
Annals of Operations Research (2022) 309:347–363
https://doi.org/10.1007/s10479-021-04441-1

ORIG INAL RESEARCH

A simple heuristic policy for stochastic inventory systems
with both minimum andmaximum order quantity
requirements

Han Zhu1

Accepted: 10 November 2021 / Published online: 6 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we consider a periodic-review stochastic inventory system with both minimum
and maximum order quantity (MinOQ and MaxOQ, respectively) requirements. In each
period, if an order is placed, the order quantity is bounded, at least at the MinOQ and at
most the MaxOQ. The optimal policy of such a system is unknown, and even if it exists, it
must be quite complicated. We propose a heuristic policy, called the modified (s, S) policy,
under which whenever the inventory position drops to the reorder point s or below, an order
is placed to raise the inventory position as close as possible to the order-up-to level S.
Applying a discrete-time Markov chain approach, we are able to compute the system-wide
long-run average cost. We provide bounds for the optimal values of s and S and design an
efficient algorithm to optimize our proposed policy. In addition, the proposed heuristic policy
has excellent performance in our numerical studies. We also measure the impact of some
inventory parameters.

Keywords Inventory · Minimum order quantity · Maximum order quantity · Heuristic
policies

1 Introduction

In this paper, we consider a stochastic inventory system with both minimum and maximum
order quantity requirements. The minimum order quantity (MinOQ) requirement means that
the order quantity must equal or exceed a specified level if an order is placed. The maximum
order quantity (MaxOQ) constraint means that the order quantity cannot be larger than a
specified amount.

The MinOQ requirement is widely adopted by suppliers in practice, as it sets the lowest
quantity of a certain product that a supplier is willing to sell. If the buyer cannot reach the
MinOQ requirement, then the supplier is not willing or able to enter production. With the
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prevalence of e-commerce, MinOQ requirements are becoming increasingly common in our
lives, especially in online sourcing portals such as alibaba.com, where suppliers often set
such requirements, e.g., 500 pieces for bathroom carpets1, 100 pieces for quartz watches2,
and 50 pieces for denim jackets3.

The application of MaxOQ is also ubiquitous in practice. On the one hand, the MaxOQ
requirement can be set by the supplier on its own. This may be due to the supplier’s insuffi-
cient production capacity or limited resources to be rationed among several competitors. For
example, during the outbreak of the COVID-19 pandemic, several businesses set a maximum
order quantity of face masks that each organization/person could buy (Global Times 2020;
Strong 2020). On the other hand, the MaxOQ constraint can be caused by the buyer’s limited
storage space or capital. For example, Chan and Muckstadt (1999) found that some firms
have an upper limit on their order quantity, because fluctuations in inventory levels can be
costly.

Since MinOQ and MaxOQ requirements are prevalent in industries, it is of no surprise
that suppliers may simultaneously apply both requirements. Indeed, our decision to jointly
consider both MinOQ and MaxOQ requirements in this paper is largely motivated by our
experiencewith awholesale company in China. For a variety of products, the firmfirst replen-
ishes its stock from suppliers and then sells to retail customers, and formost of these products,
the firm stipulates both MinOQ andMaxOQ requirements. Managers in such situations need
principles or tools to help control their inventory, because both requirements have a negative
effect on buyers’ inventory control, especially when MinOQs are relatively large compared
with their demand, which is common in practice. However, to the best of our knowledge, no
research has investigated inventory systems with both MinOQ and MaxOQ requirements.
Thus, the primary goal of this paper is to fill this gap in the literature.

In this paper, we consider a single-product stochastic periodic-review inventory system
with both MinOQ and MaxOQ requirements. The selling firm can make a decision at the
beginning of each time period after reviewing the inventory position.When the firmdecides to
place an order, the order quantitymust satisfy both theMinOQandMaxOQconstraints,where
we assume that the MinOQ is less than the MaxOQ. The leftover inventory is carried over
to the next period and incurs a holding cost, whereas unsatisfied demand is fully backlogged
and incurs a backordering cost. The total costs consist of the linear ordering cost, the holding
cost, and the backordering cost. The objective is to minimize the long-run average cost of
the system.

It is shown by Federgruen and Zipkin (1986a) that base-stock policies are optimal for
systems with only MaxOQ requirements (without MinOQ requirements). However, the exis-
tence of MinOQ generates a considerable difficulty for inventory control. To see this, note
that when there is only a MaxOQ constraint, the action sets for the problem are joint, from
zero to the MaxOQ. When MinOQ requirements are taken into consideration, the action
space becomes disjoint, from MinOQ to MaxOQ plus zero. Such a change makes optimally
solving the inventory problem challenging. Zhao andKatehakis (2006) shows that the optimal
policy structure is too complicated to be fully characterized due to disjoint action sets even
for systems with only MinOQ requirements, to say nothing of systems with both MinOQ and
MaxOQ requirements.

1 https://www.alibaba.com/product-detail/Anti-Bacterial-Pvc-Eco-Friendly-Bath_62056099765.html?
spm=a2700.7724857.normal_offer.d_image.4ebf3eaemsUVOn&s=p&fullFirstScreen=true.
2 https://www.alibaba.com/product-detail/2021-New-fashion-product-custom-wrist_1600178110145.
html?spm=a2700.7724857.normal_offer.d_title.29721e338I04XL.
3 https://www.alibaba.com/product-detail/Custom-LOGO-Black-Men-s-Jackets_62054818034.html?
spm=a2700.7724857.normal_offer.d_image.292029cbVunV9K.
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Therefore, the focus of this paper is to propose effective and easy-to-implement heuristic
policies for stochastic inventory systems with both MinOQ and MaxOQ requirements. To
achieve this, we develop a simple heuristic policy, called the modified (s, S) policy, which is
motivated by the modified echelon (r , Q) policies recently adopted by Hu and Yang (2014)
and Zhu et al. (2021) for multi-echelon inventory systems. The idea of the modified (s, S)

policy is quite simple: when the inventory position (before ordering) is at or below the reorder
level s, an order is placed to raise the inventory position (after ordering) as close as possible
to the order-up-to level S.

We find that under the modified (s, S) policy, the inventory position after ordering follows
a discrete-time Markov chain. This enables us to compute the steady-state probabilities and
thus the expected long-run average cost. In addition, we show that the optimal inventory
parameters are bounded, which allows us to optimize our proposed policy. Our numerical
results verify the effectiveness of the modified (s, S) policy, as its numerical performance is
excellent.

Our results shed light on inventory control for stochastic systems with both MinOQ and
MaxOQconstraints. First, although the optimal policy structure is still unknown, our proposed
easy-to-implement policy can have excellent performance. Second, it is well known that
(s, S) policies perform well for single-stage systems, e.g., systems with fixed ordering costs.
Our work shows that (s, S) policies and their adaptations can still perform well in systems
with both MinOQ and MaxOQ requirements. Third, note that (r , Q) policies are reduced to
(s, S) policies when there is no batch size constraint, i.e., batch size Q = 1. Our work also
extends the excellent performance of modified (r , Q) policies for multi-echelon systems to
single-stage systems.

The remainder of this paper is organized as follows. The literature onMinOQ andMaxOQ
requirements is discussed in Sect. 2. In Sect. 3, the model description and notations are
presented. We introduce our proposed policy and provide cost-evaluation methods in Sect. 4.
Policy optimization and the corresponding algorithm are presented in Sect. 5. Numerical
examples are presented in Sect. 6 to measure the effectiveness of the proposed policy by
comparing it with a benchmark. Finally, Sect. 7 concludes the paper by summarizing the
findings.

2 Literature review

This work is closely related to two streams of research literature: inventory systems with
MaxOQ requirements and inventory systems with MinOQ requirements.

The first stream of related research is on inventory systems with MaxOQ requirements,
usually in the context of capacitated inventory systems in inventory management litera-
ture. For pure capacitated inventory systems without MinOQ requirements, the issue of
MaxOQ has been extensively studied. For example, Federgruen and Zipkin (1986a, b) estab-
lish the optimality of (modified) base-stock policies for capacitated single-stage inventory
systems under average-cost and discounted-cost criteria, respectively. Tayur (1993) designs
an efficient algorithm to compute the optimal base-stock level. Levi et al. (2008) propose a
novel cost-accounting scheme for capacitated inventory systems and develop a correspond-
ing heuristic policy with a worst-case performance guarantee of two. Then Shi et al. (2014)
develop an approximation algorithm with a worst-case performance guarantee of four for
capacitated systems with setup costs.

123



350 Annals of Operations Research (2022) 309:347–363

Anumber of studies consider inventory systemswithMaxOQ requirements in amore com-
plicated setting. Kapuściński and Tayur (1998) extend the optimality of base-stock policies
from stationary demand to nonstationary demand settings. Parker and Kapuscinski (2004)
characterize the optimal policy structure for a capacitated two-echelon system. Huh et al.
(2016) develop heuristic policies and derive performance bounds for serial systems with
MaxOQ constraints at each stage. Gallego and Scheller-Wolf (2000) consider capacitated
inventory systems with fixed ordering costs and show that the optimal capacitated policy has
an (s, S)-like structure. Similar to this work, there is a vast body of research that simultane-
ously considers MaxOQ and other requirements/factors, including remanufacturing (Gong
and Chao 2013), random capacity (Ciarallo et al. 1994), advanced demand information (Özer
and Wei 2004), and outsourcing options (Yang et al. 2005). Our work also falls into this cat-
egory, as we simultaneously consider both MaxOQ and MinOQ requirements.

The second stream concerns inventory systems with MinOQ constraints. Zhao and
Katehakis (2006) first partially characterize the optimal policy structure of a single-stage,
single-item problem with an MinOQ requirement and demonstrate the complexity of the
optimal policy by showing that the cost functions may have multiple local minimums in the
domain. Then, Zhou et al. (2007) propose a two-parameter heuristic policy, called the (s, t)
policy, for the same system. The (s, t) policy operates as follows.When the inventory position
is less than s, an order is placed to raise the inventory position to s + M ; when the inventory
position is between s and t , an order with exactly MinOQ units is placed; otherwise, no order
is placed. In a later work, Kiesmüller et al. (2011) also study the same system and propose
a simpler one-parameter policy, dubbed the S policy, which is a special case of the (s, t)
policy with s = S − Mmin and t = S − 1. Both heuristic policies in Zhou et al. (2007) and
Kiesmüller et al. (2011) performwell in their numeric studies, and the latter, the performance
of which may not be as strong as the former, is more effective and easier to implement.

Following these works, some papers study MinOQ requirements in a more complicated
model setting. For example, Zhu et al. (2015) investigate a system with both MinOQ and
batch ordering constraints. That is, each time an order is placed, the order quantitymust be not
only larger than a threshold but also an integral multiple of a specified batch size. In another
example, Shen et al. (2019) consider a multi-echelon inventory system where the upstream
installation faces an MinOQ requirement. Motivated by Zhou et al. (2007) and Kiesmüller
et al. (2011), the authors develop two-parameter and one-parameter heuristic policies for a
stochastic distribution inventory system.Other relatedworks onMinOQrequirements include
Chang (2004), Kesen et al. (2010), Okhrin and Richter (2011), Chow et al. (2012), Park and
Klabjan (2015) and Hou et al. (2017). In addition to the MinOQ requirement, our work also
takes into consideration MaxOQ constraints, which are absent in all of the aforementioned
papers in this stream.

It should also be clarified that our work and other work in the MinOQ stream differ from
the papers that consider minimum total order quantity commitments, e.g., Chen and Krass
(2001), Yuan et al. (2015), Wang et al. (2017), and Gong et al. (2021). In works with a
minimum total order quantity requirement, usually in a multi-period setting, the manager
makes ordering decisions for each period, and the total order quantity across all periods is
required to be no less than a specified level. However, there is no requirement on the order
quantity for each period; that is, the manager can just order one single unit if she likes. Unlike
those papers, in our work, it is the order quantity in each period that is required to be no less
than a threshold, rather than the total order quantity.

Our work also belongs to the body of research that develops general (s, S) or (r , Q)
policies. In addition to the above-mentioned (s, t) and S policies, which can be categorized
as general (s, S)policies, several papers particularly developmodified (s, S) or (r , Q)policies
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for complicated inventory systems. For example, Hu and Yang (2014) first propose modified
echelon (r , Q) policies for stochastic serial inventory systems. More important, the authors
provide explicit performance bounds to verify the effectiveness of the proposed heuristic.
Recently, Zhu et al. (2021) extend this work by developing modified echelon (r , Q) policies
and deriving performance bounds for stochastic distribution systems. A number of papers
also consider adaptations of (r , Q) policies that outperform classical (r , Q) policies, e.g.,
Moinzadeh (2002), Özer (2003) and Axsäter and Marklund (2008). However, none of these
papers take order quantity constraints into consideration.

Besides Hu and Yang (2014) and Zhu et al. (2021), the paper most closed to ours may be
Chan andMuckstadt (1999). In their work, the authors study a production smoothing problem
in which the production quantity in each period is strictly positive and further constrained
by both minimum and maximum levels in each period. They characterize the optimal policy
under the discounted cost criterion. However, our model is fundamentally different from
their work because the order quantity in our work is either zero or within an interval (at least
the MinOQ and at most the MaxOQ); therefore, the action space in our model is disjoint,
while in Chan and Muckstadt (1999), the action sets are connected and compact. Zhao and
Katehakis (2006) shows that the structure of the optimal policy is too complicated to be
fully characterized due to these disjoint action sets, even for a system with only MinOQ
requirements (without MaxOQ restrictions).

Contribution

In this work, we study a stochastic inventory system with both MinOQ and MaxOQ con-
straints, the optimal policy ofwhich is still unknown, and even if it exists, it must be extremely
complicated. Such a system is not well-studied yet in the literature due to its complexity, and
no solution has been particularly developed. Therefore, it is of great relevance to propose
some effective and easy-to-implement heuristic policies to manage this kind of inventory
systems. To the best of our knowledge, our work is the first one that fills this gap in the
literature. In particular, the disjoint action space makes it difficult for us to characterize any
structural property or search the inventory parameters of the optimal policy. To solve this
problem, we propose the modified (s, S) policy, the salient feature of which is to bound the
system state into a closed set (interval). Such a property enables us to compute the exact
system-wide cost. In this sense, our work also contributes to the literature on modified (s, S)

polices that used to focus on computing cost upper bounds.
The contribution of our work onmanagerial insights is twofold. On the one hand, although

the proposed policy makes intuitive sense, we show that the effectiveness of the modified
echelon (r , Q) policy4 studied by Hu and Yang (2014) and Zhu et al. (2021) in multi-echelon
inventory systems can carry over to single-stage systems, evenwith bothMinOQ andMaxOQ
requirements5. On the other hand, we extend the effectiveness of general (s, S) policies (i.e.,
(s, S) policies with some modifications) from standard single-stage systems without (or with
partial) order quantity constraints (see Zheng 1991; Zhou et al. 2007; Kiesmüller et al. 2011)
to systems with both MinOQ and MaxOQ constraints.

4 Note that the (r , Q) policy is reduced to the (s, S) policy in a continuous-review setting.
5 Given the excellent performance of the modified (s, S) policy for multi-echelon inventory system, it may be
straightforward to infer that it will perform well in standard single-stage systems. However, our work not only
provides evidence to support such intuition in a standard setting (without order quantity requirements), but
also verifies the heuristic’s effectiveness in single-stage system with both MinOQ and MaxOQ requirements
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3 Model description

We consider a single-item period-review inventory system with stochastic demand. The
stochastic demand D in each period is an independent identically distributed (i.i.d.) random
variable and bounded on [0, Dmax ]. Whenever demand cannot be fully satisfied from stock,
the unsatisfied units are backordered. We assume no fixed ordering cost, but there is an
inventory holding cost h per unit per period, and a backlogging/penalty cost b per unit per
period. In each period, the inventory system replenishes its stock from an external supplier
with both MinOQ andMaxOQ requirements. That is, when an order is placed to the supplier,
the order quantity q is lower bounded by MinOQ (denoted by Mmin) and upper bounded by
MaxOQ (denoted by Mmax ), i.e., Mmin ≤ q ≤ Mmax . Note that it is also allowed to order
nothing or not to place an order.

In addition, we make the following two assumptions on Mmax and Mmin .

Assumption 1 (i). Mmin ≤ Mmax ; and (ii). Dmax ≤ Mmax .

Assumption 1(i) is imposed to avoid trivial cases. Recall that as introduced in Sect. 1, the
objective of this research, due to the existence ofMinOQ requirements, is to provide effective
inventory control policies for the settings where the MinOQ (i.e., Mmin) is relatively large
compared with demand (otherwise the MinOQ requirements would become trivial). Then,
Assumption 1(ii) follows from this and Assumption 1(i). Note that if this assumption is
violated, then for some combinations of specific realizations of D (e.g., consecutive large
Ds), it is quite possible that the retailer needs a large amount of stock, while the supplier
fails to fully replenish the retailer due to the capacity (MaxOQ) constraint. In such a case,
inventory management is perhaps much less important than finding a supplier with enough
capacity. Moreover, in such a case, E(D) tends to be relatively large, while the MinOQ
requirement may be a loose constraint or even redundant. It is noteworthy that the scope of
this research is inventory systems for which the MinOQ and MaxOQ requirements are both
stringent.

We would like to note that when Mmin = 1, our model is reduced to the capacitated
inventory systems (withoutMinOQ requirements) studied in Federgruen and Zipkin (1986a).
When Mmax → ∞, our model is reduced to inventory systems with MinOQ requirements,
which are well studied in Zhao and Katehakis (2006), Zhou et al. (2007), and Kiesmüller
et al. (2011).

The sequence of events is as follows. A possibly outstanding order arrives at the beginning
of each period. The inventory position is then reviewed and an order is placed if necessary.
During the period, the stochastic demand is realized, and unsatisfied demands (if any) are fully
backlogged. At the end of each period, the inventory cost is evaluated. Let Z+ = max{0, Z}
and denote the average inventory position after ordering by y. The long-run average cost
function C(y) is given by

C(y) = hE[(y − D)+] + bE[(D − y)+],

where y and D are both integers. It is easy to see that C(y) is convex. Let y∗ be a minimizer
of C(y). We also assume that Mmin and Mmax are both integers. In the remainder of this
paper, we use [A, B] to denote the integer numbers between A and B (if A and B are integers,
they are included).
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4 Model analysis

In this section, we first introduce our proposed policy–the modified (s, S) policy. Then we
present how to compute the long-run average cost of the proposed policy.

4.1 Policy description

Zhao and Katehakis (2006) first find the structure of the optimal policy for the system with
an MinOQ to be rather complex and conclude that such an optimal policy is not practically
implementable. The presence of MaxOQ constraint makes the problem even more compli-
cated. Therefore, it is necessary to develop easily implementable policies that have good
performance. Motivated by the modified echelon (r , Q) policies studied by Hu and Yang
(2014) and Zhu et al. (2021) for multi-echelon systems without order quantity constraints
and based on the analysis of Zhou et al. (2007) and Kiesmüller et al. (2011), we propose a
modified (s, S) policy for single-stage systems with both MinOQ andMaxOQ requirements.

Definition 1 (The modified (s, S) policy) Under the modified (s, S) policy, when the
inventory position (before ordering) x is at or below the reorder level s, an order is placed
to raise the inventory position (after ordering) y as close as possible to the order-up-to
level S. Notably, the order size q must satisfy the MinOQ and MaxOQ constraints, i.e.,
Mmin ≤ q ≤ Mmax .

Compared to the standard (s, S) policy, the most important difference of the modified
(s, S) policy is that it does not require the inventory position after ordering y to be exactly
the order-up-to level S. Rather, here, the modified echelon (s, S) policy only requires y to
approach S as close as possible but not necessarily to reach S, which implies that y can
actually be either higher or lower than S.

Note that under the modified echelon (r , Q) policy studied in multi-echelon systems (see
Hu and Yang 2014; Zhu et al. 2021), an order is placed to raise the inventory position as
close as possible to the order-up-to level. Following their spirit, we also refer to our proposed
policy as amodified (s, S) policy. However, there is also one fundamental difference between
our policy and theirs. In their work, y at retailers must be equal to or less than the order-up-to
level S (otherwise, their methods fail to work), while here under our policy, y can be higher
than S. The reason for this is that the order quantity must satisfy the MinOQ and MaxOQ
requirements. Specifically, in some scenarios, even an order of the largest size Mmax fails to
raise the inventory position to S. If so, we have y = x +Mmax < S. In some other scenarios,
an order of the smallest size Mmin raises y above S. If x is less than the reorder level s
(probably close to s), such an order has to be placed to raise y to x + Mmin above S.

Due to the complicated relationship among multiple parameters, including Mmin , Mmax ,
s, S and Dmax , themodified (s, S) policy does not have a uniform expression for q . Therefore,
we next separately consider six different cases. Simply speaking, the six cases are obtained
based on 1) the relationship among Mmin , Mmax and S − s; and 2) the relation ship among
Mmin , Mmax and S− (s+1−Dmax ). Note that s+1−Dmax is the lowest possible inventory
position x before ordering in the modified (s, S) policy, and thus S− (s+1−Dmax ) denotes
the largest possible gap between x and S. Following the same logic, when an order is to be
placed, s is the highest possible inventory position x before ordering, and S−s is the smallest
possible gap between x and S.
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4.2 Cost evaluation

As mentioned above, the order quantity q can have different expressions across six cases.
Therefore, to evaluate the system-wide cost,we need to consider all possible cases. In this sub-
section, we provide cost evaluation for each separate case. Specifically, we provide detailed
analysis for Case 1, and expressions of q for Cases 2–6 in the main body. The remaining
analysis for Cases 2–6 follows the same logic of that for Case 1, and thus we relegate the
details to online appendix. The purpose of this analysis is to compute the long-run average
cost for the proposed modified (s, S) policy, for any given pair of (s, S). In next section, we
will study how to select the values of s and S to minimize the total cost.

Case 1: Mmin ≤ S − s ≤ Mmax and S − (s + 1 − Dmax ) ≤ Mmax . In this case, the gap
between S and s + 1− Dmax is less than Mmax , this implies that the order-up-to level S can
always be achieved by placing an order with the order size q ≤ Mmax . In addition, because
S − s ≥ Mmin , the order-up-to level S can always be reached exactly by placing an order
with the order size q ≥ Mmin . Therefore, in this case, the modified (s, S) policy is reduced
to the standard (s, S) policy.

To better illustrate the system dynamics, we take period n as an example. Let xn and
yn be the inventory positions before and after ordering in period n, respectively. Then, by
definition, the order quantity in period n, denoted by qn , under the modified (s, S) policy is
given by

qn = yn − xn =
{
0, if xn > s;
S − xn, if xn ≤ s.

It follows that yn+1 in this case can be expressed as

yn+1 =
{
yn − Dn, if yn − Dn > s;
S, if yn − Dn ≤ s,

where Dn denotes the demand in period n. We can see that {yn} is a discrete-time Markov
chain (DTMC) and has a finite state space [s + 1, S]. The state space can be divided into two
segments:

1. [s + 1, S − 1]: if yn+1 ∈ [s + 1, S − 1], then this means that qn+1 = 0. It follows that
Dn = yn − yn+1.

2. S: if yn+1 = S, then qn+1 = 0 or qn+1 = S − (yn − Dn). Specifically, when qn+1 = 0,
then Dn = yn − yn+1; when qn+1 = S− (yn − Dn), then yn − Dn ≤ s, i.e., Dn ≥ yn − s.

For each state yn+1 ∈ [s + 1, S], we have qn+1 = 0 or qn+1 = S − (yn − Dn). Specifically,
when qn+1 = 0, then Dn = yn − yn+1; when qn+1 = S − (yn − Dn), then Dn ≥ yn − s.

It is easy to compute the transition probabilities Pi, j = Prob(yn+1 = j |yn = i), and
hence the transition matrix P for any i ∈ [s + 1, S] is given by

Pi, j =
{
p(i− j)+ , for j ∈ [s + 1, S − 1]∑∞

m=i p(m−s) + p(i− j)+ , for j = S
(1)

where pk = Prob(Dn = k) and pa+ equals pa if a ≥ 0 and zero otherwise. Note that
for a given pair of (s, S), the transition matrix P is of a size (S − s) × (S − s). When
computing Pi, j , what really matters is the relatively location of the component in the matrix,
i.e., the interaction of which row and which column. Once the row and column numbers are
known, then P is readily computed, regardless of s and S. That is, the transition matrix P is
independent of s and S.
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Because the Markov chain is irreducible and positive recurrent, unique steady-state prob-
abilities �π = {π1, π2, . . . , πS−s} exist, where πi denotes the long-run average proportion of
time in which the inventory position y is s + i . Because the Markov chain is also aperiodic,
πi is also the limiting probability that the chain is in state i . Let n → ∞; we can have{∑S−s

i=1 πi = 1

�πP = �π
(2)

Therefore, we can calculate the stationary probabilities by solving the linear equations (2).
We note that given the MinOQ Mmin , the MaxOQ Mmax , the demand distribution D and the
fact that the values of s and S satisfy the conditions for this case (i.e., Mmin ≤ S− s ≤ Mmax

and S − (s + 1 − Dmax ) ≤ Mmax ), the transition matrix P and corresponding stationary
probabilities �π depend only on � ≡ S − s and are independent of the values of s and S. For
any given � in this case, there exists one and only one corresponding P and �π . Now, we can
calculate the long-run average cost for this case:

L(�, s) =
�∑
i=1

πiC(s + i). (3)

The analysis of other cases is similar to that for Case 1. Therefore, we relegate it to the
online appendix. Below for each case, we provide the expressions of qn . Readers are referred
to online appendix for detailed analysis for each case.

Case 2: Mmin ≤ S − s ≤ Mmax and S − (s + 1 − Dmax ) ≥ Mmax . In this case, the
lowest possible inventory position xn = s + 1 − Dmax is far below S with a gap greater
than Mmax . Therefore, in some scenarios, even an order of the largest size Mmax cannot raise
the inventory position to S. The inventory position yn in such scenarios is raised as close as
possible to S but is still less than S. By definition, qn under the modified (s, S) policy in this
case is given by

qn = yn − xn =
⎧⎨
⎩
0, if xn > s;
S − xn, if S − Mmax < xn ≤ s;
Mmax , if xn ≤ S − Mmax .

Case 3: S − s > Mmax . It follows that s + Mmax ≤ S. It is easy to see that in this case,
whenever xn reaches s or below, an order of the largest size Mmax is placed to raise yn as
close as possible to S, but yn in this case is always less than S because s + Mmax ≤ S. The
order quantity in this case is given by

qn = yn − xn =
{
0, if xn > s;
Mmax , if xn ≤ s.

Case 4: S − s < Mmin and Mmin ≤ S − (s + 1 − Dmax ) ≤ Mmax . In this case, when
xn is slightly lower than s, by the definition of the proposed policy, an order of the smallest
size Mmin has to be placed to raise the inventory position. By S − s < Mmin , the inventory
position after ordering yn can be higher than the order-up-to level S. The order quantity in
this case is given by

qn = yn − xn =
⎧⎨
⎩
0, if xn > s;
Mmin, if s − Mmin ≤ xn ≤ s;
S − xn, if xn < s − Mmin .
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Table 1 Summary of Cases 1 to 6

Scenario Case No. Values of �

1 Case 6 � ≤ (Mmin − Dmax + 1)+
2 Case 4 (Mmin − Dmax + 1)+ ≤ � ≤ min{Mmin , Mmax − Dmax + 1}
3 Case 5 Mmax − Dmax + 1 ≤ � ≤ Mmin

4 Case 1 Mmin ≤ � ≤ Mmax − Dmax + 1

5 Case 2 max{Mmin , Mmax − Dmax + 1} ≤ � ≤ Mmax

6 Case 3 � ≥ Mmax

Case 5: S− s < Mmin and S− (s+1− Dmax ) ≥ Mmax . This is the most complicated case.
First, by S − (s + 1 − Dmax ) ≥ Mmax , we have s + 1 − Dmax + Mmax ≤ S. This implies
that in some scenarios, even an order of the largest size Mmax cannot raise yn exactly to S.
Second, by S− s < Mmin , in some scenarios when xn is slightly lower than s, an order of the
smallest size Mmin is placed, and the resulting yn is higher than S. By definition, the order
quantity is given by

qn = yn − xn =

⎧⎪⎪⎨
⎪⎪⎩

0, if xn > s;
Mmin, if S − Mmin ≤ xn ≤ s;
S − xn, if S − Mmax < xn < S − Mmin;
Mmax , if xn ≤ S − Mmax .

Case 6: S − s < Mmin and S − (s + 1 − Dmax ) ≤ Mmin . In this case, we have S − s <

Mmin − Dmax + 1 ≤ Mmin . Therefore, whenever xn reaches s or below, an order of the
smallest size Mmin is placed, and the inventory position yn is not lower than S. The order
quantity is given by

qn = yn − xn =
{
0, if xn > s;
Mmin, if xn ≤ s.

To summarize, for each case (possible combination of s, S, Dmax , Mmin and Mmax ),
we first provide the corresponding order quantity qn based on the inventory position before
ordering xn . Then, we can have the inventory position after ordering yn+1 based on xn+1, or
equivalently yn − Dn . This enable us to formulate {yn} as a discrete-time Markov chain. We
then characterize the state space of the Markov chain, and further divide the state space into
several segments based on the order quantity needed to reach the corresponding state space.
We also express the transition probability between states as a transition matrix P. Given P,
the steady-state probability �π can be obtained by solving the equation �πP = �π with the
summation of all elements in �π equal to 1. It follows that the long-run average cost can be
easily computed with �π . We provide detailed analysis of all six cases in online appendix.

Combining Cases 1 to 6, we summarize all six cases in Table 1, in an increasing order
of � > 0. In particular, note that Cases 1 and 5 are mutually exclusive. Specifically, if
Mmax − Dmax + 1 ≤ � ≤ Mmin , we have Case 5, while Case 1 is impossible; if Mmin ≤
� ≤ Mmax − Dmax + 1, then Case 1 will arise with Case 5 being impossible.

123



Annals of Operations Research (2022) 309:347–363 357

5 Policy optimization

Thus far, we have introduced the cost evaluation method for the modified (s, S) policy. For
any given pair of (�, s), we are able to compute the long-run average cost L(�, s) using
the method mentioned above. In this section, we will discuss how to optimize our proposed
policy by selecting optimal policy parameters.

We first characterize the following property of L(�, s).

Proposition 1 In each case, for any given �, L(�, s) is always convex in s.

Proof of Proposition 1. Note that L(�, s) is expressed as the sum of several functions C(·).
In addition, the number of functions is fixed and independent of s, i.e., � in Cases 1–3 and
Mmin in Cases 4–6, and C(·) is convex for each i , so is their sum. Moreover, for a given �,
the transition matrix P depends only on �. It follows that the limiting probability �π depends
only on �, and is independent of s or S. Therefore, L(�, s) is convex in s for any given �.

�

Proposition 1 establishes the convexity of L(�, ·). Let ŝ∗(�) be the value of s at which
L reaches its minimum for a given �. Note that ŝ∗(�) is a function of �. For convenience
of notation, we use s∗

� to replace ŝ∗(�); that is, s∗
� denotes the corresponding optimal value

of s for a given �.
In addition, observing Cases 1–6, {yn} is always a DTMC with a finite state space [s +

1, s + a�], where a� denotes the length of the vector �π for a given �. That is, a� takes a
value of � when � satisfies the conditions of Cases 1–3 and takes a value of Mmin when the
conditions of Cases 4–6 are satisfied. Given this, the long-run average cost in this case can
be generalized as L(�, s) = ∑a�

i=1 πiC(s + i).

Proposition 2 Given �, s∗
� in each case always satisfies s∗

� < y∗ ≤ s∗
� + a�.

Proof of Proposition 2. Based on the definitions of s∗
� and y∗, we prove the proposition by

contradiction. First, assume that s∗
� ≥ y∗. Because C(y) is non-decreasing when y ≥ y∗,

C(s∗
�) ≥ C(y∗), and henceC(s∗

�+ j) ≥ C(y∗+ j), ∀ j ∈ [1, a�]. Therefore, we should have
L(�, s∗

�) = ∑a�

j=1 π jC(s∗
� + j) ≥ ∑a�

j=1 π jC(y∗ + j) = L(�, y∗). This contradicts the
definition of s∗

�, and hence s
∗
� ≤ y∗. We can also prove that y∗ ≤ s∗

� + � by contradiction.
Assume that y∗ > s∗

� + �, or equivalently, s∗
� < y∗ − �. Because C(y) is convex and y∗ is

the minimizer of C(y), it can be easily seen that C(s∗
�) > C(y∗ − �) > C(y∗). Therefore,

C(s∗
� + j) > C(y∗ − � + j), ∀ j ∈ [1, a�], and hence L(�, s∗

�) > L(�, y∗ − �). This
means that s∗

� is not optimal, which contradicts the definition of s∗
�. Therefore, we have

y∗ ≤ s∗
� + �. 
�

For any given�, Proposition 2 provides lower and upper bounds of s∗
�: y

∗−a ≤ s∗
� < y∗.

The narrowed search space significantly facilitates the search for s∗
�.

The optimal inventory parameters (�∗, s∗) should be selected as those that minimize
L(�, s). Now, the only remaining problem is how to search for �∗. Once �∗ is found, we
can obtain s∗ = s∗

�∗ by applying the results in Proposition 2. The following lemma provides
an upper bound on �∗.

Proposition 3 There always exists �∗ such that �∗ ≤ Mmax .

Proof of Proposition 3. Suppose that there exists a pair of (�∗, s∗
�∗) such that �∗ > Mmax

and s∗
�∗ minimizes L(�∗, s) over s. Then, by definition, the inventory position after ordering

{yn} under this policy has a finite state space [s∗
�∗ +1, s∗

�∗ +Mmax ]. It can be easily checked
that the cost of such a system always equals that of a system with � = Mmax and s = s∗

Mmax
.


�
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Table 2 Algorithm for finding �∗ and s∗ in the modified (s, S) policy

Algorithm for finding �∗ and s∗ in the modified (s, S) policy

Step 0: Initialization. L∗ ← inf, �∗ ← inf, s∗ ← inf, L̂∗(1 : Mmax ) = inf, and ŝ∗(1 : Mmax ) = inf.

Step 1.1: For � = 1 : (Mmin − Dmax + 1)+, calculate Pi, j by (EC.22) in the online appendix.

Step 1.2: Given �, ŝ∗(�) ← argmins∈[y∗,y∗+Mmin ]L(�, s) and L̂∗(�) ← L(�, ŝ∗(�)), where

L(�, s) is calculated as in Case 6. Then, go to Step 2.1.

Step 2.1: For � = (Mmin − Dmax + 1)+ + 1 : min{Mmin , Mmax − Dmax + 1} − 1, calculate Pi, j by

(EC.14) in the online appendix.

Step 2.2: Given �, ŝ∗(�) ← argmins∈[y∗,y∗+Mmin ]L(�, s) and L̂∗(�) ← L(�, ŝ∗(�)), where

L(�, s) is calculated as in Case 4. Then, go to Step 3.0.

Step 3.0: If Mmax − Dmax + 1 ≤ Mmin , go to Sept 3.1;

Else go to Step 3.3.

Step 3.1: For � = Mmax − Dmax + 1 : Mmin , calculate Pi, j by (EC.19) in the online appendix.

Step 3.2: Given �, ŝ∗(�) ← argmins∈[y∗,y∗+Mmin ]L(�, s) and L̂∗(�) ← L(�, ŝ∗(�)), where

L(�, s) is calculated as in Case 5. Then, go to Step 4.1.

Step 3.3: For � = Mmin : Mmax − Dmax + 1, calculate Pi, j by (1).

Step 3.4: Given �, ŝ∗(�) ← argmins∈[y∗,y∗+�]L(�, s) and L̂∗(�) ← L(�, ŝ∗(�)), where L(�, s)

is calculated as in Case 1. Then, go to Step 4.1.

Step 4.1: For � = max{Mmin , Mmax − Dmax + 1} + 1 : Mmax , calculate Pi, j by ((EC.8) in the

online appendix.

Step 4.2: Given �, ŝ∗(�) ← argmins∈[y∗,y∗+�]L(�, s) and L̂∗(�) ← L(�, ŝ∗(�)), where

L(�, s) is calculated as in Case 2. Then, go to Step 5.

Step 5: �∗ ← argmin�∈[1,Mmax ] L̂∗(�), L∗ ← L̂(�∗), and s∗ ← ŝ∗(�∗).

Based on the preceding propositions, we design an efficient and easy-to-implement algo-
rithm (see Table 2) to compute �∗ and s∗ that minimize the long-run average cost.

The complexity of solving linear equations (e.g., Eq. (2)) to obtain steady-state proba-
bilities is O(a3) if Gaussian elimination is used. In addition, by Proposition 3, � can take
Mmax different values; therefore, the total complexity of the algorithm is O(M4

max ).

6 Numerical experiments

In this section, we conduct numerical experiments to test the performance of the modified
(s, S) policy and measure the impact of inventory parameters.

6.1 Performance of themodified (s, S) policy

In our numerical studies, we set Mmax = 100 and assume that demands follow a Poisson
distribution, as in Zhou et al. (2007) and Kiesmüller et al. (2011). We then conduct numerical
studies with respect to the following parameters: the minimum order quantity Mmin , the
expected demand per period E(D), and the backlogging cost b. Specifically, Mmin takes
values of 30, 40, 50, 60, 70, 80 and 90, E(D) takes values of 10, 20, 30, 40 and 50, and
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Table 3 Base parameter values for the numerical experiments

h = 1, b ∈ {4, 9, 19, 49, 99}, Mmax = 100,

Mmin ∈ {30, 40, 50, 60, 70, 80, 90}, E(D) ∈ {10, 20, 30, 40, 50}

b takes values of 4, 9, 19, 49 and 99. Since we fix h = 1, b/(h + b) takes values of 0.80,
0.90, 0.95, 0.98 and 0.99. The complete set of parameter values is given in Table 3. All
combinations of these parameters provide 7 ∗ 5 ∗ 5 = 175 test instances.

To better illustrate the performance of the modified (s, S) policy, we compare it with a
benchmark.Wechoose as a benchmark the “optimal policy" that achieves theminimal average
cost among all admissible policies. We use the value iteration method to compute the optimal
long-run average cost, and the optimal policy is computed as follows. We initially compute
the minimal average cost of a certain number of periods. Then, we continue increasing for a
fixed number of periods, computing theminimal average cost of these periods, and comparing
the deviation of the two costs. The iteration does not end until the deviation is insensitive
to the increments of periods. The cost of such a policy is widely adopted as a benchmark
in the inventory management literature with an MinOQ requirement; see Zhou et al. (2007);
Kiesmüller et al. (2011). We compare the long-run average cost of our proposed modified
(s, S) policy to this optimal cost. Denote the average cost of the (s, S) policy by C∗, i.e.,
C∗ = L(�∗, s∗), and the optimal cost by COPT . For each instance, we use G to denote the
gap between the costs of these two policies as follows:

G = C∗ − COPT

C∗ × 100%.

We calculate the average, maximal, and minimal gaps, which are denoted by avg G, max
G, and min G, respectively. The numerical results are reported in Table 4.

It can be observed from the last line of Table 4 that the overall performance of the proposed
heuristic policy is excellent. The average gapG between the costs of the proposed and optimal
policies is 1.19%, and the minimum G can be as small as less than 0.01%6, while even the
maximum G is approximately 10%.

Table 5 presents the distribution information of G. As shown in Table 5, G is less than
0.05% in more than 40% of all instances. In addition, G is less than 0.5% and 1% in about
60% and 70% of instances, respectively. For approximately 85% of instances, G is less than
3%. All these results show that the performance of the modified (s, S) policy is quite good
and robust.

We now revisit Table 4 and conduct sensitivity analysis with respect to the inventory
parameters. First, Table 4 shows that as the backlogging cost b increases, or equivalently, as
the ratio b/(h + b) increases, the gap G also increases. In our numerical examples, avg G is
raised from 0.72 to 1.35% when b/(h + b) increases from 0.8 to 0.99.

Second, as shown in Table 4, G tends to first increases and then decreases, as Mmin

increases. The intuition behind this is that when Mmin is relatively small, the impact of
MinOQ requirement is not very significant. As as Mmin increases, the gap becomes larger,
because the MinOQ requirement becomes more stringent. When Mmin is relatively large,
although theMinOQ requirement is quite stringent, the action space becomes limited asMmin

increases and approaches to Mmax . Due to such a limited action space, the performance of

6 G=0.00% does not necessarily mean that the costs of the proposed and optimal policies are equal, but it
does mean that the two costs are very close, with a gap of no more than 0.01%.
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Table 4 Performance of the
modified (s, S) policy

Parameter Value min G avg G max G

Mmin 30 0.00 0.75 3.79

40 0.00 1.49 6.99

50 0.00 2.62 10.01

60 0.00 1.51 4.93

70 0.00 0.67 3.04

80 0.00 0.90 4.36

90 0.00 0.37 2.15

b 4 0.00 0.72 5.78

9 0.00 1.19 8.92

19 0.00 1.34 9.90

49 0.00 1.34 10.01

99 0.00 1.35 9.94

E(D) 10 0.00 0.01 1.14

20 0.00 0.16 0.78

30 0.00 0.89 3.79

40 0.00 1.80 6.99

50 0.00 3.02 10.01

Overall – 0.00 1.19 10.01

Table 5 Distribution of G

≤ 0.05% ≤ 0.5% ≤ 1% ≤ 2% ≤ 3% ≤ 5% ≤ 8% ≤ 10.01%

# of instances 71 106 122 138 150 166 171 175

Percentage (%) 40.57 60.57 69.71 78.86 85.71 94.86 97.71 100.00

the heuristic and optimal policy becomes close. As a result, when Mmin is quite large (closed
to Mmax ), G is relatively small.

Third, Table 4 also shows that G tends to increases when E(D) increases. The possible
reason for this observation may be demand variability. Note that when E(D) increases for a
Poisson-distributed demand, the demand variability, a direct measure of which may be the
variance of demands, also increases.

Finally, we study how the optimal policy parameters s∗ and S∗ vary with respect to
inventory system parameters, including Mmin , E(D), h and b. We plot the results in Fig. 1.
The base parameters are chosen as h = 1, b = 4, Mmin = 30 and E(D) = 10, and each time,
we vary one of them. First, it can be observed from Fig. 1a that s∗ and S∗ are decreasing and
increasing inMmin , respectively, resulting in�∗ increasing inMmin . This is because asMmin

increases, the MinOQ requirement becomes more stringent. As a result, �∗ in turn increases
to accommodate a larger MinOQ. Second, as shown in Fig. 1b, s∗ and S∗ tend to increase
as E(D) increases. This observation is intuitive given the results in Proposition 2. Finally,
combining Fig. 1c, d, it is shown that s∗ and S∗ increase as b/(h+b) increases. This is because
when h increases, the firm tends to hold less inventory; on the other hand, when b increases,
the firm would like to stock more inventory to reduce the possible backlogging/penalty cost.
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Fig. 1 Optimal policy parameters s∗ and S∗ with respect to inventory system parameters

7 Conclusion

In this work, we study stochastic inventory systems with both MinOQ and MaxOQ require-
ments. The optimal policy of such a system is unknown, and even if it exists, it must be quite
complicated. Motivated by recent work on multi-echelon inventory systems, we propose a
simple heuristic policy for which we are able to compute the system-wide costs by applying
aMarkov chain approach. We also derive bounds for the optimal parameters, which facilitate
the optimization of the policy. We conduct numerical studies to verify the effectiveness of
the proposed policy. The heuristic policy has an excellent performance with a gap (compared
to the optimal cost) of less than 0.05% in more than half of all instances. In addition, we also
conduct sensitivity analysis to investigate the impact of some inventory parameters.

Our work also has limitations and can be extended in several directions. First, we consider
an infinite horizonproblemunder the average cost criterion.An immediate question iswhether
and how the modified (s, S) policies can be used in finite horizon models. We believe that
such an extension is interesting and nontrivial. Because the steady-state method may not
continue to work in finite horizon models, the classical dynamic programming technique
will be used in solving inventory management problems. Second, our work studies a single-
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stage, single-product system. One may extend our work to more complicated model settings,
e.g., multi-echelon (e.g., Yuan et al. 2020), multi-product or batch-ordering systems.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-021-04441-1.
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