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Abstract
The increasing vulnerability of the population from frequent disasters requires quick and 
effective responses to provide the required relief through effective humanitarian supply 
chain distribution networks. We develop scenario-robust optimization models for stocking 
multiple disaster relief items at strategic facility locations for disaster response. Our models 
improve the robustness of solutions by easing the difficult, and usually impossible, task of 
providing exact probability distributions for uncertain parameters in a stochastic program-
ming model. Our models allow decision makers to specify uncertainty parameters (i.e., 
point and probability estimates) based on their degrees of knowledge, using distribution-
free uncertainty sets in the form of ranges. The applicability of our generalized approach 
is illustrated via a case study of hurricane preparedness in the Southeastern United States. 
In addition, we conduct simulation studies to show the effectiveness of our approach when 
conditions deviate from the model assumptions.
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1  Introduction

In a 2014 presentation, Dr. Steven Chu, Nobel Laureate and former US Energy Secretary, 
noted that natural disasters are occurring with increasing frequency worldwide, citing cli-
mate change as epidemiological evidence for the increase (Chu, 2014). Historical data 
clearly indicate that the number of natural disasters per year has been climbing dramati-
cally since 1980. In North America alone, the number of annual natural catastrophes has 
jumped fourfold, from approximately 50 to 200, since the early 1980s, according to the 
world’s largest reinsurer, Munich Re (Sturdevant, 2013). A closer look at the report reveals 
that the increase is not uniform across different types of natural disasters. The occurrence 
of geophysical disasters such as earthquakes and tsunamis has remained relatively stable 
between 1980 and 2011. However, weather-related disasters such as hurricanes; hydro-
logical disasters such as floods; and climatological disasters such as droughts have been 
increasing steadily during the same period. All three of these increasing occurrence types 
of disasters are cyclic in nature, which provides valuable information for disaster prepared-
ness planning.

Pandemics can also be considered natural disasters. The Black Death pandemic in the 
fourteenth century resulted in an estimated 50 million deaths, and is considered to be 
the most fatal pandemic in human history (World Health Organization, 2017). Pandem-
ics occurring in the twenty-first century include COVID-19, Ebola, MERS, 2009 Swine 
Flu, and SARS. The occurrences of pandemics (including type, timing, and magnitude) are 
especially difficult to predict. The recent COVID-19 pandemic has presented an enormous 
global challenge. Hospitals and clinics generally serve as the bulk of the humanitarian sup-
ply chain for pandemic response. The supplies required for pandemic response include 
personal-protective equipment (PPE), vaccines, ventilators, and other medical equipment. 
COVID-19 has illustrated the challenges of responding to a global pandemic where nearly 
every country in the world is affected by the pandemic and response supplies are extremely 
limited. The United States government maintains a strategic national stockpile of emer-
gency medical supplies for pandemic response, but it is seriously depleted. It is crucial that 
these supplies are restocked and that the necessary planning is done so that these critical 
relief supplies are available to respond to the next natural disaster.

Pre-positioning relief supplies at strategic facility locations is a critical part of disas-
ter preparedness planning. It ensures availability of emergency relief commodities at the 
right time and at the right place. Despite recent efforts to establish advance contracts for 
relief items with partners that can be activated when needed, i.e., “virtual warehouses” 
(Balcik & Ak, 2014), pre-positioning of life-saving and life-sustaining resources such 
as water, tarps, and meals that allow for quick response remains as prevailing practice 
for most disaster relief agencies. As an illustrative example of pre-positioning, during 
the 2005 Hurricane Katrina that devastated New Orleans, Wal-Mart began pre-position-
ing high demand items including bottled water, flashlights and batteries six days prior 
to the hurricane’s landfall based on information collected on past purchase behaviors 
of customers in hurricane-prone areas (Shughart, 2011). Compared to the relatively 
small-scale relief efforts organized by commercial firms, government agencies such as 
the Federal Emergency Management Agency (FEMA) face a daunting task of prepared-
ness at both county and state levels. During Hurricane Katrina relief supplies included 
11,322,000 L of water, 18,960,000 pounds of ice, 5,997,312 meals ready to eat (MREs), 
and 17 truckloads of tarps. These materials were pre-positioned at key strategic loca-
tions prior to Katrina’s landfall; this represented the largest preparedness effort in the 
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agency’s history (Davis, 2005). Still, criticism of FEMA’s slow, ineffective response, 
especially its failure to pre-deploy sufficient supplies, was frequent as the storm led to 
a confirmed death toll of 1833. Scott Wells, the Deputy Federal Coordinating Officer in 
Louisiana, pinpointed one source of the problem: “the response was not robust; it was 
not enough for the catastrophe at hand” in his testimony to Congress (Townsend, 2006). 
The destruction created a massive, unexpected demand for emergency supplies, and the 
damaged infrastructure intensified logistics difficulties. Better coordination amongst 
the SC echelons before and after the disruption with the use of information-sharing is 
also an important mitigation strategy for such disruptive events. Investing in appropriate 
technology and quality information sharing improves supply chain visibility, enhances 
trust and cooperation among supply chain partners and eventually leads to a more resil-
ient supply chain (Dubey et  al., 2019a, 2019b, 2019c). Further, humanitarian organi-
zations must recognize how information sharing and supply chain visibility is key to 
swift-trust among humanitarian actors and agility in humanitarian supply chains (Dubey 
et al., 2020a, 2020b).

Starr and Van Wassenhove (2014), among others, emphasize the urgent need for 
robust solutions to account for the inherent uncertainty in humanitarian logistics. This is 
traditionally handled by stochastic programing models (e.g., Bozorgi-Amiri et al., 2013; 
Mete & Zabinsky, 2010; Rawls & Turnquist, 2009; Salmeron & Apte, 2010), which rely 
on specifying an exact probability distribution for uncertain parameters and then opti-
mizing the expected value of a known objective function. However, as noted by Ergun 
et al. (2010), Starr and Van Wassenhove (2014) and others, historical data are generally 
lacking in disaster applications and can be inconsistent due to problems in collection 
and reporting. Stochastic programming models usually do poorly when the probability 
distributions are mis-specified. Robust optimization (RO) is a relatively new method for 
handling parameter uncertainty in an optimization model (Bertsimas & Thiele, 2006a, 
2006b; Bertsimas et al., 2011). Different from stochastic programming, RO uses a dis-
tribution-free uncertainty set to model parameter uncertainty with risk-averse decision 
makers hedging against the worst-case scenario. Put differently, distributional informa-
tion on the uncertainty parameters is not required in a RO model. Instead, the model 
optimizes an objective function with regard to the worst-case scenario constrained by 
an uncertainty set. By definition, stochastic programming models identify solutions that 
perform well in the long run, on average, if probability distributions are correctly speci-
fied while robust optimization models do not require exact probability distributions to 
be defined, but RO solutions tend to be over-conservative because they hedge against 
the worst case that is rare but disastrous.

The main motivation of this paper is to obtain a robust, or resilient, preparation plan 
to pre-position relief items given the extreme uncertainties related to natural disas-
ters. The question we attempt to answer is how can we best pre-position relief items in 
advance so that we can respond with sufficient resources under the uncertainties related 
to the timing, location and severity of natural disasters.

As noted previously, most existing methods for determining optimal pre-positioning 
of relief items are either too fragile (e.g., stochastic programming) or too conservative 
(e.g., robust optimization). This paper aims to overcome the inherent limitations in these 
existing approaches. Our proposed scenario-robust models ease the difficult, and usu-
ally impossible, task of providing exact probability distributions for uncertain param-
eters in a stochastic programming model with the help of a distribution-free uncertainty 
set. To be more specific, the research questions of this paper are:



1244	 Annals of Operations Research (2024) 335:1241–1266

1 3

(1)	 Does a scenario-robust model provide a relief-item-pre-position plan that is more 
robust than the stochastic programming model and less conservative than the robust 
optimization model?

(2)	 Does a scenario-robust model provide a relief-item-pre-position plan that outperforms 
both the stochastic programming and the robust optimization models under certain 
situations?

Assume an uncertain parameter is defined by an underlying probability distribution 
F
(
�
s
,P

s
)
 in which �

s
 is the point estimate and P

s
 is its associated probability, for scenario 

s . In a traditional stochastic programming model, �
s
 and P

s
 are assumed to be known with 

exact knowledge; this is an unrealistic assumption, especially in the context of humanitar-
ian logistics, that we aim to relax. Instead, we allow �

s
 or P

s
 to vary in a distribution-free 

pre-specified uncertainty set [𝜁
s
− 𝜁 s, 𝜁

s
+ 𝜁 s] or [P

s
− P̂s,Ps + P̂s] , respectively. Consider 

the uncertain demand for emergency supplies characterized by the distribution F
(
�
s
,P

s
)
 : 

�
s
= {10, 20, 30, 40} and P

s
= {0.1, 0.2, 0.3, 0.4} . Using the first scenario (S = 1) as an 

example, the probability of having a demand for 10 units is 0.1. Instead of assuming a 
demand of 10 units with an exact probability of 0.1, we allow the demand point estimate to 
vary inside the range [10 − 2, 10 + 2] given 𝜁1 = 2 or the probability point estimate to vary 
inside the range [0.1 − 0.02, 0.1 + 0.02] given P̂s = 0.02 . The level of conservatism is first 
controlled by the maximum deviations allowed, 𝜁 s and P̂s . We then use parameters T� and 
TP to control the maximum number of parameters that are allowed to vary in the pre-speci-
fied ranges (Bertsimas & Sim, 2003). When well-recorded historical data leads to exact 
knowledge of �

s
 and P

s
 , then 𝜁 s and P̂s = 0 , and we have a traditional stochastic-program-

ming model. If such an ideal condition is not held, which is common, our model allows 
decision makers to use ranges that reflect their degrees of knowledge of 

(
�
s
,P

s
)
.

The remainder of this paper is organized as follows. Section  2 reviews the literature 
on pre-positioning problems with a focus on robustness of solutions. Section  3 presents 
an existing stochastic model followed by our scenario-robust versions. Section  4 illus-
trates the effectiveness of our models through a case study of hurricane preparedness in 
the Southeastern United States. Section 5 assesses the performance of the robust models 
through simulation studies. Section 6 provides some managerial insights for decision mak-
ers. Finally, in Sect. 7, we discuss contribution of the proposed research and suggest future 
research directions.

2 � Literature review

FEMA defines mitigation, preparedness, response, and recovery as the four key phases of 
humanitarian logistics and we refer interested readers to Wamba (2020), Banomyong et al. 
(2019) and Behl and Dutta (2019) for a general survey of the field. The pre-positioning 
problem, which falls within the category of preparedness, determines the number of relief 
facilities to open, their locations and capacities, and the quantity of relief supplies stored at 
each location in anticipation of various sources of uncertainty such as demand and network 
availability. Variants of this problem have been studied through stochastic optimization. 
Balcik and Beamon (2008) adopt a maximal covering location approach for modeling the 
problem with consideration of demand uncertainty through scenarios. The model considers 
key aspects of the problem including facility location, inventory, budget and capacity but 
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it does not consider network disruptions. Salmeron and Apte (2010) study how to allocate 
a fixed budget to procure and position relief assets to minimize the expected number of 
casualties and then the expected number of unmet transfer population under uncertainty 
associated with the location and severity of a disaster. Rawls and Turnquist (2010) propose 
a two-stage stochastic mixed-integer model solved using a Lagrangian L-shaped solution 
method to minimize the total expected cost of pre-positioning three types of relief sup-
plies under four sources of uncertainty. Following a similar problem setup, Noyan (2012) 
proposes a risk-averse two-stage stochastic programming model with incorporation of risk 
measures on the total cost. More recently, the impact of risk-aversion measures on the solu-
tion produced by a stochastic-programming model is further studied in Alem et al. (2016) 
and Condeixa et al. (2017). The validity of these stochastic-programming models depends 
on the accuracy of the specified probability distribution, a challenging task for humanitar-
ian logistics problems due to limited access to reliable data (Ergun et al., 2010). Paul and 
MacDonald (2016) develop a stochastic modeling framework to improve preparedness for 
disasters with little to no forewarning by optimizing the location and capacities of distribu-
tion centers for emergency stockpiles.

Mathematical programming is the main methodology for solving disaster operations-
management problems, of which two-stage stochastic-programming models have rep-
resented the state-of-the-art modeling approaches over the last decade (Grass & Fischer, 
2016; Hoyos et al., 2015). These types of models rely on specifying an exact probability 
distribution for uncertain parameters. In contrast to stochastic programming, a robust opti-
mization (RO) approach models parameter uncertainty using distribution-free uncertainty 
sets. RO models are designed to hedge against the worst-case realizations of uncertain 
parameters. RO was first proposed by Soyster (1973) for a linear optimization problem in 
which all uncertain parameters assume their worst-case values within a set. El Ghaoui et al. 
(1998) and Ben-Tal and Nemirovsky (1998, 1999) develop several RO models to provide 
less conservative solutions by controlling the set of values that the uncertain parameters 
could realize. Ben-Tal and Nemirovsky (1998, 1999) show that a robust model is tractable 
if the uncertainty set is defined as a box or an ellipsoid, which represents a set of linear 
or quadratic relations among the uncertain parameters, respectively. Bertsimas and Sim 
(2003) propose a cardinality-based robust optimization framework that models the uncer-
tainty in parameters using ranges by capturing their nominal and worst-case values. It uses 
a budget parameter T to control the number of parameters that is allowed to vary in their 
pre-specified range. A constraint with, for example, four uncertain parameters leads to five 
possible solution scenarios, T = 0, 1, 2, 3, 4, based on the cardinality of set T, where car-
dinality simply refers to the number of elements in set T. When T = 0, none of the four 
parameters are allowed to deviate from their nominal value, resulting in a deterministic 
model. When T = 4, all four parameters are allowed to deviate from their nominal value, 
which results in the most conservative model solutions. Thus, the value of T controls the 
conservativeness of the solutions obtained. Other forms of RO models include penalizing 
violations of scenario realizations of the uncertainty (Mulvey & Vanderbei, 1995) and min-
imizing the worst objective under different criteria such as absolute robust, robust devia-
tion, and relative robust (Kouvelis and Yu, 1997).

RO applications in the general field of supply chain management are relatively new, 
but interest is growing. In recent years, RO has been successfully implemented to solve 
problems such as lot-sizing, location-allocation problems under demand uncertainty 
(Atamtürk & Zhang, 2007), capacitated vehicle routing (Sungur et al., 2008), fixed-charge 
multi-period facility location problems under network demand uncertainty (Baron et  al., 
2011), storage assignment (Ang et al., 2012), and hub location under demand uncertainty 
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(Shahabi & Unnikrishnan, 2014). Examples of applications in humanitarian logistics 
include optimizing the allocation of response equipment (Hassan et al., 2020), mitigating 
risk in humanitarian relief supply chains (Ben-Tal et al., 2011), transporting disaster relief 
commodities and injured people in the aftermath of an earthquake (Najafi et  al., 2013), 
locating urgent relief distribution centers (Lu, 2013; Lu & Sheu, 2013), designing a relief 
network (Tofighi et al., 2016; Yahyaei & Bozorgi-Amiri, 2019), preventing and reducing 
malaria transmission (de Mattos et al., 2019), and optimizing the USDA one-round food 
aid bidding system (Paul & Wang, 2015).

Distributionally-robust optimization (DRO) mitigates the over-conservatism of RO 
by considering partial distributional information such as moment statistics, which can be 
extracted from available data. As opposed to RO, which protects against the worst-case 
realization of uncertain parameters in uncertainty sets, DRO aims to hedge against the 
worst-case realization of the probability distribution through the use of ambiguity sets. 
The choice of ambiguity set determines the computational tractability of DRO, and vari-
ous forms have been proposed in the literature. In El Ghaoui et al. (2003), the ambiguity 
set incorporates all distributions with the exact same first and second moments. Delage and 
Ye (2010) develop a more generalized ambiguity set that allows for estimation errors in 
the first two moments. In both cases, tractable reformulation of single-stage problems can 
be achieved using additional linear inequalities. Two-stage DRO problems with exact first 
and second moment information are examined in Bertsimas et al. (2010) wherein tractable 
reformulation through semidefinite programs is developed for uncertainty that only affects 
the objective function. Assuming knowledge of the support, mean, covariance matrix 
and directional deviation of uncertain parameters, Goh and Sim (2010) derive tractable 
reformulations of generic two- and multi-stage DRO problems using affine decision rules. 
Wiesemann et al. (2014) propose a unifying framework by introducing standardized ambi-
guity sets that incorporate many existing sets as special cases and conditions under which 
computational tractability exists. More recently, DRO has been extended to solve dynamic 
decision-making problems wherein uncertainty unfolds in stages (Bertsimas et al., 2019). 
Applications of DRO include lot-sizing (Zhang et  al., 2016), surgery-block allocation 
(Wang et al., 2019), blood inventory pre-positioning (Wang & Chen, 2020) and others.

The premise of RO is that there exists no available distribution information on uncertain 
parameters, while DRO incorporates limited distributional information to mitigate the over-
conservatism of RO. However, there are many problems—traditionally approached by sto-
chastic programming—wherein a full probability distribution of uncertain parameters can 
be estimated, albeit inexactly, from historical data (Li et al., 2018). To apply RO or DRO in 
such situations would underutilize the available information on uncertain parameters, and thus 
cause unnecessary over-conservatism that is often manifested by inflated cost. While DRO 
leverages distributional information to build the ambiguity set, the scenario-robust approach 
tackles the issue of inexactness by incorporating a distribution-free uncertainty set into prob-
ability distributions of uncertain parameters. Han et al. (2013) replace point estimates of travel 
times in the classic stochastic vehicle routing problem with range estimates in each scenario 
to improve robustness. Our work is in line with this stream of research and makes the follow-
ing contributions to the literature. First, our models allow decision makers to use ranges when 
specifying distributions for uncertainty parameters. Different from Han et  al. (2013) where 
the focus is on the single type of item, we address multiple types of relief items. Second, 
we explore some key issues in humanitarian logistics such as network topology, shortages, 
and supply levels under different configurations of uncertainty. Last, the applicability of our 
approach is demonstrated via a case study of preparedness for hurricanes in the Southeastern 
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United States. In addition, we conduct simulation studies to show the effectiveness of our 
approach when conditions deviate from the model assumptions.

3 � Problem formulations

This section provides formulation of several models that can be used for the pre-positioning of 
relief supplies for disaster relief: a traditional Stochastic Programming Model (M1) and Sce-
nario-Robust Programming Models (M2 and M2_Adjusted). In the next sections, we compare 
the solutions generated using these different modeling approaches for a specific case study.

3.1 � Traditional stochastic programming model (M1)

We use notation similar to Rawls and Turnquist (2010) as shown in Table 1. The MIP for-
mulation from Rawls and Turnquist (2010) is shown below as M1 . The objective function (1) 
minimizes the fixed and acquisition costs plus the expected shipping, unmet demand penalty 
and holding costs over all scenarios. Constraints (2) are the capacity constraints to ensure that 
the amount of emergency supplies stored at a location does not exceed its capacity. Constraints 
(3) ensure that at most one facility of a given size is allowed at each demand location. Con-
straints (4) and (5) are both scenario dependent, and they ensure that demand is met and that 
the link capacity is not exceeded, respectively, for each scenario.

3.1.1 � Stochastic programming model ( �1)

3.2 � Scenario‑robust programming model (M2 and M2_Adjusted)

Model M1 assumes that scenario-dependent parameters ds
ik

,cs
ijk

,caps
ij
, �s

ik
 and the associated 

probabilities Ps are known with exact knowledge. We develop a scenario-robust model M2 

(1)

Min �1 =
∑

i∈I,l∈L

Filyil +
∑

i∈I,k∈K

qikrik +

(
∑

(i,j)∈A,k∈K,s∈S

Pscs
ijk
xs
ijk
+

∑

i∈I,k∈K,s∈S

Ps(hkz
s
ik
+ pkw

s
ik
)

)

(2)s.t.
∑

k∈K

bkrik ≤
∑

l∈L

Mlyil ∀i ∈ I

(3)
∑

l∈L

yil ≤ 1 ∀i ∈ I

(4)
∑

j≠i∈N

xs
jik
−

∑

j≠i∈N

xs
ijk
− zs

ik
+ ws

ik
+ �s

ik
rik ≥ ds

ik
∀i ∈ I, k ∈ K, s ∈ S

(5)
∑

k∈K

ukx
s
ijk

≤ caps
ij
∀(i, j) ∈ A, s ∈ S

(6)yilbinary;rik, x
s
ijk
, zs

ik
,ws

ik
≥ 0
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to relax this assumption. Model M2 targets the uncertainty in the point estimates of ds
ik

,cs
ijk

,caps
ij
 and �s

ik
 . This model can be fully linearized and solved using off-the-shelf solvers 

such as MOSEK or CPLEX, a feature especially desirable for practical applications such as 
those considered here.

A critical issue to consider when choosing an appropriate form of the uncertainty set 
is computational tractability. A simple analytical structure of the uncertainty set is pre-
ferred, but we must balance this with the goal of retaining modeling detail (Ben-Tal and 

Table 1   Model M1 notations

Type Description

Index
i A location that demands relief items
j A potential facility site
(i, j) The arc between location i and facility site j
l A size category of a facility
k A type of relief items
s A scenario of disasters
Set
N A set of nodes in the transportation network
I A set of locations that demand relief items,I ⊆ N

J A set of potential facility sites,J ⊆ N

A A set of arcs between facility sites and demand locations
K A set of relief items
L A set of facility size categories
S A set of disaster scenarios
Parameter
Fil The fixed cost of running a facility in size category l at location i
uk The unit capacity of relief time k
Ml The total capacity of a facility in size category l
bk The space requirement of relief item k
qik The unit acquisition cost of relief item k at demand location i
hk The unit holding cost of unused relief item k
pk The unit penalty cost for shortages of relief item k
Ps The probability for occurrence of scenario s, and 

∑
s∈S

Ps = 1

ds
ik

The demand for item k at location i under scenario s
cs
ijk

The unit shipping cost of transporting relief item k from i to j under scenario s
caps

ij
The capacity of link (i,j) under scenario s

�s
ik

The proportion of the stocked supplies k that remains usable at location i 
under scenario s, and 0 ≤ �s

ik
≤ 1

Decision variable
yil 1 if a facility of size l is open at location i and 0 otherwise
rik The amount of relief item type k pre-positioned at location i
xs
ijk

The amount of relief item k shipped from i to j under scenario s
ws
ik

Shortage of relief item k at location i under scenario s
zs
ik

Surplus of relief item k at location i under scenario s
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Nemirovsky, 1999). We adopt the uncertainty set developed in Bertsimas and Sim (2003, 
2004) that is capable of capturing the uncertainty yet is still analytically tractable. For each 
uncertain parameter (cs

ijk
,ds

ik
,caps

ij
 and �s

ik
) in M1, we introduce an uncertainty set following 

Bertsimas and Sim (2003, 2004). Each uncertainty set is characterized by three parameters: 
a nominal value, a maximum deviation allowed, and a budget controlling the number of 
parameters allowed to deviate.

Parameters cs
ijk

,ds
ik

,caps
ij
 and �s

ik
 are modeled with distribution-free uncertainty sets as 

follows. First, parameter cs
ijk

 is allowed to vary inside the range [ cs
ijk
, cs

ijk
 + ̂cs

ijk
] where cs

ijk
 

is the nominal value of cs
ijk

 and ĉs
ijk

 is the deviation of cs
ijk

 from its nominal value cs
ijk

 . To 
model a higher level of uncertainty, we can increase ĉs

ijk
  and the model becomes more 

conservative while setting ĉs
ijk

= 0 reverts the model back to the traditional stochastic pro-
gramming model, M1 . Furthermore, the maximum number of cs

ijk
 that are allowed to devi-

ate is restricted by a cardinality parameter TC ; i.e., TC ≤ ||UC|| where  Uc ⊆ I × J × K × S . 
The uncertainty set is expressed as max{Uc⊆I ×J×K×S,�Uc�≤TC}

∑
(i,j,k,s)∈Uc P

s�cs
ijk
xs
ijk

 , represent-
ing the total shipping cost deviation when up to TC of the estimated cs

ijk
 can vary in [ cs

ijk
  

, cs
ijk

 + ̂cs
ijk
].

The shipping cost component in the objective,
∑

(i,j)∈A,k∈K,s∈S P
scs

ijk
xs
ijk

 , is now expressed 
as 

∑
(i,j)∈A,k∈K,s∈S P

scs
ijk
xs
ijk

 + 
max{Uc⊆I ×J×K×S,�Uc�≤TC}

∑
(i,j,k,s)∈Uc P

s�cs
ijk
xs
ijk

 , factoring in possi-

ble deviation in Uc into the total nominal shipping cost. As shown in model M2a , by suc-
cessively increasing TC , the solutions are more conservative while setting TC = 0 equates 
the model to M1 . The difference between objective functions (1) and (7) is that (7) incorpo-
rates deviation ĉs

ijk
 in the shipping cost and uses budget TC to control the number of cs

ijk
 

parameters that is allowed to deviate from their nominal values cs
ijk

.

3.2.1 � Model with a robust component for shipping cost ( �2�)

s.t (2)–(6).
Using the duality procedures developed in Bertsimas and Sim (2004), the maximum 

deviation component max{Uc⊆I ×J×K×S,�Uc�≤TC}
∑

(i,j,k,s)∈UC P
s�cs

ijk
xs
ijk

 is equivalent to linear 
programming model M2b where g and Hs

ijk
 are the dual variables. Reformulating this model 

using the dual variables allows for much easier solution methods that generate equivalent 
results.

3.2.2 � Linear model with dual variables ( �2�)

(7)

Min𝜉2� =
∑
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∀i ∈ I, j ∈ J, k ∈ K, s ∈ S
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Substituting M2b back into model M2a , we have a linear model M2c . Objective func-
tion (11) along with constraints (9) and (10), form the robust counterpart of objective func-
tion (7).

3.2.3 � Linearized model with a robust component for shipping cost ( �2�)

s.t. (2)–(6), (9) and (10).
We follow the same logic to model ds

ik
, caps

ij
 , and �s

ik
 in constraints (4) and (5) using 

uncertainty sets max{Ud⊆I ×K×S,�Ud�≤Td}
∑

(i,k,s)∈Ud

�ds
ik

 , max{Ucap⊆I× J×S,�Ucap�≤Tcap}

∑
(i,j,s)∈Ucap

�caps
ij
 , 

and max{U𝜌⊆(I, K,S),�U𝜌�≤T𝜌}

∑
(i,k,s)∈U𝜌

�𝜌s
ik

 , respectively. Since each parameter appears only once 

in its respective constraint (which is different from parameters cs
ijk

 that are summed over 
(i, j) ∈ A, k ∈ K in their respective constraint), this structure results in a worst possible real-
ization of the parameter from the range uncertainty in the form of [ ds

ik
–d̂s

ik
, ds

ik
 + ̂ds

ik
] , [ caps

ij

–ĉaps
ij
, caps

ij
 + ĉaps

ij
], and [ �s

ik
–�̂s

ik
, �s

ik
 + ̂�s

ik
]. Constraints (4) and (5) are augmented accord-

ingly to accommodate the range uncertainty. The deviation terms in constraints (13) and 
(14) in model M2 reflect the direction of the constraints. For example, because the sign in 
constraint (4) is >  = , �̂s

ik
rik is subtracted from the left-hand side of constraint (13) while d̂s

ik
 

is added to its right-hand side. Model M2 minimizes the total cost subject to maximum 
deviation of ds

ik
,cs
ijk

,caps
ij
 and �s

ik
 constrained by their respective uncertainty sets.

3.2.4 � Scenario‑robust model ( �2)

s.t. (2), (3), (6), (9), (10)

In model M2 , parameters ds
ik

,caps
ij
 and �s

ik
 are set to their worst cases, which raises 

the issue of over-conservatism. This means, when solving model M2 , parameters ds
ik

,caps
ij
 and �s

ik
 assume the maximum deviation of d̂s

ik
 , ĉaps

ij
 , and �̂s

ik
 , respectively. Solving 

(10)g,Hs
ijk

≥ 0∀i ∈ I, j ∈ J, k ∈ K, s ∈ S

(11)

Min�2�� =
∑

i∈I,l∈L

Filyil +
∑

i∈I,k∈K

qikrik

+

(
∑

(i,j)∈A,k∈K,s∈S

Pscs
ijk
xs
ijk
+ TCg +

∑

i,j,k,s

Hs
ijk
+

∑

i∈I,k∈K,s∈S

Ps(hkz
s
ik
+ pkw

s
ik
)

)

(12)

Min�2 =
∑

i∈I,l∈L

Filyil +
∑

i∈I,k∈K

qikrik

+

(
∑

(i,j)∈A,k∈K,s∈S

Pscs
ijk
xs
ijk
+ TCg +

∑

i,j,k,s

Hs
ijk
+

∑

i∈I,k∈K,s∈S

Ps(hkz
s
ik
+ pkw

s
ik
)

)

(13)
∑

j≠i∈N

xs
jik
−

∑

j≠i∈N

xs
ijk
− zs

ik
+ ws

ik
+ �s

ik
rik − �̂s

ik
rik ≥ ds

ik
+ d̂s

ik
∀i ∈ I, k ∈ K, s ∈ S

(14)
∑

k∈K

ukx
s
ijk

≤ caps
ij
− ĉaps

ij
∀(i, j) ∈ A, s ∈ S
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the model at these maximum deviations of the parameters results in overly conserva-
tive solutions. We employ a method originating in Bertsimas and Thiele (2006a, 2006b), 
and adapted by Zokaee et al. (2016) and Liu et al. (2018), to mitigate over-conservatism. 
We therefore adjust the scenario-robust model (M2_Adjusted) as shown below. Using 
constraint (14) as an example, we introduce a common conservatism parameter Tijs for 
caps

ij
∀i ∈ I, j ∈ J, s ∈ S . The value of Tijs is in the range of [0, |I × J × S|] , representing 

the number of uncertain caps
ij
 that can deviate from its nominal value caps

ij
 by deviation 

ĉaps
ij
 . The robust counterpart of constraint (14) is shown below as (17) using the adjusted 

(less conservative) upper bound given the common uncertainty budget. Constraint (13) is 
adjusted in a similar fashion as shown below by (16). Model M2_Adjusted retains the same 
structure of M2 except that constraints (13) and (14) are replaced by (16) and (17), respec-
tively. These new constraints are in line with the suggestion from Bertsimas and Theile 
(2006) to consider a common conservatism parameter related to all the demand parameters. 
It effectively allows the decision maker to control the amount of uncertainty considered in 
the model based on the level of certainty available from past data and/or subject-matter 
expertise for a specific applicationy.

3.2.5 � Adjusted scenario‑robust model ( �2_��������)

s.t. (2), (3), (6), (9), (10)

4 � Case study

This section first provides background of the case study used to illustrate the application of 
proposed models. Next impacts of deviations in demand, unit shipping cost, capacity and 
the proportion of stocked supplies on the results produced by Stochastic Programming and 
Scenario-Robust Programming models are reported for the Case Study. Finally, impacts of 
cardinality uncertainty is studied for the Case Study.

4.1 � Background

Hurricane season in the Atlantic, Caribbean and Gulf of Mexico typically lasts from June 
1st to November 30th each year (National Hurricane Center, 2018). During this time 

(15)

Min�2 =
∑

i∈I,l∈L

Filyil +
∑

i∈I,k∈K

qikrik

+

(
∑

(i,j)∈A,k∈K,s∈S

Pscs
ijk
xs
ijk
+ TCg +

∑

i,j,k,s

Hs
ijk
+

∑

i∈I,k∈K,s∈S

Ps(hkz
s
ik
+ pkw

s
ik
)

)

(16)

∑

j≠i∈N

xs
jik
−

∑

j≠i∈N

xs
ijk
− zs

ik
+ ws

ik
+ �s

ik
rik −

Tiks

|I × K × S|
�̂s
ik
rik ≥ ds

ik
+

Tiks

|I × K × S|
d̂s
ik
∀i ∈ I, k ∈ K, s ∈ S

(17)
∑

k∈K

ukx
s
ijk

≤ caps
ij
−

Tijs

|I × J × S|
ĉaps

ij
∀(i, j) ∈ A, s ∈ S
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period, tropical cyclones are common and capable of inflicting severe damage to infra-
structure and loss of life. Table 2 summarizes the parameters of a case study that focuses 
on hurricane preparedness in the southeastern region of the United States which has 30 
nodes and 58 links (Rawls and Turnquist, 2009; Noyan, 2012). Three relief items—water 
(in units of 1000 gallons), meals ready to eat (MRE, in units of 1000), and medical kits—
are considered in this case study. Based on historical data, a total of 51 scenarios represent-
ing single and multiple hurricane landfalls are provided. (A detailed description of the 51 
scenarios can be found in Appendix 1) Parameter settings are the same as in Rawls and 
Turnquist (2009) with the exception that we introduce a penalty cost, pk , which is 100 
times that of the acquisition cost (pk = 100qk) , reflecting the fact that shortages in commer-
cial settings now translates to human suffering and even loss of life in disaster preparedness 
settings. Our penalty cost setting is more in line with the economic value of a statistical 
fatality, estimated at $6 million, adopted by various agencies such as US Environmental 
Protection Agency (Latourrette & Willis, 2007). The three models are coded in IBM Opti-
mization Programming Language and solved by ILOG CPLEX Optimizer Solver version 
12.7.1 on a computer with a 1.7 GHz processor and 8 GB RAM. All problem instances are 
solved under 180 s. Note that model M2 incurs higher costs than model M1 because model 
M2 incorporates the possible deviations but model M1’s result is based on the assumption 
of no deviation. Our simulation studies in Sect. 5 demonstrate that model M1 usually leads 
to higher costs when subjected to deviations.

4.2 � Impacts of deviations ( ̂cs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
)

We first invoke a full cardinality on cs
ijk

 to allow it to vary inside its range [cs
ijk
, cs

ijk
 + ̂cs

ijk
] 

by setting TC ≤ |U| where Uc ⊆ I × J × K × S . This means that we allow the maximum 
amount of uncertain parameters to vary. Note that parameters ds

ik
 ,  caps

ij
, and �s

ik
  are fixed at 

their worst values. In the traditional stochastic programming model M1 , the nominal values 
ds
ik

 , cs
ijk

,caps
ij
 and �s

ik
 are used as inputs. Here we simulate low, medium and high uncer-

tainty in the point estimates by setting ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 to 2.5%, 5% and 7.5% of their 

respective nominal values.
Table 3 first reports the cost breakdown and acquisition quantity produced by the tra-

ditional stochastic programming model M1 , followed by the cost and supply differences 
between models M2 and M1 , relative to M1 , at the low, medium and high uncertainty 

Table 2   Setting of the case parameters from Rawls and Turnquist (2009)

Relief item Acquisition cost Unit space (ft3/
unit)

Shortage cost Holding cost

Water (in 1000 gal.) $648 144.6 $64,770 $161.93
MRE (in 1000 units) $5420 83.33 $542,000 $1355.00
Medical kit $140 1.16 $14,000 $35.00

Facility Fixed cost Size (ft3)

Small $19,600 36,400
Medium $188,400 408,200
Large $300,000 780,000
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levels. As expected, model M1 , without factoring in the possible point estimate deviations 
in ds

ik
 , cs

ijk
,caps

ij
 and �s

ik
 , provides the least expensive solution but with higher risk of short-

ages. A cost breakdown further reveals that the increases in shortage costs outpace all other 
cost components, estimated at 5.04%, 11.09% and 17.45% when the point estimates deviate 
by 2.5%, 5% and 7.5%, respectively. This is alarming, and likely unacceptable, because 
shortages in humanitarian logistics applications often lead to human suffering and even 
fatalities.

Table 4 demonstrates the network structures produced by solutions to models M1 and 
M2 at the three uncertainty levels. In response to uncertainty, the solution to model M2 
adds a third large facility at location 19 at all three uncertainty levels while retaining the 
two large facilities at locations 15 and 24 that were originally in the solution of model M1 . 
This large facility at location 19 was a medium facility in the solution to M1. Interestingly, 
we notice that M2 does not recommend building new facilities at the locations that are not 
in the solution to M1, but only recommends increasing the size of some existing facili-
ties. Consider the solution to model M2 at uncertainty level 7.5% as another example: the 
new medium facility at location 13 was an existing small facility in all the lower uncer-
tainty level model solutions (5% and 2.5%) and the solution to model M1 as well. This 
observation can have direct practical relevance. If existing infrastructures are determined 
based on solutions from a traditional stochastic programming model, it is reassuring that 
our scenario-robust model achieves robustness through increasing the size of local facili-
ties without disrupting the overall network structure. One may argue that the systematic 
buildup pattern is an artifact of the small deviations chosen, but the validation results in 
Sect.  5 demonstrate the resilience of this finding when tested using larger deviations of 
15% and 25%.

4.3 � Impact of shortage cost

Holguín-Veras et al. (2013) developed the concept of deprivation costs—the economic val-
uation of human suffering—to capture the social costs associated with fatalities and related 
welfare costs. However, due to its complexity, work on integrating such costs into an opti-
mization models has been limited with a few exceptions. Pradhananga et al. (2016) exam-
ine the effects of constant and linearly increasing deprivation functions in an integrated 
preparedness and response framework. Paul and Wang (2015) incorporated deprivation 
costs into a location-allocation model for an earthquake preparedness problem. Our models 
are more complex and lack a standard structure to facilitate such integration. Instead, we 
conduct a thorough analysis of different shortage cost values (Davis et al., 2013), to assess 

Table 4   Network structures produced by model M2 (varying ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 ) – 10 × multiplier

Network structure Stochastic model (M1) Scenario-robust model (M2)

L (2.5%) M (5%) H (7.5%)

Large facilities 15, 24 15, 19, 24 15, 19, 24 15, 19, 24
Medium facilities 11, 19, 21, 22, 28, 29, 30 11, 21, 22, 28, 29, 30 11, 21, 22, 28, 29, 30 11, 13, 21, 

22, 28, 29, 
30

Small facilities 12, 13, 20, 23, 27 13, 20, 23, 27 13, 20, 23, 27 20, 23, 27
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the impact of the shortage cost value. Our analysis uses 10 × and 1000 × multipliers, and 
we compare the results to those of the 100 × multiplier reported in the previous section. 
Results are summarized in Tables 5, 6, and 7.

In response to increasing shortage cost, we observe that larger quantities of supplies are 
being pre-positioned, which requires a greater number of facilities overall. The network 
structure, therefore, requires fewer small facilities but more medium and large facilities 
across all uncertainty levels. The findings are in line with those of previous studies (e.g., 
Condeixa et al., 2017; Lodree et al., 2012) conducted in similar disaster-relief settings.

Table 5   Comparison of models M1 and M2 solutions (varying ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 ) – 10 × Multiplier

Cost Stochastic model M1 (M2—M1)/M1%

M2 L (2.5%) (%) M2 M (5%) (%) M2 H (7.5%) 
(%)

First stage
Fixed $794,400 2.47 2.47 21.25
Acquisition $28,014,292 3.64 7.06 14.24
Second stage
Shipping $281,139 5.57 13.30 16.28
Holding $4,313,296 0.48 0.46 5.17
Shortage $56,622,345 3.60 7.63 9.28
Total $90,025,472 3.46 7.08 10.75
Quantity
Water 8999 5.13 2.91 16.22
MRE 3609 3.00 7.83 13.38
Medical kit 18,749 5.13 10.53 16.22

Table 6   Comparison of models M1 and M2 solutions (varying ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 ) – 1000 × multiplier

Cost Stochastic model M1 (M2—M1)/M1%

M2 L (2.5%) (%) M2 M (5%) (%) M2 H (7.5%) 
(%)

First stage
Fixed $2,277,600 7.41 9.80 14.70
Acquisition $99,101,932 4.02 8.25 12.58
Second stage
Shipping $202,695 4.22 16.39 11.33
Holding $19,153,028 1.19 2.92 4.35
Shortage $1,916,277,411 5.12 10.54 17.06
Total $2,037,012,666 5.03 10.36 16.72
Quantity
Water 26,999 5.13 10.53 15.44
MRE 13,529 3.61 7.41 11.42
Medical kit 59,200 5.30 10.88 16.76
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4.4 � Impacts of cardinality uncertainty

To examine the effect of different numbers of uncertain parameters (the cardinality budget) 
that vary, we fix ĉs

ijk
,d̂s

ik
 , ĉaps

ij
 and �̂s

ik
 at their medium deviation of 5% and test the impact 

of cardinality uncertainty by gradually increasing TC , Tijs , and Tiks , which control the 
maximum number of locations to be impacted in their respective constraints. Starting at 0 
(Level 1, equivalent to Model M1 ), we test the models at two equal intervals (Levels 2 and 
3) and at their maximum-allowed values (Level 4, equivalent to Model M2 ). Table 8 shows 
the values used for the four levels of the budget parameters.

Table 9 reports the percent cost and supply increases at Levels 2, 3 and 4 relative to 
Level 1, and Table 10 shows the network structures at the four different levels. We observe 
similar patterns as in Sect. 4.2.1: a gradual total cost and supply increase as the level of 
conservatism increases; robustness is achieved through increasing the size of local facilities 
while preserving the overall network structure.

5 � Validation of robustness

The results of model M2 are driven by the maximum deviations specified. In this section, 
we conduct Monte Carlo simulation studies to compare the results of model M2–M1 under 
various conditions where the actual deviations differ. Furthermore, we derive the domi-
nance regions for model M2 where it demonstrates superiority in performance over M1 . 

Table 7   Network structures produced by model M2 (Varying ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 ) Given 10 × , 100 × and 

1000 × multipliers

Network structure Shortage cost 
multiplier

Stochastic model 
(M1)

Scenario-robust model (M2)

L (2.5%) M (5%) H (7.5%)

Large facilities 10 1 1 1 1
Medium facilities 10 2 2 2 3
Small facilities 10 6 7 7 5
Large facilities 100 2 3 3 3
Medium facilities 100 7 6 6 7
Small facilities 100 5 4 4 3
Large facilities 1000 3 3 5 6
Medium facilities 1000 7 8 5 4
Small facilities 1000 3 2 3 3

Table 8   Four levels of the budget 
parameters used in M2_Adjusted

Level 1 (M1) Level 2 Level 3 Level 4 (M2)

Tc 0 45,900 91,800 137,700
Tijs 0 15,300 30,600 45,900
Tiks 0 1530 3060 4590
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The goal of this analysis is to determine under what conditions model M2 results in solu-
tions superior to model M1.

We evaluate the model robustness of M2 and M2_Adjusted with regard to deviations in 
ĉs
ijk

,d̂s
ik

 , ĉaps
ij
 and �̂s

ik
 . Compared to model M1 , M2 and M2_Adjusted incur higher first-stage 

costs in Tables 3 and 9. We examine if this additional cost spent on the higher-level stra-
tegic decisions ( yil and rik) can be justified under various realized deviations. Note that in 
the simulation study, the first-stage costs remain the same as they are not directly impacted 
by uncertainty. This analysis allows us to examine when model M2_Adjusted outperforms 
model M2 and how the solutions between these models differ.

hModel M2 results are driven by the maximum-specified deviations of 2.5%, 5% and 
7.5% . The results of model M2_Adjusted are based on the settings of the medium deviation 
of 5% and the pre-specified numbers of locations to be impacted in their respective con-
straints. It would favor model M2 or M2_Adjusted if the validation study only tests those 
deviations or in their vicinities. To facilitate comparisons, we use five uniformly-distrib-
uted realized deviation ranges Ψ = {[0, 2.5%], [0, 5%], [0, 7.5%], [0, 15%], [0, 25%]} in our 
study. For example, range [0, 2.5%] allows d̃s

ik
, c̃s

ijk
, �̃s

i
, and c̃aps

ij
 to deviate by any percentage 

between 0 and 2.5% from their respective nominal values. For those realized deviations that 
are 0 or close to 0, the corresponding locations can be considered barely impacted by the 
hurricane.

We perform a Monte Carlo simulation using common random numbers to compare 
the performances of M1 and M2. The input consists of the optimal first-stage decision 

Table 9   Comparison of models 
M1 and M2_Adjusted solutions 
(Varying TC , Tijs , and Tiks)

Cost Level 1 (M1) Relative increase (%)

Level 2 Level 3 Level 4 (M2)

First stage
Fixed $2,016,800 3.59% 4.56% 4.56%
Acquisition $92,694,362 2.80% 5.19% 6.83%
Second stage
Shipping $273,336 1.13% 4.39% 4.16%
Holding $17,727,673 1.10% 1.72% 1.52%
Shortage $197,428,485 3.25% 6.77% 11.09%
Total $310,140,656 2.99% 5.99% 9.22%
Quantity
Water 20,564 4.89% 6.90% 11.69%
MRE 13,146 2.36% 4.80% 5.50%
Medical kit 58,023 3.27% 5.81% 10.49%

Table 10   Network structures produced by model M2_Adjusted (varying TC , Tijs and Tiks)

Network structure Scenario-robust model (M2_Adjusted)

Level 1 Level 2 Levels 3 and 4

Large facilities 15, 24 15, 19, 24 15, 19, 24
Medium facilities 11, 19, 21, 22, 28, 29, 30 11, 21, 22, 28, 29, 30 11, 21, 22, 28, 29, 30
Small facilities 12, 13, 20, 23, 27 13, 20, 27 13, 20, 23, 27
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variables from models M1 ( yM1∗
il

 and rM1∗
ik

 ), M2 at the uncertainty levels of 2.5% ( yM2_2.5%∗

il
 

and rM2_2.5%∗

ik
) , 5% ( yM2_5%∗

il
 and rM2_5%∗

ik
) and 7.5% ( yM2_7.5%∗

il
 and rM2_7.5%∗

ik
) , and M2_

Adjusted at the cardinality levels 2 ( yM2_5%_L2∗

il
 and rM2_5%_L2∗

ik
) and 3 ( yM2_5%_L3∗

il
 and 

r
M2_5%_L3∗

ik
) . In each replication, a disaster scenario is first randomly selected accord-

ing to the scenario probability distribution Ps ; second, a random number ∈  is uniformly 
drawn from a deviation range in Ψ , and the realized { ̃ds

ik
,c̃s
ijk

 , �̃s
i
 , c̃aps

ij
 } is set as { ̂ds

ik
(1+ ∈)

,ĉs
ijk
(1+ ∈) , �̂s

ik
(1− ∈) , ĉaps

ij
(1− ∈) }; then the second-stage problem is resolved to obtain 

the optimal second-stage costs for M1, M2, and M2_Adjusted respectively. A total of 200 
replications are conducted for each of the five deviation ranges in Ψ and the total costs are 
reported in Table 11. To facilitate comparisons, we also provide the total cost differences; 
shaded entries indicate the dominance region for model M2 and M2_Adjusted.

First, we focus on model M2 results in Table  11. Recall that model M2 at 2.5% is 
designed to hedge against 2.5% uncertainty, and it will outperform M1 by design when the 
realized deviation is indeed 2.5%. Under an unfavorable testing condition of [0, 2.5%] , it is 
encouraging to see that the solution to model M2 at uncertainty level 2.5% is still slightly 
better (by $12,576) than the solution to model M1 . Note that model M2 at uncertainty 
levels of 5% and 7.5% is overly conservative when the realized deviation varies within 
[0, 2.5%] and fails to offset the additional first-stage cost.

Results for range [0, 5%] may seem perplexing at first, but when examined in conjunc-
tion with the results from range [0, 7.5%] , they yield great insights. When the realized devi-
ation is drawn from [0, 5%] , model M2 at uncertainty level of 2.5% performs best, followed 
by model M1 , M2 at 5% and M2 at 7.5%, in that order. This, again, points to the nature of 
model M2 . When a realized deviation is uniformly drawn from [0, 5%] , the mean realized 
deviation is about 2.5%. Thus, it is unsurprising that M2 at 2.5% performs best. Range 
[0, 7.5%] reveals a similar pattern where model M2 at both 2.5% and 5% levels outperforms 
M1.

Model M2 shows its dominance over M1 when tested under the larger deviation 
ranges of [0, 15%] and [0, 25%] . As compared to Model M1 , M2 specified at 2.5%, 5% and 
7.5% offers additional robustness, even if the realized deviation is beyond the maximum 

Table 11   Average of total costs and cost differences over 200 replications ( M2_Adjusted vs. M1)

Realized deviation

[0, 2.5%] [0, 5%] [0, 7.5%] [0, 15%] [0, 25%]

Total cost
M1 $294,634,817 $299,487,614 $304,541,623 $322,743,861 $351,479,391
M2 at 2.5% $294,622,241 $298,076,816 $301,711,011 $313,926,352 $337,653,794
M2 at 5% $297,573,172 $300,819,818 $304,067,688 $314,827,976 $334,404,184
M2 at 7.5% $302,185,505 $305,355,612 $308,526,928 $318,346,216 $332,951,996
M2_Adj level 2 $294,182,730 $297,259,500 $301,724,643 $316,266,949 $343,533,217
M2_Adj level 3 $295,971,965 $299,218,924 $302,529,391 $314,269,393 $335,912,284
Difference
M2 at 2.5%—M1 $(12,576) $(1,410,798) $(2,830,612) $(8,817,510) $(13,825,597)
M2 at 5%—M1 $2,938,355 $1,332,205 $(473,935) $(7,915,885) $(17,075,207)
M2 at 7.5%—M1 $7,550,688 $5,867,998 $3,985,306 $(4,397,645) $(18,527,395)
M2_Adj level 2—M1 $(452,087) $(2,228,113) $(2,816,980) $(6,476,912) $(7,946,174)
M2_Adj level 3—M1 $1,337,148 $(268,690) $(2,012,232) $(8,474,468) $(15,567,107)
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specified deviations of M2. This provides great assurance for the robustness of Model M2 
under catastrophic situations such as Hurricane Katrina where, for example, demand for 
supplies was substantially underestimated.

Next, we discuss the model M2_Adjusted results in Table 11. By design, the solutions 
of Model M2_Adjusted at Levels 2 and 3 should be less conservative than the solution of 
M2 at 5% (i.e., M2_Adjusted at Level 4), because M2_Adjusted at Levels 2 and 3 limits 
the number of locations being impacted. The results in Table 11 confirm this expectation. 
Model M2_Adjusted at Levels 2 and 3 result in lower total cost than M1 even when the 
realized maximum deviation is small, 2.5% and 5% respectively, while model M2 at 5% 
requires the realized maximum deviation to be at least 7.5% to perform better than M1. 
Model M2 at 5% outperforms M2_Adjusted at the two levels when the realized maximum 
deviation is large, i.e., 25% or more. Table  11 also shows that M2_Adjusted at Level 2 
(which is adjusted based on model M2 at 5%) is even less conservative than M2 at 2.5%. 
In other words, M2_Adjusted at Level 2 can result in greater savings than M2 at 2.5% 
when the realized deviation is small, but less savings than M2 at 2.5% when the realized 
deviation is large. The cardinality level considered in M2_Adjusted impacts the robust-
ness of solutions, which allows model M2_Adjusted to generate a greater variety of robust 
solutions.

6 � Managerial implications

The applicability of our approach is demonstrated through a case study of hurricane pre-
paredness in the Southeastern United States. We explore some key issues in humanitarian 
logistics such as network topology, shortages, and supply levels under various degrees of 
parameter uncertainty.

Our models allow decision makers to specify uncertainty parameters corresponding to 
the degree of their knowledge, using distribution-free uncertainty sets in the form of ranges. 
We test these models using a case study based on hurricane preparedness. Results from our 
scenario-robust models indicate that in response to uncertainty in point estimates related 
to demand, shipping costs, capacities and proportion of damaged supplies, solution robust-
ness is achieved through a significant increase in the supply of relief items while facilities 
are consolidated and increased in size at a local level, rather than building facilities in new 
locations. The pre-positioning of disaster relief supplies in fewer strategic locations identi-
fied would provide a quick, robust, and effective response when dealing with humanitarian 
disasters such as tsunamis, SARS, Ebola and even in the recent global COVID-19 pan-
demic. As evidenced in Sect. 5, our models consistently offer robustness even under unfa-
vorable realized deviations of parameters. These characteristics bear significant relevance 
to practices such as improving Strategic National Stockpile (SNS) response.

SNS is a national emergency program established in 1999 to supplement and replenish 
state and local relief supplies in the event of a disaster. The SNS 12-h Push Packages ini-
tiative aims to be able to reach any location in the US within 12 h of a federal deployment 
decision. Since its inception, SNS has responded to numerous large-scale emergencies 
including hurricanes (e.g., Hurricane Dorian in 2019; Hurricanes Isaac and Sandy in 2012) 
and pandemics (Covid-19 in 2020; H1N1 influenza in 2009). In a 2012 program review 
(Inglesby & Ellis, 2012), the authors stated some important supply chain principles guid-
ing their practices. One of them is “To forecast is to err”, which recognizes that a consid-
erable amount of uncertainty—such as the uncertainty related to the time and magnitude 
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of a disaster—is inherent in humanitarian supply chain response. To help mitigate this, 
our models offer two layers of protection. First, our models consider multiple scenarios of 
a disaster and then consider potential deviations within each scenario. Another principle 
identified in Inglesby and Ellis (2012) is that “Local optimization leads to global dishar-
mony.” In contrast, our models offer a globally optimal solution, rather than individually 
optimizing local decisions. Furthermore, the resulting solutions tend to result in enlarging 
existing DC locations in response to uncertainty rather than requiring the building of new 
DCs which is less disruptive to the overall global structure as demonstrated in Sect. 4.

7 � Research implications

From a methodological standpoint, our paper aims to overcome the inherent limitations in 
both Stochastic Programming and Robust Optimization approaches. Generally speaking, 
Robust Optimization models are more appropriate when uncertainty in parameter values 
cannot be accurately defined by a probability distribution, while stochastic programming 
models are more appropriate when the decision maker is able to define the exact prob-
ability distribution applicable for each random parameter. However, the most situations 
there is some, but limited, information about such parameters. This limited information can 
be used to define possible scenario values, but is usually insufficient to define a complete 
probability distribution for each random parameter. Our proposed scenario-robust method 
fills this gap between Stochastic Programming and Robust Optimization, and is applicable 
to cases where we have some limited information about the random model parameters. Our 
proposed scenario-robust model allows the decision maker to incorporate historical data 
from past natural disasters but also to represent that this information is limited and does not 
define all possible scenarios. It eases the difficult, and usually impossible, task of providing 
exact probability distributions for uncertain parameters in a stochastic programming model 
through the use of a distribution-free uncertainty set. When well-recorded historical data 
leads to exact knowledge of uncertain parameters, our approach leads to a traditional sto-
chastic-programming model. If such an ideal condition is not attainable, which is expected 
in practice, our model allows decision makers to use ranges that reflect their degrees of 
knowledge regarding the underlying uncertainty of the random parameters.

Our proposed Scenario-Robust Programming model can be used in applications of pre-
positioning relief items for many different types of natural disasters, such as earthquakes, 
floods, and storms, which share a common characteristic that they are somewhat cyclical, 
but difficult to predict the exact timing, location and severity. We also note that our pro-
posed method can be applied to other applications where parameter uncertainty is com-
mon, such as facility location (Melo et al., 2009), vehicle routing (Toth and Vigo, 2014) 
and other operationally-complex settings. Additionally, our proposed methods can be used 
to help facilitate public–private partnerships for creating humanitarian supply chains such 
as was developed through Operation Warp Speed in the United States in 2020 to provide 
vaccines, PPE and other equipment to affected populations in response to the COVID-19 
pandemic.
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8 � Conclusion

This paper proposes a scenario-robust programming method to create a robust preparation 
plan to pre-position relief items to respond to natural disasters. Most existing approaches to 
solving these problems are either too fragile (e.g., stochastic programming) or too conserv-
ative (e.g., robust optimization). Our method aims to overcome these inherent limitations 
by fully utilizing known information while also accommodating the inherent uncertainties 
related to the pre-positioning of relief items for natural disasters. The resulting preparation 
plan is robust and cost-effective. Our method generates a greater variety of robust solutions 
that reflect the degree of known information for the specific natural disaster.

The case study and the simulations in this paper show that the scenario-robust model 
can generate a relief-item-pre-position plan that outperforms stochastic programming 
not only when the deviation of parameters is large, but also when the deviation is small. 
Based on the results from our case study solutions, we find that robustness can be achieved 
through increasing the size of local facilities without building any new facilities at different 
locations when compared to the traditional stochastic programming solution.

There are several possible paths for future research. First, our current method assumes 
the probabilities of scenarios can be obtained from historical data, but the actual loss and 
impact incurred from the disaster is less certain to estimate. If the historical data are not 
sufficient to estimate the probability of each scenario, a new scenario-robust model would 
be needed to simultaneously address the uncertainties in the probabilities of scenarios 
as well as the uncertainties in the parameters that are currently included in our current 
method. One challenge in this approach is that the new model would be highly non-linear, 
and thus, more difficult to solve. Such a model formulation that addresses uncertainties in 
estimating the probability associated with the scenarios would require a highly efficient 
algorithm and could be one area of future research. Second, the objective function in our 
current model is a weighted cost function, which is common and widely used in other 
resource allocation problems. However, such weighted cost functions may not be the best 
representation of humanitarian logistics applications because human suffering is a compo-
nent of this cost function. Simply using a shortage cost parameter in the objective function 
may not be appropriate to represent these costs related to human suffering. Holguín-Veras 
et al. (2013) develop the concept of deprivation cost that is defined as the economic valua-
tion of human suffering. The authors conclude that considering both logistics and depriva-
tion costs concurrently leads to more equality for all groups in a humanitarian logistics set-
ting. Incorporation of deprivation costs in future studies is a worthy endeavor, despite the 
resulting additional complexity, and is another path for future research related to our work.

Appendix 1: Hurricane data

See Tables 12 and 13.
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Table 12   Characteristics of sample hurricanes (Table 3 in Rawls and Turnquist (2010))

Hurricane Category Landfall node Links unusable Water demand 
(1000 gallons)

Food demand 
(1000 units)

Medicine 
demand 
(units)

1 3 5 (4,5) 350 525 500
2 5 14 (12,14) 560 927 883

(14,15)
(15,24)

3 2 22 – 861 181 402
4 2 22 (17,20) 9000 1692 3760
5 4 11,29 – 7500 1771 1687
6 3 15 – 1000 1838 1751
7 2 21 (21,22) 600 324 720
8 1 11 (8,12) 1500 162 360
9 5 13,29 (12,13) 1040 13,300 95,000
10 2 – – 2250 1125 18,750
11 3 21 (21,22) 5000 1750 12,500
12 3 – (15,24) 18,000 630 4500
13 3 – – 2818 80 571
14 4 14,30 – 2239 1477 10,551
15 4 22 – 4400 3921 28,007
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