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Abstract 

The Consistency Index and the Consistency Ratio of the analytic hierarchy process (AHP) were 

designed to measure the ratio of inconsistent judgments among pairwise comparisons (PCs), 

which have been the principal indices for the past four decades. Definitions of inconsistency 

measures for PCs have yet to be established, however, because of the difficulty in quantifying 

subjectivity in judgments. Therefore, an empirical review that can take such subjective factors into 

account is essential. In this paper, the Consistency Ratio is thus reviewed using subjective data, 

and then a new inconsistency index for PCs is proposed based on the review. The review is based 

on subjective data obtained from two opinion surveys, which focuses on the relationship between 

the Consistency Ratio and two indicators: (1) the conformity of the results of the AHP and that of 

the ranking method, and (2) the goodness-of-fit of weight elicited by the AHP to human 

perception. A new inconsistency index is then proposed based on the mathematical property of a 

pairwise comparison matrix and further validated based on the conformity and the goodness-of-

fit of weight. The results show that the proposed index detects inconsistency among real-world 

PCs more sensitively than could the Consistency Ratio; the index might suggest the reliability of 

the output of a pairwise comparison matrix. 
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1 Introduction 

 

When making decisions, a subject (individual or group) expresses preferences for alternatives in 

some way, for example, by rating, ranking, or multiple choice. Pairwise comparison (PC) has also 

been used, and presents some advantages compared to the other methods. For example, rating 

methods require that the calibration of preferences across subjects be synthesized, a very 

challenging task. The problem with the ranking method, whereby all alternatives must be ordered 

from the most preferred to the least, is that it requires more time than does PC (e.g., Inglehart and 

Abramson, 1993). The number of possible rankings also increases exponentially with any increase 

in the number of alternatives. Although the multiple-choice method allows decision makers to 

easily express their preferences, the precision of its output is not high, as no information for the 

not-selected alternatives can be obtained. In contrast, PC provides precise output and requires 

neither synthesis nor longer processing time. Nevertheless, the quadratic increase in number of 

comparisons and the inconsistency among redundant PCs remain to be resolved.  

Ever since the pioneering work of Thurstone (1927), PC began being used primarily in the field 

of psychology. PC was then widely applied to decision-making methods in measuring human 

perception because of its flexibility and applicability to diverse situations. One significant 

application of PC in decision science has been to the analytic hierarchy process (AHP) developed 

by Saaty (1977). The AHP aggregates data obtained from a decision maker’s PCs, and then 

quantifies his/her preference for alternatives. The quantification results not only in the 

identification of the most important alternative but also in the ranking of all alternatives. As such, 

the AHP has been applied to a wide variety of fields thanks to its user-friendly interface, simple 

architecture, and applicability to real problems. For example, it has been applied to the fields of 

manufacturing (e.g., Dey et al., 2015; Sato et al. 2017), logistics (e.g., Kengpol and Tuammee, 2016; 

Moktadir et al., 2018), and public administration (e.g., Dong et al., 2013; Ishizaka and Labib, 2014). 

Nevertheless, because the AHP requires redundant PCs for decision makers, the transitivity of 

preferences is sometimes violated. Therefore, Saaty (1980) developed the Consistency Index (CI) 

to measure the ratio of inconsistent judgments among PCs. In the literature, the Consistency Ratio 

(CR) was also developed to take the size of a pairwise comparison matrix (PC-matrix) into account. 

Both indices have been considered crucial determinants for judging the degree of inconsistency of 

a PC-matrix, requiring that the CI (CR) remain in an appropriate range, viz. less than 0.1. However, 

criticisms arose (e.g., Lootsma, 1991; Murphy, 1993) focusing on how to interpret the CI and how 

to deal with PC-matrices with a large CI. Based on extensive discussions by Saaty responding to 

each of the criticisms (e.g., Saaty, 1997; 2001a; 2001b; 2005; 2006), the AHP evolved to include 

work on the interpretation of the CI. Later, Saaty (2010) noted that the CI should be used as an 

indicator to improve decision making as follows: as the CI indicates the ratio of inconsistent 



 

 

judgments among PCs, a PC-matrix with a large CI needs to be reassessed by finding inconsistent 

judgments in the matrix. Decision makers are then encouraged to refine inconsistent judgments 

to plausible values. More recently, Yoon (2020) has shown that the inconsistency negatively affects 

the Compatibility Index that is useful for validating or grouping the differences of multiple 

pairwise comparison matrices. 

In the reassessment, AHP software such as expertchoice® can reduce the burden for decision 

makers in finding inconsistent judgments. The AHP, however, may not always be implemented 

with such well-designed software, as in cases when Excel® may be used instead. An application of 

the AHP to opinion surveys is a case in point. Since weights elicited by the AHP can precisely 

describe each respondent’s preference for alternatives given in a questionnaire, their application 

is of significant use (e.g., Sato et al., 2015; Moktadir et al., 2018). Because surveys are often 

conducted by mail, however, providing respondents with questionnaires equipped with pay 

software, e.g., expertchoice®, would not be feasible. As such, respondents would have no way to 

review their PCs to know whether their CIs would satisfy the threshold. Reassessments by 

respondents would require a great deal of time and effort, thus diminishing the applicability of the 

AHP.  

In order to address inconsistency among PCs, a variety of indices have been proposed in 

addition to the CI (CR). Table 1 summarizes the major indices proposed to date. Based on an 

exhaustive review of these indices, Brunelli (2018) studied inconsistency indices for PCs. 

Szybowski et al. (2020) updated the work and have further addressed inconsistency by focusing 

on the differences between complete and incomplete PC-matrices. In other words, systematic 

reviews focusing on mathematical properties of the indices have been conducted. Nevertheless, 

one issue must be noted here: how to validate the indices. As can be seen in Table 1, most 

verifications of the indices use numerical examples and/or simulations. Shiraishi et al. (1998), 

Gass and Rapcsa k (2004), Kou and Lin (2014), Kułakowski (2015), and Szybowski et al. (2020) 

validated their indices using numerical examples, while Crawford and Williams (1985), Stein and 

Mizzi (2007), Grzybowski (2016), and Fedrizzi and Ferrairi (2018) employed simulation in their 

verifications.  

 

Table 1  Major indices and approaches to validation. 

Index Reference Validation 

CI, CR Saaty (1977, p. 237) Experiment 

s2 Crawford & Williams (1985, p. 395) Simulation 

G Golden & Wang (1989, p. 71) Experiment 

MC(A) Takeda (1993, p. 32) * mathematical property only 

CM(A) Duszak & Koczkodaj (1994, p. 275) * mathematical property only 

AI(A) Salo & Ha ma la inen (1995, p. 465) Experiment 



 

 

RE(A) Barzilai (1998, p. 125) Numerical example 

C3 Shiraishi et al. (1998, p. 407) Numerical example 

IM Gass & Rapcsa k (2004, p. 581) Numerical example 

HCI Stein & Mizzi (2007, p. 492) Simulation 

IG(A) Cavallo & D’Apuzzo (2009, p. 395) * mathematical property only 

CCI Kou & Lin (2014, p. 228) Numerical example 

Emax(A, w) Kułakowski (2015, p. 334) Numerical example 

ATI Grzybowski (2016, p. 202) Simulation 

Iχ2(A) 
Fedrizzi & Ferrairi (2018, p. 1127) Simulation 

MII(A), KII(A) Szybowski et al. (2020, p. 140) Numerical example 

 

An index can also be validated through experimentation. For example, Saaty (1977, p. 253) 

validated the efficacy of the CI based on the famous experiment on “relative visual brightness.” 

Golden and Wang (1989, p. 77) compared their G-value with the CI through the case of “Iran 

hostage rescue decision.” Salo and Ha ma la inen (1995, p. 467) verified their interval judgment 

based on the case study of “Finnish energy policy decision.” Of particular note are the validations 

by Golden and Wang (1989) and by Salo and Ha ma la inen (1995). The experiments they used dealt 

with subjective judgments in the real world, meaning that those experiments did not have a “true” 

answer, which is known, as was the case with experiments in physics. Since it is often quite 

challenging to judge whether findings from such experiments are correct, far fewer verifications 

are conducted using experiments on subjective issues than those based on numerical examples or 

simulations. The fact remains, however, that given that PCs are used to describe subjective human 

perceptions, indices for PCs must be validated using subjective data. Brunelli (2018, p. 765) 

stressed the importance of empirically verifying indices using real data: “considering the scarcity 

of empirical studies in the literature, it is foreseeable that new studies of this type could be valuable 

contributions.” In addition, the volume of data needs to be noted in the verifications to generalize 

the results of a validation. Data from not just one expert but from a large number of decision 

makers would be preferable.  

In addition to determining how best to validate indices, another issue that needs to be 

addressed is determining the properties that ought to be satisfied by the indices. Since the AHP is 

a tool for decision making, weights obtained from a PC-matrix must contribute to supporting 

decision makers by accurately representing their perceptions. Indeed, from the earliest works of 

the AHP, Saaty (1977) regarded its usefulness to be in social applications. He thus emphasized the 

efficacy of the AHP and used the CI based on various experiments, which had a variety of objects 

and setups. Nevertheless, a great many studies have suggested that the degree of inconsistency 

among PCs affects the reliability of the output of the AHP: weights of alternatives. As shown in 

Table 1, although various indices have been proposed to measure inconsistency among PCs, 



 

 

indices assessing the reliability of the weights have yet to be developed. Since a review of the 

relationship between input to PCs and its output would, of necessity, be retrospective by nature, 

decision makers cannot be aware how well the weights of alternatives represent their perceptions 

when implementing PCs. Therefore, an index not only detects inconsistencies among PCs but also 

suggests the reliability of weights of alternatives obtained from PCs would be of practical use. 

Hence, the objectives of this paper are as follows. 

∙ To empirically review the CR using subjective data. 

∙ To develop a new inconsistency index for PCs that measures inconsistency and suggests 

the reliability of weights of alternatives. 

To address these research questions, an index is reviewed by using data obtained from survey 

questionnaires on subjective issues in this paper. The review focuses on the CR from among a 

variety of indices, as it has been the principal inconsistency index for PCs for the past four decades. 

By using a large amount of subjective data, the review is carried out from the following two 

perspectives: (1) the detectability of inconsistency among PCs and (2) the predictability of the 

reliability of weights obtained from a PC-matrix. A new inconsistency index is then proposed, 

which can not only detect inconsistency among PCs but also suggest the reliability of the weights. 

The index is then validated in the same way as the review of the CR. This paper is organized as 

follows. Section 2 summarizes the definitions and the interpretations of indices, and formulates 

two hypotheses examining the CR. The hypotheses are tested in Section 3 using data obtained from 

the applications of the AHP to the real world. Section 4 proposes a new inconsistency index 

followed by its validation. Section 5 concludes this paper and presents directions for future 

research. 

 

 

2 Definitions and interpretations of indices  

 

The CI was designed to measure the transitivity of preferences among PCs (Saaty, 1977). The CR 

is designed to be a similar index, taking the size of a PC-matrix into account. The definitions of the 

CI and the CR are as follows:  

CI ≔(λmax - n)/(n - 1),                                                                                    (1) 

CR ≔CI/RI,                                                                                                 (2) 

where λmax denotes the principal eigenvalue of a PC-matrix, n represents the matrix size, and RI 

(the Random Index) is the average of CIs based on PC-matrices whose elements are generated 

with uniform randomness. Both the CI and CR have been considered the principal criteria for 

judging the consistency of a PC-matrix. Since a PC-matrix is a non-negative reciprocally symmetric 

matrix, the following proposition holds: the matrix has one eigenvalue that equals n and the 



 

 

remaining eigenvalues are all zero, if and only if the transitivity of preferences entirely holds in 

the matrix. Therefore, the more inconsistent the judgments included in PCs are, the larger the CI 

of a PC-matrix would be. All things being equal, the smaller the CI is, the more consistent the 

judgments made in PCs. 

In addition to checking the consistency of a PC-matrix, we also need to determine how to 

measure inconsistency among PCs and how to deal with a PC-matrix with a large CI. As a weight 

with CR=0 is obtained from a consistent PC-matrix where the transitivity of preferences holds 

entirely within a PC-matrix, an inconsistent PC-matrix could thus be considered to induce “wrong” 

weights. Therefore, if decision makers are to trust the output of the AHP, the consistency of a PC-

matrix must be determined. As discussed in Section 1, empirical verification would require a great 

deal of subjective data, which is what we have done here, by reviewing the CR using data obtained 

from the application of the AHP to subjective issues. In the case of a PC-matrix with a large CI, 

some papers necessitated the refinement of the CI by mathematically adjusting the elements of 

the PC-matrix (e.g., Alonso and Lamata, 2005; Zhang et al., 2014); other papers requiring the 

application of the AHP wound up discarding PC-matrices with a large CI. For example, Chang et al. 

(2007) discarded decision matrices if CR>0.15; Chen et al. (2010) did so when CR>0.1. While the 

reasonableness of accepting/rejecting a PC-matrix is not discussed in this paper, clarifying 

guidelines for inconsistent PC-matrices when using the AHP would be advisable from a practical 

point of view.  

In the review of the CR using real-world PCs, this paper focuses on two functions: (1) the 

detectability of inconsistency among PCs, and (2) the predictability of the reliability of weights 

obtained from a PC-matrix. To verify detectability, we review the CR based on a criterion called 

CAR.  

 

Definition 1  CAR (Conformity of rankings between the AHP and the ranking method) 

The degree of conformity between two rankings: one based on weights elicited from the AHP, 

and the other obtained from the ranking method. 

The CAR is measured by comparing two rankings of alternatives obtained using two different 

methods. The rankings employed in this paper were obtained from an opinion survey consisting 

of questions about an issue formatted in two ways. One is formatted by the AHP requiring that 

respondents implement PCs; the other uses the ranking method. The AHP provides the ranking of 

alternatives based on weights obtained from a PC-matrix; the ranking method directly outputs the 

ranking of alternatives. Since both rankings signify a respondent’s preference for the set of 

alternatives, the same, or at least similar, rankings of alternatives are presumably derived. The 

high (low) correlation group can thus be considered to be composed of consistent (inconsistent) 

respondents. The degree of CAR is determined by a Spearman rank-correlation coefficient 



 

 

between the two rankings. In this paper, the results are simply classified into two groups, a “high 

correlation group” and a “low correlation group,” as the rankings are obtained from opinion 

surveys on subjective issues. According to the themes of the surveys (see Sections 3.1 and 3.2), 

more precise classification, such as that being done in physical experiments having theoretical 

thresholds, would not be appropriate in these cases. Indeed, a two-way ANOVA comparing factors 

of consistency (threshold value is Saaty’s yardstick, CR=0.1) and conformity (threshold values are 

Spearman rank-correlation coefficients, rS=0.7, 0.4, and 0.2. See Table 2 below), respectively, 

results in p-values of 0.31653 for consistency and 0.10593 for conformity. In short, null 

hypotheses examining the difference of means of CRs among the four groups cannot be rejected. 

Therefore, the differences in the distribution of CRs between the two above-mentioned groups are 

then verified by the Mann-Whitney U test. The correlation between the CR and the CAR could thus 

measure the CR’s detectability of inconsistency among real-world PCs. 

In addition to a review of the CR based on the CAR, the CR is reviewed based on an additional 

criterion, called GWP, to verify predictability. 

 

Definition 2  GWP (Goodness-of-fit of weight to human perception) 

The degree of goodness-of-fit of weight obtained from a PC-matrix to a decision-maker’s 

perception assessed by him/herself. 

Goodness of fit typically summarizes the discrepancy between observed values and the values 

expected under the model in question. The degree of GWP is measured through a panel survey in 

which participants, in the first round of a survey, implement PCs on a subjective issue. Once the 

results of PCs are fed back to participants, in the second round they assess how precisely the 

weights obtained from their PC-matrices represent their perceptions. The GWP thus summarizes 

the discrepancy between participants’ perceptions of the input and the output—PCs and a set of 

weights of alternatives—to and from a PC-matrix. In other words, the GWP aims to assess the 

reliability of weights by reviewing how a decision maker implementing PCs retrospectively 

perceives the output from PCs. Based on the assessment, the degree of GWP is classified as “True,” 

“Rather true,” “Neutral,” “Rather false” or “False.” Since the CR is one of the components of this 

tool for decision making, ideally the index suggesting the reliability of weights should be obtained 

from a real-world PC-matrix. Even indices with good mathematical properties would be of little 

practical use if they did not contribute to supporting decision makers. The output must always be 

deemed trustworthy.  

The above discussion leads us to propose the following hypotheses: 

H1: There is no significant difference in the distribution of CRs between the two groups 

classified by the CAR. 

H2: There is no significant difference in the size of CRs among the degrees of the GWP. 



 

 

Hypothesis H1 examines whether the distribution of CRs differs between the high and low 

correlation groups; hypothesis H2 tests whether the CR correlates with decision makers’ 

perceptions of the weights obtained from a PC-matrix. Since the verifications based on the CAR 

and the GWP use real-world PC-matrices, the empirical approach employed in this paper would 

prove the efficacy of the CR in more realistic terms than would the use of numerical examples or 

simulations.  

 

 

3 Analyses 

 

In this section, the two hypotheses, H1 and H2, are examined through opinion surveys. The use of 

subjective data obtained from the surveys derives from the extant criticisms to numerical 

examples and simulations—the lack of realistic conditions that real-world PCs must incorporate, 

such as biases. Two surveys (hereafter, Surveys 1 and 2) employed in the analyses were carried 

out in 2010, in which respondents were university students in Japan. Survey 1 was a one-shot 

survey designed for examining hypothesis H1, while Survey 2 was a panel survey for testing 

hypothesis H2. As Survey 2 required respondents in the first round to answer the questions in the 

second-round, participants in the surveys needed to be controllable. In addition, for the findings 

of reviews to be generalized, a certain number of respondents were needed in the surveys. Based 

on these requirements, students in a university were then chosen as respondents. Consequently, 

the number of respondents in the surveys were 370 (Survey 1) and 371 (Survey 2), respectively.  

 

3.1 Verification of H1 

 

The test of Hypothesis H1 uses data obtained from Survey 1 examining the correlation between 

the CR and the CAR. Participants in Survey 1 were university students in Japan who were asked to 

clarify their political opinions. In the questionnaire, two differently formatted questions on a 

particular issue were posed, each asking students to express their opinions on four controversial 

political issues in Japan at the time of the survey: (i) conservation of the social order, (ii) 

encouragement of political participation, (iii) reduction of the unemployment rate, (iv) protection 

of free speech. Students were asked which of the four issues they thought more important than 

the others. One format employed the ranking method, in which students were asked to rank the 

four issues given in the question from the most important to the least; the other was formatted 

using the AHP, which required the students to implement PCs across all possible combinations of 

the four issues. 



 

 

The hypothesis test focuses on pairs of rankings of the same set of four alternatives. The 

ranking of alternatives obtained from the ranking method directly represents the respondent’s 

preference order of alternatives; the ranking elicited from the AHP is based on the weight of each 

alternative. Thus, by comparing the CRs of PC-matrices between the high and low correlation 

groups, the CR’s detectability of inconsistency among real-world PCs can be verified.  

Table 2 summarizes the results of the analysis based on the Spearman rank-correlation 

coefficient, rS. In this study, the CR of a set of rankings with 0.7≤ rS ≤1 is categorized as the high 

correlation group, while that with -1≤ rS <0.7 is categorized as the low correlation group. As can 

be seen in the table, the rankings obtained from the differently formatted questions correlate to 

some degree (67.6% = 250/370). In addition, as Figure 1 illustrates, the distribution of CRs of the 

two groups correlate with each other, with the mean of CRs of the high (low) group being 0.20042 

(0.21215), and their variance at 0.067154 (0.097263), respectively. Indeed, as shown in Table 3 

summarizing the results of the Mann-Whitney U test between the two groups, Mann-Whitney U = 

14548 and Z=-0.46933, which results in a p-value of 0.63836. These results thus indicate no 

significant difference exists in the distribution of CRs between the two groups. Hence, Hypothesis 

H1 cannot be rejected. That is, the CR might not sensitively detect the inconsistency among real-

world PCs based on the CAR. 

 

Table 2  Results of the analysis based on Spearman rank-correlation coefficient. 

* See Section 4.1. 
 

 

 

 

 

 

 

 

 

 

𝑟S # of obs. Group 
# of categorized 

obs. 

Mean of CR 

(CRβ*) 

Variance of CR 

(CRβ*) 

[ -1, 0.2) 25 

low correlation 120 
0.2234652 

(0.3907898) 

0.1275835 

(0.2086084) 
[ 0.2, 0.4) 58 

[ 0.4, 0.7) 37 

[ 0.7, 1] 250 high correlation 250 
0.1949937 

(0.2437422) 

0.05307211 

(0.08292517) 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Distributions of CRs. 

 

Table 3  Results of the Mann-Whitney U test. 

Mann-Whitney U Mean Variance Z p-value 

14548 15000 927500 -0.46933 0.63836 

 

 

3.2 Verification of H2 

 

The test of Hypothesis H2 uses data obtained from Survey 2, which examines the correlation 

between the CR and the GWP. Participants in Survey 2 were university students in Japan searching 

for jobs who were asked to identify their preferences in their search. Survey 2 consisted of two 

rounds. In the first round, a question formatted using the AHP asked about the alternatives of: (i) 

salary, (ii) place of business, (iii) self-fulfillment, (iv) welfare system. Provided the feedback—a 

set of weights of four alternatives elicited from the AHP—from the first round, the students then 

assessed in the second round how precisely the weights represented their preferences.  

The hypothesis test focuses on the degree of goodness of fit between the input and the output 

to and from a PC-matrix. The CR measures the ratio of inconsistent PCs within a PC-matrix; the 

index evaluates the input to the matrix. The GWP indicates a decision maker’s assessment of a set 

of weights obtained from a PC-matrix; the index evaluates the output of the matrix. Since the AHP 

quantifies decision makers’ perceptions through a PC-matrix, the compatibility between the input 

and the output of the matrix is crucial. Granted, the CR might not always be proportionate to the 
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degree of GWP. However, if the CR correlates with the degree of GWP, we could infer from the CR 

the reliability of weights obtained from a real-world PC-matrix.  

In the second round, the students assess the GWP as follows: 

∙ True: strongly agree with the weights obtained from the AHP 

∙ Rather true: agree with the weights obtained from the AHP 

∙ Neutral: neither agree nor disagree with the weights obtained from the AHP 

∙ Rather false: disagree with the weights obtained from the AHP 

∙ False: strongly disagree with the weights obtained from the AHP 

Students were asked to choose one option from among the five; students were not notified of the 

CR of their PCs in the first round.  

Figure 2 illustrates the distribution of CRs in the second round of Survey 2 classified by the 

degree of GWP. Table 4 shows the correlation coefficients for the five assessments and the means 

of their CRs; Table 5 summarizes the results of the assessments using ANOVA. As illustrated in 

Figure 2, the distributions of CRs correlate. Indeed, the correlation coefficients among the five 

assessments shown in Table 4 range between 0.92045 and 0.75238. Furthermore, Table 5 

indicates that F=0.85428<Fcrit =2.4582 and the p-value=0.49410. As a result, there is no significant 

difference in the CR among the assessments at p=0.05. Hence, Hypothesis H2 cannot be rejected. 

Through the panel survey evaluating the correlation between the CR and the GWP, it is clear that 

the ability of the CR to predict the reliability of weights obtained from a real-world PC-matrix is 

not significant. That is, the CR might not contribute to implementing PCs from a practical 

perspective. 

Fig. 2  Distributions of CRs. 
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Table 4  Correlation among the assessments, means of the CR. 

GWP True Rather true Neutral Rather false False Mean of CR 

True 1     0.2067549 

Rather true 0.8539965 1    0.1943344 

Neutral 0.9204539 0.9126712 1   0.1746002 

Rather false 0.8583155 0.7523808 0.8455428 1  0.1964678 

False 0.9020223 0.8300841 0.8354226 0.7969085 1 0.2091477 

 

Table 5  Results of ANOVA. 

Source of Variation SS df MS F P-value Fcrit 

Between Groups 86.03636 4 21.50909 0.8542838 0.4941003 2.458210 

Within Groups 2643.682 105 25.17792    

Total 2729.718 109     

 

 

4 Proposal of a new inconsistency index 

 

In this section, a new inconsistency index for PCs is proposed focusing on the missing information 

of eigenvalues of a PC-matrix. The index is then validated based on the two criteria of the 

hypothesis tests of the CR: the CAR and the GWP.  

 

4.1 Definition of a new inconsistency index 

 

This paper has uncovered the possibility of creating a new inconsistency index from the 

calculation processes of indices proposed to date. As illustrated by Brunelli (2018, p. 759, Fig. 4), 

some indices share many similarities, which might stem from the summation of eigenvalues of a 

PC-matrix in calculating indices, as the CI does. If the matrix has complex eigenvalues, then they 

occur in conjugate pairs by nature. For example, a PC-matrix A has the following eigenvalues:  

 A = 

(

 
 

1 2 3 4 5
1/2 1 2 3 4
1/3 1/2 1 2 3
1/4 1/3 1/2 1 2
1/5 1/4 1/3 1/2 1)

 
 

 

λ1=5.0681, λ2=0.0049888+0.58276i, λ3=0.0049888-0.58276i, λ4=-0.039029+0.068286i, λ5=     

-0.039029-0.068286i, which result in CI=0.017025 and CR=0.015201, where CIβ*=0.34255 and 

CRβ*=0.12408 (* see Definition 3 below). As such, the imaginary parts of the eigenvalues are 

cancelled when calculating indices. Based on this property of the matrix, we propose a new 

inconsistency index. 



 

 

   Since a PC-matrix is positive and reciprocally symmetric square, it has a unique real principal 

eigenvalue corresponding to the Frobenius root, whose corresponding eigenvector is always 

strictly positive, according to the Perron-Frobenius theorem (Perron, 1907; Frobenius, 1912). The 

principal eigenvalue equals the size of the matrix, n, and the remaining eigenvalues are all zeros, 

if and only if transitivity of preferences holds entirely within the matrix. If not, the remaining 

eigenvalues must occur in conjugate pairs because the roots of the characteristic polynomial of a 

PC-matrix with real elements occur in conjugate pairs, λ = α ± β ∙i where α and β respectively denote 

the real and the imaginary parts of an eigenvalue. Let A = (akl), (k, l=1, …, n) be a PC-matrix. Further, 

let λj = αj ± βj ∙i, (j=1, …, n) and λmax respectively denote the eigenvalues and the principal eigenvalue 

of A. Since diagonal elements akk equals 1 for any k, tr(A)=n, then, ∑ 𝜆𝑗
𝑛
𝑗=1 =n holds, which results 

in 

CI=(λmax - n)/(n - 1)=(λmax - ∑ 𝜆𝑗
𝑛
𝑗=1 )/(n - 1).                                                      (3) 

Eq. (3) means that the CI calculates the average of eigenvalues apart from the principal eigenvalue 

of A. The CI is thus calculated based only on αj; the imaginary part, βj, is cancelled in its process.  

Figure 3 illustrates the distributions of α and β of randomly generated PC-matrices coordinated 

by the CI, where n=5 and the sample size is 1000. As shown in the figure, the distribution of α 

seems to have a lower envelope with respect to the CI. On the other hand, β has a different 

distributional property from α, which likely has an upper envelope with respect to the CI. The 

relationship between the mathematical grounds of the distributions and human perception is not 

clear, though one implication can be derived as follows. According to the distribution of β, the CI 

is defined as the ignoring of a certain amount of information provided by the imaginary part of 

eigenvalues, which might affect the CI’s detectability of inconsistency within a PC-matrix. 

Therefore, focusing on both the real and the imaginary parts of eigenvalues, a new inconsistency 

index, called CIβ, is defined in this paper.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Distributions of α and β. 

 

Definition 3  CIβ and CRβ 

CIβ ≔(λmax - n + ∑ |𝛽𝑗|
𝑛
𝑗=1 )/(n - 1),                                              (4) 

CRβ ≔CIβ/RIβ,                                                  (5) 

where RIβ is the average of CIβs based on PC-matrices whose elements are generated with 

uniform randomness. 

 

Table 6 summarizes the RIβs for matrix sizes from 3 to 9 to obtain the threshold values based on 

randomly generated 1000 PC-matrices. 

 

Table 6  RIβ (n=3, …, 9). 

n 3 4 5 6 7 8 9 

RIβ 1.2471 2.2715 2.7608 3.0829 3.8272 4.1567 4.7004 

 

 

4.2 Properties of the CIβ 

 

Brunelli and Fedrizzi (2015) and Brunelli (2017) presented the following six properties that an 

inconsistency index of a PC-matrix would necessarily satisfy. Indices proposed in the literature 

were tested (e.g., Fedrizzi and Ferrari. (2018)), and some satisfied all of the properties and others 

were proven to violate several of the properties. In this paper, the CIβ is formally proved to satisfy 



 

 

Properties 1, 2, 5, and 6, and verified through numerical simulations for Properties 3 and 4 as 

follows.  

 

Property 1  There exists a unique real number representing the situation of full consistency. 

λmax=n and βj=0 for any j, if and only if transitivity of preferences in a PC-matrix A holds 

entirely within the matrix. Therefore, it directly follows that CIβ=0, if and only if A is consistent. 

Property 2  An inconsistency index is independent from the order of the alternatives. 

For any permutation matrix P, the characteristic equation of a matrix PAPT is the same as that 

of A. CIβ obtained from PAPT is thus equal to that of A. 

Property 3  An inconsistency index cannot decrease if inconsistent preferences are intensified. 

This property is verified through numerical simulation in this paper. For any PC-matrix A=(akl) 

(akl ∈[1/9, 9], k, l=1, …, n), let A(b)=(abkl) be a PC-matrix whose preferences are modified by a 

parameter b∈R. Then the λmax of A(b) is a non-decreasing function for 0≤b and hence for 1<b, 

which represents an intensification of preferences (see Brunelli and Fedrizzi (2015)). This 

intensification of inconsistent preferences thus results in 0≤𝑑CI 𝑑𝑏.⁄   On the other hand, 

Figures A1-A7 illustrate comparisons between the CI and the CIβ for n=3, …, 9, where CI and 

CIβ are calculated based on randomly generated 1000 PC-matrices. As shown in the figures, 

indices are concavely distributed or have concave upper and lower envelopes, each of which 

suggests 0<𝑑CI𝛽 𝑑CI.⁄  Therefore, 0≤𝑑CI𝛽 𝑑𝑏⁄ =𝑑CI𝛽 𝑑CI⁄ ∙ 𝑑CI 𝑑𝑏⁄  hold and CIβ satisfies this 

property. 

Property 4  An inconsistency index is non-decreasing with respect to an elementary modification 

of a consistent matrix. 

The same logic in the verification of Property 3 directly follows that CIβ satisfies this property. 

Property 5  An inconsistency index is continuous with respect to the entries of a matrix. 

The root of an algebraic equation is a continuous function of coefficients of the equation, and 

coefficients of a characteristic equation of a matrix is a continuous function of entries of the 

matrix. The eigenvalue of a matrix is thus a continuous function with respect to the entries of 

the matrix, which proves that CIβ satisfies this property. 

Property 6  An inconsistency index is invariant under inversion of preferences. 

Since the characteristic equation of a matrix AT is the same as that of a matrix A, CIβ satisfies 

this property. 

Therefore, the CRβ is an index that incorporates the missing information of βj into the definition, 

which has similar properties to those of the CR. Figure 4 illustrates the scatter plot comparing the 

values of the CR and the CRβ whose data are obtained from Survey 2.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Scatter plot of CR-CRβ (from Survey 2). 

 

Based on the above discussion, the following hypotheses are formulated.  

H3: There is no significant difference in the distribution of CRβs between the two groups 

classified by the CAR. 

H4: There is no significant difference in the size of CRβs among the degrees of GWP. 

 

4.3 Verifications of H3 and H4 

 

The tests of Hypothesis H3 and H4 use data obtained from Surveys 1 and 2, respectively. As was 

done in Sections 3.1 (for H1) and 3.2 (for H2), the verifications focus on the relationship between 

the CRβ and the degrees of the CAR and the GWP in hypothesis tests of H3 and H4, respectively. 

CRβs are categorized according to Table 2 summarizing the Spearman rank correlation coefficient, 

rS, in Section 3.1.  

To test Hypothesis H3, Figure 5 illustrates the distributions of CRβs in Survey 1, which shows 

apparent differences between the high and low correlation groups. Comparing Figures 5 to 1, the 

distributions in the two figures differ from each other. Indeed, as shown in parentheses (*) in Table 

2, the mean of CRβs of the high (low) group is 0.24374 (0.39079), and their variance is 0.082666 

(0.20699), respectively. Furthermore, as shown in Table 7 summarizing the results of the Mann-

Whitney U test between the two groups, Mann-Whitney U=11079 and Z=-4.0708, which results in 

a p-value of 0.000046739. These results indicate that there are significant differences in the 

distribution of CRβs between the two groups. Hence, Hypothesis H3 is rejected. Through empirical 

verification of the correlation between the CRβ and the CAR, the CRβ’s detectability of 



 

 

inconsistency among real-world PCs is confirmed. Compared to the results of the test of 

Hypothesis H1 (a p-value of 0.63836 for the CR. See Table 3), the results of the test of Hypothesis 

H3 show that the CRβ detects the inconsistency more sensitively than does the CR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Distributions of CRβs. 

 

Table 7  Results of the Mann-Whitney U test. 

Mann-Whitney U Mean Variance Z p-value 

11079 15000 927500 -4.0708 0.000046739 

 

For the test of Hypothesis H4, Figure 6 illustrates the distributions of CRβs in the second round 

of Survey 2 classified by the degree of GWP. Table 8 shows the correlation coefficients for the five 

assessments and the means of their CRβs; Table 9 summarizes the results of the assessments using 

ANOVA. As illustrated in Figure 6, the distribution of CRβs differs among the five assessments. 

Indeed, the correlation coefficients among the assessments shown in Table 8 range between 

0.63453 and -0.57673, which indicates they do not correlate with each other. Furthermore, the 

mean of the CRβs gradually increases from “True” (0.20331) to “False” (0.58018), which might 

indicate an inverse relationship between the CRβ and the reliability of the output of a real-world 

PC-matrix. On the other hand, Table 9 indicates that F=2.0135<Fcrit =2.4582 and the p-value= 

0.097892. Consequently, there are differences among the five assessments at p=0.10, while no 

significant difference could be found at p=0.05. Thus, the ANOVA results are not statistically 

significant and Hypothesis H4 cannot be rejected, despite the fact that the CRβ and the GWP 

correlate with each other. Hence, the results of the test of Hypothesis H4 remain inconclusive. 
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Through the panel survey evaluating the correlation between the CRβ and the GWP, the ability of 

the CRβ to predict the reliability of weights obtained from a real-world PC-matrix might have been 

implied to some extent. That is, the CRβ might be seen as contributing to implementing PCs from 

a practical perspective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Distributions of CRβs. 

 

Table 8  Correlation among the assessments, means of the CRβ. 

GWP True Rather true Neutral Rather false False Mean of CRβ 

True 1     0.2033068 

Rather true 0.6116181 1    0.2952003 

Neutral -0.07264067 0.1910349 1   0.4407196 

Rather false -0.3210833 -0.2517166 

 

0.6345343 1  0.5222685 

False -0.5767363 -0.5475067 0.3945195 0.5605225 1 0.5801768 

 

Table 9  Results of ANOVA. 

Source of Variation SS df MS F P-value Fcrit 

Between Groups 86.03636 4 21.50909 2.013454 0.09789164 2.458210 

Within Groups 1121.682 105 10.68268    

Total 1207.718 109     
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5 Concluding remarks and future research 

 

This study empirically reviewed the CR from a practical perspective and proposed a new 

inconsistency index for PCs. The review explored the capabilities of the CR both in detecting 

inconsistency among PCs, and in suggesting the reliability of the output of a PC-matrix. In the 

review, the relationship between the CR and the degrees of the CAR and the GWP were verified 

using subjective data obtained from opinion surveys. The verification of the CR based on the CAR 

empirically compared representations of decision makers’ perceptions obtained from the ranking 

method and the AHP. This approach derived from criticisms to “random culture” (Brunelli, 2018) 

in reviewing indices—employing numerical examples and/or data obtained from simulation—

and incorporated practical conditions for real-world PCs. On the other hand, the verification of the 

CR based on the GWP went in a new direction to review indices for PCs. The use of a panel survey 

enabled us to conduct a retrospective evaluation of the compatibility of the input to PCs and the 

output of a PC-matrix. As noted in Section 1, the degree of inconsistency among PCs affects the 

reliability of the output of the AHP. The approach based on the GWP that evaluated reliability could 

thus provide new insights into the review of indices for PCs. The results showed that (i) based on 

the CAR, the CR might not sensitively detect inconsistency among real-world PCs, and (ii) based 

on the GWP, the CR did not correlate with decision makers’ perceptions of the output of a PC-

matrix.  

In addition to the review of the CR, this study proposed a new inconsistency index, CRβ. The 

index refined the CR by incorporating complementary information provided by the imaginary part 

of eigenvalues of a PC-matrix that had been ignored by indices proposed to date. The CRβ was then 

validated based on the same criteria for the review of the CR in this paper: the CAR and the GWP. 

The results of reviews using subjective data showed that (iii) the CRβ detected inconsistency 

among real-world PCs more sensitively than could the CR, (iv) the CRβ might, but could not 

conclusively, suggest the reliability of the output of a PC-matrix. Since decision-makers agreeing 

with results of PCs do not consistently compare alternatives, nor do those disagreeing with results 

of PCs always make inconsistent judgments, result (iv) might not yet be solid. Kułakowski and 

Talaga (2020, p. 196) noted on the definition of indices: “Finding a solution that combines 

robustness with the simplicity of implementation and calculation will still be a challenge for 

researchers.” Given such background in defining indices, the GWP could be a possible criterion for 

researchers of the AHP, and the CRβ could be an alternative inconsistency index for users of the 

AHP dealing with real-world PCs, respectively.  

Nevertheless, this paper has some limitations. Unlike physical values, there are no “right” 

answers in subjective issues: determining definitive criteria for the review of indices is challenging. 

Rankings obtained from the ranking method and those elicited by the AHP do not necessarily 



 

 

measure the same object in a narrow sense: the degree of CAR might just be a rough standard of 

inconsistency among PCs. Likewise, a high degree of GWP does not necessarily imply a right 

decision, nor would a low degree of GWP suggest a wrong decision: the degree of GWP might not 

be a solid criterion for reviewing indices. These criteria for the review of indices need to be 

explored in future research.  

The new index, CRβ, also requires further verification. Properties 3 and 4 are verified through 

numerical simulation, though formal proofs will still be required. In addition, this paper validates 

the index through two opinion surveys, each of which has four alternatives in the questionnaires. 

We need to follow up with additional cases to investigate the index. In the explorations, it would 

be preferable that the number of alternatives in a case range from three to at least nine, based on 

Saaty (1980). Lastly, an important limitation of this paper is the lack of reviews of indices other 

than the CR. In this paper, the review focuses solely on the CR among indices proposed to date 

because the CR has been the principal index; other prominent indices have not yet been reviewed. 

For the findings of reviews to be generalized, these indices need to be verified as well based on the 

CAR and the GWP. 
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Appendix:  Scatter plots of CI-CIβ (n=3, …, 9). 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1  n=3.                             Fig. A2  n=4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A3  n=5.                             Fig. A4  n=6. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A5  n=7.                              Fig. A6  n=8. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A7  n=9. 
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