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Abstract
This paper addresses the interpretability problem of non-parametric option pricing models
by using the explainable artificial intelligence (XAI) approach. We study call options written
on the S&P 500 stock market index across three market regimes: pre-COVID-19, COVID-
19 market crash, and post-COVID-19 recovery. Our comparative option pricing exercise
demonstrates the superiority of the random forest and extreme gradient boosting models for
each market regime. We also show that the model’s pricing accuracy has worsened from
the pre-COVID-19 to the recovery period. Moneyness was the most important price deter-
minants across the market regimes, while the implied volatility and time-to-maturity inputs
contributed intermittently to a lesser extent. During theCOVID-19 crash, open interest gained
more economic importance due to the increased behavioral tendencies of traders consistent
with market distress.

Keywords Option pricing · COVID-19 · Random forest · Extreme gradient boosting ·
Explainable artificial intelligence · Interpretability

JEL Classification G01 · C45 · C55 · C58

1 Introduction

The systemic risk related to the financial contagion effects of the COVID-19 pandemic, on
February 20, 2020, turned a steadily increasing S&P 500 indexmarket into panic and distress.
Between February 20 and March 23, the market plummeted at a record pace and lost more
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than 30%. During this time, the volatility index (VIX) peaked at 82% on March 16, 2020.1

This was similar to the subprime mortgage crisis when the VIX closed at 79% on October
24, 2008. However, the bear market that ensued did not last for too long and the recovery
started on March 24, 2020. By June 8, 2020, the S&P 500 index market recuperated about
85% of the losses from its record closing high on February 19, 2020.

The option market followed the underlying S&P 500 index market closely. Specifically,
the average premium of call options written on the S&P 500 index (across all strike prices and
maturities) declined from $139.34 on February 19, 2020 to $101.31 onMarch 23, 2020.More
generally, considering that the S&P500 index option prices represent discounted expectations
of future outcomes of the S&P 500 index, if the market expects a crash, the prices of out-
of-the-money put options would be relatively large compared to the out-of-the-money call
options. In fact, on February 19, 2020, the average price of all the out-of-the-money put (call)
options was $25.40 ($39.64). Hence, it appears that the COVID-19 crash that followed had
not been anticipated by the market participants. Then, over the period until March 23, 2020,
the average daily price of all the out-of-the-money put (call) options increased (decreased) to
$105.83 ($34.99). This indicates the emergence of extreme pessimism of option traders at the
trough of the crisis. In the same vein, by analyzing the prices of options on commodity futures
in March, 2020, Vercammen (2020) also reported traders’ growing confusion and concern
about the future of commodity prices and disruptions to supply chains due to COVID-19.

Broadly speaking, the COVID-19 contagion has had a devastating global impact on var-
ious businesses and markets over both short- and long-run (Sharif et al. 2020). Certain
industries such as tourism, transportation, hospitality and automotive manufacturing were
halted abruptly. Mazur et al. (2021) investigated the performance of the stock constituents of
the S&P 1500 index during the COVID-19 crisis. They found that health care, food, natural
gas, and software sectors performed abnormally well, while crude petroleum, real estate,
entertainment and hospitality sectors underperformed and produced high negative returns.
Similarly, for the Asian stock markets, Liu et al. (2020) documented large cumulative abnor-
mal returns for the pharmaceutical, software and IT services, while transportation, lodging
and catering incurred heavy losses. Such a discouraging outlook for profitability was further
confirmed in Harjoto et al. (2021) in the sense that COVID-19 generated substantial negative
shocks to emerging markets and for small firms. As explained in Bellalah et al. (2020), the
COVID-19 crisis was marked by a significant worldwide reduction in allocated investments
and their model was able to assist in portfolio decisions in presence of regime-switching.

In the context of financial contagion,Ramelli andWagner (2020) illustrated how the effects
of the COVID-19 pandemic were amplified through financial channels. Morelli and Petrella
(2021) suggested that the contagion was spread between option and stock markets during the
COVID-19 outbreak and that it affected both European and American options in a similar
manner. Furthermore, Akhtaruzzaman et al. (2021c) demonstrated that the strength of the
relationship between Chinese and G7 financial and non-financial companies’ stock returns
increased substantially during the COVID-19 crash. In regards to oil prices, Akhtaruzzaman
et al. (2021a) found that the COVID-19 pandemic appeared to have moderated the oil price
risk exposure of both financial and non-financial firms. As for the U.S. stock market, by
studying the frequency domain causality, Lento and Gradojevic (2021) documented that
the S&P 500 index returns caused oil returns prior to the pandemic, but that the causality
direction was reversed during the market crash and recovery. They also reported mostly bi-
directional causalities between the S&P 500 index returns and various asset classes when

1 The VIX is an index providing 30-day market expectations based on the S&P 500 Index. Higher values of
VIX indicate the risk that the market will make a large swing.
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the market crashed during the February 20, 2020 to March 23, 2020 period. With respect to
gold prices, Akhtaruzzaman et al. (2021b) showed that gold lost its ‘safe haven’ property
during themarket recovery (fromMarch 17, 2020 toApril 24, 2020). Their evidence basically
corroborates that fromLento andGradojevic (2021) that observed price spillover effects from
gold to the stock market at this time.

This paper studies the behavior of the S&P 500 index option market in response to the
COVID-19 pandemic through the lens of explainable artificial intelligence (XAI). First, our
objective is to track the option pricing accuracy of an array of competing models across three
time periods: from January 1, 2020 to February 19, 2020 (pre-COVID-19), from February
20, 2020 to March 23, 2020 (COVID-19 market crash), and fromMarch 24, 2020 to June 15,
2020 (post-COVID-19 recovery). Since the seminal works of Bates (1991, 2000), there has
been a few papers that analyzed the performance of option pricing models during a financial
crisis (Bates 2012; Fulop et al. 2014; Calvet et al. 2015; Driouchi et al. 2018; Luo et al. 2018;
Kukolj et al. 2012). The consensus in the literature is that a crisis represents a distinct market
state characterized by psychological biases, regime-switching, tail behavior and price jumps,
and that it should be approached with more adaptable option pricing models that relax the
assumptions of the classic Black-Scholes framework (Black and Scholes 1973). For such
a reason, we employ four sophisticated non-parametric models (support vector regression,
feedforward artificial neural network, extreme gradient boosting and random forest) and we
test their out-of-sample pricing performance. The results suggest that the extreme gradient
boosting and random forest models deliver the most accurate pricing performance on all
time periods. In particular, the model’s pricing error increased over time and it appears that
it was slightly more affected by the uncertainty of the recovery period than by the actual
COVID-19 crash. We also find that, irrespective of the time period tested, it is generally
more difficult to price long-term options with lower volume that are not “near-the-money”.
Overall, we conclude that market volatility adversely impacted the pricing ability of all
competing models.

Our second objective is to provide an economic interpretation of the pricing accuracy
on the sub-periods of data by (i) clustering of options based on the ranges of input vari-
ables, and (ii) estimating the relative importance of each input. The former approach is an
extension of Gradojevic et al. (2011) where the options will be clustered by observing their
moneyness,2 time-to-maturity, implied volatility, open interest and volume. The latter relies
on the XAI concept (Ding 2018) in which we interpret the contribution of inputs of a non-
parametric option pricing model that resulted in its optimal pricing accuracy. To the authors’
best knowledge, this is the first research work on option pricing models that employs sophis-
ticated non-parametric methods (including the XAI) and studies a wide variety of potential
inputs during a market regime shift.3

The results from the clustering exercise reveal that the optimal number of clusters was
reduced during the COVID-19 crisis. Essentially, the market became more homogeneous
with regard to the variety of option types that were traded. This can also be understood as
the reduction in the heterogeneity of market participants (and their beliefs) that were less
dispersed due to the COVID-19 fears. Furthermore, in the pre-COVID-19 market, option
prices were greatly influenced by their moneyness and volatility, and to a lesser extent by
other inputs. However, when the volatility increased substantially and the market switched to

2 Moneyness is the ratio between the price of the underlying security (S&P 500 index: S) and its strike (or
exercise) price (K ). Call options are “in (out-of)-the-money” when S > K (S < K ).
3 The objective of this paper is not to use the proposed models in risk management, portfolio optimization or
hedging. Rather, the current paper aims at understanding the option market microstructure effects by gauging
the sentiment of traders exposed to regime shifts.
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crisis mode, option prices were less sensitive to the volatility input andmore sensitive to open
interest. The importance of such a “non-standard” input could be interpreted as the strength
of confidence of market participants that the current (bearish) trend would continue and,
also, that traders panicked, whereas market psychology was at play at this time. This effect
was diminished during the post-COVID-19 recovery period while moneyness and volatility
regained economic importance. Surprisingly, time-to-maturity was not identified as a major
driving force in option pricing, but it is worthwhile to note that it was among the three most
important inputs during the COVID-19 crash.

Our paper fits within the broader literature on non-parametric option pricing and hedging
models that rely on machine learning. One of the pioneering papers in this area was Hutchin-
son et al. (1994), followed by Qi and Maddala (1996), Garcia and Gençay (2000), Gençay
and Qi (2001), Gençay and Altay-Salih (2003), and Gradojevic et al. (2009). More recent
work can be seen in, for example, Gradojevic (2016) and Jang and Lee (2019). The goal of
such scholarly efforts is to harness the learning ability and flexibility of machine learning
models to achieve better prediction accuracy than the classical (parametric) financial option
models.

In relation to the existing option pricing literature, the novelty of this paper lies in the
following: (1) making use of the advanced AI methods such as extreme gradient boosting
and random forest in option pricing; (2) introducing two additional inputs (open interest
and volume) to a traditional non-parametric model and measuring their significance; (3)
proposing a new clustering approach based on a re-organizing neural network to facilitate
option pricing and model interpretation; (4) utilizing XAI in interpreting the non-parametric
models; and (5) testing option pricing models across various market regimes surrounding the
COVID-19 market meltdown.

In short, the main results of this paper can be summarized as follows: (1) non-parametric
models (extreme gradient boosting and random forest) produce the most accurate forecast
performance across all market regimes; (2) the Black-Scholes model’s pricing accuracy is
comparable to that of the non-parametric models during the market crash; (3) the relative
importance of traditional option pricing model’s inputs (moneyness, time-to-maturity and
volatility) is robust during regime shifts; (4) open interest becomes a more important input
at times of market volatility and distress; and (5) the proposed data clustering method is
beneficial for providing deeper insights into the behavior of market participants and data
generating mechanisms of option prices.

The paper is laid out as follows: The next section reviews the option pricing literature
with the special emphasis on non-parametric models. Section 3 describes the S&P 500 index
options data. Section 4 presents the methodological steps involved in our research design
as follows: (i) empirical models (support vector regression, artificial neural network, and
random forest), (ii) optimal clustering (with re-organizing neural networks), (iii) sub-period
analysis, and (iv) feature importance estimation. Section 5 provides the empirical findings,
while Sect. 6 concludes.

2 Background literature: option pricing

To address the well-known pricing biases of the Black-Scholes model (Black and Scholes
1973) such as the “volatility smile” and “volatility smirk” phenomena, research efforts have
expanded into developing both parametric and non-parametric alternatives.4 The research on

4 For an exhaustive review of the option pricing literature please see Renault (2010).
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parametricmodels hasmainly focused on introducing the stochastic volatility (SV), stochastic
volatility random jump (SVJ) and stochastic interest rate (SI) to the Black-Scholes setting.
These parametric extensions have been shown to be superior to the Black-Scholes model in
out-of-sample pricing and hedging exercises (Bakshi et al. 1997). Specifically, the SV model
has been shown to have first-order importance over the Black-Scholes model (Gençay and
Gibson 2009). The SVJ model further enhances the SVmodel for pricing short-term options,
while the SI model extends the SVJ model in regards to the pricing of long-term options.
Additional notable parametric research contributions include Bates (1991, 2000), Heston
(1993), Christoffersen et al. (2009), Calvet et al. (2015), He and Zhu (2016), Wong and Lo
(2009), Cai and Kou (2011) and Gaß et al. (2018).

Although parametric models in general improve the pricing accuracy of the Black-Scholes
model, these models exhibit certain pricing biases and are often inferior to non-parametric
approaches. Non-parametric models are not bound by the normality of return distributions
(or other unjustifiable parametric assumptions) and can benefit from their adaptive learning
abilities (Jang and Lee 2019; Gradojevic et al. 2009). For example, in Gençay and Gibson
(2009), the out-of-sample performance of an artificial neural network model was compared
to the SVJ, SI and SV parametric approaches for the S&P 500 stock market index. The paper
showed that all three parametric models were dominated by the neural network pricingmodel
with the GARCH (1, 1) volatility. Similarly, a semi-parametric approach from Andreou et
al. (2008) was able to improve upon the SV and SVJ models.5

The non-parametric approaches to option pricing have also been used by Hutchinson et
al. (1994), Garcia and Gençay (2000), Qi and Maddala (1996), Gençay and Qi (2001), and
Gençay and Altay-Salih (2003). More recent examples can be found in Barone-Adesi et al.
(2008), Fan and Mancini (2009), von Spreckelsen et al. (2014) and Guidolin and Hansen
(2016). An innovative strand of literature concerns option pricing with wavelets (Liu et al.
2019). This paper used a set of daily optionswritten on theDAX-30 index over the 2009–2012
period. Thewavelet-based option pricingmodel outperformed the SVJ parametric benchmark
on out-of-sample data, but it was still inferior to the neural network non-parametric model.

In addition, the predictive accuracy and hedging prowess of neural network-based models
has been highlighted in a very recent paper by Cao et al. (2021). They develop a novel hybrid
gated neural network option pricing model, where they used a similar method to predict the
S&P 500 index implied volatility. This paper basically reinforces the work of Culkin and Das
(2017) that showed how neural networks could be trained to mimic option pricing traders.
Buehler et al. (2019) is another related contribution that demonstrates the advantages of
hedging with deep learning neural networks on the S&P500 index option data (2013–2018)
in comparison to the Black-Scholes model.6

Some other important option pricing approaches are the mixture of distributions model by
Melick and Thomas (1997) and Bhat and Kumar (2012), and the semi-parametric estimator
by Aït-Sahalia and Lo (1998). These models have shown sizable improvements in option
pricing accuracy compared to the Black-Scholes model; however, their out-of-sample pricing
is inferior to non-parametric modular neural network models (Gradojevic et al. 2009). It is
also worthwhile to mention non-parametric approaches that are based on the affine jump-
diffusionmodels (Carr andWu 2004) and the normal inverseGaussianmodels (Eriksson et al.
2009; Barndorff-Nielsen and Shephard 2001). Furthermore, fuzzy logic has been proven very

5 As the literature shows that models based on neural networks are able to price options more accurately than
parametric alternatives such as the SV and SVJ approaches, we focus our attention on non-parametric methods
(Gençay and Gibson 2009; Andreou et al. 2008; Gradojevic 2016; Jang and Lee 2019).
6 Ruf and Wang (2020) offer an excellent up-to-date review of the relevant literature on the applications of
neural networks for option pricing and hedging.
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useful for option pricing in an uncertain market environment (Agliardi and Agliardi 2009).
Nevertheless, fuzzy logic models have never been compared to non-parametric competitors
in an out-of-sample pricing exercise with real market data.

3 Data

The data are provided by DeltaNeutral and represent the daily closing S&P 500 index Euro-
pean call option prices (the average of the bid-ask quotes), taken from the Chicago Board
Options Exchange. Call options across different strike prices and maturities are considered
for the period from January 1, 2020 to June 15, 2020. Since it is one of the deepest and
the most liquid option markets in the United States, the S&P 500 index option market is
sufficiently close to the theoretical setting of the Black-Scholes model. The implied volatil-
ity used in the estimations is a proprietary mean estimate provided by DeltaNeutral. The
risk-free rate is approximated by the monthly yield of the U.S. Treasury bills. To reduce
the size of the data set, options with zero volume and open interest on a given day were
eliminated.

The data were divided into three non-overlapping sub-samples as follows:

• January 1, 2020 to February 19, 2020 (pre-COVID-19): 12989 observations;
• February 20, 2020 to March 23, 2020 (COVID-19 market crash): 19547 observations;
• March 24, 2020 to June 15, 2020 (post-COVID-19 recovery): 38909 observations.

The statistical properties of the data set are presented in Table 1. The data across three
sub-periods are divided into several categories in terms of moneyness and time-to-maturity
(τ ). A call option is defined to be out-of-themoney (OTM) if (St/K ) < 0.95, near-the-money
(NTM) if 0.95 ≤ (St/K ) ≤ 1.05 and in-the-money (ITM) if (St/K ) > 1.05. An option is
classified as short-term if τ < 60 days, medium-term if 60 ≤ τ ≤ 180 days and long-term
if τ > 180 days. The reported numbers are the average quoted bid-ask midpoint price, the
standard deviation of the bid-askmidpoint prices (shown in parentheses) and the total number
of observations for each moneyness-maturity category. OTM, NTM, and ITM options take
approximately 50%, 33%, and 17% of the total sample, respectively. The average prices of
call options range from $0.91 for the OTM, short-term options in the pre-COVID-19 period
to $807.46 for the ITM, long-term options in the post-COVID-19 period. Standard deviations
become extremely large for the ITM options on all sub-samples and they generally increase
with maturity.

It is useful to note that the COVID-19 and post-COVID-19 sub-periods markedly affected
all options, regardless of their moneyness or maturity. First, the prices of both OTM and
NTM medium- and short-term options on average increased during the COVID-19 crash
and, then, slightly decreased during the recovery period. This is not the case, however,
with long-term options whose prices were the highest in the post-COVID-19 period for all
maturities. Clearly, long-term uncertainty was priced at its peak after the crash. Standard
deviations followed the similar inverted-U pattern across the sub-periods for all OTM and
NTM options, while the standard deviations for ITM options did not show any discernible
temporal patterns.
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Table 1 Sample properties of the S&P 500 index European call option prices

(St/K ) < 0.95 0.95 ≤ (St/K ) ≤ 1.05 (St/K ) > 1.05

pre-COVID-19 τ < 60 0.91 49.31 427.96

(1.12) (48.38) (413.09)

693 3698 1059

60 ≤ τ ≤ 180 6.76 70.50 581.38

(6.70) (47.35) (515.43)

990 2201 503

τ > 180 42.87 187.28 670.35

(46.46) (71.40) (556.46)

1718 1501 626

COVID-19 crash τ < 60 17.07 108.26 491.21

(30.44) (67.11) (413.16)

4897 2288 801

60 ≤ τ ≤ 180 37.83 172.79 586.69

(46.08) (74.51) (365.96)

3327 1438 549

τ > 180 57.31 241.24 765.62

(64.28) (79.27) (468.53)

4317 1161 769

post-COVID-19 τ < 60 10.86 87.88 452.45

(16.82) (54.92) (374.77)

6670 5631 2961

60 ≤ τ ≤ 180 32.64 165.90 656.40

(33.79) (54.77) (443.10)

5442 3250 2111

τ > 180 61.82 268.04 807.46

(62.16) (63.24) (476.31)

7992 2548 2304

The reported numbers are the average quoted bid-ask midpoint prices of call options, the standard deviation of
the bid-ask midpoint prices (shown in parentheses), and the total number of observations for each sub-period
(pre-COVID-19, COVID-19 crash and post-COVID-19) andmoneyness-maturity category. S denotes the daily
spot S&P 500 index level, K is the exercise price and τ is time-to-maturity. The options are categorized based
on maturity (short-term: τ < 60, medium-term: 60 ≤ τ ≤ 180, long-term: τ > 180), moneyness (out-of-
the-money: (St/K ) < 0.95, near-the-money: 0.95 ≤ (St/K ) ≤ 1.05, in-the-money: (St/K ) > 1.05). The
sample period extends from January 1, 2020 through June 15, 2020, for a total of 71445 calls

4 Methodology

4.1 Themodel

The option pricing formula is defined in the spirit of Hutchinson et al. (1994), Garcia and
Gençay (2000) and Gradojevic et al. (2009):

Ct = φ(St , K , τ, σI V , OP I , V OL) (1)
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where Ct is the call option price, St is the price of the underlying asset, K is the strike
price, τ is the time-to-maturity, OP I denotes open interest (number of open call contracts),
V OL is volume (number of contracts traded) and σI V is the implied volatility. Assuming
the homogeneity of degree one of the pricing function φ with respect to St and K , one can
write the option pricing function as follows:

Ct

K
︸︷︷︸

ct

= φ

⎛

⎜

⎜

⎝

St
K

︸︷︷︸

x1

, 1, τ
︸︷︷︸

x2

, σI V
︸︷︷︸

x3

, OP I
︸ ︷︷ ︸

x4

, V OL
︸ ︷︷ ︸

x5

⎞

⎟

⎟

⎠

= φ(x1, x2, x3, x4, x5). (2)

In general, options are often referred to as plain vanilla derivatives because their payoff
(or price) is determined by the so-called underlying, which is in our case the S&P 500 stock
market index. Call options are more profitable for the buyer when, ceteris paribus, the price
of the underlying (St ) increases or the strike price (K ) decreases. Therefore, intuitively, these
two variables must be integral parts of the option pricing formula. Further, when time-to-
maturity (τ ) increases, call options in general become more valuable. This is explained by
the fact that it is more likely that the option will be in the money (St − K > 0) and, thus,
worthwhile exercising at maturity. The preceding explanatory variables are extended with the
implied volatility that is a standard input to an option pricing model. The two non-standard
inputs that are used in our model are open interest and volume. Apart from the possibility
that such inputs may gain importance in a distressed market (e.g., COVID-19 crash), the
rationale for using these two predictors is hinted at in Gârleanu et al. (2009) who found that
demand pressures could influence option prices. Volume and open interest reflect the activity
of option traders (i.e., market sentiment) that is related to demand for options.

4.2 Clustering of options

First, we determine the optimal number of clusters based on the partitioning of the input space
for all sub-periods. For such a purpose we utilize the Davies-Bouldin (DB) index (Davies
and Bouldin 1979):

DB = 1

M

M
∑

i=1

Ri , Ri = max(Ri j ), j = 1, . . . , M; j �= i (3)

where Ri j = (Si + S j )/Di j is a similarity measure between observations in data partitions
(clusters) i and j , Si is a dispersion measure of the observations of i th cluster calculated
as the average Euclidean distance of the data points in cluster i to its center, and Di j is a
cluster’s dissimilarity measure (distance between the centers of cluster pairs). The partition
that produces the minimum DB is considered to be optimal.

The actual clustering is performed by using a competitive learning algorithm called
Re-Organizing Neural Network (RONN) (Kukolj and Levi 2004; Kukolj et al. 2006). The
algorithm relies on training data that contain N input observations xk, k = 1, . . . , N , where
N is the sample size. If we denote the dimension of the input vector by n, then the clusters
we find will represent areas where data values are highly concentrated.

The RONN generates a one-layered network with one input layer where xk’s are fed.
Nodes in the output layer represent cluster centers. The total number of clusters is an input
parameter of the algorithm. In tandem with the DB index measure, for each pre-selected
number of clusters, the RONN algorithm finds the cluster centers, which is followed by
the selection of optimal clustering structure, based on the minimal DB index. The RONN
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model is an iterative learning algorithm and its main loop contains two smaller loops within
itself. The first loop performs iterative adjustments of the node coordinates using the k-means
algorithm until the nodes stabilize in their geometric positions. Coordinates of the nodes are
calculated as arithmetic means of observations in each cluster. A cluster’s mean-squared error
(MSE) is a measure of deviation of observations in the cluster from its center.

The second loop concerns ‘dead nodes’, i.e., cluster centers which have ended up without
any observations in their vicinity. If there are no ‘dead nodes’, the cluster with the smallest
number of observations is identified. The center of that cluster is then considered a ‘dead
node’, while its observations are re-distributed to the closest clusters. During the iterative
adjustments each ‘dead node’ observation is allocated to the node with the largest MSE and
the new coordinates of this node are then given by:

vi
new = vmax

q + δ, i = 1, . . . , q (4)

where vmax
q is the location of the selected node among the q nodes with the largest MSE

values, vi new is the position of the newnodewith respect to the center of a possible newcluster,
and δ = [δ1, δ2, . . . , δn]T are small random numbers. The procedure depicted by Eq. 4 is
repeated for all ‘dead nodes’ until they are allocated to clusters. A detailed description of the
RONN algorithm can be found in Kukolj et al. (2006).

4.3 Feedforward artificial neural network (FF-ANN)

To explain the concept of an FF-ANN model, we will refer to Eq. 2 and our goal is to
estimate the parameters of non-linear function (φ). In the context of the FF-ANN model, the
parameters are called connection weights (αi j and β j ) and node biases (α j0 and β0). The
model consists of three building blocks that are the input layer (where predictors are fed into
the model), hidden layers (where the functional approximation or learning takes place) and
the output layer (where the option price prediction is generated).

If we initially assume the model architecture involves only one hidden layer with q com-
putational elements (nodes or neurons), the FF-D-ANN model is estimated as:

ct = φ

(

β0 +
q

∑

j=1

β jψ
(

α j0 +
k

∑

i=1

αi j xi t
)
)

(5)

In this example, q is the number of hidden nodes, where the single hidden and the output
layers are characterized by two flexible classes of non-linearities: ψ and φ, respectively. αi j

and β j denote appropriate connection weights between the adjacent layers. Subscripts 0 for
α and β stand for the biases.

The training algorithm is Adam, a first-order gradient-based optimizer based on adap-
tive estimates of lower-order moments. It is computationally efficient and suitable for large
datasets with a lot of parameters to estimate. The default parameters follow those provided in
Kingma and Ba (2015). The activation function types used in the hidden layer are sigmoid,
with the linear function in the output layer. Validation data is used to select the optimal model
architecture. The model will set apart 10% of the training data, will not train on it, and will
evaluate the loss (i.e., mean-squared error) and any model metrics on this data at the end
of each epoch. If, during the last 5 epochs the monitored quantity (validation loss) has no
improvement, the training will be stopped.
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4.4 Support vector machine (SVM)model

SVM is a supervised learning model for prediction and classification, introduced by Vapnik
(1999). The basic idea of this algorithm can be described by two steps: (a) transform training
samples into a space of higher dimension using a non-linear mapping function; and (b)
perform linear regression in the space of higher dimension in order to separate the data
samples. Transforming data from original to the new (higher order) space is performed using
a predetermined kernel function. The kernel function is defined as dot product ofmapped data
input vectors (xit , i = 1, . . . , k) from the original space that enables computations of points
in the new feature space without explicitly calculating the unknown non-linear mapping
(φ(x1t , x2t , . . . , xkt )). In this implementation, we employ a second order polynomial for the
initial kernel function (K (xit , x)). This function is redefined by a normalization, as given by
the following expression:

˜K (xit , x) = K (xit , x)√
K (xit , xit )K (x, x)

(6)

The normalization of the kernel function can be viewed as a simultaneous rescaling of
data rows and columns to obtain a matrix with all diagonal entries set to one (Graf and Borer
2001). In the second step of the SVM algorithm (frequently called SV Regression—SVR),
we perform data separation by constructing linear regression in the higher dimension feature
space:

f (x) = ωTφ(x) + b, (7)

where ω represents the vector of weights and b is a bias term. The optimization goal is to
determine the trade-off between the flatness of f (x) while making sure that it has at most
an ε deviation between the obtained targets and training data outputs. In our work, we use
the SVR implementation given in Shevade et al. (2000). The ε parameter of the ε-insensitive
loss function is set to 0.001.

4.5 Random forest (RF) model

A random forest (RF) is an ensemble machine learning technique introduced by Breiman
(2001). It consists of a collection of regression trees whose averaged outputs determine
the final prediction of the ensemble. The RF learning is based on a bootstrap aggregation
(bagging) and random features subspace selection. Through a bagging procedure, each tree
in the ensemble has randomly selected portions of training samples (with replacement) from
the original dataset. In order to avoid possible correlations between constituent random trees
and enhance the estimation performance of the RF model, the idea of a random features
subspace is applied. As a result, each tree is grown on the basis of a randomly chosen input
subset. For each node, the splitting algorithm searches over a subset of selected features to
determine the best split point. The RF growth during the learning process is determined by
two parameters: the size of the features subset used in each regression tree and the number
of trees that form the forest. We tuned these two parameters to find the best regression RF
model, as presented in Probst et al. (2019). Because of the small number of input features, a
grid search was adopted as the simplest tuning strategy. Varying the number of trees on the
[50, 150] interval and the features subset size from 2 to 6 showed that the RF with 80 trees
and the features subset size of four has the lowest RMSE across the three data sub-periods
considered.
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In the process of constructing each decision tree, the RF learning algorithm uses the
classification and regression trees (CART) learning algorithm (Breiman et al. 1984) which
adopts the Gini index as the impurity-based measure. More precisely, the Gini index is used
every time a split of a node is made on a certain variable. The learning algorithm is able
to cope with numeric variables, characteristic for the problem considered in this study, by
discretizing the continuous scale into two intervals. The optimal cut-off point is determined
on the basis of evaluation of a threshold pool consisting of adjacent distinct values. The Gini
index describes a decrease in the node impurity weighted by the probability of reaching that
node:

G =
C

∑

i=1

pi (1 − pi ), (8)

where pi is the node probability calculated as the number of observations that reach the node
divided by the total number of observations and C is the number of classes in the target
variable. The variance reduction of a given tree node describes a decrease of the variance
of the target variable due to the split at this node. Adding up and averaging the variance
reductions for every node over all trees in the forest gives the value of relative importance of
an input variable. Feature importance in the form of Gini index is commonly used to identify
the contribution of individual predictors toward explaining the output (option price). Such
an approach that relies on a decision tree classifier is considered intrinsically XAI in nature
and it will assist us in obtaining the economic interpretation of our results.

5 Results

5.1 Comparative performance on sub-periods

We run our predictive models and price call options on the last 10% of data (testing set)
across the three sub-periods: (1) pre-COVID-19, (2) COVID-19 crash, and (3) post-COVID-
19 recovery. Our goal is to compare the forecast performance of the competing models
(FF-ANN, SVM, RF, XGB, and the Black-Scholes benchmark) on each subsample and to
also identify the most important predictors of option price fluctuations.7 Table 2 shows the
pricing accuracy reflected in the root mean-squared prediction error (RMSE) of the models
that were tested on out-of-sample data.

First, we find that the non-parametric option pricing models strongly outperformed the
Black-Scholes model during the pre-COVID-19 period. Overall, the most accurate pricing
performance is generated by the XGBmodel. The second best-performing model on all time
periods is aRF that produces almost 70% lower out-of-sample RMSE than theBlack-Scholes
model over the first sub-sample. We can also conclude that the regime shift which took place
in the second and third sub-samples to a certain extent limited learning and generalization
abilities of non-parametric models. Surprisingly, the pricing accuracy of the Black-Scholes
model improved during the pandemic, although it was still inferior to that of the RF and XGB
models. Being a pre-specified non-linearity, the Black-Scholes model showed less sensitivity
to a regime shift than the competing non-parametric models. This evidence is in accord with

7 Based on the referee’s recommendation, we also consider the extreme gradient boosting (XGB)model (Chen
and Guestrin 2016) that is known for higher forecast accuracy relative to the RF model. We are extremely
grateful to Zied Ftiti (Lead Guest Editor) and the three anonymous referees for their excellent comments and
suggestions.
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Table 2 Comparison of predictive models for the sub- periods of data

RMSE Statistic pre-COVID-19 COVID-19 post-COVID-19

FF-ANN 0.0330 0.0652 0.0574

SVR 0.0363 0.0753 0.1264

RF 0.0209 0.0466 0.0541

XGB 0.0031 0.0361 0.0153

BS 0.0670 0.0479 0.0580

The data range is divided into three sub-samples: (1) January 1, 2020 to February 19, 2020 (pre-COVID-19):
12989 observations, (2) February 20, 2020 to March 23, 2020 (COVID-19 market crash): 19547 observations,
and (3) March 24, 2020 to June 15, 2020 (post-COVID-19 recovery): 38909 observations. The last 10% of
each sub-sample is held out-of-sample, then, the root mean-squared prediction error (RMSE) of each model
is calculated on the testing data and reported in the table. The models that are considered are (1) Feedforward
Artificial Neural Network (FF-ANN), (2) Support Vector Regression (SVR), (3) RandomForest (RF), Extreme
Gradient Boosting (XGB), and (4) the Black-Scholes (BS) model

Kukolj et al. (2012) for the 2008 crisis. Another interesting finding is that, except for the
XGBmodel, the pricing ability of themodels diminished during the post-COVID-19 recovery
period. As it could also be observed in Table 1, the uncertainty appeared to have been greater
post-COVID-19 than during the actual crash, which impeded the option pricing accuracy.

Next, we will study the relative importance of inputs in the RF model. For such a purpose,
we estimate the Gini indices (based on the average impurity decrease) while pricing options
on each sub-sample of data. Table 3 displays the estimates for the inputs across the three
sub-periods. It can be observed that the moneyness of options (St/K ) was among the top two
most important inputs on each market regime. In fact, moneyness is the input that contributed
to option pricing the most during extreme market volatility (COVID-19 and post-COVID-19
periods). Interestingly, during a steady market regime, options prices were the most sensitive
to implied volatility, while this input was the second most important predictor during the
post-COVID-19 recovery. We can conclude that when the market is relatively stable or on
an upswing, implied volatility is important for option pricing. In contrast, during a market
downswing, market participants react to excessive movements by focusing more on open
interest (and even maturity) when determining option prices. This evidence of distressed
behavior is a departure from the traditional no-arbitrage principle in option pricing where
market-makers are able to perfectly hedge their inventories. Apparently, when the market is
collapsing and is in a state of panic, open interest changes affect option demand imbalances,
which, in turn, impacts option prices substantially.

Following another referee’s suggestion, we supplement the XAI analysis with the Shapley
additive explanations (SHAP) values for our set of inputs across the three subsamples (Lund-
berg and Lee 2017). The advantage of this method lies in its ability to explain the output
of machine learning models. Essentially, the SHAP values show how much each predictor
contributes (positively or negatively) to the output. Another benefit of the SHAP approach
is its local interpretability where each observation is assigned its own set of SHAP values.
First, we will estimate the SHAP values across the training data sets for the most accurate
models (RF and XGB) by taking the mean absolute value of each feature.

Table 4 demonstrates the key role that traditional inputs, moneyness (St/K ) and time-to-
maturity (τ ), play in option pricing across all three market regimes. The fact that moneyness
is the most informative input is consistent with the Gini indices from Table 3. However,
according to the SHAP measures, implied volatility is not as important as the Gini indices
suggested, but is consistently the thirdmost important input. Also, when compared to Table 3,
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Table 3 Feature importance in the RF model for the sub- periods of data

Gini index (# nodes) pre-COVID-19 COVID-19 post-COVID-19

σI V 278.23 (982) 13.70 (5972) 85.08 (3310)

St/K 256.69 (3316) 107.02 (12955) 219.59 (11355)

τ 4.03 (674) 13.84 (5578) 7.86 (2832)

OP I 18.95 (805) 22.24 (2862) 15.75 (1973)

V OL 11.39 (381) 5.97 (2130) 7.89 (1476)

The features (inputs) are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-maturity (τ ), open
interest (OP I ), and volume (V OL). The data range is divided into three sub-samples: (1) January 1, 2020 to
February 19, 2020 (pre-COVID-19): 12989 observations, (2) February 20, 2020 to March 23, 2020 (COVID-
19 market crash): 19547 observations, and (3) March 24, 2020 to June 15, 2020 (post-COVID-19 recovery):
38909 observations. Each cell in the table is a Gini index obtained from the RF model, based on the average
impurity decrease, with the number of nodes using that attribute indicated in the parentheses (# nodes). The
two inputs with the largest feature importance are bolded

Table 4 SHAP in the RF and XGB models for the sub- periods of data

SHAP values pre-COVID-19 COVID-19 post-COVID-19

RF XGB RF XGB RF XGB

σI V 0.00005 0.00448 0.00058 0.01164 0.00002 0.00601

St/K 0.10613 0.10649 0.08014 0.08294 0.14497 0.14691

τ 0.00012 0.00810 0.00047 0.01464 0.00008 0.01514

OP I 0.00112 0.00011 0.00018 0.00066 0.00010 0.00027

V OL 0.00010 0.00011 0.00048 0.00010 0.00005 0.00015

The inputs listed in the first column are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-
maturity (τ ), open interest (OP I ), and volume (V OL). The data range is divided into three sub-samples:
(1) January 1, 2020 to February 19, 2020 (pre-COVID-19): 12989 observations, (2) February 20, 2020 to
March 23, 2020 (COVID-19 market crash): 19547 observations, and (3) March 24, 2020 to June 15, 2020
(post-COVID-19 recovery): 38909 observations. Each cell in the table is the SHAP value, estimated across
the training data sets (90% of observations) by the RF and XGB models and expressed as the mean absolute
value of each feature. The two inputs with the largest importance are bolded

Table 4 suggests a diminished impact of open interest during the COVID-19 market crash.
Nevertheless, relative to the other two sub-periods, it can be observed that open interest
affects the output the most during the crash. As explained before, this shows that the markets
experienced a greater degree of distress at this time.

For the sake of direct comparison between the Gini indices estimated by the RF and XGB
methods, next, we show their normalized values side by side in Table 5. Clearly, the evidence
for the RF model mirrors Table 3, while that for the XGB model is slightly different from
the SHAP values in Table 4. More precisely, the Gini indices for the XGB model during the
pre-COVID-19 period suggest that the implied volatility input wasmore important than time-
to-maturity, which, in fact, reinforces the results for the RF model (i.e., the first column of
Table 5). All other Gini values for theXGBmodel in Table 5 resemble the corresponding ones
in Table 4. In all, we conclude that the XAI interpretation, as it may be expected, depends to a
certain extent on the underlying non-linear modelingmethod (e.g., RF vs. XGB) as well as on
the XAI technique that is applied (e.g., Gini vs. SHAP). When an input is highly dominant,
its influence and interpretation is robust across methods, but, when an input is relatively
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Table 5 Feature importance in the XGB and RF models for the sub- periods of data

Gini indices pre-COVID-19 COVID-19 post-COVID-19

RF XGB RF XGB RF XGB

σI V 0.10313 0.00070 0.01201 0.00078 0.05808 0.00019

St/K 0.88418 0.99909 0.96194 0.99764 0.93385 0.99884

τ 0.00086 0.00018 0.00693 0.00137 0.00490 0.00072

OP I 0.01175 0.00003 0.01387 0.00017 0.00266 0.00015

V OL 0.00008 0.00001 0.00525 0.00005 0.00050 0.00010

The inputs listed in the first column are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-
maturity (τ ), open interest (OP I ), and volume (V OL). The data range is divided into three sub-samples:
(1) January 1, 2020 to February 19, 2020 (pre-COVID-19): 12989 observations, (2) February 20, 2020 to
March 23, 2020 (COVID-19 market crash): 19547 observations, and (3) March 24, 2020 to June 15, 2020
(post-COVID-19 recovery): 38909 observations. Each cell in the table is a Gini index, estimated across the
training data sets (90% of observations) by the RF and XGB models and normalized on the [0, 1] interval.
The two inputs with the largest importance are bolded

uninformative, there exist differences in interpretation that we believe are complementary in
nature as they provide further insights into the phenomenon of interest.

Figure 1 displays the SHAP summary plots for the XGB model that explain how each
input contributes to the output and in which direction. This plot utilizes the training data
and ranks features vertically in descending order according to the magnitude of their SHAP
values. The color of each dot represents the impact direction of the feature on the model
outputwhere blue (red) rectangles represent inverse (direct) relationship. For all observations,
their location along the x-axis shows whether the impact is associated with a higher or
lower prediction. What stands out in Fig. 1 is the strong dominance of the moneyness input
and its positive effect on options prices on all market regimes. The other inputs have a
much weaker contribution which can be deduced from the high concentration of their SHAP
values around zero.Noteworthy, it appears that implied volatility and time-to-maturity display
mostly positive relationships, while open interest and volume exhibit negligent negative
impacts.

5.2 Clustering and feature importance

In this subsection, we perform optimal clustering of options on each market regime. By
this, we provide a deeper analysis of the pricing accuracy and the relevance of model’s
inputs. We will also present an economic interpretation of our findings. Our first goal is to
estimate the optimal number of clusters for each of the three time periods. Figure 2 plots the
values of the DB index for various cluster choices. Clearly, the optimal number of clusters
for the pre-COVID-19 market is six, while it is five for both COVID-19 and post-COVID-
19 data. We conjecture that the pandemic changed the market microstructure to a more
homogeneous trading behavior of the investors that originated in the convergence of their
beliefs. Put differently, a change in the risk aversion of an average investor and an increased
concentration thereof caused a reduction in the market “sub-regimes” (or clusters).

To locate the optimal clusters and their centers on the pre-COVID-19 data, we apply the
RONN algorithm. For the visual illustration only, we reduce the five-dimensional space to a
two-dimensional projection and display it in Fig. 3. The cluster boundaries are clearly defined
and the clusters are reasonably spaced, further attesting to the validity of our approach. It
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Fig. 1 SHAP summary plots.
Notes: In Panel A, the SHAP
feature contributions are shown
for the pre-COVID-19 period
(January 1, 2020 to February 19,
2020). In Panel B, the SHAP
feature contributions are shown
for the COVID-19 market crash
period (February 20, 2020 to
March 23, 2020). In Panel C, the
SHAP feature contributions are
shown for the post-COVID-19
recovery period (March 24, 2020
to June 15, 2020). The aggregate
SHAP values for each
instance-input combination and
their relationship to the output
(option price) is denoted by red
(direct relationship) or blue
(inverse relationship) dots. The
underlying model in all three
panels is estimated with the XGB
algorithm

is worthwhile to stress that the first two principal components cumulatively preserve about
95% of the original data variance in reduced space. When de-normalized to their original
coordinates, the cluster centers for inputs (St/K , σI V , τ, V OL, OP I ) are located in the
original input space as follows:

• Cluster 1 → (1.22, 0.16, 1.71, 93.78, 2018.09);
• Cluster 2 → (0.90, 0.15, 2.87, 40.08, 131.75);
• Cluster 3 → (1.17, 0.10, 0.10, 2333.03, 50609.87);
• Cluster 4 → (1.00, 0.10, 0.16, 322.90, 2384.70);
• Cluster 5 → (1.03, 0.14, 0.83, 197.83, 3948.50);
• Cluster 6 → (1.03, 0.10, 0.16, 1419.17, 18355.29).

From the coordinates’ values of the cluster centers, we identify cluster 1 as deep-ITM,
long-term options, while cluster 2 are OTM, very long-term options. Cluster 3 refers to
deep-ITM, short-term options with high volume and open interest. Cluster 4 is at-the-money,
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Fig. 2 Selection of the optimal number of clusters. Notes: The selection is performed for three
sub-samples: (1) January 1, 2020 to February 19, 2020 (pre-COVID-19): 12989 observations (dot-dashed
line), (2) February 20, 2020 to March 23, 2020 (COVID-19 market crash): 19547 observations (solid line),
and (3) March 24, 2020 to June 15, 2020 (post-COVID-19 recovery): 38909 observations (dashed line). The
optimal number of clusters (horizontal axis) is where the Davies-Bouldin criteria (vertical axis) are at the
minimum value

short-term options and cluster 5 is NTM options that are long-term. Finally, cluster 6 is
NTM, short-term options with high volume and open interest. Of interest is to test the pricing
accuracy of the RF model on each cluster and assess how clustering changes the importance
of inputs. The pricing exercise and feature importance estimation will be run in-sample,
followed by a comparative study across clusters.

Table 6 lists the Gini indices as well as the pricing errors (RMSE’s) for the six pre-
COVID-19 clusters of data. In terms of pricing accuracy, we find that it was easier to price
NTM, short-term options with relatively lower volatility and higher volume (as in clusters
4 and 6). RMSE’s appeared to have increased with maturity and moneyness. The largest
pricing errorswere produced in clusters 5 and 1, i.e., for long-termoptionswith lower volume.

As for the relative importance of inputs, the Gini indices in Table 6 reveal that moneyness
was always among the two top ranked features. In clusters 1 and 2, however, implied volatility
emerged as themost important input. This is in linewith the fact that clusters 1 and 2 contained
options with the highest volatility of all clusters. Therefore, when pricing options in a cluster
with large implied volatility, the relative importance of the volatility input increases. We also
infer that open interest becomes a dominant input in clusters 3 and 6, i.e., for the options with
high open interest. It is extraordinary to report that some options in the market were sensitive
to demand-based shocks already in the pre-COVID-19 period. This surprising evidence was
not observable in Table 3 because it examined all option contracts together in a single cluster.
Lastly, both volume and maturity inputs do not seem informative in option pricing.

The optimal clusters and their centers for the COVID-19 period (reduced to a two-
dimensional projection) are shown in Fig. 4. In this case, the first two principal components
preserved in total about 90% of the original data variance in reduced space. The cluster cen-
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Fig. 3 Pre- COVID- 19: clusters and their centers. Notes: The clusters are found by using the RONN
algorithm for the pre-COVID-19 data (January 1, 2020 to February 19, 2020: 12989 observations). We reduce
the five-dimensional space to a two-dimensional projectionwhere PC#1 and PC#2 denote the first two principal
components. Numbers 1-6 indicate the location of cluster centers in the reduced space

Table 6 Pre- COVID- 19: feature importance across clusters

Gini index
(# nodes)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

σI V 712.57 (259) 0.43 (696) 0.68 (91) 0.11 (2994) 83.60 (518) 0.02 (1173)

St/K 639.10 (400) 0.25 (1381) 7.74 (849) 1.12 (11571) 229.39 (1164) 1.10 (4710)

τ 18.06 (44) 0.03 (196) 0.38 (197) 0.04 (3465) 15.40 (265) 0.03 (1527)

OP I 81.32 (60) 0.03 (264) 1.97 (227) 0.09 (2785) 29.12 (261) 0.11 (1258)

V OL 34.12 (23) 0.03 (124) 0.68 (131) 0.10 (1668) 34.87 (157) 0.10 (732)

RMSE 0.1080 0.0410 0.0135 0.0038 0.1619 0.0076

The inputs listed in the first column are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-
maturity (τ ), open interest (OP I ), and volume (V OL). The data is for the pre-COVID-19 time period (January
1, 2020 to February 19, 2020). The Gini indices are obtained from the RFmodel, based on the average impurity
decrease, with the number of nodes using that attribute indicated in the parentheses (# nodes). The two inputs
with the largest feature importance in a cluster are bolded. RMSE denotes the root mean-squared prediction
error of the RF model that was tested on in-sample data

ters for inputs (St/K , σI V , τ, V OL, OP I ) in the five-dimensional original space are at the
following coordinates:

• Cluster 1 → (1.02, 0.21, 1.57, 99.38, 2283.53);
• Cluster 2 → (0.93, 0.24, 0.72, 242.90, 3710.52);
• Cluster 3 → (0.97, 0.43, 0.10, 3156.97, 35520.08);
• Cluster 4 → (0.90, 0.21, 2.76, 25.21, 199.81);
• Cluster 5 → (0.92, 0.36, 0.15, 388.79, 2900.18).
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Fig. 4 COVID- 19 crash: clusters and their centers. Notes: The clusters are found by using the
RONN algorithm for the COVID-19 data (February 20, 2020 to March 23, 2020: 19547 observations). We
reduce the five-dimensional space to a two-dimensional projection where PC#1 and PC#2 denote the first two
principal components. Numbers 1-5 indicate the location of cluster centers in the reduced space

Table 7 COVID- 19: feature importance across clusters

Gini index
(# nodes)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σI V 353.46 (320) 22.69 (1953) 0.09 (1076) 0.33 (2272) 0.02 (22365)

St/K 301.17 (840) 33.73 (4893) 3.37 (2209) 0.49 (3665) 0.43 (35127)

τ 9.64 (154) 0.93 (1079) 0.07 (851) 0.08 (1083) 0.02 (18052)

OP I 29.08 (160) 1.64 (845) 0.72 (557) 0.10 (907) 0.05 (11878)

V OL 2.08 (87) 2.21 (638) 0.13 (502) 0.03 (759) 0.02 (11896)

RMSE 0.1689 0.0488 0.0051 0.0102 0.0029

The inputs listed in the first column are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-
maturity (τ ), open interest (OP I ), and volume (V OL). The data is for the COVID-19 time period (February
20, 2020 to March 23, 2020). The Gini indices are obtained from the RF model, based on the average impurity
decrease, with the number of nodes using that attribute indicated in the parentheses (# nodes). The two inputs
with the largest feature importance in a cluster are bolded. RMSE denotes the root mean-squared prediction
error of the RF model that was tested on in-sample data

Thus, cluster 1 represents ITM, long-term options, while cluster 2 are OTM, long-term
options with higher open interest. Cluster 3 are OTM, short-term options with high volatility
and volume, and very high open interest. Cluster 4 are deep-OTM, long-term optionswith low
volume and open interest. Cluster 5 are deep-OTM, short-term options with high volatility
and open interest. The Gini indices and RMSE’s for the clusters can be found in Table 7.
During the COVID-19 period, the highest pricing accuracy was reached in clusters 3 and 5,
which are OTM, short-term options with high volatility and open interest. It can be generally
stated that longer maturity is detrimental for the pricing accuracy, while other inputs do not
have a clear systematic effect on the model’s pricing ability across the clusters.
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Fig. 5 Post- COVID- 19 recovery: clusters and their centers. Notes: The clusters are found by
using the RONN algorithm for the COVID-19 data (March 24, 2020 to June 15, 2020: 38909 observations).
We reduce the five-dimensional space to a two-dimensional projection where PC#1 and PC#2 denote the first
two principal components. Numbers 1-5 indicate the location of cluster centers in the reduced space

Table 7 also confirms that moneyness is the most useful input in all clusters, followed by
the implied volatility and open interest. Similar to the pre-COVID-19 period, the open interest
input gained importance in the clusters where high open interest options are concentrated.
In light of our findings for the pre-COVID-19 period, the fact that option demand also drove
option prices during the COVID-19 crash was not unexpected. Further, volumewas relatively
more important only in the third cluster that contains very high volume options. Again, the
maturity input was of minor relevance for option pricing.

Finally, we plot the optimal clusters and their centers for the post-COVID-19 time period in
Fig. 5. Here, the first two principal components cumulatively preserve about 94% of the data
variance in new feature space. The cluster centers for inputs (St/K , σI V , τ, V OL, OP I ) are
distributed as follows:

• Cluster 1 → (1.00, 0.27, 0.14, 145.07, 1300.40);
• Cluster 2 → (0.99, 0.22, 2.62, 38.94, 469.04);
• Cluster 3 → (0.96, 0.25, 0.27, 783.05, 13851.57);
• Cluster 4 → (0.92, 0.22, 1.38, 108.25, 2287.64);
• Cluster 5 → (1.04, 0.27, 0.63, 113.28, 1901.41).

The cluster centers 1-5 above identify the following option types: (1) at-the-money, short-
term options with high volatility and open interest, (2) at-the-money, very long-term options
with low volume and open interest, (3) OTM, short-term options high volume and open
interest, (4) deep-OTM, long-term options with high open interest, and (5) ITM, medium-
term options with high open interest. With regard to the pricing performance in the individual
clusters, presented in Table 8, the lowest (highest) error was generated in cluster 3 (4). In
accord with some of our previous evidence, pricing errors increase with both moneyness
and maturity. Nonetheless, the effect from the remaining inputs on the RMSE’s was not
significant enough for a stylized economic interpretation.
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Table 8 Post- COVID- 19: feature importance across clusters

Gini index
(# nodes)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

σI V 5.76 (2075) 3.80 (1473) 0.14 (2448) 23.85 (1130) 158.95 (1729)

St/K 144.05 (8416) 2.84 (4071) 0.82 (5320) 19.15 (2915) 145.63 (5286)

τ 5.65 (1869) 0.24 (819) 0.03 (3064) 1.00 (614) 7.35 (912)

OP I 14.23 (1663) 0.93 (751) 0.06 (1425) 6.38 (414) 13.12 (916)

V OL 6.58 (1068) 0.16 (409) 0.02 (1450) 4.21 (323) 4.12 (715)

RMSE 0.0446 0.0101 0.0097 0.0805 0.0592

The inputs listed in the first column are as follows: implied volatility (σI V ), moneyness (St/K ), time-to-
maturity (τ ), open interest (OP I ), and volume (V OL). The data is for the COVID-19 time period (March
24, 2020 to June 15, 2020). The Gini indices are obtained from the RF model, based on the average impurity
decrease, with the number of nodes using that attribute indicated in the parentheses (# nodes). The two inputs
with the largest feature importance in a cluster are bolded. RMSE denotes the root mean-squared prediction
error of the RF model that was tested on in-sample data

In contrast to the COVID-19 period, implied volatility was the most dominant input in
three of the five option clusters. Although moneyness was always among the top two inputs
in terms of the Gini index, it was the strongest only in clusters 1 and 3. Hence, clustering
provides new findings that were not apparent from Table 3 that analyzed all post-COVID-19
options together. In particular, we demonstrate that volatility was a more important input than
moneyness during the market recovery. In all likelihood, among other risk factors, volatility
risk was the most significant and it commanded greater option prices in the post-COVID-19
period. Furthermore, demand-induced shocks were not as pronounced at that time, as they
had been in the first two periods. Open interest was among the two highest Gini indices only
in cluster 1, but, it is noteworthy, that it was consistently the third most important input in
other clusters. As observed before, volume and time-to-maturity were the least useful for
pricing in all clusters.

6 Conclusions

This paper tackles the problem of the lack of parametric transparency and economic inter-
pretability in non-parametric option pricing models by utilizing data clustering and XAI.
We also recognize that in real-world markets options are hedged imperfectly. Consequently,
we depart from the Black-Scholes framework (where prices are determined by no-arbitrage)
and expand the model with additional inputs—open interest and volume—that reflect market
demand and sentiment. By concentrating on the most recent S&P 500 index options data
that include the COVID-19 crash and post-COVID-19 recovery, we provide unique insights
into the option market microstructure and the behavior of traders exposed to multiple regime
shifts.

First, we perform a comparative option pricing exercise across various model specifica-
tions and time periods. The evidence shows that non-parametric techniques easily dominate
theBlack-Scholesmodel in a stable, pre-COVID-19market. On the other hand, in the volatile,
pandemic market, the Black-Scholes model delivers pricing accuracy that is comparable to
non-parametric models. This is consistent with Garcia and Gençay (2000) and Kukolj et
al. (2012) that reported relative success of the Black-Scholes model during regime shifts in
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1987 and 2008, respectively. Overall, on all three sub-periods (pre-COVID-19, COVID-19,
post-COVID-19), the XGB and RF models produce the most accurate option prices out-of-
sample.

We also find that non-parametric option pricing (and the resulting economic interpretation)
depends on the nature of non-parametric models and the XAI technique that is applied. More
specifically, when an option pricing model’s input is highly important (e.g., moneyness),
its contribution and interpretation is invariant to model specification and time period. In
contrast, when an input is of minor non-linear importance (e.g., volume), its significance
may vary. Although such findings could be perceived as a limitation of our study, it is
worthwhile to note that, when we combine the evidence from multiple methods, we are able
to obtain a deeper grasp of the forces behind the data generating process of option prices.
Our findings point to the dominant role played by the moneyness input in option pricing. The
other inputs are significantly less important, but the influence of time-to-maturity and implied
volatility is frequently present across models and market regimes. An intriguing evidence
we report is that certain options were sensitive to demand-based shocks reflected in the open
interest input already in the pre-COVID-19 period. Moreover, during the COVID-19 market
crash, we observe an increased importance of open interest which suggests an emergence of
liquidity and demand shocks during market distress. More specifically, on all time periods,
the importance of open interest was greater in option clusters with high implied volatility and
open interest (and to a certain extent moneyness). This in general corroborates the evidence
of positive relationship between net demand for options and excess implied volatility found
in Gârleanu et al. (2009).

The models and methods proposed in this paper help improve our understanding of the
dynamics of option prices and their underlying risk factors.Our approach could be generalized
to any financial derivative, providing sufficient market information is available. Within the
context of stock options, future research effortsmight concentrate on explaining idiosyncratic
and systematic risk factors inherent in option contracts across various industries (as in, e.g.,
Ramelli and Wagner, 2020). Another potentially interesting research avenue is to employ
high-frequency data where premia for stochastic volatility or jump risk could also contribute
to option pricemovements.8 It is of interest to policy-makers tomeasure howmuch variability
in option (or, more generally, asset) prices can be attributed to non-traditional factors such as
open interest and other potential gauges of market sentiment, especially at crisis times. Also,
ignoring market microstructure effects (i.e., trader behavior) inferred from our clustering
method may lead policy-makers to wrong conclusions about the effectiveness of a particular
policy aimed at calming volatile markets.

In all, we demonstrate clear benefits of clustering and XAI to our understanding of the
option market mechanisms, especially during periods of extreme uncertainty. Our empirical
explorations complement the extant literature on the econometrics of option pricing. Specif-
ically, we shed more light on the potential latent variables and complex non-linearities of the
pricing model (Garcia et al. 2010).
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