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Abstract 

 

Multiobjective optimization approaches have allowed the improvement of technical features 

in industrial processes, focusing on more accurate approaches for solving complex 

engineering problems and support decision-making. This paper proposes a hybrid approach 

to optimize the 3D printing technology parameters, integrating the design of experiments and 

multiobjective optimization methods, as an alternative to classical parametrization design 

used in machining processes. Alongside the approach, a multiobjective differential evolution 

with uniform spherical pruning (usp-MODE) algorithm is proposed to serve as an 

optimization tool. The parametrization design problem considered in this research has the 

following three objectives: to minimize both surface roughness and dimensional accuracy 

while maximizing the mechanical resistance of the prototype. A benchmark with non-

dominated sorting genetic algorithm II (NSGA-II) and with the classical sp-MODE is used 

to evaluate the performance of the proposed algorithm. With the increasing complexity of 

engineering problems and advances in 3D printing technology, this study demonstrates the 

applicability of the proposed hybrid approach, finding optimal combinations for the 

machining process among conflicting objectives regardless of the number of decision 

variables and goals involved. To measure the performance and to compare the results of 

metaheuristics used in this study, three Pareto comparison metrics have been utilized to 
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evaluate both the convergence and diversity of the obtained Pareto approximations for each 

algorithm: hyper-volume (H), g-Indicator (G), and inverted generational distance (IGD). To 

all of them, ups-MODE outperformed, with significant figures, the results reached by NSGA-

II and sp-MODE algorithms. 

Keywords: Multiobjective optimization; Multiobjective differential evolution with spherical pruning; 

Design of experiment; Machining process. 

1. INTRODUCTION 

The product development conception during the manufacturing systems needs optimal 

experiment design techniques which can help to systematically develop experiments by 

incorporating important information to estimate parameters with higher accuracy. Normally, 

to optimize parameters related to additive manufacturing, the design of experiments methods 

has been used. However, when problems become complex and several objectives are taken, 

the optimization method allows obtaining faster and trustworthy solutions. The solution to a 

multiobjective optimization problem is normally not unique since the best solution for all 

objectives does not exist. There is a set of good solutions referred to as non-dominated 

solutions (none is better for all objectives) that define the Pareto set and the Pareto front 

(objective values for the Pareto set solutions) (Sanchis et al., 2010). Therefore, it is important 

to combine analytical and heuristic techniques for solving complex problems such as technical 

parameters in the manufacturing processes (Tervo et al., 2003). For decision-making, it is 

necessary to obtain the current reality, relevant metrics, and optimized measures for the best 

decision (Canciglieri et al., 2015; Chen and Zhao, 2016). 

In this case, statistical techniques can be assumed for the design of experiments (DOE), as 

optimal experiment design techniques can help to systematically develop experiments by 

incorporating important information to estimate parameters with higher accuracy (Chen and 

Zhao, 2016). Based on market competitiveness, quality, and expectations of customers, DOE 

has been used to investigate hideaway causes of process variation. This strategy allows 

mapping the effects of hidden variables as well as to study the impacts of such effects during 

both process design and development. In a few words, DOE brings the range of experiments 

from uncontrollable factors that are introduced randomly to carefully control these factors 



(Antony et al., 2014). Wohlgemuth et al. (2020) integrated the statistical design and 

mathematical programming approaches to improve the productive efficiency of a set of 

decision-making units for logistic operators. 

Tervo et al. (2003) argued that, when a parameter appears nonlinearly in the model, it can 

be considered that an optimally designed experiment depends on the current estimated value. 

Wiecek et al. (2016) asserted that multiobjective programming allows optimizing decision 

problems through multiple objective functions. Ehrgott et al. (2018) argued that the task of 

optimizing is regularly used to define a robust model that gives the best solution for modeling 

and solving optimization problems with uncertain data. In this way, in a robust optimization 

process, both evolutionary and population stochastic optimization techniques can be applied 

to increase accuracy, convergence and at the same time as reducing the computational cost to 

obtain satisfactory results in terms of the decision variables (Wang et al., 2020; Consigli et 

al., 2020). 

Rao et al. (2017) assert that the nondominated sorting genetic algorithm II (NSGA-II) is 

one of the most popular multiobjective optimization algorithm used for optimizing machining 

operations parameters in minimizing or maximizing the machining performances. Bhavsar et 

al. (2015) solved a micro-milling of cemented carbide problem using multiobjective 

optimization NSGA-II algorithm to optimize the surface roughness and material removal rate 

produced. Alvarado-Iniesta et al. (2017) integrated the NSGA-II algorithm with machine 

learning and multicriteria decision-making techniques to optimize the dimension of the plastic 

product, cycle time, and packing pressure in the injection molding process. Alvarado-Iniesta 

et al. (2019), solved a many-objectives design problem associated with plastic gear using an 

NSGA-III algorithm to optimize seven objectives in a plastic injection molding process. 

According to Salomon (1998), gradient-based algorithms can be applied only to 

continuously differentiable objective functions. But if either the objective function is not 

continuously differentiable or if the function is not (completely) given due to limited 

knowledge, which often occurs in real-world applications, the designer must resort to other 

methods, such as evolutionary or population-based algorithms. 

Applications of population-based algorithms can be found in the literature in the field of 

DOE problems. Shyu et al. (2004) introduced a meta-heuristic based upon the Ant Colony 



Optimization (ACO) approach, to find approximate solutions to the minimum weight vertex 

cover problem, where the objective is to find a vertex subset whose total weight is minimum 

subject to the premise that the selected vertices cover all edges in the graph. Shih et al. (2014) 

presented a framework that adds a variable selection step prior to run a computer experiment-

based optimization considering data mining methods. Additionally, using principal 

components analysis and multiple testing based on the false discovery rate for variable 

selection, the proposed method, which was dedicated to DOE, was applied to an airline fleet 

assignment case study. The Multiobjective Particle Swarm Optimization (MOPSO) algorithm 

was used to optimize the relation between sustainability practices and performance 

measurement of small and medium enterprises of plastic injection (Abdelaziz et al., 2018). 

El-Hajj et al. (2020) solved a vehicle routing problem using a MOPSO algorithm to maximize 

the total amount of profit, and the travel time limit is set. Trivedi et al. (2020) presented a 

review of recent PSO variants and solved benchmark and industrial optimization problems 

using a simplified PSO algorithm. 

When it comes to evolutionary algorithms, Differential Evolution (DE) became one of the 

leading metaheuristics. DE consists of methods that operate over survival-of-the-fittest 

principles (Storn and Price, 1997). As an optimization tool, DE has presented its extension to 

single and multiobjective problems, emerging the term Multiobjective Differential Evolution 

(MODE). Zhang et al. (2013) presented an approach of MODE applied to DOE, where the 

combination of those techniques provided insights into the optimization of ferrite magnet 

machine. Validi et al. (2020) integrated DOE with a bi-objective metaheuristic to optimize in 

two phases a sustainable model that minimizes CO2 emissions from transportation and total 

costs incurred in facilities and the transportation channels. Stokes et al. (2020) presented 

MODE applied to DOE as guidance for practitioners to find different types of optimal designs 

for various statistical models in chemistry applications. Reynoso-Meza et al. (2010) proposed 

the spherical pruning (sp) mechanism and adapted it to the classical MODE to ensure diversity 

of Pareto solutions, creating the sp-MODE. The new algorithm was subsequently applied to 

problems involving PID-controller tuning, considering the optimization of many-objectives 

(+4) simultaneously (Reynoso-Meza et al., 2010). The sp-MODE has also made its way into 

areas of engineering, being used by Hamdy et al. (2016) in a benchmark comparison of six 

different algorithms, and how well they perform over nearly-zero-energy-building design 



problems, as well as Camilotti and Freire (2020), utilized it alongside the NSGA-II in a multi-

objective building design optimization problem. In both studies, the capacity of the sp-MODE 

in obtaining well-distributed and diverse Pareto solutions is accentuated. 

This research proposes a hybrid approach to optimize the parameters, integrating the DOE, 

and multiobjective optimization methods. It has been developed a hybrid approach as an 

alternative to classical parametrization design used in the 3D printing process, by combining 

it with a proposed multiobjective differential evolution with uniform spherical pruning (usp-

MODE) algorithm. The proposed modification in the algorithm has the objective of creating 

a more uniform sphere surface grid to be used in the spherical pruning mechanism. This work 

also presents an integrated approach to select the Pareto front inside a range of optimal 

solutions considering boundaries to the objective functions of the 3D printing process. The 

main process parameters and their influence on surface roughness, dimensional accuracy, and 

mechanical resistance of a 3D printing prototype specimen were analyzed. 

2. THEORETICAL BACKGROUND 

This section presents a brief literature review associating the machining process, design of 

experiments, multiobjective optimization, and fundamentals to reach the proposed usp-

MODE algorithm. The main idea of this section is to provide a reasonable overview of the 

integration of these approaches. 

2.1. Additive Manufacturing and Machining Processes 

In 1981, additive manufacturing (AM) was introduced regarding a solid printed model in 

Nagoya Municipal Industrial Research Institute. A few years later, stereolithography, which 

is the technique of creating models by curing a liquid photopolymer resin using UV lasers was 

presented. The previously mentioned technology, which was proposed by Charles W. Hull, 

was commercialized as the first rapid prototyping system (Hull, 1984). At the beginning of 

the 90’s, Scott Crump invented the Fused Deposition Modeling (FDP), which is the basis of 

the current personal 3D printers (Crump, 1992). Medical applications using 3D printing 

started at the end of the 90’s, while in the early 2000’s the first commercially viable Selective 

Laser Sintering (SLS) machine, and the possibility of multiple materials mixtures were 

introduced (Beaman et al., 2020). Today, research-based new materials for 3D FDP printing 



considering injection technology were focused on the avoidance of hazardous resin materials. 

Moreover, recent developments have allowed laser-cured resin processes to emerge onto the 

commercial and home-user market. 

The 3D printing technology was incorporated into the industrial environment and has been 

used in production systems due to the following strengths: the ability to produce complex and 

detailed three-dimensional shapes; reduced lead time for unique parts; installation possibility 

in non-industrial environments; low cost; and general savings compared to common 

manufacturing systems. The machining process has extended concepts of printing by giving 

the chance to build physical objects with any geometry in real or scale sizes just based on 

drawings or models designed in a CAD tool, as presented in (Canciglieri et al., 2015).  

The concept of the additive manufacturing process in the industry came from the idea of 

printing final versions of finalized products. Based on the injection process to create layers 

that are deposited on a platform that moves in a plane, which thickness is given by a third axis, 

a laser pointer is guided along with the resin by moving mirrors. The resolution and accuracy 

to manufacture products today are so high that it becomes possible to construct highly 

complex parts that are no larger than a grain of sand. To reach the desirable efficiency, 

regarding the trade-off between time and quality of 3D printing products, the problem 

associated with the proper configuration of the machine became an issue discussed in 

academic and industrial environments. 

 The importance to build complex structures using the machining process and the potential 

of modeling by finite elements method to predict droplet size for manufacturing were already 

discussed and could be found in the specialized literature (Fernandes et al., 2017). Due to the 

flexibility of using several materials to build 3D elements, the additive manufacturing research 

field faced new challenges, as machining configuration focusing on the optimization of the 

part being printed, and the optimization of the process in terms of time and scheduling inside 

the industry. 

2.2. Design of Experiment 

Until the 70s, experimental studies were constructed considering combinatorial rules. The 

classic DOE was developed by Sir Ronald A. Fisher in 1920, in 1970 experiments using 



optimization algorithms started to appear (Antony, 2014). The factorial design is indicated for 

studying the effects of two or more controllable factors (input variables) in the output variables 

of the process. The usage of meta-heuristic for optimization of experimental designs aims to 

improve quality or to optimize a model into the solution space using a convergence of the 

algorithm with accuracy increased and reduced costs (Validi et al., 2020). 

In the design of experiments, a finite number of designs in the design space are simulated 

using prescribed settings of the design variables and system evaluation routines. It is used for 

process improvement, for minimizing the differences between results and nominal 

specifications, and for reducing both variability and overall manufacturing costs. In many 

manufacturing systems, this technique can be applied to select the best process parameters to 

increase robustness, evaluate alternative materials, and reduce the variation that affects the 

performance of the process or product (Sant’Anna, 2015). A robust process can be defined as 

a process that provides a reasonable response to input variables regardless of the external 

noises and with minimal resources to ensure a reliable product. The robustness of the process 

occurs due to a good experimental design that rigorous controls for materials composition 

(Zhang 2009).  

Regarding the number of factors, there are many different approaches for DOE analysis. 

The 2k factorial design used in this research seeks to determine the optimum levels of the 

process for conducting several factors-at-a-time, explaining the significant effects in the 

process. This factorial design adopts k input variables with two levels each, one high and one 

low, and these levels may be quantitative or qualitative. These experiments are an important 

class of planning because the number of trials involved in conducting these experiments is 

relatively small (Dumas et al., 2014). 

The main objective of applying this technique is to answer questions regarding the general 

behavior of the output variables within the range of input variables and to map regions of high 

performance. For this, three steps are important: i) to plan the experiments by distributing 

accordingly the runs; ii) to estimate the coefficients of the output variable; and finally, iii) to 

explore the output variable region, finding the optimal level of the input variables that 

maximizes or minimizes the output. 



2.3. Multiobjective Optimization 

In a generalized view, optimization can be interpreted as the search for the most 

appropriate solution for a given problem, given that the solution obeys a set of given 

constraints. From (Coello Coello et al., 2004), basic concepts of optimization might also be 

viewed as the search for the set of values that minimizes a given function (Definition 1). 

Definition 1 (Global Minimum): Given a function 𝑓𝑓:Ω ⊆ ℜ𝑛𝑛 → ℜ, Ω ≠ ∅, for 𝑥⃗𝑥∗ ∈ Ω the 

value 𝑓𝑓∗ ≜ 𝑓𝑓(𝑥⃗𝑥∗) > −∞ is called a global minimum if and only if ∀𝑥⃗𝑥 ∈ Ω: : 𝑓𝑓(𝑥⃗𝑥∗) ≤ 𝑓𝑓(𝑥⃗𝑥). (1) 

In engineering, these problems can quickly reach high levels of complexity, considering 

the number of design variables considering and the underlying dynamic of the system being 

optimized (Rao, 2009). Moreover, multiple criteria are usually taken into consideration during 

a real-world problem, with them being intrinsically conflicting with each other (Definition 2). 

Definition 2 [General Multiobjective Optimization Problem (MOP)]: Find the vector  𝑥⃗𝑥∗ = [𝑥𝑥1∗, 𝑥𝑥2∗, 𝑥𝑥3∗, … , 𝑥𝑥𝑛𝑛∗ ]𝑇𝑇 which will satisfy the 𝑚𝑚 inequality constraints 𝑔𝑔𝑖𝑖(𝑥⃗𝑥) ≥ 0, 𝑖𝑖 = 1, 2, 3, … ,𝑚𝑚, (2) 

the 𝑝𝑝 equality constraints ℎ𝑖𝑖(𝑥⃗𝑥) ≥ 0, 𝑖𝑖 = 1, 2, 3, … ,𝑝𝑝,  (3) 

and will optimize the vector function 𝑓𝑓(𝑥⃗𝑥) = [𝑓𝑓1(𝑥⃗𝑥),𝑓𝑓2(𝑥⃗𝑥),𝑓𝑓3(𝑥⃗𝑥), … , 𝑓𝑓𝑘𝑘(𝑥⃗𝑥)]𝑇𝑇, (4) 

where 𝑥⃗𝑥 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛]𝑇𝑇 is the vector of decision variables. 

Definition 3 (Pareto Optimality): A point 𝑥⃗𝑥∗ ∈ Ω is Pareto Optimal if for every 𝑥⃗𝑥 ∈ Ω 

and 𝐼𝐼 = {1, 2, 3, … ,𝑘𝑘} either ∀𝑖𝑖∈𝐼𝐼(𝑓𝑓𝑖𝑖(𝑥⃗𝑥) = 𝑓𝑓𝑖𝑖(𝑥⃗𝑥∗)), (5) 

or there is at least one 𝑖𝑖 ∈ 𝐼𝐼 such that 𝑓𝑓𝑖𝑖(𝑥⃗𝑥) > 𝑓𝑓𝑖𝑖(𝑥⃗𝑥∗). (6) 



The conflicting nature between optimization objectives transforms the unique solution 

that the problem would otherwise have, in a set of non-dominated (Definition 4) solutions 

with different compromises for each criterion. 

Definition 4 (Pareto Dominance): A vector 𝑢𝑢�⃗ = (𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛) is said to dominate 𝑣⃗𝑣 =

(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛)  (denoted by 𝑢𝑢�⃗ ≼ 𝑣⃗𝑣 ) if and only if 𝑢𝑢  is partially less than 𝑣𝑣 , i.e., ∀𝑖𝑖 ∈
{1, 2, … ,𝑘𝑘},𝑢𝑢𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 ∧ ∃𝑖𝑖 ∈ {1, 2, … , 𝑘𝑘}:𝑢𝑢𝑖𝑖 < 𝑣𝑣𝑖𝑖. 

The goal of a MOP is usually to find the optimal set (Definition 5) of non-dominated 

solutions, that cannot be improved any further by any other feasible solution. While the 

domain of the solutions forms the Pareto Set (Definition 5), their image on the objective space 

represents a curve denominated Pareto Front (Definition 6). 

Definition 5 (Pareto Set): For a given MOP 𝑓𝑓(𝑥𝑥), the Pareto Set (𝒫𝒫∗) is defined as 𝒫𝒫∗ ≔ �𝑥𝑥 ∈ Ω|¬∃𝑥𝑥′ ∈ Ω𝑓𝑓(𝑥𝑥′) ≼ 𝑓𝑓(𝑥𝑥)� (7) 

Definition 6 (Pareto Front): For a given MOP 𝑓𝑓(𝑥𝑥) and Pareto Optimal set 𝒫𝒫∗, the Pareto 

Front (𝒫𝒫ℱ∗) is defined as 𝒫𝒫𝒫𝒫∗ ≔ �𝑢𝑢�⃗ = 𝑓𝑓 = (𝑓𝑓1(𝑥𝑥), … ,𝑓𝑓𝑘𝑘(𝑥𝑥)|𝑥𝑥 ∈ 𝒫𝒫∗�. (8) 

2.4. Evolutionary algorithms and Differential Evolution (DE) 

One of the preferred ways to tackle such problems is using evolution-based meta-heuristics, 

a practice that has gained popularity in the last years (Dumas et al., 2014; Eiben and Smith, 

2015; Canellidis et al., 2016). Algorithms in this category provide a good balance between 

exploration and exploitation of the search space, abstracting themselves from problem-

specific traits, and performing well over problems that classic methods would have trouble 

solving, if at all (Talbi, 2009). During the last decades, many metaheuristics have been 

developed, with the Differential Evolution (DE) (Storn and Price, 1997) being one of them. 

In a similar manner to other evolutionary algorithms, the DE treats the input vector of 

design variables as an individual in a population of solutions, while their respective value over 

the objective function represents their fitness. Both mutation, crossover, and selection 

operators are an integral part of the algorithm, used as means to generate new individuals as 

well as preventing the gene pool from becoming stagnant (Storn and Price, 1997). At every 



iteration, every solution in the population acts as a parent 𝑥𝑥𝑝𝑝, while three other random ones 

are used to create a mutant solution 𝑥𝑥𝑚𝑚. Just as the algorithm’s name implies, the differential 

term between the second and third solutions is multiplied by the differential weight F, and 

subsequently added to the first one (Equation (9)). 𝒙𝒙𝒎𝒎 = 𝒙𝒙𝟏𝟏 + 𝒫𝒫(𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟑𝟑) (9) 

The mutant and parent solutions are then combined through the crossover operator and a 

crossover chance 𝐶𝐶𝐶𝐶, resulting in a new child solution, as shown in Equation (10). 

𝑥𝑥𝑐𝑐,𝑖𝑖 = �𝑥𝑥𝑚𝑚,𝑖𝑖,𝑥𝑥𝑝𝑝,𝑖𝑖,   𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟(0,1) > 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝐶𝐶𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  (10) 

Finally, once the child solution 𝒙𝒙𝒄𝒄 is constructed, the selection operator is applied to both 

it and the parent solution, where the best fit one, under the objective function, is selected to 

continue to the next generation. The process is repeated until the desired stop criterion set by 

the user is reached, such as the number of generations or function evaluations (Storn and Price, 

1997). 

Due to its simplicity, many variants of the DE were proposed in these past years, with one 

of the early adaptations for the multi-objective scenario being proposed by Xue et al. (2004). 

As multi-objectives are considered, a dominance-based selection operator is used instead, the 

same as described in Definition 3. 

In addition to a good approximation of the Pareto front, it is also often desirable for well-

spread solutions throughout the objective-space, and not too clustered towards certain points. 

In the last decades, algorithms employed a variety of methods to achieve diversity and 

uniformity, with examples including function sharing (Srinivas and Deb, 1994), crowding 

(Deb et al., 2002), and ε-dominance (Laumanns et al., 2002). 

2.5. Multi-objective Differential Evolution with Spherical Pruning (sp-MODE) 

The sp-MODE, a variant of the multi-objective DE proposed in (Reynoso-Meza et al., 

2010) and complemented in (Reynoso-Meza et al., 2014), is one such algorithm that focuses 

on the diversity of Pareto front solutions, working on fixing shortcomings of previous 

diversity-ensuring methods. 



The method employed by the algorithm, denominated Spherical Pruning, is based on 

allocating solutions on sectors of a hyper-sphere. For problems with three objectives, such as 

the one tackled in this work, the process can be visualized first as a projection of the 

normalized Pareto front approximation onto the first octant of the unit sphere. Considering a 

system of spherical coordinates (𝐶𝐶,𝜃𝜃,φ), the sphere surface is then divided into sectors by 

considering 𝛼𝛼∈ equal divisions for 𝜃𝜃 and φ, in the interval [0,
𝜋𝜋2 [ (Figure 1). 

Figure 1. Spherical grid considering a 𝜶𝜶∈ of 30 

 

By allocating a single solution per sector, whichever happens, to be closer to the origin (a 

lesser value for 𝐶𝐶 ), the algorithm can ensure diversity and well-spread solutions on the 

objective space. 

In addition to the spherical pruning to ensure diversity, the algorithm also employs a 

secondary method, that ensures pertinency. The acquisition of a set of solutions with different 

compromises is the goal of a MOP, however, not all possibilities may be pertinent to the 

designer, but only a subset of them. The sp-MODE employs a physical programming approach 

to assign meaningful pertinency intervals for each of the sought objectives, in a manner more 

transparent than other methods, such as weighted sum and goal attainment (Sanchis et al., 

2010). 

Although the physical programming guides the algorithm towards the area of interest of 

the objective space, and the spherical pruning ensures well-spread solutions around that area, 

the latter can still be improved. As shown in Figure 1, the constructed sectors on the sphere 

surface are highly non-uniform, with a different concentration of sectors depending on the 

location on the sphere surface. That can not only introduce a bias towards certain regions but 



also completely alter the outcome of the optimization if objectives are permuted, problems 

which this article proposes solutions for. 

2.6. Uniform spherical pruning 

The spherical pruning is implemented in a way that allows that mechanism that constructs 

the spherical sectors to be extracted and defined as a function (Equation (11)). 𝒇𝒇(𝒂𝒂) = 𝚲𝚲∈ (11) 

where 𝒂𝒂 represents the 𝑘𝑘 − 1 angles that define the point in hyper-spherical coordinates, and 𝚲𝚲∈ its hyper-spherical sector, defined by 𝑘𝑘 − 1 values. Since the point is projected onto the 

hyper-sphere, the 𝐶𝐶 parameter is not utilized. 

For the three-dimensional case, Equation (11) can be simplified to Equation (12). 𝒇𝒇(𝜃𝜃,φ) = �Λ∈,1,Λ∈,2� (12) 

The default sector-constructing function simply outputs a division of the inputs, resulting 

in the non-uniform grids, a result that the method described below focuses on correcting. 

The method in question, proposed in (Roşca, 2010), is a sphere division method that maps 

points from a square (𝑟𝑟, 𝑏𝑏), to a circumference (𝑋𝑋,𝑌𝑌), to one of the hemispheres of a sphere 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧), as displayed in Figure 2. 

Figure 2. Area of interest highlighted on the: (a) square of side √2𝜋𝜋, (b) circumference of radius √2, (c) 

hemisphere of the unit sphere 

   
(a) (b) (c) 

 

Since the method maintains the areas between transformations, a uniform grid can be 

defined on the square (Figure 2), and the reverse transformations (Equation (13) and Equation 

(14)) applied to find out where the points on the sphere will fall on the square. 



𝒇𝒇(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑟𝑟, 𝑏𝑏) = �2(𝑥𝑥2 + 𝑦𝑦2)

1 + 𝑧𝑧 ⎩⎪⎨
⎪⎧�√𝜋𝜋2 ,

2√𝜋𝜋 arctan
𝑦𝑦𝑥𝑥� , 𝑥𝑥 ≥ 𝑦𝑦

� 2√2
arctan

𝑥𝑥𝑦𝑦 ,
√𝜋𝜋
2
� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝐶𝐶𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 (13) 

𝚲𝚲∈ = 𝒇𝒇(𝑟𝑟, 𝑏𝑏) = �max �� 2𝑟𝑟√2𝜋𝜋 𝛼𝛼∈� , 1� , max �� 2𝑏𝑏√2𝜋𝜋 𝛼𝛼∈� , 1�� (14) 

Based on the strategy for surface division described in this section, this study has been 

modified the original version of the sp-MODE proposed by Reynoso-Meza et al. (2010) by 

including a uniform grid proposed by Roşca (2010). The proposed approach creates a grid of 

cells of uniform areas on the surface of the sphere, representing the objective space, and 

consequentially, a uniform and less biased spherical pruning when compared to the original 

strategy presented by Reynoso-Meza et al. (2010). 

3. EXPERIMENTAL STUDY 

3.1. Design parameters 

As presented before, this work was developed to solve a real problem in the additive 

manufacturing process of product design using 3D printing technology. The experimental 

study consists of investigating the product made by Project 3000 Professional 3D Printer (3D 

Systems, 2011), from the conversion of the file for the Standard Triangle Language, or 

Standard Tessellation Language (STL), which represents a native exchange format among 

Stereolithography CAD systems intending to reduce the geometry to a triangular set of surface 

facets defined by three vertices and a normal vector. This representation is presented in the 

software screen illustrated in Figure 3a. 

The cylindrical specimen (Figure 3b) was developed based on international standard ISO 

4287:1997 (ISO, 1997) by the CAD software CATIA V5®. The 2k factorial design, 

considering three input variables (k = 3) tested at two levels of control with three replicates 

each (2³ x 3 = 24). This experimental study had limited material resources and experiments 

were carried out with a limited number of replicates. Thus, the way of working for this study 

was drawn as Zhang et al. (2009) and Chen and Zhao (2016), who obtained significant results 

using a limited number of replicates. Zhang et al. (2009) carried out a fractional factorial 

design of experiments applied to synthesis of ZSM-5 zeolite using 16 experiments, two 

replicates for each of the eight experiments. Chen and Zhao (2016) performed a design of 



experiments for binder blasting additives manufacturing process to optimize the layer 

thickness, printing saturation, heater power ratio, and drying time using two replicates for each 

combination of factors, obtaining a reliable result. 

For this experiment, epoxy resin 500 grams cartridges with internal chip were assumed. 

The three input variables: i) the layer thickness (LT), which defines the density of the piece; 

ii) the deposition rate (DR), which sets the injection quantity of droplets per second; and iii) 

the print orientation (O), which defines the angle of inclination of the part concerning to the 

deposition of the layers (see Table 1). The experimental study considered the length and 

thickness of the piece as noise parameters, due to the statistical analysis for these parameters, 

there is no statistically significant difference. It has been used the same extrusion head for the 

printing paths in all experimental runs. Thus, the noise parameters did not affect the output 

variables. The build direction used for building the pieces was horizontal axis (x-axis) in order 

to minimize the material losses, energy cost, and cycle time. 

Figure 3. Prototype model for fabrication: (a) in STL; (b) Prototype specimen under resistance test 

  
(a) (b) 

 

The output variables of the manufacturing process were roughness, dimensional accuracy, 

and mechanical resistance. The roughness was evaluated by the irregularities and protrusions 

above the surface. The unit of measure for roughness used for the specimens was the average 

roughness (Ra) given by the Mitutoyo SJ 201P model (Mitutoyo, 2004). When considering 

the dimensional accuracy, it was evaluated by the difference between the measured value and 

the reference value (Ø = 10 mm). The measurements were performed by instrument 

Micrometer Mitutoyo 0-25 mm range and resolution 0.01 mm (Mitutoyo, 2016). Regarding 



mechanical resistance, tensile testing was considered where test pieces were gripped in jaws 

and stretched by moving the grips apart at a constants rate while measuring the load (see 

Figure 3). Measurements were conducted in a Lloyd dual-column tensile testing machine LD 

Series (AZO Materials, 2017), and the unit for that variable is N/mm². 

Table 1. Variables statement for experiments 

Variables Level 1 Level 2 Unit Optimization 

Input 

x1 Layer Thickness (LT) 0.032 0.064 µm - 

x2 Deposition Rate (DR) 150 300 u/sec - 

x3 Orientation (O) 0o 90o grad - 

Output 

y1 Roughness – – Ra Minimize 

y2 Accuracy – – ∅ mm Minimize* 

y3 Resistance – – N/mm² Maximize 

*once accuracy objective fluctuates around “0” with positive and negative values, a generalization must be 

considered to turn it a minimization problem, then it has been adopted Accuracy = |Accuracy| 

3.2. Comparison of metrics 

To measure how well the modified algorithm will perform over the proposed problem, 

three Pareto comparison metrics are utilized to evaluate both the convergence and diversity of 

the obtained Pareto approximations for each algorithm, the: i) hyper-volume, ii) inverted 

generational distance, and iii) g-Indicator. 

The hyper-volume (H), proposed by Zitzler and Thiele (1999), is a metric focused on 

evaluating the convergence of the approximated Pareto front. It is defined as the dominated 

area “behind” the Pareto front, up until a point of reference (usually the NADIR). The hyper-

volume is a unary metric that generates a larger value the closer the approximated front is to 

the true Pareto (Figure 4a). 

The g-Indicator (G), which was proposed by Lizárraga et al. (2008), is a metric to evaluate 

the diversity and distribution of solutions on the approximated front. In its generalized form, 

the metric is defined by the union of the hyper-volume covered by hyper-spheres of radius U 

centered at each point of the Pareto front approximation. The g-Indicator is a 𝑚𝑚 metric that 

calculates its value for 𝑚𝑚 fronts simultaneously, with the radius U being calculated as half the 

average distance of all solutions, of all fronts, to their closest neighbor (Equation (15)). 

Additionally, the process is simplified by projecting the given approximated fronts to a lower 

dimension, such as a three-dimensional front to a two-dimensional plane (Figure 4b). 



𝑈𝑈 =
1

2

∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖|𝒫𝒫𝐹𝐹𝑗𝑗|𝑖𝑖𝑚𝑚𝑖𝑖=1∑ |𝒫𝒫𝒫𝒫𝑗𝑗|𝑚𝑚𝑖𝑖=1

 (15) 

where 𝑚𝑚 represents the number of approximated fronts, and 𝐶𝐶𝑖𝑖𝑗𝑗 the distance of the i-th solution 

of the j-th front, to its closest solution. 

The inverted generational distance (IGD), proposed by Coello Coello and Sierra (2004), is 

a modified version of the classical generational distance (GD) used to evaluate both 

convergence and diversity evaluation of a given approximated front, in comparison to a 

reference front. The original GD uses an average of the distances of every solution on the 

approximated front, to the closest solution on the reference, accounting solely for 

convergence. The IGD uses the distances from the solutions on the reference to the 

approximated front, considering how uniformly they are distributed. As the true Pareto is 

usually unknown for a real-world problem, it has been applied the aggregated approximated 

fronts from all runs as reference. 

Figure 4. Accounted areas for the: (a) hyper-volume metric; (b) g-Indicator metric 

  
(a) (b) 

 

 

 

 

 



4. RESULTS AND DISCUSSIONS 

4.1. Analysis of Experiments 

This section describes the statistical analysis of the experiments presented in the previous 

section. Firstly, a statistical ANOVA analysis was conducted in a way to establish the problem 

over the 3D printing technology process. After concluding the prototype, it was possible to 

establish the contribution of the input variables in each one of the outputs. Therefore, the 

outputs (roughness, accuracy, and resistance) were analyzed regarding the input variables 

(layer thickness, deposition rate, and print orientation). Starting with the analysis of 

roughness, the average roughness found in this case through the software was 43.83 Ra.  

Table 2 shows the analysis of variance for roughness. All main effects and two-way 

interactions (thickness × rate and thickness × orientation) are statistically significant (p < 

0.05), indicating the difference between levels of the input variables with influence in the 

roughness output. When the p-value for the statistical F-test of the overall significance test is 

less than your significance level, it is possible to reject the null hypothesis and conclude that 

the model provides a better fit than the intercept-only model (Snedecor and Cochran, 1989).  

Figure 5a presents the percentage of contribution of every input variable in the roughness. 

By using a Half-Normal plot of factor effects highlighting that, the main effects are provided 

by layer thickness, deposition rate, orientation, and the two-way interactions between them. 

The Half-Normal plot of factor effects allows one to detect the factor and interaction that are 

most important to the process, where an optimization design could be applied. This plot shows 

the absolute values of the effects and draws a reference line on the chart (dashed red line). 

Any effect that goes beyond this line is considered potentially important (Sant’Anna, 2015).  

Figure 5b shows the cube plot with adjusted averages for roughness. Cube plots display 

the average response values at all combinations of process and design parameter settings. In 

this way, it is possible to determine the best and the worst combinations of factor levels with 

the purpose to achieve the desired optimum response (Myers et al., 2016). In the sequence, it 

was possible to define the equation that conducts to roughness values in terms of the set of 

inputs, being so: 𝑅𝑅𝑜𝑜𝑢𝑢𝑔𝑔ℎ𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 = 64.67− 187.5 ∗ 𝐿𝐿𝐿𝐿 − 0.1378 ∗ 𝐷𝐷𝑅𝑅 − 0.0296 ∗ 𝑂𝑂 + 1.667 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝐷𝐷𝑅𝑅
+ 0.46 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝑂𝑂 + 0.000519 ∗ 𝐷𝐷𝑅𝑅 ∗ 𝑂𝑂 − 0.00772 𝐿𝐿𝐿𝐿 ∗ 𝐷𝐷𝑅𝑅 ∗ 𝑂𝑂 

(16) 



Table 2. Analysis of variance for roughness 

Source df Sum Sq. Mean Sq. F p* 

LT 1 104.16 104.16 44.64 0.000 

DR 1 352.66 352.66 151.1 0.000 

O 1 32.66 32.66 14.00 0.002 

LT*DR 1 60.16 60.16 25.79 0.000 

LT*O 1 20.16 20.16 8.64 0.010 

DR*O 1 6.00 6.00 2.57 0.128 

LT*DR*O 1 4.16 4.16 1.79 0.200 

Res. error 16 37.33 2.33   

Total 23 617.33    

*significance level “F-Snedecor test” 0: (p < 0.05) / df (degrees of freedom) 

 
Figure 5. Half-Normal plot (a) and Cube plot (b) for roughness 

 
 

(a) (b) 

 

In the same way, as performed for roughness, the dimensional accuracy variable was 

evaluated, and the average was 0.0387 mm. Table 3 shows the analysis of variance considering 

the same approach that was adopted for roughness. Figure 6a shows the Half-Normal plot with 

the percentage of the contribution that every input variable has in the dimensional accuracy, 

highlighting that the main effects are caused by layer thickness, deposition rate, the two-way 

interactions between them, and the two-way interactions between layer thickness and 

orientation. Figure 6b shows the cube plot with adjusted averages for dimensional accuracy, 

highlighting the effects provided by layer thickness, deposition rate, and orientation. By 

applying the regression technique, it was possible to define the equation that conducts to 

dimensional accuracy values in terms of inputs: 𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐶𝐶𝑟𝑟𝐴𝐴𝑦𝑦 = 0.0033 + 1.56 ∗ 𝐿𝐿𝐿𝐿 − 0.000289 ∗ 𝐷𝐷𝑅𝑅 + 0.001704 ∗ 𝑂𝑂 + 0.00208 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝐷𝐷𝑅𝑅− 0.0197 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝑂𝑂 − 0.000008 ∗ 𝐷𝐷𝑅𝑅 ∗ 𝑂𝑂 + 0.0001 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝐷𝐷𝑅𝑅 ∗ 𝑂𝑂 
(17) 
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Table 3. Analysis of variance for dimensional accuracy 

Source df Sum Sq. Mean Sq. F p* 

LT 1 0.0287 0.0287 89.47 0.000 

DR 1 0.0145 0.0145 45.21 0.000 

O 1 0.0002 0.0002 0.64 0.437 

LT*DR 1 0.0015 0.0015 4.69 0.046 

LT*O 1 0.0001 0.0001 0.32 0.577 

DR*O 1 0.0026 0.0026 8.12 0.012 

LT*DR*O 1 0.0007 0.0007 2.19 0.158 

Res. error 16 0.0051 0.0003   

Total 23 0.0534    

*significance level “F-Snedecor test” 0: (p < 0.05) / df (degrees of freedom) 

Figure 6. Half-Normal plot (a) and Cube plot (b) for dimensional accuracy 

 
 

(a) (b) 

 

The mechanical resistance variable was also analyzed with an average of 260.6 N/mm². 

Table 4 shows the analysis of variance for mechanical resistance, while Figure 7a reports a 

Half-Normal plot with the percentage of the contribution that each input has in mechanical 

resistance. In this case, the orientation became the most relevant variable in this experiment. 

Figure 7b shows the cube plot with adjusted averages for mechanical resistance. By assuming 

the same regression technique previously mentioned, the equation that defines the mechanical 

resistance in terms of the inputs can be obtained: 𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑜𝑜𝑟𝑟𝑟𝑟𝐴𝐴𝑒𝑒 = 217.4− 305 ∗ LT− 0.0204 ∗ DR− 0.616 ∗ O + 0.42 ∗ LT ∗ DR

+ 3.40 ∗ LT ∗ O + 0.00059 ∗ DR ∗ O− 0.0059 ∗ LT ∗ DR ∗ O 
(18) 

 

 

1086420

98

95

90

85

80

70

60

50

40

30

20

10

0

A LT[µm]

B DR[u/sec]

C O[grad]

Factor Name

Absolute Standardized Effect

P
e
rc

e
n

t

Not Significant

Significant

Effect Type

BC

AB

B

A

90

0

300

150

0,0640,032

O[grad]

DR[u/sec]

LT[µm]

0,05667

0,100000,05333

-0,04333

0,05667

0,080000,02000

-0,01333



Table 4. Analysis of variance for mechanical resistance 

Source df Sum Sq. Mean Sq. F p* 

LT 1 115.72 115.72 3,10 0.097 

DR 1 39.27 39.27 1.05 0.320 

O 1 7473.01 7473.01 200.2 0.000 

LT*DR 1 0.35 0.35 0.01 0.924 

LT*O 1 76.68 76.68 2.05 0.171 

DR*O 1 12.18 12.18 0.33 0.576 

LT*DR*O 1 0.01 0.01 0.00 0.987 

Res. error 16 597.22 37.33   

Total 23 8314.45    

*significance level “F-Snedecor test” 0: (p < 0.05) / df (degrees of freedom) 

 
Figure 7. Half-Normal plot (a) and Cube plot (b) for mechanical resistance 

 
 

(a) (b) 

 

Statistical analysis allows obtaining the optimal setting considering all the input 

parameters. By assuming the analysis of variance test, half-normal, and cube plots were 

possible to obtain a solution for this problem. However, this approach works well in problems 

that involve a low quantity of variables in decision-making. When the complexity of the 

problem significantly increases relate to the precision of parameters, as presented in the 

current problem described in this work, where it is possible to combine three possible inputs 

with three affected outputs, the solution in most cases is not trivial. 

Figure 8(a-c) shows the surfaces responses plot for Roughness, Accuracy, and Resistance 

models based on the inputs. Note that for orientation of printing, it was only considered the at 

0° grad once the results reached for 90° grad of printing orientation were quite poor. This 
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decision also supports having a 3D visualization on surfaces responses, otherwise, it should 

be a bi-cubic graph, which is non-trivial to visual analysis. 

 
Figure 8. Surface plot for Roughness (a), Accuracy (b), and Resistance (c) models 

  

(a) (b) 

 
(c) 

 

4.2. Algorithm evaluations 

Based on the previous assumption, the usp-MODE algorithm has been applied in the case 

study to illustrate its application to more complex cases. In this way, the usp-MODE supports 

both search process and decision-making to find the best solution based on the compromise 

between inputs and outputs, as infinite possibilities can be assumed for the design variables 

within the predefined search space, where {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3}∈ℜ. 

Additionally, to ensure a bias-free evaluation of the proposed algorithm, it is applied to 

multiple benchmark functions, as well as the DOE problem described earlier. This is done to 

ensure an acceptable performance under Pareto sets and fronts of different shapes and 

characteristics. The benchmark functions are presented in Cheng et al. (2018), which 

describes a methodology for the evaluation of algorithms for many-objective optimization 

problems. These functions, although meant to be used in problems with four objectives or 

more, are defined for three-objective problems. 
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By assuming 24 real experiments to set the equation that establishes the relation between 

inputs and outputs, the intention to apply the usp-MODE algorithm is to expand the search 

space of the input variables that up to now were considered just in two levels each. The 

purpose of the problem is through the three inputs (LT, DR, and O) to minimize both 

roughness and accuracy, at the same time maximizing the mechanical resistance. Finally, 

considering the Roughness, Accuracy, and Resistance models (by Equations (9-11)) for 

applying the usp-MODE algorithm, it was possible to obtain values for inputs to obtain a 

quasi-optimal configuration for the outputs.  

Considering that inputs belong to the machining process, it was decided to keep the 

orientation only to 0º or 90º values given the difficulty to use different angles. On the other 

hand, both layer thickness and deposition rate were searched inside a range with boundaries 

determined by the values shown in Table 5, being so: LT in the interval [0.032, 0.064] µm and 

DR between [150, 300] u/sec have been defined. 

The parameterization of the NSGA-II was performed base on values found in the literature 

(Alvarado-Iniesta et al., 2017), Table 5 shows the complete list of parameters applied. For a 

fair comparison, both the population and the iterations of the remaining two algorithms (sp-

MODE and usp-MODE) were chosen to result in the same number of function evaluations. 

The remaining parameters were kept as in the default implementation suggested on the 

original paper, including the number of arc divisions equal to 10 times the number of 

optimization objectives. 

Table 5. Adopted values for the parameters of the three algorithms 

Algorithm Parameter Value 

NSGA-II 

Population 60 

Iterations 100 

Crossover rate 0.90 

Mutation rate 0.05 

sp-MODE 

usp-MODE 

Population 120 

Sub-population 60 

Iterations 991 

Arc divisions 30 

Norm Manhattan 
1As the algorithm performs 120 evaluations during initialization,  

one less iteration was considered 
 

 



To account for the stochastic nature of the algorithms, 31 individual runs were performed. 

The three metrics were calculated for each of the benchmark runs, and their values are shown 

in Table 6-8. The results of the optimization itself are shown in Table 9. 

Table 6. Benchmark results of the H metric after 31 runs (larger = better) 

Problem 
Hypervolume (𝒖𝒖 ± 𝒔𝒔) 

NSGA-II sp-MODE usp-MODE 

MaF1 0.1107±0.0031 0.1259±0.0019 0.1264±0.0015 

MaF2 0.2514±0.0019 0.2647±0.0013 0.2694±0.0012 

MaF5 0.3742±0.0317 0.4025±0.0154 0.4059±0.0221 

MaF6 0.2143±0.0015 0.2027±0.0012 0.2132±0.0016 

MaF7 0.1920±0.0100 0.2175±0.0035 0.2156±0.0087 

MaF8 0.1714±0.0767 0.3291±0.0015 0.3312±0.0017 

MaF11 0.8294±0.0040 0.8452±0.0071 0.8467±0.0083 

MaF13 0.2721±0.0177 0.3132±0.0171 0.3128±0.0151 

 

Firstly, the results of the H metric showed an improvement in convergence regarding the 

proposed modification, albeit small. As the variations were not large, it could be verified that 

the modification performed in the technique to improve diversity did not impact the 

algorithm’s convergence. 

Table 7. Benchmark results of the G metric after 31 runs (larger = better) 

Problem 
g-Indicator (𝒖𝒖± 𝒔𝒔) 

NSGA-II sp-MODE usp-MODE 

MaF1 0.1246±0.0031 0.2706±0.0019 0.3302±0.0015 

MaF2 0.0655±0.0019 0.2421±0.0013 0.2572±0.0013 

MaF5 0.1747±0.0317 0.3342±0.0154 0.3228±0.0221 

MaF6 0.0377±0.0015 0.0176±0.0032 0.0343±0.0036 

MaF7 0.1017±0.0100 0.1783±0.0035 0.1786±0.0087 

MaF8 0.0189±0.0767 0.0751±0.0015 0.0887±0.0017 

MaF11 0.1039±0.0040 0.1389±0.0071 0.1354±0.0035 

MaF13 0.0030±0.0177 0.0028±0.0171 0.0034±0.0151 

 

The results of the G metric displayed more considerable improvements (function 1, 6, 8 

and 13), if compared to the previous case of the H metric. In the same fashion, for the cases 

where the other two algorithms outperformed the usp-MODE, the improvements were 

considerably less significant. Additionally, results for the proposed algorithm showed a 

smaller standard deviation, in most cases. 



Table 8. Benchmark results of the IGD metric after 31 runs for each algorithm (smaller = better) 

Problem 
Inverted Generational Distance (𝒖𝒖 ± 𝒔𝒔) 

NSGA-II sp-MODE usp-MODE 

MaF1 0.0562±0.0024 0.0320±0.0011 0.0298±0.0011 

MaF2 0.0457±0.0033 0.0182±0.0008 0.0180±0.0008 

MaF5 0.3430±0.2369 0.2553±0.1075 0.3007±0.2662 

MaF6 0.0050±0.0003 0.0193±0.0029 0.0219±0.0033 

MaF7 0.1068±0.0772 0.0622±0.0588 0.0525±0.0029 

MaF8 0.4518±0.2340 0.0463±0.0020 0.0423±0.0022 

MaF11 0.1909±0.0081 0.2061±0.0132 0.1944±0.0096 

MaF13 0.1185±0.0128 0.0964±0.0174 0.0933±0.0087 

 

The IGD metric accounts for the number of solutions by using an average for the distances. 

Although not as significant as the previous metric, the usp-MODE still showed improvements 

over the default sp-MODE. In the same way as the last metric, improvements were 

considerable, apart from the 6th benchmark function, due to the degenerate property of the 

Pareto front. 

Table 9. Optimization results of the problem considering the three metrics (larger = better) 

Metric 
Metric values (𝒖𝒖 ± 𝒔𝒔) 

NSGA-II sp-MODE usp-MODE 

H 0.6321±0.0156 0.6602±0.0072 0.6683±0.0025 

G 0.0106±0.0006 0.0236±0.0031 0.0312±0.0046 

IGD 0.1770±0.0242 0.0816±0.0109 0.0648±0.0063 

 

Results for the optimization itself show similar behavior with the previous three metric 

benchmarks. While overall improvements were observed in all three metrics, the hypervolume 

displayed the less significant one (5.73% over NSGA-II, and 1.23% over sp-MODE). The 

results for the G metric showed the most significant improvement (194.34% over NSGA-II, 

and 32.20% over sp-MODE), but also a higher variance. Finally, although the results for the 

IGD metric were less pronounced (63.38% over NSGA-II, and 20.59 over sp-MODE), they 

also showed the smallest variance. These results not only show that the convergence capacity 

of the algorithm was not compromised by the change on the spherical pruning mechanism but 

the capability of reaching a more diversified Pareto front was achieved. 

The aggregated approximated Pareto front of all runs for the three algorithms was 

constructed, for better visualization of different compromises between objectives, and it is 

presented in Figure 9. 



Figure 9. Aggregated non-dominated Pareto front of all algorithm runs, displayed in parallel coordinates (colors 

exclusively for contrast) 

 

 

4.3. Discussions 

The proposed approach used to multiobjective optimization problem in this real 3D 

printing process was based on the integration of the design of experiments with optimization 

algorithm, optimizing three conflicting objectives in a suitable finite-size illustrated by Pareto 

front, once it offers a decision-making tool with a good result of the optimal design. 

Myers et al., (2016) recommend performing a statistical test to define if there is systematic 

nonlinearity curvature present. Due to that, authors have performed the statistical test to 

analyze the lack of fit to first-order model with interaction showed by Equations (16-18) from 

the designed experiment. The linearity was statistically significant indicating that the straight-

line fit was very satisfactory as can be seen in the half-normal probability plot of the effects 

by Figs. 5a, 6a, and 7a for the roughness, accuracy, and resistance variables. 

The overall proposed usp-MODE optimization algorithm of the parameters in 3D printing 

technology was achieved based on the following optimum values to input variables: layer 

thickness at low level (0.032 µm), deposition rate at the high level (300 u/sec), and print 

orientation at low level (0o grad). Another important result of this work was to verify the 

optimal values to output variables: surface roughness 33.33 Ra, dimensional accuracy 0,12 



mm, and mechanical resistance 204.40 N/mm², improving the outputs performances of the 

machining process. This study highlights the relevance of an experimental optimization for 

the machining parameters process based on planned experimental tests and a robust 

optimization algorithm, that allows to minimize the loss of material and operating cost. 

The proposed optimization approach’s results are corroborated with the literature, Bhavsar 

et al., (2015) assert that the NSGA-II algorithm optimization generated optimal solutions of 

Pareto front for conflicting output variables performance, as material removal rate and surface 

roughness in FIB micro-milling process. Rao et al., (2017) showed that multiobjective 

optimization proved optimal solutions for multiple conflicting objectives as cutting velocity, 

surface quality, and dimensional accuracy to improve the performance of the machining 

processes. Alvarado-Iniesta et al., (2019) assert that the NSGA-III algorithm presented 

reliable results of Pareto fronts of multiobjective optimization problem used in the plastic 

injection molding process. 

5. CONCLUSIONS 

This research proposes a hybrid approach to optimize the parameters, integrating both 

design of experiment and multiobjective optimization methods. Based on the proposed hybrid 

approach, a support solution for 3D printing technology as an alternative to classical 

parametrization design used in the machining process, where the proposed algorithm usp-

MODE was considered to select the “optimal” set of parameters in 3D printing technology. 

By assuming three input variables (layer thickness, deposition rate, and print orientation), and 

three outputs (surface roughness, dimensional accuracy, and mechanical resistance), the 

influence of each input variable, and the combination of them, to improve the process outputs 

performances were evaluated. 

This study applied the 2k factorial design, which provided reasonable results as important 

information about the influence of both individual and interaction variables in each one of the 

outputs. In this way, it was possible to define the best set for the input variables that fit the 

machining process, can be applied to distinct 3D printing technology processes. This 

procedure permits the extension of the DOE method adopted in this study to more complex 

cases where a considerable number of variables are considered. In this case, it is possible to 

increase the complexity of the problem without changing the approach presented in this study.  



In the search procedure, it has been proposed the usp-MODE approach, and a benchmark 

case with NSGA-II and the classical sp-MODE algorithm has been carried out to show the 

benefits and gains of the proposed algorithm. It can be seen the proposed usp-MODE is a 

promising technique for solving many machining process optimization problems, providing a 

wider and more diverse set of Pareto solutions in most cases. 

Future works will focus on the evaluation of distinct evolutionary algorithms applied to the 

multiobjective optimization problems reported in this study, to compare results with the use-

MODE approach. Authors have also considered the possibility of applying the usp-MODE 

algorithm to different experiments meaning many-objectives problems, in this case, the 

reliability and robustness of the proposed algorithm might be evaluated in different ways and 

approaches. Finally, to bring a full analysis of the experimental design approach, other inputs 

could be considered, as energy efficiency and costs. 
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