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Abstract
This study aims to investigate the relationship between the spot and futures commodity 
markets. Considering the complexity of the relationship, we use a nonlinear autoregres-
sive distributed lag (NARDL) framework that considers the asymmetry and nonlinearity in 
both the long and short run. Based on the daily returns of six commodity indices reaggre-
gated on three commodity types, our study reaches some interesting findings. Our analy-
sis highlights a bidirectional relationship between both markets over the short and long 
run, with a greater lead for the futures market. This result confirms the future market’s 
dominant contribution to price discovery in commodities. Changes in commodity prices 
appear first in the futures market, as informed investors and speculators prefer trading on 
this market that is characterized by low costs and a high-leverage effect. Then, the informa-
tion is transmitted from the futures to the spot market through arbitrageurs’ activity, which 
explains the nonlinearity of the relationship. These results are helpful to scholars, investors 
and policymakers.

Keywords Commodity markets · NARDL · Spot market · Futures market · Lead–lag 
relationship

JEL Classification C58 · G1 · Q02

1 Introduction

Since 2002, the commodity market has exhibited fundamental changes, as explained by 
financialization. Investment flow into commodity markets has grown substantially, since 
institutional as well as specialized investors have been interested in this market (Doman-
ski et  al. 2007). Consequently, various financial instruments and derivatives have been 
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developed, leading to more attention from investors, traders and hedgers. Additionally, 
commodity market mechanisms have evolved substantially since 2002, unlike in conven-
tional markets, based on their physical features (storable and non-storable commodity) as 
well as their importance in worldwide economic activity.

In the two decades of commodity markets’ financialization, various periods of instabil-
ity, high volatility, extreme movements and seasonal patterns have been observed. These 
stylized facts revive the issue of price discovery. Financial instruments (derivatives, futures 
contracts, etc.) are known to have a positive effect on price discovery and the efficiency of 
resource allocation (Chan 1992; Schwarz et al. 1994; Henriksen et al. 2019). However, they 
might be sources of anomalies. Indeed, futures contracts are sources of various forward-
looking decisions of economic agents: producers might define their supply strategy based 
on the price of futures contracts and physical traders, investors might define their asset 
allocation strategy based on the trend of futures prices, etc. Therefore, the spot–futures 
relationship is still a topical issue, particularly for commodity markets that this study aims 
to revisit.

From a theoretical point of view, various mechanisms might highlight the spot–futures 
relationship. Based on market efficiency theory, the Law of One Price in futures markets 
stipulates that the spot and futures prices might be related based on spot–futures parity, 
which ends any trade-off opportunities. However, the commodity market is imperfect, char-
acterized by market frictions such as transaction costs and news reactions. Moreover, the 
theory of storage, pioneered by Kaldor (1983), is susceptible to supporting the spot–futures 
relationship. This theory stipulates that in equilibrium, the futures prices are equal to the 
spot prices plus the cost of carrying. Specifically, the theory of storage concurs that the 
basis and futures spread are connected to risk premium, convenience yield and the cost of 
storage. The basis defines whether the commodity market is in a contango or backwarda-
tion situation, including the shortage or surplus of the physical commodity in the mar-
ket. As the market approaches maturity, the basis reduces until it equals zero and spot and 
futures prices converge.

Both theories discussed above highlight the connection between spot and futures prices 
in the long term. However, the commodity market has some specifications and stylized 
facts, supporting theoretically and practically a divergence between both prices in the 
short term, such as seasonal dynamics of consumption, thin trading, lags in information 
transmission, capital market microstructure effects, etc. This potential short-run deviation 
between both prices supports a nonlinear connection that might be observed through a 
lead–lag relationship between spot and futures prices. This nonlinear relationship might be 
displayed, in the case of commodity prices, through a demand shock due to seasonal con-
sumption. Indeed, if the consumption of a commodity increases, explained by the seasonal 
effect, the inventory level decreases. Consequently, the convenience yield will increase and 
influence the price. Consequently, the seasonal effect inducing a demand shock leads to the 
futures price being highly volatile during the life of the futures contract. During the life 
of the futures contract, particularly at the beginning of the contract, a lead–lag relation-
ship might be present between both prices, with a magnitude decrease in the function of 
its maturity. At maturity (in the long run), the futures prices converge with the spot prices.

From a literature review, many studies have investigated the issue of spot–futures price 
connections, particularly for commodity markets, but they are inconclusive. Moreover, the lit-
erature is orientated to precious metals such as gold. Some studies show that futures markets 
lead spot markets and play an important role in price discovery (e.g., Aslan et al. 2018; Bopp 
et al. 1987; Brooks et al. 2001; Kawaller et al. 1987; Stoll et al. 1990; Talbi et al. 2020). Some 
others reach a contradictory conclusion, showing that spot prices lead to futures prices (e.g., 
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Pradhan et al. 2020; Srinivasan 2012). Some studies support an unclear relationship between 
both prices (e.g., Turnovsky 1983; Pindyck 2001; Bohl 2020; Wang et al. 2017), while some 
others investigate the potential asymmetric relationship between spot and futures prices 
through causality analysis and inconclusive findings (e.g., Arouri et  al. 2013; Chang et  al. 
2015; Dash et al. 2010; Hammoudeh et al. 2004; Jena et al.2019; Joseph et al. 2014; Mayer 
et al. 2017).

The literature discussed above is inconclusive considering the results and the nature of the 
commodity. Our study revisits the literature on the spot–futures relationship for the commod-
ity market to explore its specific characteristics compared to the conventional market, with 
the aim to complete it at four levels. First, we assessed the role of spot/futures prices in price 
discovery by examining their dynamics of interaction. Second, this relationship is assessed 
in both long and short terms to find some insights into the theoretical background discussed 
above. Third, we deliver new insights on the lead–lag relationship by considering various 
types of commodities and delving into precious metals. Four, we investigated the spot-future 
relationship based on an empirical framework with several advantages compared to those used 
in previous studies.

In this study, we assess the spot and futures relationship for three types of commodities: 
metal markets (aluminum, gold and copper), energy markets (Brent and natural gas) and agri-
culture markets (wheat). Considering the stylized fact of the commodity markets (seasonal 
dynamics of consumption, thin trading, lags in information transmission and capital market 
microstructure effects) and the potential complexity of their co-dynamics, we propose a non-
linear autoregressive distributed lag (NARDL) framework. This approach has several advan-
tages over methods used in the previous literature (GARCH family models, cointegration, 
Granger Causality, Wavelet, etc.). First, it allows us to assess of the dynamics of the relation-
ship between spot and futures prices for the long and short run and to test the theoretical back-
ground discussed above, contrary to other methods (GARCH family models, Granger Causal-
ity, etc.). Second, it considers the potential asymmetry and nonlinearity in the spot–futures 
relationship. Third, it avoids loss of information by allowing a mix between stationary and 
nonstationary series, contrary to the cointegration approach. Fourth, the nonlinear ARDL 
approach avoids spurious regression treatments (unit root tests, cointegration testing, etc.) that 
may be capricious based on some specific decisions such as the choice of deterministic part, 
autoregressive lags and so on (Dimitriadis et al. 2020).

Our study has some noteworthy findings. We found a bidirectional relationship between 
both markets over the short and long run. However, leadership is more pronounced in the 
futures market, supporting the conclusion of price discovery in commodity markets. This 
study provides insights on the transmission mechanisms in commodity markets, as we confirm 
that changes in commodity prices appear first in the futures market, explained by the prefer-
ence of investors and speculators to trade in this market behind the low costs and the high-lev-
erage effect. Thus, the information is transmitted from the futures to the spot market through 
arbitrage activity, which explains the nonlinear relationship.

The remainder of our paper is organized as follows. Section 2 presents the econometric 
methodology. Section 3 discusses the data and the empirical results and Sect. 4 presents the 
conclusion.
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2  Econometric methodology

In this study, we use the NARDL approach introduced by Shin et al. (2014) to examine the 
relationship between the futures and spot markets for several commodity markets, espe-
cially the metal markets (aluminum, gold and copper), energy markets (Brent and natural 
gas) and agriculture markets (wheat). The use of the NARDL approach allows us to con-
sider the complexity of the interaction between spot and futures returns, especially the non-
linearity and asymmetry over the short and long run.

Pesaran et al. (1999) and Pesaran et al. (2001) are the first to propose a linear ARDL 
framework presented in the following form:

where J
t
 is the log price series for the aluminum, gold, copper, Brent, natural gas and 

wheat markets. Ft and Sp are the indicators for the futures and spot markets, respectively. 
�1 is the autoregressive parameter. �1 and �2 represent the long-run dynamic relationships. 
p and q are the optimal lag lengths to be used for the different terms of the dependent and 
independent variables, respectively. �t is an iid process with zero mean and finite variance.

To implement the nonlinear ARDL framework, the positive and negative partial sum 
decompositions detecting the asymmetric effects both in the short and long run, are inte-
grated into the linear ARDL Eqs. (1) and (2). Following Shin et al. (2014), the nonlinear 
cointegrating regression has the following form for the spot market:
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follows:
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The parameters �+ and �− include the long-run asymmetry. The positive and negative 
long-run coefficients are measured as follows: L+ =

−�+

�1
 and L− =

−�−

�1
 . The parameters �+

i
 

and �−
i

 are associated with the short-run asymmetry.
To identify the best model that estimates the relationship between the spot and futures 

markets, we use the Wald test to detect the long- and/or short-run symmetries. For long-
run symmetry, the null hypothesis  H0, defined as �+ = �− , is tested against the alternative 
hypothesis  H1 of long-run asymmetry. For the short run, the null hypothesis  H0 defined as 
�+
i
= �−

i
 , is tested against the alternative hypothesis  H1 of short-run asymmetry. The Wald 

test allows the selection of the optimal model between the following four specifications:

2.1  Case 1

H0 is rejected for short-run symmetry and cannot be rejected for long-run symmetry. In 
this case, the cointegrating NARDL model with short-run asymmetry can be expressed as 
follows:

2.2  Case 2

H0 is rejected for the long-run symmetry and cannot be rejected for short-run symmetry. 
The cointegrating NARDL model with long-run asymmetry can be expressed as follows:

2.3  Case 3

H0 is rejected for both long- and short-run symmetry. The cointegrating NARDL model 
with long- and short-run asymmetry is defined in Eqs. (3) and (4).

2.4  Case 4

H0 cannot be rejected for both long- and short-run symmetry. The suitable model is the 
cointegrating linear ARDL model defined in Eqs. (1) and (2).

Finally, the existence of cointegration estimated by the previous models does not 
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identifies parameter instability if the CUSUM and CUSUMQ exceed the area between 
the two critical bounds of 5% significance.

3  Data and empirical results

3.1  Data and preliminary results

In this study, we investigate the interaction between the spot and futures markets for 
the metal, energy and agriculture markets. We obtained the daily price time series data 
from the Bloomberg database and for the period from January 2002 to November 2020. 
The use of daily frequency constitutes a contribution to the literature, as existing studies 
typically use the monthly frequency. This frequency might provide more information 
on the dynamics of the relationship between spot and futures markets, especially in the 
evolution of storage. The descriptive statistics for all variables are presented in Table 1.

Descriptive statistics are calculated based on the log-returns series. The mean returns 
are positive for all the indexes excepting the spot Brent index. The mean of the futures 
indexes is higher than the mean of the spot indexes for the gold, aluminum and Brent 
markets. The volatility of the futures indexes is higher than the volatility of the spot 
indexes for the gold, aluminum, copper and wheat markets. The skewness was often 
negative and statistically significant during this period for gold, aluminum, Brent 
futures and spot indexes and positive for the natural gas and wheat markets. For the 
copper market, the skewness was negative for the spot index and negative for the futures 
index. Kurtosis of all indexes suggests that distribution tails are higher than those of a 
normal distribution are. Normality was statistically rejected for all series.

Table  2 presents the results of the unit root tests. We used two different tests for 
the unit root to assess the integration order of the series. The null hypothesis for the 
augmented Dickey-Fuller (ADF) test is that the data are nonstationary, where the null 
hypothesis for the KPSS test is that the data are stationary. The two tests show that at 
log levels, both futures and spot log price series are nonstationary in all cases, indicat-
ing the presence of unit root. For the log difference, the null hypothesis for the ADF 
test was rejected for all the series. The results are confirmed by the KPSS test, which is 
in favor of stationarity for all log difference series. Finally, we note that for the ARDL 
specification, it does not matter whether the regressors are stationary processes I (0) or 
nonstationary processes I (1).

Table 3 presents the results of the corresponding best suitable model that estimates the 
relationship between the spot and futures markets for the metal, energy and agriculture 
markets. We note that the nature of the relationship between spot and futures markets is 
specific for each asset. Short-run asymmetry characterizes the relationship between the 
spot and futures markets since this hypothesis is confirmed for all estimations except for 
the model specifications of the aluminum and wheat futures prices and copper spot prices. 
Additionally, for natural gas, the interaction between the spot and futures returns is charac-
terized by a short-run asymmetry in both directions. Finally, the nonlinearity in either the 
long or short run is present for all the estimations except for the model specifications of the 
copper spot prices and the wheat futures prices. All these findings support the choice of the 
NARDL framework, as they show that the use of a linear symmetric model leads to mis-
specification of the relationship between spot and futures returns.
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3.2  Lead–lag relationship between the spot and futures commodity markets

Table 4 presents the estimation results for the specification of the best regression mod-
els, as defined in Table  3. In these models, spot returns of our sample of commodity 
indexes (aluminum, gold, copper, Brent, natural gas and wheat) are a function of spot 
market returns and past information from the futures market, which allow us to test the 
predictive power of futures prices in explaining the spot returns. If the coefficient of the 
past information from the futures market is significant, the futures market contributes 
to the spot market price discovery and speculation in futures markets plays an impor-
tant role in price formation. From Table  4, we can see that the Breusch–Godfrey test 
for serial correlation and the autoregressive conditional heteroscedasticity (ARCH) test 
with a lag of eight indicate that the selected models are correctly specified at a level 
of 5%. Furthermore, Table 4 indicates that all the models exhibit short-run asymmetry 
except for the model explaining the copper spot returns. The asymmetric long-run coef-
ficients L+ and L− are positive and significant at the 1% level, for aluminum, gold and 

Table 3  Wald test results for long- and short-run symmetries

The corresponding best-fit model is determined based on the estimation of Eqs.  (1), (2), (3) and (4). For 
long-run symmetry, the null hypothesis H0 defined as �+ = �− , is tested against the alternative hypothesis 
H1: long-run asymmetry. For the short run, the null hypothesis H0 defined as �+

i
= �−

i
 , is tested against the 

alternative hypothesis H1: short-run asymmetry.
P-values are in brackets. ***, ** and * indicate the significance at 1%, 5% and 10% levels, respectively

Dependent variable Long run Short run Corresponding best-fit model

Aluminum spot 5.385** 12.461*** NARDL, long- and short-run asymmetries
(0.020) (0.000)

Aluminum futures 7.963*** 0.850 NARDL, long-run asymmetry
(0.005) (0.493)

Gold spot 7.650*** 7.681*** NARDL, long- and short-run asymmetries
(0.006) (0.000)

Gold futures 1.866 4.386*** NARDL, short-run asymmetry
(0.172) (0.000)

Brent spot 4.453** 5.890*** NARDL, long- and short-run asymmetries
(0.035) (0.000)

Brent futures 0.498 55.529*** NARDL, short-run asymmetry
(0.481) (0.000)

Copper spot 3.419 1.782 ARDL
(0.065) (0.076)

Copper futures 4.929** 2.789*** NARDL, long- and short-run asymmetries
(0.027) (0.007)

Gas spot 0.006 3.847*** NARDL, short-run asymmetry
(0.938) (0.000)

Gas futures 1.222 3.229*** NARDL, short-run asymmetry
(0.269) (0.001)

Wheat spot 0.230 11.401*** NARDL, short-run asymmetry
(0.631) (0.000)

Wheat futures 0.289 0.291 ARDL
(0.591) (0.747)
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Brent spot markets indicating that both positive and negative variation in the futures 
markets allows a variation in the same direction in the long run. Similarly, asymmetric 
short-run coefficients �+

i
 and �−

i
 for aluminum, gold and Brent spot markets are positive 

and significant indicating that last variations are induced in the same direction. For the 
copper, spot returns estimated using the symmetric ARDL model, the coefficients �2 
and �2,i associated with the long and short run, are positive and significant indicating 
that a change in the futures market is induced in the same direction for the copper spot 
market. For the natural gas and wheat spot markets, the asymmetry is relevant only for 
the short run. Overall, our results show that the futures market contributes to price dis-
covery in the spot market. This implies that the process of price discovery is based on 
the transmission of new information from the futures prices to the spot prices through 
the transactions initiated by arbitrageurs who trade in different markets. This arbitrage 
activity and transaction costs characterizing the functions of commodity markets can be 
an explanation for the nonlinear relationship between the spot and futures returns.

Table 5 presents the estimation results of the best specifications (see Table 3) for the 
futures returns of the commodity markets of our sample (aluminum, gold, copper, Brent, 
natural gas and wheat). These regressions aim to test the predictive power of past infor-
mation from the spot market and past futures returns in explaining futures returns. If the 
coefficient of the past information from the spot market is significant, we conclude that 
there is a bidirectional relationship between the spot and futures commodity markets and 
market fundamentals play an important role in price discovery. From Table 5, we note that 
the Breusch–Godfrey test for serial correlation and the ARCH test for conditional hetero-
scedasticity with a lag of eight indicate that the selected models are correctly specified at 
a level of 5%. The results reported in Table 5 justify the use of the NARDL model, which 
considers the complexity of the relationship between both markets characterized by non-
linearity and asymmetry in the short and long run. Interestingly, all the selected models 
exhibit short-run asymmetry except for the model explaining aluminum and wheat futures 
returns. By comparing the parameter values of regressions estimating the spot returns 
(Table 4) and regressions estimating futures returns (Table 5) for gold, Brent and gas, we 
note that, in the short run, the parameter values are greater when the spot return is the 
dependent variable. This conclusion indicates that there is bidirectional feedback between 
both markets but the futures markets have a greater impact on the spot markets than the 
contrary. Similarly, for the wheat market, by comparing the relationship based on the sym-
metric long run, the relationship is also stronger when considering the impact of the futures 
index on the spot index.

Overall, our results show that futures returns lead to spot returns, which confirms the 
dominant contribution of the futures market toward price discovery in commodity markets. 
Our results are in line with the strand of literature supporting bidirectional causality (such 
as Bhatia et al. 2018; Dash et al. 2010) and contradicts the strand supporting unidirectional 
causality from the futures market to the spot market and otherwise (e.g., Jena et al. 2018; 
Joseph et al. 2014; Srinivasan, 2012). However, our findings complete this literature from 
at least two aspects. First, we propose an investigation of a large set of commodity markets. 
Second, our empirical framework offers insights to explain the previous mixed results; 
although our results support a bidirectional relationship, we show that the relationship is 
more pronounced from the futures markets to spot markets.
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Fig. 1  The CUSUM test. Cusum denotes the CUSUM test  results and 5% significance denotes the upper 
and lower range of significance based on 5%. The figures on the left and right show the CUSUM test results 
for the time series futures as explanatory variables and the CUSUM test results for the spot time series as 
explanatory variables, respectively
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Fig. 2  The CUSUMQ test. The cusum of squares denotes the CUSUMQ test  results and 5% significance 
denotes the upper and lower range of significance based on 5%. The figures on the left and right show the 
CUSUMQ test results for the time series futures as explanatory variables and the CUSUMQ test results for 
the spot time series as explanatory variables, respectively
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It seems that informed investors and speculators prefer trading in the futures market 
characterized by low costs and a high-leverage effect, which explains the lead of this mar-
ket in price discovery. Subsequently, the information is transmitted to the spot market 
and in equilibrium, both markets are rich through arbitrage activity. These results show 
that speculation is an important determinant of commodity prices rather than market 
fundamentals.

Figure 1 reports the results of the CUSUM test for the stability of the relations between 
the different spot and futures commodity markets over the long and short run. According 
to Fig. 1, the estimated specifications are moderately stable for all regressions except the 
model specification for the copper spot returns. For the latter, the CUSUM exceeds the area 
between the two critical bounds of 5% significance. Similarly, the CUSUMQ test reported 
in Fig. 2 considers the variance, allows for the detection of random movements rather than 
systematic changes and is a perfect complement to the CUSUM test (Brown et al. 1975). 
The CUSUMQ test is in favor of the stability parameters of the model specifications of the 
wheat futures, spot returns and gas futures returns. The above results can be explained by 
the fact that our sample period includes several turmoil periods characterized by high vola-
tility, such as the subprime crisis (2007–2009), the debt crisis (2010–2012) and the ongo-
ing COVID-19 crisis. These turbulent periods that caused abrupt changes can explain the 
instability of the parameters revealed by the CUSUMQ test.

4  Conclusion

This study aims to investigate the relationship between spot and futures markets for a 
sample of commodity markets, especially the metal markets (aluminum, gold and cop-
per), energy markets (Brent and natural gas) and agriculture markets (wheat). Consider-
ing the complexity of the interaction between both markets characterized by nonlinearity 
and asymmetry in the short and long run, we model this relationship on a NARDL frame-
work. Our results highlight bidirectional feedback between both markets, but the lead of 
the futures market on the spot returns is greater than the contrary. This confirms the leader-
ship of the futures commodity market in the process of price discovery. Changes in com-
modity prices appear first in futures markets and then the information is transmitted to spot 
markets through arbitrageurs’ trades. This result shows that speculation is an important 
determinant of commodity prices rather than market fundamentals. The arbitrageurs’ activ-
ity and transaction costs characterizing the functions of the commodity market explain the 
nonlinear relationship.

The results of our study are useful for several reasons. First, it informs regulators if the 
futures market plays an initial role in risk management or if it is dominated by speculative 
activity. Second, determining the leader market in which commodity prices change helps 
investors determine their investment and arbitrage strategy. Third, our results are helpful to 
scholars in the information efficiency field, as it helps them understand the process of price 
formation and transmission of information from one market to another.

We should note that in this study, we investigated the spot–futures relationship between 
various assets. It would be interesting for future research to draw some portfolio investment 
strategies that account for our findings using assets exhibiting only a short-run relationship 
and those exhibiting both short- and long-run relationships.
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