] provided a unified framework of applying the closed

queueing networks whose product solution can be used to compute the stationary proba-

bility of problematic stations. Li et al. [27] further extended the modeling method of [26]

to be able to study a more general bike sharing system from two key factors: Markovian

arrival processes and an irreducible road graph. Under the heavy-traffic conditions, Li et

al. [29] gave fluid and diffusion limits of the bike sharing system with renewal user arrivals

and general riding-bike times by means of analyzing a multiclass closed queueing network.

If a bike sharing system contains N stations and at most N (N − 1) /2 roads (or an

irreducible road graph), then it can be described as a virtual closed queueing network

whose analysis is complicated and difficult due to multiple virtual nodes (station or road)

and many parameters in this system. See Li et al. [27, 26] for detailed interpretation. In
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this case, the mean-field theory should be one of the best approximate methods for under-

standing dynamic behavior of more general bike sharing systems. Note that the mean-field

theory is a popular approximate method in the study of complex physical systems, while

its applications contain at least two basic points: Focusing on a tagged node, and com-

puting mean-field parameters of this tagged node through weak interactions among all the

nodes. So far the available results of applying the mean-field theory to the bike sharing

systems have been very limited. Fricker et al. [9] first made a pioneering seminar work for

applying the mean-field theory to some heterogeneous bike sharing systems. Since then,

subsequent papers have been published on this theme. Fricker and Gast [8] gave some

simple mean-field models to study a space-homogeneous bike sharing system in terms of

the M/M/1/K queue, and derived the closed-form solution both for the minimal propor-

tion of problematic stations and for the optimal fleet sizes. Fricker and Servel [10] applied

the mean-field theory to consider two-choice regulation in heterogeneous closed networks,

and then dealt with a bike sharing system with multiple clusters. Fricker and Tibi [11]

first studied the central limit and local limit theorems for the independent (non-identically

distributed) random variables, which provide support on analysis of a generalized Jack-

son network with product-form solution. Then they used the limit theorems to give a

stationary asymptotic analysis for the locally space-homogeneous bike sharing systems.

Li et al. [23] applied the mean-field theory to discuss the bike sharing system with more

random factors through a time-inhomogeneous queue and a nonlinear birth-death process,

and numerically computed the fixed point which gives performance analysis of the bike

sharing system.

The purpose of this paper is to improve the mean-field theory to be able to study

more general bike sharing systems from two key factors: (a) A Markovian environment

is constructed to well express time-inhomogeneity and asymmetry of the processes that

the customers rent and return the bikes; and (b) user’s finite waiting rooms are added

to the stations such that the probability of problematic stations can be reduced greatly.

From mathematical modeling and analysis, both the Markovian environment and the

user’s finite waiting rooms make analysis of the bike sharing systems more difficult and

challenging. In addition, it is worthwhile to note that introduction of the Markovian

environment motivates us to improve the mean-field theory to be able to set up the

mean-field block-structured equations, to prove the asymptotic independence with block

structure, and to establish a nonlinear Markov process which is used to compute the fixed
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point. Based on this, we develop a mean-field matrix-analytic method in the study of

bike sharing systems. As a nearby research of this paper, Li and Lui [28] applied the

mean-field theory to discuss a block-structured supermarket model. Li [22] provided a

unified block-structured framework for the mean-field theory of stochastic big networks

with weak interactions.

For the mean-field theory of stochastic networks, readers may refer to, such as, two

books by Liggett [30] and Chen [3], two survey papers by Sznitman [43] and Benaim

and Le Boudec [2]. Since the mean-field theory was first applied to the study of large-

scale parallel queues (for example, supermarket models and work stealing models) by

Vvedenskaya et al. [45] and Mitzenmacher [33], subsequent papers have been published

on this theme, among which see Turner [44], Martin and Suhov [31], Graham [14, 15],

Gast and Gaujal [12, 13], Li et al. [24, 25], Li and Lui [28], Li [22], Mukhopadhyay [34]

and the references therein. On the other hand, the QBD processes often provide a useful

mathematical tool for studying stochastic models such as queueing systems, manufacturing

systems, communication networks and healthcare systems. Readers may refer to Chapter

3 of Neuts [35], Latouche and Ramaswami [19], Li [21] and references therein.

The main contributions of this paper are threefold. The first one is to propose a

novel mean-field matrix-analytic method in the study of bike sharing systems. Note that

this new method can effectively improve the descriptive and computational ability of the

mean-field theory under a unified framework of nonlinear Markov processes, e.g., see Li

[22] for a detailed discussion. To demonstrate such an ability by using examples, in a bike

sharing system we first introduce two key factors: The Markovian environment and the

user’s finite waiting rooms. Then we show that the two factors may result in some major

challenges when applying the mean-field theory to the bike sharing system, for example,

it is always very difficult to set up a block-structured system of mean-field equations due

to existence of the Markovian environment. To overcome difficulty of the block structure,

Subsection 3.1 provides an effective technique for establishing a necessary reference system:

A time-inhomogeneous queue MAP(t)/MAP(t)/1/K+2L+1. At the same time, the other

key points of applying the mean-field matrix-analytic method are also discussed as follows:

(i) Section 4 proves the asymptotic independence by means of the martingale limits, (ii)

Section 5 establishes a nonlinear QBD process such that the fixed point can be computed

numerically, and (iii) Section 6 uses the fixed point to evaluate performance measures

of the bike sharing system, and specifically, to compute the stationary probability of
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problematic stations.

The second contribution of this paper is to introduce the Markovian environment,

which can well express time-inhomogeneity and asymmetry of the processes that the cus-

tomers rent and return the bikes in a bike sharing system. To our best knowledge, it is

the first time that a Markovian environment is constructed in the end of Section 2 by

means of useful information which arises from the rate volatility of the processes that the

customers rent and return the bikes within one period (i.e., one day), where a fluctuat-

ing law of three peaks in the bike-rented (or bike-returned) processes is refined from the

practical data of the tagged station of the bike sharing system, e.g. see Figure 1. On the

other hand, the user’s finite waiting rooms are added into some stations, and they enhance

flexibility and ability of the bike sharing system such that the probability of problematic

stations is reduced greatly. Thus the QoS of the bike sharing system can be promoted

effectively by means of adding the user’s finite waiting rooms, e.g., see Figures 9 and 10 for

some numerical analysis. Note that the user’s finite waiting rooms were first introduced

and discussed by Leurent [20] through the M/M/1/C+K queue in which only one isolated

station is observed and analyzed, and the results obtained from the isolated station were

used to provide a coarse-grained approximation for performance evaluation of the bike

sharing system. Differently from Leurent [20], this paper analyzes a total network of the

bike sharing system by means of the mean-field theory, where the nodes with finite wait-

ing rooms may have a variety of weak interactions. The third contribution is to use some

numerical examples to show effectiveness and computability of this mean-field matrix-

analytic method, and to show how some key parameters influence performance measures

of this bike sharing system. Therefore, we gain new insights on understanding nonlinear

dynamics, inhomogeneous nature and interesting performance of the bike sharing systems,

and hope the methodology and results given in this paper are applicable in the study of

more general large-scale bike sharing systems.

The remainder of this paper is organized as follows. In Section 2, we describe a

large-scale bike sharing system with N identical stations and with user’s finite waiting

rooms under Markovian environment. Furthermore, we provide a method to construct

a Markovian environment by means of a fluctuating rate law of three peaks within a

period, which well expresses time-inhomogeneity and asymmetry of the processes that the

customers rent and return the bikes. In Section 3, we first introduce an empirical measure

process to express the states of this bike sharing system. Then we use a probability-
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analytic method to establish a necessary reference system: A time-inhomogeneous queue

MAP(t)/MAP(t)/1/K+2L+1 by means of the mean-field theory. This help us to set up

a block-structured system of mean-field equations. In Section 4, we apply the martingale

limit theory to prove the asymptotic independence (or propagation of chaos) of the bike

sharing system. In Section 5, we discuss the fixed point of the block-structured system of

limiting mean-field equations, and provide a nonlinear QBD process to compute the fixed

point. Furthermore, we study the limiting interchangeability as N → ∞ and t → +∞. In

Section 6, we give six numerical examples to investigate the performance measures, and

show how some key parameters influence system performance. Some concluding remarks

are given in Section 7.

2 Model Description

In this section, we describe a large-scale bike sharing system with N identical stations and

with user’s finite waiting rooms under Markovian environment, and list operations mech-

anism, system parameters, model notation and necessary interpretation. Furthermore,

we give a detailed discussion on how to construct a Markovian environment by means of

useful information arose from the rate volatility of the process that the customers rent and

return the bikes within one period (i.e., one day), where a fluctuating law of three peaks

in the bike-rented (or bike-returned) processes is refined according to practical dynamics

of the bike sharing systems.

In a bike sharing system, a customer first arrives at a station, rents a bike, and uses it

for a while; then he returns the bike to a destination station. Once the customer finishes

his trip and returns the bike to a station, he immediately leaves the bike sharing system.

Based on this, Li et al. [26] first described a practical bike sharing system as a complicated

closed queueing network with virtual customers (bikes) and two classes of virtual nodes

(stations and roads). Since then, subsequent papers have been published on this theme.

Li et al. [27] extended the model in [26] from two key factors: Markovian arrival processes

and an irreducible road graph; while Li et al. [29] gave fluid and diffusion limits of the

bike sharing system with renewal user arrivals and general riding-bike times.

Although it is seen from the closed queueing networks that the stationary probability

of problematic stations can formally be computed by means of the product-form solution

of the joint stationary distribution of queue lengths, there still exist some calculable dif-
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ficulties which arise from a rather complicated expression of the routing matrix of the

corresponding virtual closed queueing network. Therefore, it is not only important for

theoretic investigations but also necessary for engineering applications to provide some

effective approximate techniques, for example, the mean-field theory of the bike sharing

systems. Note that the mean-field theory has a key advantage that focuses on analyzing

only one node with mean-field parameters whose basic information is sourced from the

weak interactions among all the nodes of a network system. Thus performance measures

of this node with mean-field parameters can be obtained easily, and they are used to well

approximate that of the total network system. Thus the mean-field results can be used

to show how some key system parameters influence the stationary probability of problem-

atic stations so that the QoS of the bike sharing system can be evaluated from such a

mean-field approximation.

Based on the above analysis, this paper extends the mean-field theory to be able to

deal with more general bike sharing systems, and further provides a novel mean-field

matrix-analytic method in the study of bike sharing systems. To this end, we describe

a large-scale bike sharing system, and list its operations mechanism, system parameters,

model notation and necessary interpretation as follows:

(1) The N identical stations: To use the mean-field theory, we assume that the

large-scale bike sharing system contains N identical stations; and at the initial time t = 0,

every station has C bikes and K parking places, in which 1 ≤ C ≤ K < ∞. Every station

continuously operates through either renting a bike or returning a bike, so the number of

bikes in a tagged station can be regarded as a queueing process.

(2) Adding user’s finite waiting rooms to the stations: To decrease the proba-

bility of problematic stations when customers are sufficient in this system, it is an efficient

technique to add a user’s finite waiting room at each station. The waiting room have L

waiting places, each of which is occupied by only a customer when either he can not rent

a bike from the tagged station or he can not return his bike to the tagged station. In

general, each finite waiting room has two useful purposes: (a) When a customer arrives at

an empty station in which no bike can be rented, either he enters a waiting place in order

to wait for a future available bike with probability α ∈ [0, 1], or he immediately leaves the

bike sharing system with probability 1 − α. (b) When a riding-bike customer completes

his trip and enters a full station in which no empty parking place is available, either he

enters a waiting place in order to wait for a future available parking place with probability
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β ∈ [0, 1], or he immediately rides his bike to another station in order to return the bike

with probability 1− β. Here, we must explain that the riding-bike customer must return

his bike to any station, and then he can leave the bike sharing system, because each bike

is an indispensable public equipment and cannot be lost or become a personal property.

(3) The Markovian environment: In this bike sharing system, the arrival and

travel processes are influenced (or controlled) by a Markovian environment, which is a

continuous-time irreducible positive-recurrent Markov process whose infinitesimal gener-

ator of size m is given by

W =




w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m

...
...

. . .
...

wm,1 wm,2 · · · wm,m




,

where wi,i < 0 for 1 ≤ i ≤ m; wi,j ≥ 0 for 1 ≤ i, j ≤ m and i 6= j;
∑m

j=1wi,j = 0 for

1 ≤ i ≤ m. At the same time, we denote by θ the stationary probability vector of the

Markov process W, that is, θW = 0 and θe = 1, where e is a column vector of ones. Based

on the Markov process W, now we describe the arrival processes and the riding-bike times

as follows:

(3.1) The arrival processes: If the Markovian environment is at State j, then the

arrivals of customers at the bike sharing system from outside are a Poisson process with

arrival rate Nλj for 1 ≤ j ≤ m.

(3.2) The riding-bike times: If the Markovian environment is at State j, then the

riding-bike time that a customer rides a bike from one station to another is exponential

with travel rate µj for 1 ≤ j ≤ m.

(4) The leaving principle: Once a customer finishes his trip and returns his bike

to any station, he immediately leaves the bike sharing system.

We assume that all the random variables defined above are independent of each other.

When observing a tagged station in the bike sharing system, the finite waiting room

and the Markovian environment play a key role in queueing analysis of this tagged station.

To explain this, the queueing structure of the tagged station is depicted in Figure 1.

Remark 1 On the one hand, the assumption of the N identical stations is used to guar-

antee applicability of the mean-field theory (that is, the multi-dimensional Markov process
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Figure 1: The queueing structure of any station in this bike-sharing system

is exchangeable). On the other hand, from a practical point of view, the stations in a

major city are also designed as almost the same, for example, Hangzhou has over 4000

stations, and each station contains about 30 bikes.

Remark 2 In some major cities, there are always many bikes and customers distributed

at various stations to support the short trips. To improve the quality of service (or to

decrease the probability of problematic stations), an adscititious waiting room designed to

add at each station of a bike sharing system is always effective and useful. Leurent [20] first

proposed such an idea of adscititious waiting rooms, and discussed the queueing process

of only one isolated station by means of the M/M/1/C queue. Differently from Leurent

[20], this paper applies the mean-field theory to analyse such a network system of the bike

sharing system with user’s waiting rooms, and then numerically compares performance

measures of the bike sharing systems with or without user’s finite waiting rooms, e.g., see

Figure 9 for more details.

In the remainder of this section, we give an interesting idea that constructs a Markovian

environment with seven states to be able to well express the time-inhomogeneity and
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A law of three peaks of the rate      during one period (i.e., a day) f t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A B C D E F G H I
t

f t

f t :   Bike rented rate (or bike returned rate) at a tagged station

Figure 2: A fluctuating law of three peaks for bike rented (or returned) rates within a day

asymmetry of the processes that the customers rent and return the bikes. To our best

knowledge, it is the first time that a Markovian environment is constructed by means of

useful information which arises from the rate volatility of the processes that the customers

rent and return the bikes within a day, where a fluctuating law of three peaks in bike rented

(or returned) rates within a day is depicted in Figure 2.

Based on Figure 2, we segment 24 hours of one day into 7 parts as follows:

Part one = [0, 6.5) ∪ [23.5, 24), Part two = [6.5, 8.5),

Part three = [8.5, 11.5), Part four = [11.5, 14),

Part five = [14, 17.5), Part six = [17.5, 19.5),

Part seven = [19.5, 23.5).

Since the seven segmented parts within 24 hours demonstrate a stable regular structure

of periodical dynamics of the bike sharing systems, Part i may be regarded as State i of

a Markovian environment. Note that the Markovian environment can be expressed by an

irreducible Markov process whose state transition relations are described as

State 1 → State 2 → State 3 → State 4 → State 5 → State 6 → State 7 → State 1.
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Thus the infinitesimal generator of the Markovian environment is given by

W =




−x1 x1

−x2 x2

−x3 x3

−x4 x4

−x5 x5

−x6 x6

x7 −x7




.

To compute the undetermined numbers xi for 1 ≤ i ≤ 7, we first take the stationary

probability vector θ = (θ1, θ2, . . . , θ7) according to the time length ratios of the seven

segmented parts within 24 hours. Thus it is seen from Figure 2 that

θ1 =
7

24
, θ2 =

2

24
, θ3 =

3

24
, θ4 =

2.5

24
, θ5 =

3.5

24
, θ6 =

2

24
, θ7 =

4

24
.

Let x7 = 1. Then it follows from θW = 0 that

xi =
θ7
θi
, 1 ≤ i ≤ 7.

Now, we provide an average approximate method to determine the bike rented and

returned rates which are controlled by the states of the Markovian environment. To this

end, let frent (t) and freturn (t) be the instantaneous rates of the bike rented and returned

processes at time t ≥ 0, respectively. Note that each of the two functions frent (t) and

freturn (t) is referred to the fluctuating law of three peaks depicted in Figure 2, or they

can be approximately evaluated by means of the associated data collected from system
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operations. Based on this, we set up

λ1 = 0, µ1 = 0;

λ2 =
1

2

∫ 8.5

6.5
frent (t) dt, µ2 =

1

2

∫ 8.5

6.5
freturn (t) dt;

λ3 =
1

3

∫ 11.5

8.5
frent (t) dt, µ3 =

1

3

∫ 11.5

8.5
freturn (t) dt;

λ4 =
1

2.5

∫ 14

11.5
frent (t) dt, µ4 =

1

2.5

∫ 14

11.5
freturn (t) dt;

λ5 =
1

3.5

∫ 17.5

14
frent (t) dt, µ5 =

1

3.5

∫ 17.5

14
freturn (t) dt;

λ6 =
1

2

∫ 19.5

17.5
frent (t) dt, µ6 =

1

2

∫ 19.5

17.5
freturn (t) dt;

λ7 =
1

4

∫ 23.5

19.5
frent (t) dt, µ7 =

1

4

∫ 23.5

19.5
freturn (t) dt.

In general, the two functions frent (t) and freturn (t) can approximately be given by means

of some statistical models to deal with the practical data in a tagged station of the bike

sharing system.

Remark 3 By using the fluctuating law of three peaks depicted in Figure 2, we choose

seven different states to construct a Markovian environment, which is related to real-time

dynamics of the bike sharing system. Similarly, we may also set up a fluctuating law of n

peaks to construct a Markovian environment of 2n + 1 states. Note that the approximate

accuracy of such modeling can be improved effectively as the number n increases. On the

other hand, it is necessary to mention that the Markovian environment constructed from

a fluctuating law of n peaks will be very useful in the study of stochastic periodic systems

because the difficult periodic dynamic system is transformed to an easy Markov system,

for example, ride sharing systems, healthcare systems, transportation networks, periodic

retail systems, wind power system and so forth.

3 Mean-Field Equations

In this section, we first introduce an empirical measure process to express the states of

this bike sharing system. Then we provide a probability-analytic method, combining with

the mean-field theory, to establish a necessary reference system: A time-inhomogeneous

queue MAP(t)/MAP(t)/1/K+2L+1. This help us to set up a block-structured system of

mean-field equations.
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Now, we introduce an empirical measure process to express the states of this bike

sharing system.

Let X
(N)
i (t) and J (t) be the number of customers in Station i and the state of the

Markovian environment at time t, respectively. ThenX = {(X
(N)
1 (t),X

(N)
2 (t), . . . ,X

(N)
N (t);

J(t)) : t ≥ 0} is an Nm-dimensional Markov process due to the assumptions on the Pois-

son arrivals, the exponential travel times and the Markovian environment. Note that

analysis of such an Nm-dimensional Markov process is always difficult due to the “State

Space Explosion”. Therefore, it is necessary to introduce an empirical measure process.

For the Markov process X =
{(

X
(N)
1 (t) ,X

(N)
2 (t) , . . . ,X

(N)
N (t) ;J (t)

)
: t ≥ 0

}
, the

empirical measure is defined as

Y
(N)
k,j (t) =

1

N

N∑

n=1

1{
X

(N)
n (t)=k, J(t)=j

},

where 1{•} is an indicative function. Obviously, Y
(N)
k,j (t) denotes the fraction of stations

with k bikes and with the Markovian environment be at State j at time t. It is easy to

see that for −L ≤ k ≤ K + L,

0 ≤ Y
(N)
k,j (t) ≤

m∑

j=1

Y
(N)
k,j (t) ≤

K+L∑

k=−L

m∑

j=1

Y
(N)
k,j (t) = 1.

Let

Y
(N)
k (t) =

(
Y

(N)
k,1 (t) , Y

(N)
k,2 (t) , . . . , Y

(N)
k,m (t)

)

and

Y(N) (t) =
(
Y

(N)
−L (t) ,Y

(N)
−L+1 (t) , . . . ,Y

(N)
K+L−1 (t) ,Y

(N)
K+L (t)

)
,

which is a row vector of size (K + 2L+ 1)m. Then
{
Y(N) (t) : t ≥ 0

}
is an empirical

measure Markov process whose state space is given by Ω = [0, 1](K+2L+1)m.

To consider the empirical measure Markov process
{
Y(N) (t) : t ≥ 0

}
, we write

y
(N)
k,j (t) = E

[
Y

(N)
k,j (t)

]
, − L ≤ k ≤ K + L, 1 ≤ j ≤ m, (1)

and

y
(N)
k (t) =

(
y
(N)
k,1 (t) , y

(N)
k,2 (t) , . . . , y

(N)
k,m (t)

)
,

y(N) (t) =
(
y
(N)
−L (t) ,y

(N)
−L+1 (t) , . . . ,y

(N)
K+L−1 (t) ,y

(N)
K+L (t)

)
.

In what follows we will apply the mean-field theory to set up a block-structured system of

mean-field equations whose purpose is to be able to numerically compute the key vector

y(N) (t).

14



3.1 A time-inhomogeneous MAP(t)/MAP(t)/1/K+2L+1 queue

In the bike sharing system with N identical stations and with Markovian environment,

we define Q(N) (t) as the number of bikes in a tagged station at time t. It is easy to see

that if an outside customer arrives at the tagged station and rents a bike, then Q(N) (t)

decreases by one; while if a customer finishes his trip and returns a bike at the tagged

station, Q(N) (t) increases by one. Based on this, we can understand that the Markov

process
{(

Q(N) (t) , J (t)
)
: t ≥ 0

}
is a QBD process, which is further shown to well cor-

respond to a time-inhomogeneous MAP(t)/MAP(t)/1/K+2L+1 queue, where MAP(t) is

an instantaneous Markov arrival process with a matrix descriptor (C (t) ,D (t)) of size m,

e.g., see Subsections 8.2.5 and 8.2.6 of Chapter 8 in Li [21] for more details.

In the MAP(t)/MAP(t)/1/K+2L+1 queue, it is easy to understand that the customers

are virtual from the bikes, that is, the bikes are the virtual customers. Thus a virtual

customer’s arrival is a bike returned to the tagged station; while a virtual customer’s

service completion is a bike rented from the tagged station. Thus, here we call arrival (or

service) to be virtual arrival (or virtual service).

The following theorem provides expressions for the instantaneous virtual arrival rate

ξ
(N)
l,j (t) and the instantaneous virtual service rate η

(N)
k,j (t) in this time-inhomogeneous

queueing system. Note that the two instantaneous rates play a key role in our later study.

Theorem 1 In the time-inhomogeneous MAP(t)/MAP(t)/1/K+2L+1 queue, we have

(a) the instantaneous virtual service rate is given by

η
(N)
k,j (t) =





λj , 1 ≤ k ≤ K + L, 1 ≤ j ≤ m,

λjα, − (L− 1) ≤ k ≤ 0, 1 ≤ j ≤ m,
(2)

which is independent of the number N .
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(b) For 1 ≤ j ≤ m, the instantaneous virtual arrival rate is given by

ξ
(N)
l,j (t) =





µj

N

{
C + (N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=K

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, − L ≤ l ≤ 0,

µj

N

{
C − l + (N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=K

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, 1 ≤ l ≤ C − 1,

µj

N

{
(N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=K

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, C ≤ l ≤ K − 1,

β
µj

N

{
(N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=K

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, K ≤ l ≤ K + L− 1.

(3)

Proof: The proof of (2). When a customer arrives at a tagged station, there exist two

different cases:

Case (a) If the station has at least one bike (that is, 1 ≤ k ≤ K + L), then he

immediately rents a bike and leaves the station, that is, the virtual service is completed.

Hence η
(N)
k,j (t) = λj for 1 ≤ j ≤ m.

Case (b) If the station has no bike (that is, −L+1 ≤ k ≤ 0), then he has two choices:

he directly leaves this system with the probability 1−α; or he enters a waiting place with

the probability α in order to wait for renting a future available bike. Clearly, the virtual

service has not been completed yet but this also leads to the shortage of virtual customers

(or bikes). In this case, the rate λjα expresses the transition speed of that the number of

bikes at the tagged station from k to k− 1 for − (L− 1) ≤ k ≤ 0. Thus η
(N)
k,j (t) = λjα for

1 ≤ j ≤ m, and it is independent of the number k = − (L− 1) ,− (L− 2) , . . . , 1, 0.

Based on Cases (a) and (b), when the Markovian environment J (t) = j, we have

η
(N)
k,j (t) =





λj , 1 ≤ k ≤ K + L, 1 ≤ j ≤ m,

λjα, − (L− 1) ≤ k ≤ 0, 1 ≤ j ≤ m,

which is independent of k = − (L− 1) ,− (L− 2) , . . . ,K + L− 1,K + L.

The proof of (3). The proof of (3) is a bit complicated due to applications of the

mean-field theory. Note that Figure 3 describes the state transitions of the process that
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Figure 3: The state transition relation of the queueing process in the tagged station

the bikes are returned at the tagged station. Since the bikes can not be returned to a full

station, either the user enters a waiting place in order to wait for a future available parking

place with probability β, or he immediately rides his bike to another station to find an

available parking place with probability 1 − β. Based on this, we give the instantaneous

virtual arrival rate ξ
(N)
l,j (t) by means of a probability-analytic method as follows:

ξ
(N)
l,j (t) =

1

N
· µj · the number of bikes ridden on all the roads at time t.

Note that the number of bikes ridden on all the roads contains two parts: (i) The number

n1 of bikes ridden from the tagged station is given by

n1 =





C, −L ≤ l ≤ 0,

C − l, 1 ≤ l ≤ C − 1,

0, C ≤ l ≤ K + L− 1,

and (ii) the number of bikes having been ridden from the other N − 1 station is given by

(N − 1) [the average number of bikes directly ridden from one of the N − 1 stations

+the average number of bikes which can not be returned to a full station with at least

two retries ] .

By using the mean-field theory, the average number of bikes ridden from the tagged station

is given by C −
∑K+L

k=1 ky
(N)
k,j (t). While the average number of bikes which can not be

returned to a full station with at least two retries is given a detailed computation below.

Based on the above analysis, our computation for deriving the instantaneous virtual

arrival rate ξ
(N)
l,j (t) is divided into the following four cases.
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Case (a): When −L ≤ l ≤ 0, 1 ≤ j ≤ m, we need to study three different classes for

the initial distribution of bikes in the tagged station. Note that in the last two classes,

users who arrive at a full station can not return their bikes at the station.

Class-1: The initial C bikes in the tagged station are all rented on the roads. Using

the mean-field theory, we get that the average number of bikes rented on the road from

the other N − 1 stations is given by

(N − 1)

[
C −

K+L∑

k=1

ky
(N)
k,j (t)

]
,

where
∑K+L

k=1 ky
(N)
k,j (t) is the average number of bikes parked in the tagged station. Thus,

the average number of bikes rented on the roads from the N stations is given by

C + (N − 1)

[
C −

K+L∑

k=1

ky
(N)
k,j (t)

]
.

Class-2: A customer finishes his trip and arrives at a tagged station in which there

are k bikes for K ≤ k ≤ K + L − 1. It is clear that the tagged station is full so that the

customer has to re-ride the bike in order to return the bike to another station with the

probability 1− β. The average number of such re-riding bike is given by

K+L−1∑

k=K

{
(1− β) y

(N)
k,j (t) + 2

[
(1− β) y

(N)
k,j (t)

]2
+ 3

[
(1− β) y

(N)
k,j (t)

]3
+ · · ·

}

=
K+L−1∑

k=K

(1− β) y
(N)
k,j (t)

[
1− (1− β) y

(N)
k,j (t)

]2 ,

where n
[
(1− β) y

(N)
k,j (t)

]n
is the average number of re-riding bikes of n customers, and

x+ 2x2 + 3x3 + · · · = x/ (1− x)2.

Class-3: A customer finishes his trip and arrives at a tagged station in which there are

K + L bikes. In this case, there is neither a bike-parking place nor a user-waiting place,

hence the customer has to re-ride the bike in order to return the bike at another station

with the probability 1. The average number of such re-riding bikes is given by

y
(N)
K+L,j (t) + 2

[
y
(N)
K+L,j (t)

]2
+ 3

[
y
(N)
K+L,j (t)

]3
+ · · · =

y
(N)
K+L,j (t)[

1− y
(N)
K+L,j (t)

]2 .

Summarizing the above analysis, the instantaneous virtual arrival rate is given by

ξ
(N)
l,j (t) =

µj

N




C + (N − 1)


C −

K+L∑

k=1

ky
(N)
k,j (t) +

K+L−1∑

k=K

(1− β) y
(N)
k,j (t)

[
1− (1− β) y

(N)
k,j (t)

]2 +
y
(N)
K+L,j (t)[

1− y
(N)
K+L,j (t)

]2








.
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Case (b): When 1 ≤ l ≤ C − 1, the only difference of our derivation from Case (a) is

to replace the initial C bikes by the initial C − l bikes in the tagged station. Thus we get

ξ
(N)
l,j (t) =

µj

N




C − l + (N − 1)


C −

K+L∑

k=1

ky
(N)
k,j (t) +

K+L−1∑

k=K

(1− β) y
(N)
k,j (t)

[
1− (1− β) y

(N)
k,j (t)

]2 +
y
(N)
K+L,j (t)[

1− y
(N)
K+L,j (t)

]2








.

Case (c): When C ≤ l ≤ K − 1, the only difference of our derivation from Case (a)

is that the initial C bikes in this station are all parked in the tagged station. Hence we

obtain

ξ
(N)
l,j (t) =

µj

N




(N − 1)


C −

K+L∑

k=1

ky
(N)
k,j (t) +

K+L−1∑

k=K

(1− β) y
(N)
k,j (t)

[
1− (1− β) y

(N)
k,j (t)

]2 +
y
(N)
K+L,j (t)[

1− y
(N)
K+L,j (t)

]2








.

Case (d): When K ≤ l ≤ K + L− 1, the only difference of our derivation from Case

(c) is that when a customer finishes his trip and arrives at the tagged station, he enters

the waiting places in order to wait for an empty parking place with the probability β.

This gives

ξ
(N)
l,j (t) = β

µj

N




(N − 1)


C −

K+L∑

k=1

ky
(N)
k,j (t) +

K+L−1∑

k=K

(1− β) y
(N)
k,j (t)

[
1− (1− β) y

(N)
k,j (t)

]2 +
y
(N)
K+L,j (t)[

1− y
(N)
K+L,j (t)

]2








.

Summarizing the above four cases, we obtain all the expressions given in (3). This

completes the proof.

3.2 A block-structured system of mean-field equations

Based on the time-inhomogeneous MAP(t)/MAP(t)/1/K+2L+1 queue, it is convenient

to describe the time-inhomogeneous QBD process
{(

Q(N) (t) , J (t)
)
: t ≥ 0

}
whose state

transition relation is depicted in Figure 4. At the same time, a useful relation related to

(1) for understanding the state probability distribution of the QBD process is given by

y
(N)
k,j (t) = P

{
Q(N) (t) = k, J (t) = j

}
, − L ≤ k ≤ K + L, 1 ≤ j ≤ m.
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Figure 4: The state transitions of the time-inhomogeneous QBD process

Based on the instantaneous virtual arrival rate ξ
(N)
l,j (t), we set that for −L ≤ k ≤ K+L−1

Ψ
(N)
k (t) =




0 ξ
(N)
k,1 (t)w1,2 · · · ξ

(N)
k,1 (t)w1,m

ξ
(N)
k,2 (t)w2,1 0 · · · ξ

(N)
k,2 (t)w2,m

...
...

. . .
...

ξ
(N)
k,m (t)wm,1 ξ

(N)
k,m (t)wm,2 · · · 0




,

Ψ̂
(N)
k (t) = diag

(
ξ
(N)
k,1 (t)w1,1, ξ

(N)
k,2 (t)w2,2, . . . , ξ

(N)
k,m (t)wm,m

)
.

Similarly, it is easy to see from the instantaneous virtual service rate η
(N)
k,j (t) that for

−L+ 1 ≤ k ≤ 0

Φ
(N)
k (t) =




0 λ1αw1,2 · · · λ1αw1,m

λ2αw2,1 0 · · · λ2αw2,m

...
...

. . .
...

λmαwm,1 λmαwm,2 · · · 0




Def
= Φ(α) ,

Φ̂
(N)
k (t) = diag (λ1αw1,1, λ2αw2,2, . . . , λmαwm,m)

Def
= Φ̂ (α) ;

while for 1 ≤ k ≤ K + L

Φ
(N)
k (t) = Φ (1)

and

Φ̂
(N)
k (t) = Φ̂ (1) ,

both of which are due to α = 1 for 1 ≤ k ≤ K + L.

For the time-inhomogeneous QBD process
{(

Q(N) (t) , J (t)
)
: t ≥ 0

}
, it follows from

Figure 4 that the vector y(N) (t) =
(
y
(N)
−L (t) ,y

(N)
−L+1 (t) , . . . ,y

(N)
K+L−1 (t) ,y

(N)
K+L (t)

)
satis-

fies a block-structured system of mean-field (or ordinary differential) equations as follows:

d

dt
y
(N)
−L (t) = y

(N)
−L (t) Ψ̂

(N)
−L (t) + y

(N)
−L+1 (t) Φ

(N)
−L+1 (t) , (4)
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for −L+ 1 ≤ k ≤ K + L− 1

d

dt
y
(N)
k (t) = y

(N)
k−1 (t)Ψ

(N)
k−1 (t) + y

(N)
k (t)

[
Ψ̂

(N)
k (t) + Φ̂

(N)
k (t)

]
+ y

(N)
k+1 (t)Φ

(N)
k+1 (t) , (5)

d

dt
y
(N)
K+L (t) = y

(N)
K+L (t) Φ̂

(N)
K+L (t) + y

(N)
K+L−1 (t)Ψ

(N)
K+L−1 (t) , (6)

with the boundary condition
K+L∑

k=−L

y
(N)
k (t) e = 1, (7)

and with the initial condition

y
(N)
k (0) = gk, − L ≤ k ≤ K + L, (8)

and

gk = (gk,1, gk,2, . . . , gk,m) ,

g =
(
g−L, g−(L−1), · · · , gK+L−1, gK+L

)

is a probability vector of size (K + 2L+ 1)m.

For convenience of description, we write the mean-field equations (4) to (8) into a

matrix version as follows:

d

dt
y(N) (t) = y(N) (t)Vy(N)(t), (9)

with the boundary and initial conditions

y(N) (t) e = 1, y(N) (0) = g, (10)

where

Vy(N)(t) =




A1,1 A1,2

A2,1 A2,2 A2,3

A3,2 A3,3 A3,4

A4,3 A4,4




, (11)

∆
(N)
k (t) = Φ̂

(N)
k (t) + Ψ̂

(N)
k (t) , − (L− 1) ≤ k ≤ K + L− 1,

A1,1 =




Ψ̂
(N)
−L (t) Ψ

(N)
−L (t)

Φ
(N)
−(L−1) (t) ∆

(N)
−(L−1) (t) Ψ

(N)
−(L−1) (t)

. . .
. . .

. . .

Φ
(N)
−1 (t) ∆

(N)
−1 (t) Ψ

(N)
−1 (t)

Φ
(N)
0 (t) ∆

(N)
0 (t)




,
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A1,2 =




Ψ
(N)
0 (t)




, A2,1 =




Φ
(N)
1 (t)




,

A2,2 =




∆
(N)
1 (t) Ψ

(N)
1 (t)

Φ
(N)
2 (t) ∆

(N)
2 (t) Ψ

(N)
2 (t)

. . .
. . .

. . .

Φ
(N)
L−2 (t) ∆

(N)
L−2 (t) Ψ

(N)
L−2 (t)

Φ
(N)
L−1 (t) ∆

(N)
L−1 (t)




,

A2,3 =




Ψ
(N)
L−1 (t)




, A3,2 =




Φ
(N)
C (t)




,

A3,3 =




∆
(N)
C (t) Ψ

(N)
C (t)

Φ
(N)
C+1 (t) ∆

(N)
C+1 (t) Ψ

(N)
C+1 (t)

. . .
. . .

. . .

Φ
(N)
K−2 (t) ∆

(N)
K−2 (t) Ψ

(N)
K−2 (t)

Φ
(N)
K−1 (t) ∆

(N)
K−1 (t)




,

A3,4 =




Ψ
(N)
K−1 (t)




, A4,3 =




Φ
(N)
K (t)




,

A4,4 =




∆
(N)
K (t) Ψ

(N)
K (t)

Φ
(N)
K+1 (t) ∆

(N)
K+1 (t) Ψ

(N)
K+1 (t)

. . .
. . .

. . .

Φ
(N)
K+L−1 (t) ∆

(N)
K+L−1 (t) Ψ

(N)
K+L−1 (t)

Φ
(N)
K+L (t) Φ̂

(N)
K+L (t)




.

Remark 4 To set up the block-structured system of mean-field equations, it is a key to

observe two figures: Figure 1 shows all the original parameters of the queueing process

under Markovian environment when one isolated station is paid attention to. Figure 4
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further gives mean-field expressions for the transition rates of the QBD process between

two neighboring levels by considering the weak interactions among the N stations of the

bike sharing system in terms of the mean-field theory.

4 The Martingale Limits

In this section, we apply the martingale limit theory to prove the asymptotic indepen-

dence of this bike sharing system, that is, the sequence
{
Y(N) (t) , t ≥ 0

}
of Markov

processes asymptotically approaches a single trajectory identified by a solution to the

block-structured system of limiting mean-field equations.

For the vector g =
(
g−L, g−(L−1), . . . , gK+L−1, gK+L

)
where gk = (gk,1, gk,2, . . . , gk,m),

we set

ΩN = {g : g ≥ 0, ge = 1, Ng is a vector of nonnegative integers}

and

Ω = {g : g ≥ 0, ge = 1} .

Obviously, ΩN ⊂ Ω. In the vector space Ω (or ΩN ), we take a metric

ρ
(
g,g

′

)
= max

−L≤k≤K+L
max

1≤j≤m

{
|gk,j − g′k,j|

}
, g,g′ ∈ Ω.

Note that under the metric ρ
(
g,g

′

)
, the vector space Ω (or ΩN ) is separable and compact.

Now we consider the Markov process
{
Y(N) (t) , t ≥ 0

}
on state space ΩN for N =

1, 2, 3, . . .. Note that the stochastic evolution of this bike sharing system is described as

the Markov process
{
Y(N) (t) , t ≥ 0

}
, and

d

dt
Y(N)(t) = AN f(Y(N)(t)),

where AN acting on functions f : ΩN → C1 is the generating operator of the Markov

process
{
Y(N) (t) , t ≥ 0

}
, and

AN = Arenting
N +Areturning

N +Aenvironment
N , (12)

where

Arenting
N f(g) =N

m∑

j=1

λj

K+L∑

k=1

gk,j

[
f
(
g −

ek,j
N

)
− f (g)

]

+Nα

m∑

j=1

λj

0∑

k=−(L−1)

gk,j

[
f
(
g −

ek,j
N

)
− f (g)

]
,
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Aenvironment
N f(g) = N

m∑

i=1

m∑

j=1

K+L∑

k=−L

gk,iwi,j

[
f
(
g −

ek,i
N

+
ek,j
N

)
− f (g)

]
,

Areturning
N f(g) =





m∑

j=1

0∑

l=−L

µjgl,jΘ
(N) (0) +

m∑

j=1

C−1∑

l=1

µjgl,jΘ
(N) (l)

+

m∑

j=1

K−1∑

l=C

µjgl,jΘ
(N) (C) + β

m∑

j=1

K+L−1∑

l=K

µjgl,jΘ
(N) (C)





[
f
(
g +

ek,j
N

)
− f (g)

]
,

and for 0 ≤ l ≤ C

Θ(N) (l) =

{
C − l + (N − 1)

[
C −

K+L∑

k=1

kgk,j +

K+L−1∑

k=K

(1− β) gk,j

[1− (1− β) gk,j]
2 +

gK+L,j

[1− gK+L,j]
2

]}
.

When N → ∞, it is easy to check that

N
[
f
(
g +

ek,j
N

)
− f (g)

]
→

∂

∂gk,j
f(g),

N
[
f
(
g −

ek,j
N

)
− f (g)

]
→ −

∂

∂gk,j
f(g),

[
f
(
g−

ek,i
N

+
ek,j
N

)
− f (g)

]
→ −

∂

∂gk,i
f(g) +

∂

∂gk,j
f(g),

and for 0 ≤ l ≤ C

1

N
Θ(N) (l) =

1

N

{
C − l + (N − 1)

[
C −

K+L∑

k=1

kgk,j +

K+L−1∑

k=K

(1− β) gk,j

[1− (1− β) gk,j]
2 +

gK+L,j

[1− gK+L,j]
2

]}

→ C −
K+L∑

k=1

kgk,j +
K+L−1∑

k=K

(1− β) gk,j

[1− (1− β) gk,j]
2 +

gK+L,j

[1− gK+L,j]
2

Def
= Θ.

Let

A = lim
N→∞

AN , Arenting = lim
N→∞

Arenting
N ,

Areturning = lim
N→∞

Areturning
N , Aenvironment = lim

N→∞
Aenvironment

N .

Then

Af(g) =−

m∑

j=1

λj

K+L∑

k=1

gk,j
∂

∂gk,j
f (g)− α

m∑

j=1

λj

0∑

k=−(L−1)

gk,j
∂

∂gk,j
f (g)

+

m∑

i=1

m∑

j=1

K+L∑

k=−L

gk,iwi,j

[
−

∂

∂gk,i
f(g) +

∂

∂gk,j
f(g)

]

+Θ




m∑

j=1

K−1∑

l=−L

µjgl,j + β
m∑

j=1

K+L−1∑

l=K

µjgl,j


 ∂

∂gk,j
f (g) . (13)
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Now, we discuss the weak convergence of the sequence
{
Y(N) (t) : t ≥ 0

}
of Markov

processes for N = 1, 2, 3, . . . . Here, our main purpose is to provide some basic sup-

port for our later study of various convergence involved. To this end, we consider the

random vector Y(N) (t) with samples in P (D (R+,N)), where R+ = [0,+∞), N =

((k, j) : −L ≤ k ≤ K + L, 1 ≤ j ≤ m), D (R+,N) is the Skorohod space, i.e., the set of

mappings which are right continuous with left-hand limits (in short, Càdlàg), and P (·) is

the set of probability measures defined in D (R+,N). Notice that the convergence in the

Skorohod topology means the convergence in distribution (or weak convergence) for the

Skorohod topology on the space of trajectories. When the sequence
{
Y(N)(t), t ≥ 0

}
of

Markov processes converges in probability (or converges weakly), for the Skorohod topol-

ogy, to a given probability vector Y(t), we write the weak convergence as Y(N) (t) =⇒

Y (t) for t ≥ 0, as N −→ ∞.

If Y(N) (t) =⇒ Y (t) for t ≥ 0 as N −→ ∞, then it is easy to see from (12) and (13)

that the transition probabilities of the Markov process
{
Y(N) (t) , t ≥ 0

}
with generating

operator AN uniformly converges on any finite time interval to the transition probabilities

of the limiting Markov process {Y (t) , t ≥ 0} with generating operator A.

Now we consider the limiting behavior of the sequence {Y(N)(t), t ≥ 0} of Markov

processes as N → ∞. To that end, we first give a system of limiting mean-field equations

(14) to (15) below.

Set

y (t) = lim
N→∞

y(N) (t)

and

Vy(t) = lim
N→∞

Vy(N)(t).

Then it follows from (9) and (10) that

d

dt
y (t) = y (t)Vy(t), (14)

y (t) e = 1, y (0) = g ∈ Ω. (15)

Note that the convergence in the Skorohod topology means the convergence in dis-

tribution for the Skorohod topology on the space of trajectories. The following theo-

rem applies the martingale limit theory to discuss the weak convergence of the sequence
{
Y(N)(t), t ≥ 0

}
of Markov processes as N tends to infinity.
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Theorem 2 If Y(N)(0) converges weakly to g ∈ Ω as N tends to infinity, then the se-

quence
{
Y(N)(t), t ≥ 0

}
of Markov processes converges in the Skorohod topology to a so-

lution y (t) to the system of limiting mean-field equations (14) to (15).

Proof: From the martingale characterization of the Markov jump process
{
Y(N)(t), t ≥ 0

}
,

it follows from Rogers and Williams [39, 38] that for −L ≤ k ≤ K + L and 1 ≤ j ≤ m,

M
(N)
k,j (t) = Y

(N)
k,j (t)− Y

(N)
k,j (0)−

∫ t

0

∑

Λ∈Ω−{Y(N)(t)}

Q(N)
(
Y(N)(s),Λ

) [
Λk,j − Y

(N)
k,j (s)

]
ds

is a martingale with respect to the natural filtration associated to the Poisson processes

involved in the renting and returning processes and to the Markov process of the Marko-

vian environment, where Q(N)
(
Y(N)(s),Λ

)
is the Q-matrix of the Markov jump process

{
Y(N)(t), t ≥ 0

}
whose expression is given by means of the state change due to the renting

and returning processes as well as the state transitions of the Markovian environment.

To express theQ-matrixQ(N)
(
Y(N)(s),Λ

)
, we analyze three classes of state transitions

as follows:

(1) When a customer arrives at the tagged station to rent a bike, the state transition

rate is given by

qk,j;k−1,j =





λj, 1 ≤ k ≤ K + L, 1 ≤ j ≤ m,

λjα, − (L− 1) ≤ k ≤ 0, 1 ≤ j ≤ m.

(2) When a customer returns his bike to the tagged station, the state transition rate
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is given by

q
(N)
k,j;k+1,j (t) =





µj

N

{
C + (N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=K

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, − L ≤ l ≤ 0,

µj

N

{
C − l + (N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=1

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, 1 ≤ l ≤ C − 1,

µj

N

{
(N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=1

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, C ≤ l ≤ K − 1,

β
µj

N

{
(N − 1)

[
C −

K+L∑
k=1

ky
(N)
k,j (t)

+
K+L−1∑
k=1

(1−β)y
(N)
k,j

(t)
[

1−(1−β)y
(N)
k,j

(t)
]2 +

y
(N)
K+L,j

(t)
[

1−y
(N)
K+L,j

(t)
]2

]}
, K ≤ l ≤ K + L− 1.

(3) When the Markovian environment changes from State i to State j, the state tran-

sition rate is given by

qk,i;k,j = wi,j, − L ≤ k ≤ K + L, i 6= j, 1 ≤ i, j ≤ m.

Based on the above three cases, the Q-matrix Q(N)
(
Y(N)(s),Λ

)
is given by

Y
(N)
k,j (t) =M

(N)
k,j (t) + Y

(N)
k,j (0) + qk+1,j;k,j

∫ t

0
Y

(N)
k+1,j (s) ds

+

∫ t

0
q
(N)
k−1,j;k,j (s)Y

(N)
k−1,j (s) ds+

m∑

i 6=j

wi,j

∫ t

0
Y

(N)
k,i (s) ds

Using a similar method to Darling and Norris [4, 5], it is easy to see that if Y(N)(0)

converges weakly to g ∈ Ω as N tends to infinity, then the sequence
{
Y(N)(t), t ≥ 0

}
of

Markov processes is tight for the Skorohod topology, and any limitY(t) of
{
Y(N)(t), t ≥ 0

}

asymptotically approaches to a single trajectory identified by a solution y (t) to the system

of limiting mean-field equations (14) to (15). This completes the proof.

5 A Nonlinear QBD Process

In this section, we discuss the fixed point of the block-structured system of limiting mean-

field equations (14) to (15), and provide a mean-field matrix-analytic method which can
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be used to numerically compute the fixed point. Furthermore, we study the limiting inter-

changeability of y(N)(t) as N → ∞ and t → +∞, that is, the asymptotic independency,

which plays a key role in approximate computation for performance measures of this bike

sharing system.

We rewrite the system of limiting mean-field equations (14) to (15) as

d

dt
y (t) = y (t)Vy(t)

and

y (t) e = 1, y (0) = g ∈ Ω.

A point π ∈ Ω is said to be a fixed point if limt→+∞

[
d
dty (t)

]
= 0, or

[
y (t)Vy(t)

]
|y(t)=π

= 0.

Thus, we have

πVπ = 0 (16)

and

πe = 1. (17)

Now, we provide a mean-field matrix-analytic method to compute the fixed point π

from the system of nonlinear equations: πVπ = 0 and πe = 1. To this end, it is necessary

to explore the block structure of the system of nonlinear equations. Hence this gives a

nonlinear QBD process so that the RG-factorizations given by Li [21] are applicable in

our later analysis.

Let

ξk,j = lim
t→+∞

lim
N→∞

ξ
(N)
k,j (t) , − L ≤ k ≤ K + L, 1 ≤ j ≤ m.

Then

ξk,j =





µjζj, − L ≤ k ≤ K − 1, 1 ≤ j ≤ m,

βµjζj , K ≤ k ≤ K + L− 1, 1 ≤ j ≤ m,

where

ζj = C −

K+L∑

k=1

kπk,j +

K+L−1∑

k=K

(1− β)πk,j

[1− (1− β) πk,j]
2 +

πK+L,j

[1− πK+L,j]
2 .
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Table 1: The special structures of the four functions Ψk,Ψ̂k,Φk and Φ̂k

K −L −L+ 1 ≤ k ≤ 0 1 ≤ k ≤ K − 1 K ≤ k ≤ K + L− 1 K + L

Ψk Ψ(1) Ψ (1) Ψ (1) Ψ (β) null

Ψ̂k Ψ̂ (1) Ψ̂ (1) Ψ̂ (1) Ψ̂ (β) null

Φk null Φ (α) Φ (1) Φ (1) Φ (1)

Φ̂k null Φ̂ (α) Φ̂ (1) Φ̂ (1) Φ̂ (1)

Thus for K ≤ k ≤ K + L− 1,

Ψk =




0 βµ1ζ1w1,m · · · βµ1ζ1w1,m

βµ2ζ2w2,1 0 · · · βµ2ζ2w2,m

...
...

. . .
...

βµmζmwm,1 βµmζmwm,2 · · · 0




Def
= Ψ(β) ,

Ψ̂k = diag (βµ1ζ1w1,1, βµ2ζ2w2,2, . . . , βµmζmwm,m)
Def
= Ψ̂ (β) ;

and for −L ≤ k ≤ K − 1,

Ψk = Ψ(1)

and

Ψ̂k = Ψ̂ (1) .

Based on the above analysis, we can summarize the special structures of the four

functions Ψk,Ψ̂k,Φk and Φ̂k in Table 1.

By observing Table 1, it is easy to check from (11) that as N → ∞ and t → +∞

Vπ =




B1,1 B1,2

B2,1 B2,2 B2,3

B3,2 B3,3


 , (18)

where

B1,1 =




Ψ̂−L Ψ−L

Φ−(L−1) Φ̂−(L−1) + Ψ̂−(L−1) Ψ−(L−1)

. . .
. . .

. . .

Φ−1 Φ̂−1 + Ψ̂−1 Ψ−1

Φ0 Φ̂0 + Ψ̂0




,
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B1,2 =




Ψ0




, B2,1 =




Φ1




,

B2,2 =




Φ̂1 + Ψ̂1 Ψ1

Φ2 Φ̂2 + Ψ̂2 Ψ2

. . .
. . .

. . .

ΦK−2 Φ̂K−2 + Ψ̂K−2 ΨK−2

ΦK−1 Φ̂K−1 + Ψ̂K−1




,

B2,3 =




ΨK−1




, B3,2 =




ΦK




,

B3,3 =




Φ̂K + Ψ̂K ΨK

ΦK+1 Φ̂K+1 + Ψ̂K+1 ΨK+1

. . .
. . .

. . .

ΦK+L−1 Φ̂K+L−1 + Ψ̂K+L−1 ΨK+L−1

ΦK+L Φ̂K+L




.

Thus it follows from (18) that

Vπ =




Ψ̂−L Ψ−L

Φ−(L−1) Φ̂−(L−1) + Ψ̂−(L−1) Ψ−(L−1)

. . .
. . .

. . .

ΦK+L−1 Φ̂K+L−1 + Ψ̂K+L−1 ΨK+L−1

ΦK+L Φ̂K+L




.

Based on the nonlinear QBD process Vπ, we write

π = (π−L, π−L+1, . . . , πK+L−1, πK+L) .

Now, we use the LU-type RG-factorization given in Subsection 1.3.2 of Chapter one in Li

[21] (see Pages 25 and 26), and write the LU-type R-measure as

R−L+1 (π) = −Φ−L+1

(
Ψ̂−L

)−1
,
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R−L+2 (π) = −Φ−L+2

[
R−L+1 (π)Ψ−L +

(
Φ̂−L+1 + Ψ̂−L+1

)]−1
,

for −L+ 2 ≤ k ≤ K + L,

Rk (π) = −Φk

[
Rk−1 (π)Ψk−2 +

(
Φ̂k−1 + Ψ̂k−1

)]−1
.

At the same time, the infinitesimal generator of the censored Markov chain to level

K + L is given by

ΞK+L = RK+L (π)ΨK+L−1 + Φ̂K+L.

For the fixed point π = (π−L, π−L+1, . . . , πK+L−1, πK+L), it follows from (1.25) in Subsec-

tion 1.3.4.1 of Li [21] (see Page 30) that for k = −L,

π−L = π−L+1R−L+1 (π) ,

and for −L+ 1 ≤ k ≤ K + L− 1,

πk = πk+1Rk+1 (π)

= πK+LRK+L (π)RK+L−1 (π)RK+L−2 (π) · · ·Rk+1 (π) ,

where the vector πK+L is a solution to the systems of nonlinear equations πK+LΞK+L = 0

and πK+L

[
I +

∑K+L−1
k=−L RK+L (π)RK+L−1 (π)RK+L−2 (π) · · ·Rk+1 (π)

]
e = 1.

The following theorem is a summarization of the above analysis, and its proof is easy

to only check the system of nonlinear equations πVπ = 0 and πe = 1. Thus we omit the

proof here.

Theorem 3 The fixed point π is a solution to the vector system of nonlinear equations

π =(πK+LRK+L (π)RK+L−1 (π)RK+L−2 (π) · · ·R−L+1 (π) ,

πK+LRK+L (π)RK+L−1 (π)RK+L−2 (π) · · ·R−L+2 (π) ,

. . . , πK+LRK+L (π)RK+L−1 (π) , πK+LRK+L (π) , πK+L) , (19)

πK+L

[
RK+L (π)ΨK+L−1 +

(
Φ̂K+L + Ψ̂K+L

)]
= 0 (20)

and

πK+L

[
I +

K+L−1∑

k=−L

RK+L (π)RK+L−1 (π)RK+L−2 (π) · · ·Rk+1 (π)

]
e = 1. (21)
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It is easy to see that although the system of nonlinear equations: πVπ = 0 and πe = 1,

are equivalent to the vector system of nonlinear equations (19), (20) and (21), Theorem

3 can be used to design different algorithms to numerically compute the fixed points π.

This is indicated in the next section with six numerical examples. Reader may also refer

to Li [22] and Li et al. [28] for some nearby research.

In what follows we discuss the mean-field limit of the empirical measure process of the

bike sharing system as the number N of stations and time t go to infinity, and show that

the fixed point is unique from the system of nonlinear equations: πVπ = 0 and πe = 1.

It is worthwhile to note that the uniqueness of the fixed point guarantees the asymptotic

independence of the queueing processes describing the numbers of bikes at the N stations

as N → ∞, also known as the propagation of chaos.

For the unique fixed point π, we discuss the limiting interchangeability of the proba-

bility vector y(N) (t,g) as N → ∞ and t → +∞, where y(N) (0,g) = g ∈ Ω. Note that

the limiting interchangeability is necessary in many practical applications when using the

stationary probabilities (that is, the fixed point) of the limiting process to give an effective

approximation for performance analysis of this bike sharing system.

The following theorem gives the limit of the vector y(t,g) as t → +∞, that is,

y(t,g) = lim
N→∞

y(N)(t,g)

and

lim
t→+∞

y(t,g) = lim
t→+∞

lim
N→∞

y(N)(t,g).

Theorem 4 For any g ∈ Ω

lim
t→+∞

y(t,g) = π.

Furthermore, there exists a unique probability measure ϕ on Ω, which is invariant under

the map g 7−→ y(t,g), that is, for any continuous function f : Ω → R and t > 0

∫

Ω
f(g)dϕ(g) =

∫

Ω
f(y(t,g))dϕ(g).

Also, ϕ = δπ is the probability measure concentrated at the fixed point π.

Proof: It is seen from Theorem 2 that as t → +∞, the limit of y(t,g) exists on Ω,

and it is also a solution on Ω to the system of nonlinear equations (16) and (17). Since

y(t,g) is the unique solution to the system of limiting mean-field equations (14) and (15),
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the vector limt→+∞ y(t,g) is also a solution to the system of nonlinear equations (16) and

(17). Note that π is the unique solution to the system of nonlinear equations (16) and

(17), hence we obtain that limt→+∞ y(t,g) = π. The second statement in this theorem

can be immediately given by the probability measure of the limiting process {Y(t), t ≥ 0}

on state space Ω. This completes the proof.

The following theorem indicates the weak convergence of the sequence {ϕN} of sta-

tionary probability distributions for the sequence
{
Y(N)(t), t ≥ 0

}
of Markov processes to

the probability measure concentrated at the fixed point π.

Theorem 5 (1) For a fixed number N = 1, 2, 3, . . ., the Markov process
{
Y(N)(t), t ≥ 0

}

is positive recurrent, and has a unique invariant distribution ϕN .

(2) {ϕN} weakly converges to δπ, that is, for any continuous function f : Ω → R

lim
N→∞

EϕN
[f(g)] = f (π) .

Proof: (1) From Theorem 3, this bike sharing system of N identical stations is stable,

hence this bike sharing system has a unique invariant distribution ϕN .

(2) Since Ω is compact under the metric ρ (g,g′), so it is the set P (Ω) of probability

measures. Hence the sequence {ϕN} of invariant distributions has limiting points. A

similar analysis to the proof of Theorem 5 in Martin and Suhov [31] shows that {ϕN}

weakly converges to δπ and limN→∞EϕN
[f(g)] = f (π). This completes the proof.

Based on Theorems 4 and 5, we obtain a useful relation as follows

lim
t→+∞

lim
N→∞

y(N)(t,g) = lim
N→∞

lim
t→+∞

y(N)(t,g) = π.

Therefore, we have

lim
N→∞
t→+∞

y(N)(t,g) = π,

which justifies the exchangeability of the limits of N → ∞ and t → +∞.

Finally, we further show the asymptotic independence (or propagation of chaos) of the

queueing processes of this bike sharing system for each k = 2, 3, . . . , N as follows:

lim
t→+∞

lim
N→∞

P
{
X

(N)
1 (t) = n1, J1 (t) = j1; . . . ;X

(N)
k (t) = nk, Jk (t) = jk

}

= lim
N→∞

lim
t→+∞

P
{
X

(N)
1 (t) = n1, J1 (t) = j1; . . . ;X

(N)
k (t) = nk, Jk (t) = jk

}

=

k∏

l=1

πnl,jl
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and

lim
N→∞

lim
t→+∞

1

t

∫ t

0
1{

X
(N)
1 (t)=n1,J1(t)=j1;...;X

(N)
k

(t)=nk,Jk(t)=jk

}dt

= lim
t→+∞

lim
N→∞

1

t

∫ t

0
1{

X
(N)
1 (t)=n1,J1(t)=j1;...;X

(N)
k

(t)=nk,Jk(t)=jk

}dt

=

k∏

l=1

πnl,jl a.s.

It is obvious that the asymptotic independence needs to hold for each subset of the N

same stations. Based on this, it is easy to see that the two types of limits may be used as

an approximate computation for performance measures of this bike sharing system, hence

this demonstrates the key role played by the asymptotic independence.

6 Numerical Analysis

In this section, we first use the fixed point to express interesting performance measures of

this bike sharing system, such as, the stationary average number of bikes at the tagged

station, the stationary strong-probability of problematic stations, the stationary weak-

probability of problematic stations, and impact of the user’s finite waiting rooms on system

performance. Then we use six numerical examples to demonstrate how the performance

measures depend on some key parameters of this bike sharing system. Therefore, this

paper provides numerical solution in the study of more general bike sharing systems by

means of the nonlinear QBD processes.

6.1 Performance measures

Using the fixed point π = (π−L, π−L+1, . . . , π0, π1, . . . , πK+L−1, πK+L) where πk = (πk,1, πk,2,

. . . , πk,m) and πke =
∑m

j=1 πk,j, we provide some interesting performance measures of this

bike sharing system from a practical point of view as follows:

(1) The stationary average number of bikes parked at the tagged station

E [Q] =

K+L∑

k=1

kπke.

(2-1) The stationary average number of waiting places used by customers
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who are renting bikes at the tagged station

E [N1] =

−1∑

k=−L

(−k)πke.

(2-2) The stationary average number of waiting places used by customers

who are returning bikes at the tagged station

E [N2] =
K+L∑

k=K+1

(k −K) πke.

(2-3) The maximal stationary average number of waiting places used at

tagged station

E [N ] = max {E [N1] , E [N2]} = max

{
−1∑

k=−L

(−k) πke,

K+L∑

k=K+1

(k −K)πke

}
.

Since E [N1] and E [N2] can not exist simultaneously, E [N ] is useful for synthetically

designing the user’s finite waiting rooms of this bike sharing system.

(3) The stationary strong-probability of problematic stations

The strong-probability of problematic stations is a probability that either there is both

no bike (−L ≤ k ≤ 0) and no empty waiting place (k = −L) when renting a bike, or there

is both no parking place (K ≤ k ≤ K+L) and no empty waiting place (k = K+L) when

returning a bike. Thus the stationary strong-probability of problematic stations is given

by

ps = π−Le+ πK+Le.

We consider the effect of the size of waiting places on the strong-probability of prob-

lematic stations. Let

υ =
π−Le+ πK+Le

(π−Le+ πK+Le)|L=0

.

Then υ denotes the improved efficiency of problematic stations due to introduction of the

user’s waiting room of size L > 0.

(4) The stationary weak-probability of problematic stations

The weak-probability of problematic stations is the probability that either there is no

bike (−L ≤ k ≤ 0) when renting a bike, or there is no parking place (K ≤ k ≤ K + L)

when returning a bike. Thus the stationary weak-probability of problematic stations is

given by

pw =

0∑

k=−L

πke+

K+L∑

k=K

πke.
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Figure 5: E [Q] vs. λ1 and µ1

6.2 Numerical examples

Now, we use six numerical examples to show how the performance measures depend on

some key parameters of this bike sharing system. As illustrated in the following figures, the

Markovian environment motivates us to propose the mean-field matrix-analytic method

which is necessarily developed as some effective numerical solution in the study of bike

sharing systems.

In the following examples one to four, we take some common parameters as follows:

K = 20, C = 10, L = 5, λ2 = 50, µ2 = 20, α = 0.5, β = 0.5,m = 2, w =


 −1 1

1 −1


 ;

while the other parameters are conceretely chosen in each example for the target of specific

observation.

Example one: Analysis of E [Q]

The left of figure 5 indicates how the stationary average number E [Q] of bikes at the

tagged station depends on λ1 ∈ (30, 45) when µ1 = 25, 30, 35 and 40, respectively. It is

seen that E [Q] decreases as λ1 increases but it increases as µ1 increases. The right of figure

5 shows how E [Q] depends on µ1 ∈ (25, 40) when λ1 = 25, 30, 35 and 40, respectively.

It is seen that E [Q] increases as µ1 increases but it decreases as λ1 increases. Note that

these numerical results may intuitively be understood as follows: The number of rented

bikes increases as λ1 increases, thus E [Q] decreases; while the number of returned bikes

increases as µ1 increases, this shows that E [Q] increases as µ1 increases.

Example two: Analysis of E [N ]

The left of figure 6 shows how the maximal stationary average number E [N ] of waiting
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Figure 6: E [N ] vs. λ1 and µ1

customers at the tagged station depends on λ1 ∈ (30, 45) when µ1 = 25, 30, 35 and 40,

respectively. It is seen that E [N ] decreases as λ1 increases but it increases as µ1 increases.

The right of figure 6 shows how E [N ] depends on µ1 ∈ (25, 40) when λ1 = 25, 30, 35

and 40, respectively. It is seen that E [N ] increases as µ1 increases but it decreases as

λ1 increases. Note that the number of rented bikes increases as λ1 increases, thus E [N1]

increases but E [N2] decreases. On the other hand, the number of returned bikes increases

as µ1 increases, so E [N2] increases but E [N1] decreases. Based on this, it is clear that

E [N2] has more impact on E [N ] than E [N1] under the present parameter design.

Example three: Analysis of the stationary weak-probability pw

The left of Figure 7 shows how the stationary weak-probability pw depends on λ1 ∈

(30, 45) when µ1 = 25, 30, 35 and 40, respectively. It is seen that pw decreases as λ1

increases but it increases as µ1 increases. The right of figure 7 shows how pw depends

on µ1 ∈ (25, 40) when λ1 = 25, 30, 35 and 40, respectively. It is seen that pw increases

as µ1 increases but it decreases as λ1 increases. Note that the number of rented bikes

increases as λ1 increases, thus
∑0

k=−L πke increases but
∑K+L

k=K πke decreases. On the

other hand, the number of returned bikes increases as µ1 increases. This indicates that
∑K+L

k=K πke increases but
∑0

k=−L πke decreases. It is well understood that
∑K+L

k=K πke has

more impact on pw than
∑0

k=−L πke under the present parameter design.

Example four: Analysis of the stationary strong-probability ps

The left of figure 8 shows how the stationary strong-probability ps depends on λ1 ∈

(30, 45) when µ1 = 25, 30, 35 and 40, respectively. It is seen that ps decreases as λ1

increases but it increases as µ1 increases. The right of figure 8 shows how ps depends

on µ1 ∈ (25, 40) when λ1 = 25, 30, 35 and 40, respectively. It is seen that ps increases
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Figure 7: pw vs. λ1 and µ1

Figure 8: ps vs. λ1 and µ1

as µ1 increases but it decreases as λ1 increases. Intuitively, the number of rented bikes

increases as λ1 increases, thus π−Le increases but πK+Le decreases. On the other hand,

the number of returned bikes increases as µ1 increases, hence πK+Le increases but π−Le

decreases. This demonstrates that πK+Le has more impact on ps than π−Le.

In the remainder of this section, we further observe some numerical impacts of the

user’s finite waiting rooms on system performance through the following two examples.

In Examples five and six, we take some common parameters as follows:

K = 20, C = 5,m = 2, λ2 = 50, w =


 −1 1

1 −1


 ;

while the other parameters are conceretely chosen in each example for the target of specific

observation.

Example five: Analysis of the stationary strong-probability ps vs. L

In the left of Figure 9, We take λ1 = 45, µ1 = µ2 = 20 and β = 0.75. The left of Figure
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Figure 9: ps vs. L

9 shows how the stationary strong-probability ps depends on L ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

when α = 0.10, 0, 25, 0.50, 0.75, 0.90, respectively. It is seen that ps decreases as L increases

but it increases as α increases.

In the right of Figure 9, we take λ1 = 55, µ1 = µ2 = 10 and α = 0.75. The

right of Figure 9 shows how ps depends on L ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} when β =

0.10, 0, 25, 0.50, 0.75, 0.90, respectively. It is seen that ps decreases as L increases but

it increases as β increases.

On the one hand, as L increases, there are more and more waiting places provided for

customers to wait for either an available bike (rent) or a vacant parking place (return),

thus the probabilities of π−Le and πK+Le will decrease. This illustrates that ps decreases.

On the other hand, as α increases, more and more customers would like to wait for an

available bike, thus π−Le increases but πK+Le decreases. As β increases, more and more

customers would like to wait for a vacant parking place, thus πK+Le increases but π−Le

decreases.

Example six: Analysis of the ratio υ vs. L

In the left of Figure 10, we take λ1 = 45, µ1 = µ2 = 20 and β = 0.75. The left

of Figure 10 shows how the ratio υ depends on L ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} when α =

0.10, 0, 25, 0.50, 0.75, 0.90, respectively. It is seen that the ratio υ decreases as L increases

but it increases as α increases.

In the right of Figure 10, we take λ1 = 55, µ1 = µ2 = 10 and α = 0.75. The

right of Figure 10 shows how the ratio υ depends on L ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} when

β = 0.10, 0, 25, 0.50, 0.75, 0.90, respectively. It is seen that the ratio υ decreases as L

increases but it increases as β increases.
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Figure 10: ps vs. υ

7 Concluding Remarks

In this paper, we describe a large-scale bike sharing system under Markovian environment,

and develop a mean-field matrix-analytic method by combining the mean-field theory with

the time-inhomogeneous queues as well as the nonlinear QBD processes. Furthermore, we

apply the martingale limit theory to prove the asymptotic independence (or propagation

of chaos) of this bike sharing system, and also study the limiting interchangeability as

N → ∞ and t → +∞. Based on this, we discuss the fixed point by means of a nonlinear

QBD process so that we can give performance analysis of this bike sharing system. Notice

that the mean-field matrix-analytic method is effective and efficient for, such as, designing

reasonable architecture of a bike sharing system, finding a better path scheduling, improv-

ing inventory management, redistributing the bikes among stations or clusters in terms

of truck scheduling, price optimization, application of intelligent information technologies

and so forth.

This paper provides a clear way for how to use the mean-field matrix-analytic method

to analyze performance measures of more general bike sharing systems in practice through

three key parts: (1) Setting up a mean-field system of mean-field equations, (2) proving

the asymptotic independence, and (3) analyzing performance measures of this bike sharing

system by means of the fixed point. Therefore, the methodology and results of this

paper give some new highlight on understanding performance measures and operations

management of bike sharing systems. Along such a line, there are a number of interesting

directions for potential future research, for example:

• Analyzing the fixed point for more general bike sharing systems in practice, and
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provide effective algorithms to deal with the nonlinear QBD processes;

• studying non-exponential riding-bike times and non-Poisson customer arrivals in bike

sharing systems;

• introducing some better operations management, such as, redistribution of bikes by

trucks, inventory management, applications of intelligent information techniques;

and

• discussing large-scale bike sharing systems with different clusters or/and under price

optimization.
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