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Abstract
This paper introduces a new approach of multifactor asset pricing model estimation. This
approach assumes that the monthly returns of financial assets are fuzzy random variables
and estimates the multifactor asset pricing model as a fuzzy linear model. The fuzzy random
representations allows us to incorporate bias on prices induced by the market microstructure
noise and to reflect the intra-period activity in the analysis. The application of fuzzy linear
regression enables the uncertainty assessment in an alternative way to confidence interval
or hypothesis testing, which is subjected the binding assumption of normal distribution of
returns. However, it is well known that the distribution of many asset returns deviates sig-
nificantly from the normal assumption. We illustrate this estimation in the particular case of
the Fama and French’s (J Financ Econ 33:3–56, 1993) three factor model. Finally, empirical
studies based on Fama and French’s portfolios and risk factors, historical dataset highlight
the effectiveness of our estimation method and a comparative analysis with the ordinary least
square estimation shows its ability to be applied for an optimal decision decision making in
the financial market.

Keywords Fuzzy set · Monthly volatility · Asset pricing theory · Multifactor model · Fuzzy
linear regression · Weak-BLUE estimator

JEL Classfication G17

1 Introduction

Arbitrage pricing theory (APT) is a general theory of asset pricing in which the expected
return of a financial asset can be modeled as a linear function of various factors or market
indices. red The sensitivity in each factor is represented by a factor-specific beta coefficient.
This theory that can be used to price the asset correctly, differs from the Capital Asset Pricing
Model (CAPM) in that it is less restrictive in its assumptions. It allows for an explanatory
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(as opposed to statistical) model of asset returns. It assumes that each investor will hold a
unique portfolio with its own particular array of betas, as opposed to the identical “market
portfolio”. In some ways, the CAPM can be considered a “special case” of the APT in that
the securities market line represents a single-factor model of the asset price, where beta is
exposed to changes in value of the market. In this sense APT is more satisfactory than the
CAPM theory, which relies on both the mean-variance framework and a strong version of
equilibrium, which assumes that everyone uses the mean-variance framework. In the APT
context, arbitrage consists of trading in two assets with at least one being mispriced. The
arbitrageur sells the asset which is relatively too expensive and uses the proceeds to buy one
which is relatively too cheap.

Unlike the CAPM, the APT, however, does not reveal the identity of its priced factors - the
number and nature of these factors is likely to change over time and between economies. As
a result, this issue is essentially empirical in nature. As a practical matter, indices or spot or
futures market prices may be used in place of macro-economic factors, which are reported at
low frequency (e.g. monthly) and often with significant estimation errors. One deficiencies
of the APT is that it fails determine appropriate systematic risk factors.

The identification and estimation of systematic risks affecting assets returns are important
questions in financial economics. The approach initiated by Sharpe (1964), Lintner (1965)
andMossin (1966)with theCAPM, identifies themarket return as the only relevant systematic
risk affecting the asset returns. One of the main criticisms of the CAPM given in Fama and
French (1992) is that a singlemarket factor is insufficient to explain expected returns properly.
In order to overcome this limit, several multifactor models have been proposed.1 For more
information, the reader may consult Fama and French (1992) and Carhart (1997). In applied
econometrics, these models are generally estimated by the Ordinary Least Square (OLS)
methods using closing prices of financial asset for returns computation. This estimation
approach has been largely criticized over the past decades.

The closing prices of some financial assets used to compute their return are tainted by
microstructure noise2 caused by the imperfections of the trading process. This problem,
referred to as error in variables in applied econometrics, tends to lead to the inconsistency
of OLS estimation method for multifactor pricing models. Klepper and Leamer (1984) and
Leamer (1984), among others, provide evidence of inconsistency of OLS estimator in linear
regression with measurement errors in the regressors. Moreover, Cragg (1994) demonstrated
that the slope coefficients were biased towards zero and concluded that the measurement
error “produces a bias of the opposite sign on the intercept coefficient when the average
value of the explanatory variables is positive”. The problem of error in variable has been
treated in asset pricing by several authors such as Coën and Racicot (2007), Carmichael and
Coën (2008) and Coen and Hubner (2009) using different estimation methods.

The impact of the return interval on the systematic risk estimates is another important
estimation issue of multifactor models. This question is largely investigated in the literature.
Brailsford and Josev (1997), Hawawini (1983), Handa et al. (1989, 1993) report that different
beta estimates can be obtained over the same period by changing time step in the computation
of the return. Based on empirical fact, Handa et al. (1993) reject the CAPM when monthly
returns are used but accept it with yearly returns [whereas Fama (1981, 1990) show that

1 We can also cite Chen et al. (1986) that identifies the risk factors as various macroeconomics variables.
2 As noticed in Ait-Sahalia et al. (2011), these imperfections might be largely divided into three points. The
first represents the frictions inherent in the trading process: bid-ask bounces, discreteness of price changes and
rounding, trades occurring on different markets or networks, etc. The second point concerns informational
effects such as differences in trade sizes or informational content of price changes. The last point encompasses
measurement or data recording errors. Therefore, the returns based on these prices contain some imprecisions.
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the power of macroeconomic variables in explaining the stock prices increased with time
length]. However, the early work of Levhari and Levy (1977) provide evidence that the beta
estimates were biased if a shorter time horizon is used in the place of the relevant time
horizon. In conclusion, these authors suggest to use the relevant time horizon in the decision
making process in order to avoid biasing the beta estimate.

The assumption of linearity of the causal relationship of returns with a set of covariates
is usually referred to as risk factors formulated by seminal researchers (Markowitz, Sharpe,
Treynor, …) of quantitative finance, has been extensively discussed in the literature in recent
years. Bansal and Viswanathan (1993) for example, show that a non-linear Arbitrage Pricing
Model outperforms conditional and unconditional linear models, for pricing international
equities, bonds and forward currency contracts. We can also cite Chapman (1997) who
argues that non-linear pricing kernel in Conditional Capital Asset Pricing Model (CCPAM)
is superior over the standard CAPM.

In order to report effectively the relative change of the value of financial assets over a
whole period and to decrease the loss of information, it would be advisable to represent the
return as a function of all values observed in a thinner time discretization within the period.
Such representation may be obtained by the expectation of high frequency returns within
a period but we have to summarize all the information to the single first moment of the
probability distribution.

In addition, over the last two decades, the ability of humans to store data has passed
its ability to analyze them. In financial econometrics, the emergence of high frequency
trading provides time series of financial returns available at very fine timestep. However,
macroeconomic variables continued to be released at weekly or monthly frequency by public
institutions. When estimating a multifactor model with macroeconomic risk factors, econo-
metricians have to synchronize to macroeconomic variables frequency and consequently to
ignore some relevant financial high frequency information. The evolution of the financial
market ecosystem implies the emergence of new sources of risk that cannot be reflected by
the use ofweekly ormonthly time series inmarketmodel estimation. For example, the present
and unprecedent coronavirus pandemic crisis has shown that some events (the announcement
of a reserach results, treatment or a vaccine ; the appearance of new variants of the disease
…etc) can appear and significantly impact the financial markets within a week or months.
The market model estimation in COVID-19 context is treated in recent research works. We
can cite Diaz et al. (2021) and Liu (2020) among others. The modeling approach that we
propose in this article can also be applied in this context because it allows exploiting the
information available at high frequency and using monthly time series of macroeconomic
variables in the multifactor model estimation. Our representation of the monthly return as a
fuzzy random variable reflects the intraperiod market uncertainty.

In this paper, we propose to describe the relative variation of a financial asset through a
fuzzy randomvariable in such away that itsmeanvalue captures different relevant information
on the probability distribution of the returns observed in intraperiod. The fuzzy representation
of the return of a financial asset has been carried out in the literature by many authors. Bilbao
et al. (2006) and Smimou et al. (2009) used fuzzy returns to handle expert’s judgments
whereas Sadefo et al. (2012) and Moussa et al. (2014b) reflected the imprecision of observed
returns by the fuzziness. We can also mention Tanaka and Guo (1999), Parra et al. (2001),
Terol et al. (2006), Vercher et al. (2007), Yoshida (2009) and Moussa et al. (2014a), among
others. The theory of fuzzy sets has also been applied to other decision-making problems
in Economics in order the treat the effects of imprecision and vagueness on each judgment
in the decision-making process. For example, we can cite the application of fuzzy random
regression by Nureize et al. (2014) for production forecasting. More recently, there are the
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works of Dzuche et al. (2021) in Decision Theory and Shiang-Tai and Yueh-Chiang (2021)
in Data Analysis. Our approach is distinguished by the use of the intra-month volatility to
represent the fuzziness. The final purpose of this paper is to improve the quality of statistical
estimation (stability and robustness) of the Arbitrage Pricing Theory (APT), more precisely
the multifactor model, by using these fuzzy returns.

Zeng and Keane (2005) have initiated a similar approach by estimating a linear best cov-
ering fuzzy function. However, this possibilistic modeling method which can be considered
as a precursor of the fuzzy linear regression has potential limitations. The estimation strongly
depends on learning dataset (Bardossy 1990; Bardossy et al. 1990), and the issue of fore-
casting has to be addressed (Savic and Pedrycz 1991). The model is extremely sensitive to
outliers and it may tend to become multicolinear as more independent variables are collected
(Kim et al. 1996).

The remainder of this paper is organized as follows. The Sects. 2 and 4 are successively
devoted to abrief reviewof the basics concepts of fuzzy set theory and to the presentationof the
Arbitrage Pricing Theory (APT). Section 3 introduces the process of the fuzzy representation
of an asset return. The Sect. 5 is assigned to the presentation of fuzzy multifactor model.
Section 6 gives several numerical examples based on Fama and French’s dataset. A discussion
is made in Sect. 7 and some conclusions are finally listed in Sect. 8.

2 Preliminaries

Before proceeding to a formal presentation of fuzzymultifactor model, we first review briefly
three of the basics concepts of fuzzy set theory: fuzzy sets, fuzzy numbers and fuzzy random
variable. For a more detailed presentation of fuzzy set theory, see Zimmermann (2001).

2.1 Fuzzy sets and fuzzy numbers

Let X be a crisp set. A fuzzy subset A of X is defined by its membership function μA : X →
[0, 1] which associates each element x of X with its membership degree μA(x) (Zadeh
1965). The degree of membership of an element x to a fuzzy set A is equal to 0 (respectively
1) if we want to express with certainty that x does not belong (respectively belongs) to A.

The crisp set of elements that belong to the fuzzy set A at least to the degree α is called
the α-cut or α-level set and defined by:

Aα = {x ∈ X |μA(x) ≥ α}. (1)

A0 is the closure3 of the support of A. Recall from Shapiro (2009) that the support of A is
the set of all x such that μA(x) > 0.

Fuzzy numbers have some properties, examples of which are the notions of “around ten
percent” and “close to zero”. Dubois and Prade (1980, p. 26) characterizes the fuzzy numbers
as follows:

Definition 2.1 A fuzzy subset A of R with membership μA : R → [0, 1] is called fuzzy
number if

1. A is normal, i.e. ∃ x0 ∈ R : μA(x0) = 1;
2. A is fuzzy convex, i.e.

∀ x1, x2 ∈ R : μA(λx1 + (1 − λ)x2) ≥ min{μA(x1), μA(x2)}, ∀λ ∈ [0, 1];
3 The closure of the support of A is the smallest closed interval containing the support of A (Shapiro (2009))
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3. μA is upper semi continuous4;
4. supp(A) is bounded.

Definition 2.2 (Zimmermann (1996, p. 64))ALR-fuzzy number, denoted by Ã = 〈l, c, r〉LR ,
where c ∈ R

+ is called central value, and l ∈ R
∗+ and r ∈ R

∗+ is the left and the right spread,
respectively, is characterized by a membership function of the form

μA(x) =

⎧
⎪⎨

⎪⎩

L
( c−x

l

)
if c − l ≤ x ≤ c,

R
( x−c

r

)
if r + c ≥ x ≥ c,

0 else where .

(2)

L : R+ → [0, 1], R : R+ → [0, 1] are fixed left-continuous and non-increasing functions
with R(0) = L(0) = 1 and R(1) = L(1) = 0. L and R are called the left and the right shape
functions respectively. If right and left spreads are equal and L := R, the LR-fuzzy number
is said to be a symmetric fuzzy number and denoted Ã = (c,�). � is the spread equal to
l = r .

Without loss of generality, we limit the present study to triangular fuzzy 5 characterized by
the shape functions R(x) := L(x) := max{1 − x, 0}.

Using Zadeh’s extension principle (Zadeh 1965), which is a rule providing a general
method to extend a function f : Rk → R to the set of fuzzy numbers, we can define binary
operator such as addition, subtraction, multiplication for two fuzzy numbers. When k = 2,
this method defines the membership function of the result as follows

μ Ã1◦ Ã2
(z) = sup

(x1, x2)∈ Ã1× Ã2

{min
(
μ Ã1

(x1), μ Ã2
(x2)

)
| x1 ◦ x2 = z}, (3)

where ◦ is the binary operator.

2.2 Fuzzy random variables

Different approaches of the concept of fuzzy random variables (FRV) have been developed
in the literature since the 70’s. The most often cited being introduced by Kwakernaak (1978)
and enhanced by Kruse and Meyer (1987), and the one by Puri and Ralescu (1985, 1986).
An extensive discussion on these two approaches is given by Shapiro (2009). For the purpose
of this study, we adopt the concept of FRVs of Puri and Ralescu (1986).

We first recall the following definitions:

Definition 2.3 (Körner 1997) A fuzzy set Ã is called a normal convex fuzzy subset of R if
Ã is normal, the α-cuts of Ã are convex and compact and the support of Ã is compact.

Definition 2.4 (Gil et al. 2006)Aconvex compact randomset is aBorel-measurablemappings
with the Borel σ -field generated by the topology associated with the Hausdorff metric on
Fc (R).

4 Semi-continuity is a weak form of continuity. Intuitively, a function f is called upper semi-continuous at
point x0 if the function’s values for arguments near x0 are either close to f (x0) or less than f (x0)
5 This assumption is also made in many articles such as Koissi and Shapiro (2006), Andrés-Sànchez (2007)
and BerryStölzle et al. (2010), among others.
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Let Fc(R) denote the set of all normal convex fuzzy subsets of R and (�,A, P)6 a
probability space.

Recall that if f̃ : ω → F (R) is a fuzzy set-valued function then f̃α is a set-valued function
for all α ∈ [0, 1] , where f̃α(ω) = {x ∈ R| f̃α(ω)(x) ≥ α}. The fuzzy set-valued function f̃
is said measurable7 if and only if f̃α is (set-valued) measurable for all α ∈ [0, 1].

Kwakernaak (1978) have introduced a FRV by

Definition 2.5 The fuzzy valued function X : � → F(R) is called a fuzzy random variable
if X is measurable.

Puri and Ralescu (1986) have defined a FRV as follows

Definition 2.6 The mapping X : � → Fc(R) is said to be a FRV on R if for any α ∈ [0, 1],
the α-cut is a convex compact random set.

3 Fuzzy representation of returns

Fuzzy random variables (FRV) were introduced and defined by Kwakarnaak (1978), Puri
and Ralescu (1986) as a well-formalized model for fuzzy set-valued random elements. Since
these definitions, numerous studies in probability theory have been developed to analyze
the properties of this new class of random variables (cf. Gil et al. 2006 for an overview).
For the last three decades, there has been numerous work in this area, we refer the reader
to Puri and Ralescu (1985, 1986), Klement et al. (1986) and Colubi et al. (2002) for work
related to the formalization of the measurability. As for the work realted to laws of large
numbers which strengthen the suitability of the fuzzy mean, the reader may consult Colubi
et al. (1999) Molchanov (1999) and Proske and Puri (2002) (Pas de trace de cet article en
reference). The authors inKörner (2000),Montenegro et al. (2004),González-Rodríguez et al.
(2006), Ramos-Guajardo et al. (2010) develop the hypothesis testing. Despite the existence of
this complete mathematical analysis framework, the application of these theoretical results
is still quite limited because of the difficulties that we have met to observe and measure
FRVs in practice. Hence the necessity of building methods to provide fuzzy representation
of observations, which are often crisp. A solution was proposed by González-Rodríguez
et al. (2006) who introduced a family of fuzzy representation of random variables. Each
of the representations transforms a crisp random variable into a fuzzy random variables
whose means capture different relevant information on the probabilistic distribution of the
original real-valued randomvariable. However the application of thismethod requires a priori
assumptions about the distribution of the real variable and the shape of the membership
function of the fuzzy random variable. This double assumption may lead to a significant bias
of information. There also exists other seminal ways to characterize fuzziness of a fuzzy
variable crisply observed. Their review is given in Dubois and Prade (1980, pp. 255–264).
This characterization generally consists in the estimation of the membership function. As
pointed out by Ross (1995, pp. 179–180), the assignment of the membership function can
be intuitive or based on algorithms or logical operations. An example of such membership
function assignment for a financial risk factor is given by Smimou et al. (2008) in order
to incorporate the experts’ judgments in the financial returns measure. In addition, Koissi

6 Where � is the set of all possible outcomes described by the probability space, A is σ -fields of subsets of
�, and the function P defined onA is a probability measure.
7 The function f from (�1,F1) to (�2,F2) is said to be measurable if and only if f −1(F) ∈ F1 ∀ F ∈ F2
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and Shapiro (2006, p.291)8 specified that a crisp data can be fuzzified by adding a number
±� to each value, where � is chosen small compared to the center value. Following these
two studies, we make a fuzzy representation of financial returns in the aim at combining
two sources of information. We associate the closing prices based return usually used in the
analysis, to a statistic summary of information observed in intraperiod at a higher frequency.
For this purpose, we add positive numbers to the observed returns. For each time period
[t, t + 1[, the number � is chosen as the scaled volatility observed within this period. The
central value of the obtained fuzzy return is the closing prices based return and its spread
is the scaled volatility. The intraperiod volatility scaling is necessary in order to standardize
orders of magnitude of the central value and the spread of the fuzzy return. We proceed as
follows:

The asset price time series is initially partitioned into sub-groups according to periods
(months in our case). On each period, successive observed returns are calculated and the
corresponding empirical probabilistic distribution are taken into consideration. The first two
moments (expected value and variance) are computed for each probabilistic distribution (i.e.
month). Themonthly return is then represented as a symmetric LR-fuzzy number with central
value the mean and the spread is the standard deviation. In this paper, we use a triangular
shape function for the fuzzy returns. Recall that this assumption is also made in many articles
such as Koissi and Shapiro (2006), Andrés-Sànchez (2007) and BerryStölzle et al. (2010),
among others.

The fuzzy representation process can be summarized as in the following procedure.
We denote by t the sub-period [t, t + 1].

Procedure 3.1 .

Step 1: Partition the price time series in sub-groups Pt = {Pt+ i
n
, i = 0, . . . , n.} with

size n + 1 each one corresponding to a period t.The sample size (n + 1) ≥ 2 has to be
sufficiently large.9

For each period t
Step 2: Compute the return over the period Rt = Pt+1−Pt

Pt

Step 3: Compute the returns within the period Rt,i = P
t+ i+1

n
−P

t+ i
n

P
t+ i

n

, i ∈ {0, . . . , n − 1}
Step 4: Estimate empirically the variance σ̂ 2

t of Rt,i as

σ̂ 2
t = 1

n

n−1∑

i=0

(
Rt,i − μ̂t

)2 (4)

where

μ̂t = 1

n

n−1∑

i=0

Rt,i (5)

Step 5: Scale the intraperiod volatility by �t = √
nσ̂t

Step 6: Fit the membership function of the symmetric LR-fuzzy return with central value
Rt and spread �t

8 Koissi and Shapiro (2006) also precise that the choice�might be arbitrary (Chang and Ayyub (2001,p.192),
randomly generated (Diamond (1988, p.152) or resulting from fuzzy regression Chang and Ayyub (2001).
9 In this study, we use daily closing prices time series which are partitioned into monthly periods, hence
n = 20.
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In the previous procedure, the use of the intra-period standard deviation as volatility to
express imprecision can be econometrically explained. Standard deviation by definition is a
statistical indicator often used to define the range of possible values of a random variable.
Moreover, within the framework of financial econometrics dealing with returns tainted with
imprecision, Ait-Sahalia et al. (2010) justify the use of intraday volatility in order to reflect the
imprecision on returns based on closing prices. It is important to remark that the covariance
does not appear in the procedure because in a first stage we aim at dealing the precision of
each asset independently.

Finally, we have the following statement:

Proposition 1 If returns successively observed are assumed to real random variables, the
symmetric LR-fuzzy set constructed as in the Procedure 3.1 is a fuzzy random variable in the
Kwakaarnak sense.

Proof Let R̃i = 〈Ri ,�i 〉 constructed as in the procedure 3.1. Recall that Ri = Pi
n−Pi

1
Pi
1

and

�i = √
n − 1σ̂i .

The α-cuts of the fuzzy return are denoted R̃iα = [Rd
iα, Ru

iα] ∀α ∈ (0, 1].
R̃d
iα = μi − �i L

−1(α), Ru
iα = μi + �i L

−1(α) ∀α ∈ (0, 1] (6)

and

Rd
i0 = μi − �i , Ru

iα = μi + �i (7)

Remark that L−1 exists because L is a continuous decreasing (cf. Definition 2.2 ) function
hence it is a bijection.

Since Ri and
√
n − 1σ̂i are random variables, relations (6) and (7) define α-cuts endpoints

as random variables ∀α ∈ [0, 1]. Therefore, as a consequence of the Proposition 1, R̃i is a
fuzzy random variable. 
�

4 Arbitrage pricing theory

Even if the Capital Asset Pricing Model (CAPM) (Lintner 1965; Sharpe 1964) proposed the
first quantification of the tradeoff between risk and expected return, a number of studies have
presented evidence rejecting its validity. These limitations can be explained by the numerous
specific assumptions of the model on investors’ beliefs. In order to overcome the CAPM’s
weakness, Ross (1976) and Roll and Ross (1980) proposed the Arbitrage Pricing Theory
(APT) which starts with specific assumptions on the distribution of asset returns and relies
on approximate arbitrage arguments.

The basic assumption of the APT is that returns of an asset i are generated by a linear
factor model called the multifactor model and defined as

Rit = αi +
m∑

k=1

βki Fkt + εi t , i = 1, . . . , n, ∀ t, (8)

where αi is the expected value of the asset i returns Ri , βki are the sensitivities of Ri to
m common factors Fk which are generally with zero mean andεi t is a white noise. That is
equivalent to

Var(εi t ) = σ 2
εi
, ∀ t,
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E(Fkt ) = E(εi t ) = 0, ∀ i = 1, . . . , n; ∀ k,

Cov(εi , Fk) = 0,∀ i = 1, . . . , n, ∀ k = 1, . . . ,m,

Cov(εi , ε j ) = 0, ∀i �= j,

Cov(εi t , ε j t ′ ) = 0, ∀i �= j, ∀t �= t
′
.

In order to simplify the analysis, common factors are assumed uncorrelated.
Under the assumption of mutual independence of common factors, the variance of the

return of asset i can be decomposed as in (9)

σ 2
i = σ 2

εi
+

m∑

k=1

β2
kiσ

2
Fk (9)

and the covariance between returns of assets i and j is

σ 2
i j =

m∑

k=1

βkiβk jσ
2
Fk ∀ i, ∀ i �= j . (10)

Recall that the particular corresponding to m = 1 is the Sharpe’s market line if the factor F1
represents the market portfolio.

In practice, three types of factor models are available for studying asset returns.

• The statistical and econometric approach initiated byRoll andRoss (1980) based on factor
analysis and principal component analysis; this approach treats the common factors as
latent or unobservable variables which explain a great proportion of the variance of
returns time series.

• The second approach uses macroeconomic variables such as growth rate of GDP, interest
rates, inflation rates, unemployment rate? to describe the common behavior of asset
returns (Cf. Chen et al. 1986).

• The third approach is the fundamental factor models that use firm or asset specific
attributes such as firm size, book and market values, and industrial classification to
construct common factors (Fama and French 1992; Grinold and Khan 2000).

The introduction of APT has permitted to overcome some limitations of the CAPM but the
difficulties of its statistical estimation still remain. These difficulties which reduce the scope
of this model, can be summarized to the following points:

1. The multifactor model is statistically estimated using a learning dataset formed by past
observations of returns and of common factors. The estimated betas do not inform about
the actual asset returns sensitivity to common factors when the training sample contains
old information. For this reason, it is tempting to estimate the beta using recent informa-
tion, often more relevant. However, such an initiative creates another problem because
the limited size of training sample gives significant weight to each observation.

2. The subsequentmodel checking reveals generally an autocorrelation, a heteroscedasticity
or a non-normality of errors. That implies the invalidity of statistical hypothesis testing
and the estimation of uncertainty given by the confidence intervals.

In the next section, we propose to revisit the statistical estimation of the APT assuming
that returns are fuzzy-set valued. This modeling approach aims at using the representation
of the return over a period, containing more information of the variability within this period
instead of the single closing prices based return.
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5 Fuzzymultifactor model

In this section, using the fuzzy representation of the return of Sect. 3, we introduce the fuzzy
multifactor model. This model defines as fuzzy linear regression model, expresses the asset
sensitivities to the risk factors as fuzzy numbers. The section describes this fuzzy multifactor
model and presents a method for its statistical estimation.

5.1 Model’s description

The fuzzy multifactor model is presented as follows:

R̃i t = α̃i +
m∑

k=1

β̃ik Fkt + ε̃i t , k = 1, . . . ,m; ∀ t, (11)

where Fk are n common factors to all assets of the market and the error term ε̃i t = (εRit , ε
�
i t )

is a bivariate random vector independent and identically distributed with zero mean and
constant variance-covariance matrix. That is equivalent to

E(ε̃i t ) =
(
0
0

)

, ∀ t, ∀ i,

E(ε̃i t ε̃
t
i t ) =

(
σ 2
R 0
0 σ 2

�

)

, ∀ t, ∀ i,

E(ε̃i t ε̃
t
is) =

(
0 0
0 0

)

, ∀ t �= s, ∀ i,

where Var(εRit ) = σ 2
R and Var(ε�

i t ) = σ 2
�.

5.2 Model estimation

In order to give a possible continuation to our study, we propose to use an estimator which
has certain properties such as linearity, unbiasedness and minimum variance. The property
of linearity will potentially allow determining the probability distribution of the estimator
and hence construct hypothesis tests. The unbiasedness ensures that the deviation of the
parameter estimate from the true value is zero on average and minimality of variance attests
the best accuracy of the estimate.

The random spreads and central values of the fuzzy returns are assumed to homoscedastic,
non-autocorrelated, i.e. their variance-covariance matrix are 
R = σR IT et 
� = σ� IT
respectively with σR = √

Var(Ri ), σ� = √
Var(�i ) and IT unit matrix of size T . The

weak-BLUE10 estimator obtained by minimizing the error variance subject to linearity and
unbiasedness (Näther 2006; for more details) is given by

10 The term Weak-BLUE is used by Näther (1997) to specify that only the estimator of central values of
parameters is the BLUE (best linear unbiased estimator)
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Theorem 1 (Näther 2001) If the matrix FtF is regular, the weak-BLUE of parameters of the
model 11 is

⎛

⎜
⎜
⎝

α̃∗
i

β̃∗
i1

β̃∗
i2

β̃∗
i3

⎞

⎟
⎟
⎠ = (FtF)−1Ft R̃i , (12)

where F =

⎛

⎜
⎜
⎜
⎜
⎝

1 F11 F21 F31
. . . .

. . . .

. . . .

1 F1T F2T F3T

⎞

⎟
⎟
⎟
⎟
⎠

and R̃i = (
R̃i1, . . . , R̃iT

)
with Ft the transposed of F.

6 Empirical studies

In this section, we derive and compare the asset pricing according to the crisp and the fuzzy
multifactor model. We focus on the model of Fama and French (1993) using three common
factors to the risky assets of the market. The first part describes the data set used in this
empirical analysis. The second part presents the multifactor model of Fama and French
(1993). The third part compares systematic risks estimated with the crisp and the fuzzy
approaches.

6.1 The three factor model of Fama and French (1993)

Fama and French (1993) proposed a three-factor model to capture the expected risk premium
anomalies. This model states that the risk premium of a risky portfolio is linearly explained
by three factors: the excess return of the market portfolio, the difference between the return
on a portfolio covering small-size stocks and the return on a portfolio covering large-size
stocks, SMB (small minus big); and the difference between the return on a portfolio of high-
book-to-markets stocks and the return on a portfolio of low-book-to-market stocks, HML
(high minus low). This relationship is expressed in this following linear regression model

Rp,t − r f ,t = ap + bp
(
Rp,t − r f ,t

) + spSMBt + h pHMLt + εp,t , (13)

where
(
Rp,t − r f ,t

)
and

(
Rm,t − r f ,t

)
are respectively the risk premiums of the portfolio p

and the market m at time t ; SMBt and HMLt are the other two common factors previously
described at time t ; εp,t is a error term assumed to be zero mean and uncorrelated with all
other variables. The slope coefficients bp , sp and h p in this time series regression are the
sensitivities of the portfolio p to the common risk factors.

As the particular case of the fuzzy multifactor presented in Sect. 5, we introduce the fuzzy
three factor model of Fama and French (1993). The portfolio’s risk premium at time t is
assumed to be a fuzzy number r̃ p,t . Consequently, the fuzzy three factor model is rewritten
as follows

R̃p,t − r f ,t = ãp + b̃p
(
R̃m,t − r f ,t

)
+ s̃ p SMBt + h̃ pHMLt + ε̃p,t . (14)

ε̃p,t is the fuzzy error term verifying the conditions presented in 12.
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The slope coefficients b̃p , s̃ p and h̃ p in the fuzzy linear regressionmodel (14) are the fuzzy
sensitivities of the portfolio p to the common risk factors. These parameters are estimated
using the method presented in Sect. 5.

6.2 The used data set

For the empirical analysis, we use the dataset of 25 portfolios and the three risk factors
formed by Fama and French and available on their web site.11 This database contains equal-
weighted returns for the intersections of 5 size markets equity (ME) and 5 book-to-market
equity (BE/ME)portfolios. These twoauthors provide on theirwebsite historical researchdata
on the risk factors used in the different approaches of their model. These constantly updated
and archived research dataset constitute a benchmark for empirical analysis of researchers
like us who focus on Multifactor Asset Pricing.

We use the daily time series of the portfolios real returns in order to construct the monthly
fuzzy returns following the fuzzification methods presented in Sect. 3. The time series of the
three commons factors are directly given in monthly time step.

The portfolios composition and statistic summaries of the monthly returns (in percentage)
are given in Table 1. The spreads of the average fuzzy returns are also presented in the table.
Recall that the central values of these average fuzzy returns coincide exactly with the closing
prices based returns. The average returns of portfolios are positive and homogeneous (in the
range 0.4-1.47). This homogeneity is also observed with standard deviations. These standard
deviations are very close to the average spreads.

6.3 Analysis of systematic risks estimation

The estimates of the real and fuzzy sensitivities to the risk factors are presented respectively
in Tables 3 and 4. These tables report the estimates and the Student’s t-statistic test of the
nullity for the crisp sensitivities. In the fuzzy case, the central values and the spreads of the
sensitivities and their ratios are exposed.

Table 3 is devoted to the results of the crisp sensitivities. For each risk factor, the estimates
and the Student’s t-statistic are exposed. The estimates of the sensitivities are homogeneous
for all portfolios except for the first sensitivity (ap) of Portfolio 1 . The box plot of bp depicted
in Fig. 1 enhances this outlier. This outlier is excluded from the rest of the analysis.

Table of results 4 is devoted to fuzzy sensitivities. Their central values coincide exactly
with the crisp sensitivity previously described. The supports of the fuzzy sensitivities are
expressed as the closed intervals around the central values whose radius are the spreads.
These supports are presented in Fig. 2. The lengths of these intervals express the variability
and uncertainty related to common risk factors and inform about the significance of the
sensitivities. We observe that the spreads of the portfolios fuzzy sensitivities to the first risk
factor (the market risk premium) is higher than the spreads of the other two.

In order to compare the two approaches of the three multifactor model estimation, we
compare the expressions of uncertainty. In the MCO approach, the uncertainty of estimation
is expressed via the Student test of sensitivities nullity. The Student’s t-statistic is a ratio
between the estimate and its standard deviation; hence it is a relative quantity. It reflects the
significance of the sensitivity estimated. Since the spreads of the fuzzy sensitivity expresses
its uncertainty, we define in a similar way, a measure equivalent to the Student’s t-statistic

11 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 1 Compositions and statistic summaries of 25 portfolios monthly returns

Portfolio ME BE/ME Mean returns SD Mean spreads

Portfolio 1 1 1 0.5776 7.7722 7.2523

Portfolio 2 1 2 0.9269 7.4198 6.9187

Portfolio 3 1 3 1.0554 6.8617 7.0003

Portfolio 4 1 4 0.8700 6.3803 6.9876

Portfolio 5 1 5 1.1798 7.4204 6.9344

Portfolio 6 2 1 1.2022 7.2672 6.8909

Portfolio 7 2 2 1.1500 7.1413 7.0156

Portfolio 8 2 3 1.2943 7.4952 7.3721

Portfolio 9 2 4 0.8358 7.5218 7.3132

Portfolio 10 2 5 1.2576 9.2266 8.5299

Portfolio 11 3 1 1.0175 7.0660 6.6778

Portfolio 12 3 2 1.2198 7.2191 6.3020

Portfolio 13 3 3 1.1412 6.9739 6.6027

Portfolio 14 3 4 1.0019 7.2513 6.7498

Portfolio 15 3 5 1.4684 7.9945 7.1975

Portfolio 16 4 1 1.0937 6.2958 5.9858

Portfolio 17 4 2 0.7563 6.7787 6.1814

Portfolio 18 4 3 0.6902 7.4908 6.7810

Portfolio 19 4 4 0.7808 6.9451 6.6237

Portfolio 20 4 5 0.9308 8.5933 7.2640

Portfolio 21 5 1 0.6477 5.6889 5.0309

Portfolio 22 5 2 0.7350 5.8926 5.4653

Portfolio 23 5 3 0.5091 6.3580 6.1498

Portfolio 24 5 4 0.3861 6.6527 6.4670

Portfolio 25 5 5 0.8941 7.0508 7.6568

Factor 1 (b) Factor 2 (h) Factor 3 (s)

0
5

10
15

Se
ns

iti
vi

tie
s

Fig. 1 Box plots of portfolios sensitivities to the three common risk factors
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Table 2 Correlations between the fuzzy and crisp uncertainty measures

Factor Factor 1 (b) Factor 2 (s) Factor 3 (h)

Corr. Coef. Spreads and t-statistics − 0.6763 0.4219 − 0.5765

Corr. Coef. Ratios and t-statistics 0.5734 0.2675 0.4558

which assesses the relevance of the corresponding risk factor in explaining the portfolio
return. This measure is introduced as a ratio between the central value and the spread of the
fuzzy sensitivities. The obtained results are presented in Columns 4, 7 and 10 of Table 4. The
correlation coefficients between these two measures are presented in Table 2. Portfolios 1
above is presented as an outlier, is excluded from this calculation. The correlation coefficients
between the spreads and t-statistics are higher than those between ratios and t-statistics for
the three risk factors. Factor 1 (market risk premium) presents the highest values in the two
case whereas Factor 2 has the lowest values. The correlation coefficients related to Factor 1
are absolutely superior to 0.57. The two expression of the uncertainty generated by Factor 1
are significantly correlated. In the case of Factor 3 (“high minus low” factor), this correlation
exists in a lower proportion. This correlation is not valid for Factor 2.

We shall first recall the characteristics of the common risk factors. Factor 1 (market risk
premium ) and Factor 3 (difference between the return on a portfolio of high-book-to-markets
stocks and the return on a portfolio of low-book-to-market stocks) are directly constructed
from observed dataset whereas Factor 2 (“small minus big” factor) comes from companies
and firms classification. Hence, the correlation between the crisp and fuzzy approaches only
exists with Factors defined from observed dataset. This result is one of the main empirical
finding of our study.

7 Discussions

The empirical analysis carried out in the previous section, allowed us to make a comparative
study of the evaluation of uncertainty by fuzzy linear regression and that performed in a
more traditional way by testing for the nullity of parameters in a regression model. This
analysis is made in the framework of Arbitrage Pricing Theory. We observed that there are
concordance and consistency between the two modeling approaches. Indeed, a significant
correlation is measured between the Student test statistic and the width of the spreads of the
fuzzy parameters.

It should be remembered that our fuzzy set theory modeling approach for revisiting the
APT is motivated by the three following reasons:

• associating intra-period information to the unique closing prices-based returns for more
robustness.

• reflecting the imprecision and vagueness generated by market microstructure noises on
the returns measurement and then Asset Pricing Model.

• evaluating the significance of the parameters (sensitivity of portfolios to factors) without
being subjected to the residual normality assumption which is essential for the validity
of the Student test. Let us remember that this assumption is rarely verified on financial
returns.

The first point was addressed using intra-period volatility as a measure of uncertainty as
justified by some empirical findings such as Ait-Sahalia et al. (2011). The second point is
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dealt with by using a fuzzy random variable to represent the precision and vagueness of
profitability. Finally, for the third point, the fuzzy linear regression has been implemented
thus allowing the evaluation of the parameters significance through the spreads of the fuzzy
sets without having to worry about the normality of the model residuals.

From an Economic institution and point of view, the fuzzy APT that we propose can be
seen as an extension of its classic version under Knightian uncertainty. Recall that Knightian
uncertainty applies to situations where we cannot observe precisely random risk factors in
order to measure accurate odds. In these situations, uncertainty has two sources: randomness
and imprecision (vagueness). This asset pricing under Knightian uncertainty can be extended
to performance evaluation or portfolio allocation in a future studies.

8 Conclusion

In view of completing the information given by the monthly returns computed from the
closing prices and to decrease the loss of information caused by the edge discretization in
time, we proposed in this paper to associate the closing prices based return with the monthly
volatility for a representation through a fuzzy set. The monthly volatility is computed using
intra-month returns observed at a daily frequency. These fuzzy returns are used to reformulate
the Fama and French (1993) as fuzzy linear regression model. The portfolios sensitivities to
the three risk factors are then defined as fuzzy number. Finally, in an empirical study based
on Fama and French dataset, we highlighted that the uncertainty expressed by the spreads of
the fuzzy sensitivities are correlated with the significance of their real versions, especially
for the sensitivities related to the market risk premium and the “high minus low” factor.
The proposed fuzzy sensitivities allow associating information at different frequency for the
decision making.

Acknowledgements The authors are grateful to the referee for his relevant and valuable comments.
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See Fig. 2 and Tables 3, 4.
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Fig. 2 Supports of the fuzzy sensitivities for Portfolios 2-25
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Table 3 Estimates of portfolio’s sensitivities to the risk factors

Portfolio bp sp h p

Estimate T-Stat Estimate T-Stat Estimate T-Stat

Portfolio 1 13.0165 3.8190 − 18.4049 0.5393 − 5.9268 4.8516

Portfolio 2 1.1952 24.0268 0.9168 3.3795 − 0.2709 378.8211

Portfolio 3 1.1422 23.0497 0.8439 2.2179 − 0.2076 389.4348

Portfolio 4 1.0389 26.5668 0.7114 0.3592 0.0688 514.4615

Portfolio 5 0.9433 37.4104 0.6641 5.4441 0.2172 690.5202

Portfolio 6 0.9730 8.5679 0.5288 10.9735 0.5624 238.2237

Portfolio 7 1.1404 93.3360 1.0304 11.7278 − 0.2884 1096.2263

Portfolio 8 1.0657 99.8684 1.0283 0.3674 − 0.0508 1065.7125

Portfolio 9 1.0488 121.2391 1.0910 7.3003 0.2259 1171.1354

Portfolio 10 1.0681 86.3804 0.8520 29.6044 0.4381 1301.7810

Portfolio 11 1.1644 60.2912 0.9057 90.1989 1.0534 959.0198

Portfolio 12 1.2001 40.2850 0.6954 13.6358 − 0.3118 1072.3398

Portfolio 13 1.1205 54.4019 0.8236 0.0144 0.0110 930.6483

Portfolio 14 1.1041 53.6230 0.6854 1.2664 0.0879 1232.1262

Portfolio 15 1.1480 19.9939 0.4591 11.0846 0.3060 960.7525

Portfolio 16 1.0665 42.2033 0.7720 42.9580 0.7206 746.3746

Portfolio 17 1.1047 22.9802 0.5195 20.2646 − 0.3624 932.2234

Portfolio 18 1.1732 20.3857 0.4581 2.6860 − 0.1311 1132.3208

Portfolio 19 1.2830 5.5189 0.3252 0.0028 − 0.0060 671.1790

Portfolio 20 1.1314 7.7592 0.2966 7.3589 0.2661 771.6076

Portfolio 21 1.2122 1.8330 0.1403 32.6437 0.9200 382.8939

Portfolio 22 1.0922 0.3284 0.0821 23.5553 − 0.2935 1419.5753

Portfolio 23 1.0918 0.0663 0.0269 0.5061 − 0.0467 1304.6553

Portfolio 24 1.1876 1.3574 − 0.1134 0.0319 − 0.0145 974.3040

Portfolio 25 1.17256 2.3138 − 0.2034 14.5699 0.3273 942.4382
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