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Abstract
Operating Room (OR) management has been among the mainstream of hospital manage-
ment research, as ORs are commonly considered as one of the most critical and expensive
resources. The complicated connection and interplay between ORs and their upstream and
downstream units has recently attracted research attention to focus more on allocating med-
ical resources efficiently for the sake of a balanced coordination. As a critical step, surgical
scheduling in the presence of uncertain surgery durations is pivotal but rather challenging
since a patient cannot be hospitalized if a recovery bed will not be available to accommodate
the admission. To tackle the challenge, we propose an overflow strategy that allows patients
to be assigned to an undesignated department if the designated one is full. It has been proved
that overflow strategy can successfully alleviate the imbalance of capacity utilization. How-
ever, some studies indicate that implementation of the overflow strategy exacerbates the
readmission rate as well as the length of stay (LOS). To rigorously examine the overflow
strategy and explore its optimal solution, we propose a Fuzzy model for surgical scheduling
by explicitly considering downstream shortage, as well as the uncertainty of surgery duration
and patient LOS. To solve the Fuzzy model, a hybrid algorithm (so-called GA-P) is devel-
oped, stemming from Genetic Algorithm (GA). Extensive numerical results demonstrate the
plausible efficiency of the GA-P algorithm, especially for large-scale scheduling problems
(e.g., comprehensive hospitals). Additionally, it is shown that the overflow cost plays a critical
role in determining the efficiency of the overflow strategy; viz., benefits from the overflow
strategy can be reduced as the overflow cost increases, and eventually almost vanishes when
the cost becomes sufficiently large. Finally, the Fuzzy model is tested to be effective in terms
of simplicity and reliability, yet without cannibalizing the patient admission rate.
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Abbreviations

N Total number of patients seeking healthcare (patient is indexed as i= 1, 2, ..., N ).
S The total number of surgery teams available (team is indexed as s= 1, ..., S).
J The total number of available ORs at the hospital (OR is indexed as j= 1, ..., J ).
D Planning horizon (indexed with d).
D′ A dummy day after planning horizon to accommodate excessive demand.
E Longest length of stay (LOS) among all patients (indexed with e).
V Types of inpatient beds (indexed with v)

Parameters

Bv The number of beds of type v.
Mo

d j Maximal overtime of OR j on the day d .
po Unit overtime cost per operating room (OR).
r Unit revenue per surgery.
phv Unit overflow cost per bed of type v.
{Yis}N×S Assignment matrix, where Yis = 1 if the surgery team s is assigned to treat patient

i ; otherwise Yis = 0.
Zi Type of patient; Zi = 1 if a patient is an inpatient; otherwise Zi = 0.
ξi Surgery duration of patient i .
βsd Availability of surgical team; βsd = 1 if surgery team s is available on day d;

otherwise βsd = 0.
Td j The open duration of OR j on day d .
Li The length of stay (LOS) of patient i .
Wsd The maximum working time of surgery team s on day d .
Duei The assigned due date for patient i

Variables

Xid jv Binary variable; Xid jv = 1, if the patient i is assigned to the OR j , of bed type v,
on day d; otherwise Xid jv = 0.

Niev Binary variable; Niev = 1, if patient i of inpatient bed type v is discharged on day
e; otherwise Niev = 0.

Odj The total overtime of OR j on day d .
Hiv Binary variable; Hiv = 1 if the bed assigned to patient i is of the type v; otherwise

Hiv = 0

1 Introduction

The healthcare of surgical patients is typically operated through a sequence of standard
stages. Among them, there are two key stages, the operative stage and the postoperative
stage, which characterize the transition from a high- to a low-intensity care (Liu et al.,
2019; Wang et al., 2022). The transition of surgery patients flows from the upstream to the
downstream, and they are eventually discharged after recovery. Given that most upstream
resources are relatively expensive and scarce, especially for operating rooms (ORs), the
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mainstream of extant research focuses on the scheduling issues of upstream resource (e.g.,
ORs), while simply assuming ample sufficiency of downstream resources (e.g., inpatient
beds) (Durán et al., 2017; Roshanaei et al., 2017; Shylo et al., 2013). However, in practice,
if the downstream resources are exhausted, then the whole system will be disrupted accord-
ingly. In this case, a shortage of downstream resources, especially inpatient beds, not only
hinders the timely treatment of patients, but also further devastates the utilization of related
resources in the operating rooms (ORs).

One of the most effective ways to address a shortage of the downstream resources is
to balance the resource by “coupling” the capacity of the upstream with the one in the
downstream (Bastos et al., 2019; Gao et al., 2020). For instance, Schneider et al. (2020)
indicate that blocking can be alleviated by balancing the capacities at different stages, viz., by
minimizing variations of bed usage. In practice, balancing capacity alone could not always
iron out the wrinkles, because there are many factors in play overwhelmingly causing a
shortage of inpatient beds, such as insufficient capacity (Bazzoli et al., 2003), inefficient
capacity allocation (Green, 2012), and certain unexpected emergency occurrences (Gupta,
2007). In this case, many hospitals adopt the regionalized practices by allocating beds and
medical resources in terms of the dedicated specialties (e.g., oncologywards, obstetric wards,
etc.). Operationally, this can curtail the bed shortages (Song et al., 2020). On the flip side of
the coin, such resource allocation without a centralized coordination can also cause resource
idling for some wards while others are suffering from shortages. Practically, raising hospital
capacity, such as increasing the number of inpatient beds or nurses, is not always feasible
under such a situation (Best et al., 2015;Wang, Li, et al., 2020;Wang, Qin, et al., 2020, 2021).

Instead, hospitals are recommended to adopt an overflow strategy (or off-service place-
ment), which admits patients to a ward with sufficient resources, even though that ward may
not be the designated one (Dai & Shi, 2019; Izady & Israa, 2021; Song et al., 2020). In prac-
tice, many hospitals first classify their inpatients according to specialties (e.g., cardiology,
orthopedic, general medicine, etc.) based on which patients are then assigned to correspond-
ing wards (i.e., primary wards) for treatments (Shi et al., 2016). Take the general medicine
ward for example, as depicted in Fig. 1, when its capacity is fully used, incoming patients
must wait in a queue for beds; however, patient condition may deteriorate, or they may suffer
from some emotional distress while waiting. To address the issue, the overflow strategy thus
suggests diverting patients of over-capacity wards to other wards with available capacity for
the sake of reducing waiting time. In view of Fig. 1, surgery patients of general medicine
wards are transferred to cardiology wards for postoperative recoveries in accordance with
the overflow strategy. In this case, those diverted patients and the diverted ward are called
overflow patients and overflow wards, respectively.

Although the overflow strategy may effectively solve the resource allocation issue and
reduce patient waiting time while increasing the patient admission rate simultaneously, it
comes with the price of increasing postoperative costs. For instance, Izady and Israa (2019)
point out that the overflow strategy may increase the length of stay (LOS) as well as the
re-admission rates. Therefore, surgical scheduling needs to be systematically and judiciously
examined by not only the benefits brought by the overflow strategy, but also its associated
costs. To this end, this study proposes a two-stage model to holistically balance the costs and
benefits pertaining to the overflow strategy.

In the real healthcare system, there are a myriad of inevitable uncertainties, which add
more wrinkles to resource management. For example, a hospital manager may lack knowl-
edge in advance on the exact surgery duration and LOS of a patient, which is the essential
information for managing the bed and OR utilization. The absence of such knowledge or its
unpredictability is the most cause that hinders the efficiency and effectiveness of resource
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Fig. 1 An illustrative example of overflow strategy implementation with two wards

allocation and scheduling (Shylo et al., 2013). Typically, for such resource allocation problem
with uncertain demand, it is usually solved by stochastic programming or robust optimiza-
tion (Wang et al., 2022), which radically assumes variables following a known probability
distribution. However, the underlying distribution of a variable is often unknown in principle
and is usually statistically estimated based on its historical data (Shapiro et al., 2009). Nev-
ertheless, the statistical inference of historical data to the underlying distribution is dubious
or rather controversial (Shapiro & Nemirovski, 2005). Besides, medical history data is not
always sufficient or complete (Priya et al., 2017). For example, the outbreak of COVID-19
has led to disruptive changes in surgical procedures and entrenched preoperative preparation
and postoperative disinfection time for most patients. There are also some elective patients
who are unable to be hospitalized in a timely manner and their condition deteriorates, making
their operation time and LOS evenmore uncertain. In this case, the surgery duration and LOS
can only be estimated by experts (e.g., surgeons) based on their experience and expertise,
which may vary significantly from person to person, and this intensifies modeling difficulty.

Methodologically, Fuzzy theory is embraced to be an effective way to handle such vari-
ations in estimation (Bellman & Zadeh, 1970), and has gained a wide range of applications
in job scheduling (Abdullah & Abdolrazzagh-Nezhad, 2014), production management (Han
et al., 2020), among many others. Fuzzy estimation of uncertain durations does not require
a large amount of historical data, hypothetical data distribution or complex probability cal-
culations—only the inference of a panel consensus, which significantly reduces data bias
and alleviates the complexity of the scheduling model (Gonzalez-Rodriguez et al., 2008).
In practice, the fuzzy estimates of surgery duration and LOS made by panel consensus can
truthfully reflect the heterogeneity of patients. Nevertheless, there has been scarce research
investigating the impacts of uncertainty in surgical management by adopting Fuzzy theory.
This study aims to bridge the gap in the extant literature.
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In this paper, we study elective surgical scheduling1 by considering downstream inpatient
beds shortage under an uncertain environment. As mentioned before, although the overflow
strategy has been proven to be effective in solving the issue of downstream bed shortage and
simultaneously improving upstream resource utilization, it unavoidably comes with a cost,
e.g., exacerbating the readmission rate and LOS. This study is dedicated to analyzing these
tradeoffs pertaining to the overflow strategy and to finding the optimal policy for overflow bed
allocation. Furthermore, given that both the uncertainty of surgery duration andLOS radically
impact the effectiveness of surgery scheduling, this study investigates the feasibility of using
a scheduling technique fueled with fuzzy data to mitigate the uncertainty. To the best of our
knowledge, this is the first study to streamline upstream and downstream medical resources
in a fuzzy environment.

Our study can be broken down into three efforts. First, we develop a multi-day schedul-
ing model for elective surgery implementing the overflow strategy. Second, the multi-day
schedulingmodel is then extended into a Fuzzymodel by considering uncertainties of surgery
durations. Third, the model is transformed and processed, whereby a hybrid GA algorithm
(GA-P) is proposed based on Genetic Algorithm (GA) to solve the Fuzzy model.

A Monte Carlo simulation is performed to evaluate the model performance. The experi-
mental results show that our developed algorithmGA-P delivers the best and themost reliable
performance. Moreover, the overflow cost is shown to play a critical role in determining the
effectiveness of the overflow strategy. For a large-scale problem, the overflow strategy is
shown to be only effective when the unit overflow cost is not too high. However, for a
small-scale problem, the overflow strategy is always effective, regardless of the overflow
cost. Finally, the Fuzzy model, which requires only minimum scheduling uncertainty data,
is shown to be the most reliable, without compromising the patient admission rate.

The remaining of this paper is organized as follows. Section 2 reviews the related literature
and points out the contribution of our study, following which the deterministic scheduling
modelwith the overflowstrategy is devised inSect. 3. TheFuzzymodel is developed inSect. 4,
and its solutions of the Fuzzy model is addressed in Sect. 5. Computational experiments are
performed in Sect. 6. Finally, Sect. 7 presents the conclusion and points out some future
research directions. Additional materials are relegated in Appendix, including a brief review
of Fuzzy theory, details of algorithm and some auxiliary numerical results.

2 Literature review

This study mainly focuses on the optimization of hospital service capacity considering two
aspects: the shortage of downstream resources and the uncertainty of processing time in
surgical scheduling. In what follows, we shall review the literature along each stream.

2.1 Shortage of downstream resources in surgical scheduling

Our model considers two homogeneous resources, inpatient wards and operating rooms
(ORs). Surgical scheduling with limited beds has been studied extensively in the healthcare
operations management literature. For example, Min and Yih (2010) focus on the shortage
of downstream stroke intensive care unit (SICU) beds. By considering the number of SICU

1 Elective surgery is defined as a surgery that can be scheduled in advance. It usually refers to a surgery for
improving life quality (e.g., cosmetic procedures), but sometimes can refer to surgery for a serious condition
(e.g., cancer treatment).
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beds as a constraint, they develop a stochastic mixed-integer linear programming model to
minimize the total of patient treatment costs and expected overtime costs. Recently, Zhang
et al. (2019) propose a two-level optimization model considering the limited capacity of
downstreamSICU for elective surgery planning in a single department. Vancroonenburg et al.
(2019) employ a chance constraint method to tackle the shortage of downstream inpatient
beds in surgical admission scheduling. The important feature shared by these studies is
the “exogenous” capacity constraint of the number of beds—once the bed capacity is fully
used, patients can no longer be admitted. In contrast, our study considers bed utilization
as an optimization objective, in lieu of a capacity constraint. There are some other studies,
which also consider bed utilization as an objective function of optimization. For example,
Schneider et al. (2020) study the impact of inpatient bed resources (such as the utilization
of inpatient beds in both the wards and the ICU) on surgical planning, and propose a single-
step scheduling model with the objectives of minimizing bed variations and maximizing
OR utilization. Fügener et al. (2014) propose an MSS method, which aims to minimize
downstream costs by balancing bed demand and reducing weekend bed demand. d’Obrenan
et al. (2020) propose a model with the objective of variation minimization in the required
bed capacity to solve the stochastic scheduling problem. Beliën and Demeulemeester (2007)
assume that the bed shortage, such as expected shortage and the probability of shortage, is
predictable if the daily bed demand can be stabilized, which further enables them to build
a cyclical master surgery schedule with an estimate of bed utilization and shortages. All
these aforementioned studies share the common goal of mitigating the impact of uncertain
surgical scheduling on downstream resource management. Although their efforts to alleviate
bed shortage is shown effective under some condition, we believe that further improvement
can be achieved by consolidating the interaction of upstream and downstream management.
Departing from the aforementioned studies, this paper considers the surgical process as a
two-stage (upstream and downstream) system that also includes the management of multiple
medical resources such as ORs and inpatient beds.

Some other studies propose innovative solutions to tackle the issue of bed shortages. For
example, Augusto et al. (2010) recommend allowing patients to recover in the OR whenever
a recovery bed is unavailable, but even though this approach might alleviate the strain on
downstream resources, it incurs additional OR costs or other burden. In addition, Bekker
et al.(2017) propose a shared ward strategy to allocate medical resources among different
wards; this sharing strategy has beenwidely studied in patient admission scheduling problems
(including both surgical and non-surgical patients). However, so far there has been only a few
studies that have considered resource sharing in surgical scheduling. This study investigates
the overflow strategy for sharing homogeneous beds to balance upstream and downstream
demand and to increase patient admission rates as well as the number of surgeries.

2.2 Uncertainty of durations in surgery scheduling

The uncertainty in operation scheduling usually involves the surgery durations, LOS in the
ICU, and LOS in the wards. Given that the upstream OR is one of the most expensive
resources, most of the current research focuses on the OR scheduling and management. For
example, Eun et al. (2019) define an OR planning problem in which uncertainty in surgery
duration is incorporated. In addition, Denton et al. (2010),Min andYih (2010), Freeman et al.
(2016), Wang et al. (2022) and Atighehchian et al. (2020) also consider the uncertainty of
surgery duration.Given the intertwined connection between the upstreamand the downstream
in a hospital system, some studies extend to consider the uncertainty from both stages. For
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instance, Saadouli et al. (2015) assume the durations of surgery and recovery to be stochastic,
and develop a model to optimize surgery and recovery planning that avoids OR occupation
by recovery patients. Considering the surgery and recovery uncertainties, Zhang et al. (2020)
employ a stochastic programming model, and propose several heuristics to solve the elective
surgery scheduling problems. Unlike the abovementioned studies, this paper integrates the
surgery durations and LOS in the ICU as the overall surgery duration, and also takes LOS into
consideration. In principle, risk and uncertainty is a primary consideration in the broad context
of operations management; readers are referred to Shi and Zhao (2010), Shi Katehakis, and
Melamed (2013), Shi, Katehakis, et al. (2014), Shi, Yue, et al. (2014), Shi et al. (2019)),
Chang et al. (2019), Katehakis et al., (2015, 2016), Shi (2016), Xiao and Shi (2016), Qi, et al.
(2015), Chang and Shi (2017), among many others.

There are a variety ofmethods developed for tackling the uncertainties in surgical schedul-
ing, among which the most common two are stochastic optimization and robust optimization.
For the former, Kumar et al. (2018) develop a stochastic mixed-integer programming model
to balance the patient flow under downstream capacity constraints. Stochastic optimization
considers hospitalization time to be stochastic, but assumes that the distribution is known,
which might not be true in practice. Denton et al. (2010) compare a stochastic optimization
model with a robust optimization model for the uncertainty of the surgery durations. The
results show that robust optimization is suitable for those in which parameter distributions
are unknown. Neyshabouri and Berg (2017) propose a two-stage robust optimization model
that considers both the uncertain surgery durations and the LOS to develop robust schedules
for a surgical ICU. Moosavi and Ebrahimnejad (2020) assume the surgery time, LOS, and
emergency to be stochastic, and develop a robust multi-objective programming model for
elective and emergency surgery scheduling. In contrast to the assumption of known distribu-
tion for stochastic optimization, robust optimization is more resilient when the information
about data distribution is scarce (Rachuba&Werners, 2017;Wang et al., 2022). Given limited
information, robust optimization needs to estimate the range of uncertain parameters from
panel consensus, while epistemic uncertainties among panel experts are usually ignored. To
accommodate such epistemic uncertainties andminimize model errors, we employ fuzzy sets
for surgery scheduling. There have been several studies adopting fuzzy sets to tackle surgical
uncertainties (e.g., De & Sana, 2015; Singh & Yadav, 2018; Tavana et al., 2013). Moreno
and Blanco (2018) propose a fuzzy planning method for multi-objective patient appointment
scheduling in large hospitals. Lee andYih (2014), Behmanesh andZandieh (2019), andWang,
Li, et al. (2020) , Wang, Qin, et al. (2020) ) describe the uncertain duration of operations
with fuzzy numbers to build fuzzy models, which proves to be effective in the application of
surgical scheduling. In contrast, previous studies focused on the daily scheduling of surgery
with limited ORs and ICU beds (i.e., the upstream), whereas we study multi-day scheduling
for a planned time horizon with a focus on the limited recovery beds (i.e., the downstream).
In this paper, we leverage triangular fuzzy numbers (TFN) to model the surgery duration and
LOS. TFN and trapezoidal fuzzy numbers are two representative and commonly-used types
of fuzzy numbers (Seyfi-Shishavan et al., 2021; Sun et al., 2019; S. Wang et al., 2013). Actu-
ally, TFN can be treated as a special case of trapezoidal fuzzy number, which is characterized
by its simple expression for a complex model. For our problem under this study, a surgical
scheduling problem is usually complicated for its joint considerations of various resources
(including upstream and downstream) and uncertainties of surgery and hospitalization dura-
tions. In this sense, TFN is selected for our proposed surgical scheduling problem to reduce
its computational complexity.
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3 Deterministic schedulingmodel with the overflow strategy

In this study, we consider a medical specialty as a focal scheduling unit where each specialty
has its own inpatient wards. Considering the constraints of fixed ORs and inpatient beds,
the surgical planner needs to select some patients from the patient pool to schedule first and
postpone the rest until the next scheduling cycle. Once admitted, a patient’s surgery must
be performed by the scheduled due date; if the designated ward is full, the patient must be
re-assigned to another ward. Tominimize non-designated assignments, hospital management
needs to allocate resources efficiently and strategically.

This study attempts to address the following questions in sequence: (1) What kind of
patients deserve admission with priority? (2) Which OR to be assigned to the admitted
patients? (3) When to schedule the surgery? (4) What type of inpatient bed to be allocated
to the patient? The objectives of the model are to minimize the total cost, consisting of the
overtime costs of ORs and the overflow costs of inpatient beds, whilemaximizing the profit of
ORs. The rationale behind the objectives is to reflect the close interplay between a hospital’s
upstream and downstream medical resources. The two-side impacts of the patient admission
decision are straightforward: over-admission of patients will lead to an overtime utilization
in ORs and overflow of inpatient beds; under-admission of patients will dwindle OR profit.

It is worth noting that surgery costs can be classified into two parts: general costs and
additional costs. The former covers the open costs of ORs and inpatient beds, and the latter
refers to the overtime costs of ORs and the overflow costs of inpatient beds. Given that the
numbers of ORs and inpatient beds are fixed in the short term, we only consider the additional
costs in our model.

The assumptions of our model are described as follows:

(1) Since the pre-operative cleaning and post-operative anesthesia recovery are performed
in an OR and require OR resources, surgery duration is considered to include these
processes.

(2) Planning and scheduling of emergency patients is not considered in our model, because
hospitals usually reserve dedicated ORs and wards for emergencies (Freeman et al.,
2016).

The main symbols and notations used in this paper are summarized as follows.
The objective of the deterministic surgery scheduling model is to maximize the surgery’s

total profit. There are two factors affecting surgery profit: (1) regular surgery profit, which
increases linearly in surgery duration; (2) additional surgery costs, which is the sum of over-
time costs of ORs and overflow costs of inpatient beds. Accordingly, we have the following
mixed-integer programming (MIP).

Max
N∑

i=1

D∑

d=1

J∑

j=1

V∑

v=1

(r Xid jvξi ) −
D∑

d=1

J∑

j=1

(poOd j ) −
N∑

i=1

V∑

v=2

(
phv Hiv

)
. (1)

The model is subject to the following constraints:
Constraints (2, 3) below require that the non-negative variable of the total overtime of the

OR j on day d must be larger than or equal to the excess usage of the operating room over
the regular opening duration.

Odj ≥
N∑

i=1

V∑

v=1

Xid jvξi − Td j ,∀d, j; (2)

Odj ≥ 0,∀d, j . (3)
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Constraint (4) requires that the expected discharge day for each patient must be equal to
the surgery time plus the total length of stay (LOS).

D′∑

d=1

J∑

j=1

V∑

v=1

dXid jv + Li =
D′+E∑

e=1

V∑

v=1

eNiev,∀i . (4)

Constraint (5) confines that a patient must stay in only one bed from the time of being
admitted to the time of being discharged.

D′∑

d=1

J∑

j=1

Xid jv =
D′+E∑

e=1

Niev,∀i, v. (5)

Constraint (6) is a bed capacity constraint, which states that the total number of inpatients
must be less than the total number of beds.

d∑

d ′=1

N∑

i=1

J∑

j=1

V∑

v=1

Zi Xid ′ jv −
d∑

e=1

N∑

i=1

V∑

v=1

Zi Niev −
V∑

v=1

Bv ≤ 0,∀d. (6)

Equation (7) is a constraint of bed occupancy for each patient and each type of bed.

Hiv =
D∑

d=1

J∑

j=1

Xid jv,∀i, v. (7)

Constraint (8) is a capacity constraint for each type of inpatient bed.

N∑

i=1

J∑

j=1

Zi Xid jv −
N∑

i=1

Zi Nidv ≤ Bv,∀d, v. (8)

Constraint (9) is a capacity constraint of surgery teams, which requires that the total
number of surgeries performed each day must be less than the total number of available
surgery teams.

J∑

j=1

V∑

v=1

Xid jv ≤
S∑

s=1

Yisβsd ,∀i, d. (9)

Constraint (10) is a constraint on the daily maximum surgery hours for each surgery team.

J∑

j=1

N∑

i=1

V∑

v=1

Xid jvYisξiβsd ≤ Wsd ,∀d, s. (10)

Constraint (11) is a constraint on the maximum overtime for each OR.

Odj ≤ Mo
d j ,∀d, j . (11)

Elective surgery, although is less time-sensitive compared to emergency surgery, it still
requires judicious attention. Surgical patients are usually assigned a surgery due date, by
which time the surgery must be performed in an OR. Constraints (12)-(13) require that each
patient must be assigned by the due date and must only be assigned once.

Duei∑

d=1

J∑

j=1

V∑

v=1

Xid jv = 1,∀i . (12)
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D′∑

d=1

J∑

j=1

V∑

v=1

Xid jv = 1,∀i . (13)

Constraint (14) states that each patient must be discharged and be discharged only once.

D′+E∑

e=1

V∑

v=1

Niev = 1,∀i . (14)

4 Schedulingmodel based on fuzzy duration

The surgical department and the inpatient department are inherently connected, and both are
faced with great uncertainties in scheduling. In the aboveMIPmodel for a deterministic envi-
ronment, we assume that surgery durations and LOS are known. Nevertheless, they are uncer-
tain in practice. Surgery durations and LOS are usually estimated from historical data, but
heterogeneity in patients makes the estimations biased andmodeling accuracy compromised.
In addition, dynamical changes in the medical environment will further decrease predicting
efficacy of historical data. For example, the outbreak of COVID-19 has caused disruptive
changes in surgical procedures, and increased preoperative preparation and postoperative dis-
infection time for most patients. There are also some elective patients who are unable to be
admitted to the hospital in time, and their condition deteriorates, making their operation time
and LOS even more uncertain. In this study, we thus employ possibility theory to treat expert
estimations as a set of fuzzy numbers so as to improve modeling accuracy and efficiency.

Following prior literature on medical scheduling (Behmanesh & Zandieh, 2019; Lee &
Yih, 2014), this study employs triangular fuzzy numbers (TFN) to model the expert’s esti-
mates of surgery duration for each patient as ξ̃i = (ξ li , ξ

m
i , ξ ri ), where ξmi represents the most

plausible value of the surgery duration of the patient i , and ξ li , ξ
r
i denote the optimistic (the

best case) and pessimistic (the worst case) values, respectively. In a similar vein, the LOS
can be expressed as L̃i = (Ll

i , L
m
i , Lr

i ). A detailed definition of TFN (Laarhoven & Pedrycz,
1983) is provided in Appendix A.1.

The rules of fuzzy operations in our model involve the arithmetic of TFNs, the ranking
method of fuzzy numbers, and the operation of expectation value of fuzzy numbers (Chen &
Hwang, 1992; Jiménez et al., 2007; Lei, 2010). The details of fuzzy operations are provided
in Appendix A.2, A.3 and A.4.

In the Fuzzy model, the objective function is expressed as Eq. (15).

MaxG̃ =
N∑

i=1

D∑

d=1

J∑

j=1

V∑

v=1

(r Xid jvξ̃i ) −
D∑

d=1

J∑

j=1

(po Õd j ) −
N∑

i=1

V∑

v=2

(
phv Hiv

)
(15)

Constraints (2)-(3) in the MIP formulated in Sect. 3 are reformulated as,

Odj =
[

N∑

i=1

V∑

v=1

Xid jvξi − Td j

]+
, ∀ d, j .

However, when the operation duration parameter ξi is replaced with a fuzzy number ξ̃i ,
we need to devise a new expression incorporating the fuzzy sets. Therefore, the OR overtime
constraint with fuzzy surgery duration is revamped as Eq. (16):
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Õd j = P

[
N∑

i=1

V∑

v=1

Xid jvξ̃i − Td j

]
, ∀ d, j, (16)

where P[·] represents the rule that generates the positive part of the triangular fuzzy number.
In the following Sect. 5.1, we will elaborate on the rule P[·] in more detail. The constraint
of the patient discharge day with a fuzzy length of stay is expressed as Eq. (17).

D′∑

d=1

J∑

j=1

V∑

v=1

dXid jv + L̃i = Ñi ,∀i . (17)

The above Eq. (17) states that, given the fuzzy numbers of surgery duration and LOS, the
patient discharge time becomes a fuzzy number. This can be further expressed as a function
that converts the fuzzy discharge day into the most possible day, as formulated in Eq. (18)
below. In fuzzy related research, many different conversion functions have been proposed
and studied. The transfer functions used in this paper will be elaborated further in Sect. 5.1.

f
(
Ñ

i

)
=

D′+E∑

e=1

V∑

v=1

eNiev,∀i, (18)

where, f (·) represents the conversion function. Constraint (19) is the capacity constraint of
working hours with a fuzzy surgery duration.

J∑

j=1

N∑

i=1

V∑

v=1

X
id jv

Y
is
ξ̃iβsd ≤ W̃sd ,∀d, s, (19)

where, W̃sd is the maximum fuzzy working time of the surgery team s on day d . Constraint
(20) refers to the capacity constraint of OR overtime in terms of a fuzzy surgery duration.

Õd j ≤ M̃o
d j ,∀d, j, (20)

where M̃o
d j is the maximal fuzzy overtime of the OR j on day d .

It should be noted that in practice, if a decision maker does not provide the fuzzy number
W̃sd or M̃o

d j , but instead providing the exact number Wsd and Mo
d j , then according to the

definition of fuzzy number, the latter can still be transformed into triangular fuzzy numbers.
For example, the exact number 5 can be transformed into a triangular fuzzy number (5, 5, 5).
All other constraints, ceteris paribus, remain the same as those formulated in the deterministic
scheduling model in Sect. 3.

5 Solution approach for the fuzzymodel

Fuzzy models involve complex computation, and its solution typically requires a two-stage
treatment. First, the Fuzzymodelsmust be transformed. Second, considering thatORschedul-
ing is anNP-hard problem and that the decision variables of the Fuzzymodel involvemultiple
dimensions (e.g., a selection of surgical patients, OR and bed assignments, etc.), the solu-
tion approach of a traditional algorithm may not be efficient or satisfactory. To address the
challenge, we propose a hybrid GA (GA-P) algorithm which extends the Genetic Algorithm
(GA) algorithm framework by integrating heuristic rules (Lu et al., 2020).
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5.1 Transformation of the fuzzymodel

The objective function in this study is composed of three terms, namely, surgery profit,
overtime costs of OR, and bed overflow costs, wherein the first two are associated with
TFNs, and the last is a crisp number. As depicted in Fig. 2, in light of the fuzzy arithmetic
rules, the objective function can be expressed as a TFN, G̃ = (gl , gm, gr ), where gl , gm , and
gr represent the optimistic, the most plausible, and the pessimistic estimates, respectively.

In Fig. 2, L A (the left area) denotes the triangular area under the curve from gl to gm ,
and RA (the right area) refers to the triangular area from gm to gr . According to Buckley
and Feuring (2000), our objective function of the maximization of G̃ in Eq. (15) can then
be transformed into three sub-optimization functions: (1) Max(gm), (2) Max(RA), and (3)
Min(L A).

Triangular fuzzy numbers (TFNs) are bounded; we use L to denote the upper bound of LA
and L A′ = L − L A. In this case, the objective function of Min(L A) can then be transformed
into Max(L A′), and the overall objective of the model can now be expressed to maximize
gm, RA, and L A′. To transform a multi-objective problem into a single-objective problem,
the most straightforward and efficient way is to assign different weight ψi ≥ 0 to each
sub-objective function. In this fashion, the objective function is then formulated as follows:

Max
(
ψ1gm + ψ2RA + ψ3L A

′), (21)

where the constant ψi ≥ 0 denotes the weight associated with each sub-objective function
i = 1, 2, 3 such that

∑
i ψi = 1 Given that both RA and L A′ are TFN, increasing linearly

in the length g, the objective function can be consequently rewritten as (Chang et al., 2021):

Max{ψ1gm + ψ2gl + ψ3(gr − gm)}. (22)

In our numerical experiments, we implement the method of TFN via taking the weights
as ψ1=ψ3=0.25 and ψ2=0.5. Here, the selection of ψi ’s values is determined mainly based
on the decision maker’s risk tolerance and attitude toward OR overtime and bed overflow.
In particular, a larger ψ2 reflects that the manager tends to rely more on the plausible esti-
mates of surgery duration and LOS. In contrast, larger values of ψ1 and ψ3 mean that the
manager inclines to conservatively control OR overtime and bed overflow by relying more
on pessimistic estimates.

Fig. 2 The objective function is
represented by the TFN
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The OR overtime Constraint (16) is rather difficult to tackle since it only considers the
positive part of the difference between the total usage and the availability of ORs. In this
case, the negative fuzzy numbers must be discarded, and it can then be summarized into
five scenarios, as illustrated in Fig. 3. After removing the negative parts, the shaded area
represents the solution for each scenario, wherein Case 1 and Case 3 are no longer TFNs.
Next, an approximate conversion, P[·], is performed in order to initiate the fuzzy operations.
In particular, for Cases 1–2, we convert them into (0, gm, gr ) and (gm, gm, gr ), respectively;
Case 3 can be transformed into (0, 0, gr ); Case 4 remains unchanged; Case 5 is transformed
into (0, 0, 0). Approximations for each scenario are presented in red lines in Fig. 3.

In the Fuzzy model, the number of discharged patients per day cannot be calculated only
based on the fuzzy discharge date of each patient. Therefore, for operational simplicity, the
fuzzy discharge day in Eq. (18) are converted to the following, based on Eq. (23) by referring
to the rules of fuzzy expectation (cf. Appendix "Ranking of TFNs"), wherein the estimated
discharge day is de-fuzzified into a specific day.

⌈
EV

(
Ñ

i

)⌉
=

D′+E∑

e=1

eNie,∀i; (23)

f (·) = �EV (·)�, (24)

where
⌈
EV

(
Ñ

i

)⌉
is the ceiling number of EV

(
Ñ

i

)
.

Next, considering the computational complexity of Constraints (19) and (20), they are
respectively converted to:

EV

⎛

⎝
J∑

j=1

N∑

i=1

X
id j
Y
is
ξ̃iβsd

⎞

⎠ ≤ EV
(
W̃sd

)
,∀d, s; (25)

EV
(
Õd j

)
≤ EV

(
M̃o

d j

)
,∀d, j . (26)

5.2 Hybrid GA algorithm

In this section, we propose a hybrid GA algorithm (GA-P) to solve themodel. The framework
is delineated in Fig. 4. The motivation for developing the GA-P algorithm is based on the
following two reasons: (1) surgical scheduling is an NP-hard problem with high dimension-
ality, which intensifies the difficulty level, and (2) there have not been any methodology in
the extant literature to solve the fuzzy problems directly.

5.2.1 Algorithm steps

(1) Encoding:
Terminologically, a chromosome (a.k.a. genotype) in a Genetic Algorithm (GA) is a set
of parameters which define a proposed solution to the problem that the GA aims to solve.
In our setting, each chromosome I is a three-string vector, composed of OR assignment,
scheduled surgery day, and bed assignment, denoted by β, η, and γ respectively, as
shown in the following Eq. (27).

I =
⎛

⎜⎝
β

η

γ

⎞

⎟⎠ =
⎛

⎜⎝
o1, ..., oN

d1, ..., dN , dN+1

v1, ..., vN

⎞

⎟⎠. (27)
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Fig. 3 Conversion and expression of TFNs: Different cases
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Evaluate populations and find elite 
individuals

Start

Output the best 
individual

Generated  initial population 

Crossover and mutation

Population random search

Whether the termination 
criteria are met

4.The OR day assignments are crossed over and mutated.
5.Heuristic algorithm is used for bed and OR assignments 

according to the updated OR day assignment in step 1.

5.Remove duplicate individuals from the population.
6. Regenerate the population.

1. OR day assignment is randomly generated.
2.Heuristic algorithm is used for the allocation of bed and 

ORs according to assigned OR day in step 1.

NO

Yes

Fig. 4 Framework of the GA-P algorithm

In particular, the vector (o1,d1,v1) encapsulates the variables of the assigned operation
room, scheduled surgery day and allocated bed type for patient number one. It is worth
noting that a dummy variable dN+1 is added to accommodate unselected patients (due to
limited medical resources) who will be postponed to the next surgery cycles. One example
is illustrated in Fig. 5.

0 1 1 1 0 0 1 0 1

1 2 3 2 1 4 5 6 4

1 2 2 1 1 2 1 1 2

p1 p6p5p4p3p2 p7 p9p8

OR assignment

Day assignment

Bed assignment  

Fig. 5 One illustration of a feasible solution
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(2) Population initialization:

The diversity in patient population may pose a problem in the process of population
initialization, which can directly affect the results of a global search. Therefore, we should
generate as many feasible solutions as possible to avoid any bias in population initialization.
Moreover, some constraints in surgery scheduling must be taken into consideration, such
as the due dates of patient surgeries and the availability of surgery teams. In this case, the
substrings η can only be randomly generated within a limited time range. For example, if
the due day of a surgery is day 4, the admission schedule for the patient must be randomly
generated within the first four days. Besides, this study also considers outpatients, who do not
require hospitalization and can be discharged on the same day of their surgery. The model
assigns those outpatients to the dummy day dN+1. The other two assignments, operation
room (β) and impatient bed (γ ), are generated by the heuristic rules.

(3) Fitness function

g(I ) =
{
U (I ), if I is feasible

ST , otherwise
, (28)

where U (I ) is the objective function, and constant ST ≥ 0 denotes a constraint penalty.

(4) Crossing

The algorithm employs a two-point crossover method. However, when the number of
patients is growing, the length of chromosomes may increase dramatically, and the computa-
tion efficiencymay thus be devastated. In this case, we treat different parts of the chromosome
separately: γ and β leverage the heuristic rules, while η follows a standard crossover method.

In order to preserve the diversity of patient population, duplications are removed and
replaced with new patients. The algorithm in this study adopts tournament selection. Readers
are referred to Bonabeau et al. (1999) for more details.

5.2.2 Heuristic algorithm

(1) OR assignment
The OR assignment can be formulated as a daily OR assignment problem, which shares
a similarity with the number partition problem. For such setting, the process can be
divided into two stages: initial assignment stage and readjustment stage. The first stage
employs a greedy algorithm for an initial assignment, and then the swap rule is used for
readjustment. An example is illustrated in Fig. 6, in which there are 9 patients scheduled
for surgeries within a 2-day time frame, and there are two available ORs with a capacity
of 45 time units per room per day. The first stage is performed through Steps 1–2, and
the second stage is executed by Steps 3–6.
Initial assignment stage (Steps 1-2): Patients are first grouped according to admission
day, and then each group is sorted by the length of surgery duration in a descending
order. The first patient in the first group is assigned to the freest OR and then removed
from the assignment waiting list. The process is repeated and performed with the second
group until all patients are properly assigned.
Readjustment stage (Steps 3-6): First, ORs are ranked by the total duration of surgery
in a descending order. In the illustrative example in Figure 6, OR1 is suffering from
overtime, while OR2 has idling capacity. Next step is to calculate the overtime of the
first-ranked OR (OR_1) and the idling time of last-ranked OR (OR_J). The overtime
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of OR_1 in the example is 1 (i.e., 46-45=1), and the idling time of OR_J is 6 (i.e.,
45-39=6). Third, the patient with shortest surgery duration in bottom-ranked OR are
selected (patient 1, p1, with 19 time units of surgery in the illustrative example) to
calculate the threshold duration L, which is the sum of overtime of OR_1, idling time
of OR_J, and the shortest surgery duration in OR_J. In the example, L=1+6+19=26.
Fourth, if the patient’s surgery duration is less than L, then we swap the patient with the
longest surgery duration in OR_1 (patient 9, p9, with 21 time units in the example) with
the selected patient with shortest surgery in OR_J. In the example, since the surgery
duration of patient 9 (p9) is less than the threshold duration of L=26, he/she is selected
to be swapped with patient 1 (p1). Lastly, the process is repeated until all the overtimes
of the OR are resolved.
The algorithm process of OR assignment is curated in Algorithm 1 inAppendix "Heuris-
tic of OR assignment and bed assignment".

(2) Ward assignment

Each specialty has a set of designated wards (beds) as its primary wards, and its patients
can also be routed to nonprimary wards (beds) when it goes out of capacity. Ward assignment
can be divided into two stages: initial allocation stage and readjustment stage. The first stage
is to maximize occupation of the primary beds. In the second stage, beds released from
discharged patients can be redistributed. An illustrative example is described in in Fig. 7,
which also delineates the basics of the bed assignment algorithm.

In the aforementioned example, there are 9 patients and two types of beds (a primary bed
is denoted as type 1 and a non-primary bed denoted as type 2) over a 5-day planning horizon.
It is worth noting that bed type 0 and day 6 are dummy variables to accommodate patients
who cannot be assigned in the current planning horizon. The number of the primary beds
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Fig. 6 Heuristics for OR allocations
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Fig. 7 Heuristic Algorithm of Bed Allocation

(type 1) is two, and the other (type 2) is seven. The bed assignment process can be described
as follows:

• Step 1: Estimate the expected time of discharge for each patient based on his/her admission
day and LOS, and then sort by days in an ascending order. The sorting rule is to sort first
by discharge day, and then by admission day.

• Step 2: Allocate primary beds to the first two patients.
• Step 3: If the inpatient bed capacity, B, has not been reached, then continue bed assign-
ment with the next patients until either all beds are allocated, or all patients are assigned
(whichever comes first).

• Step 4: Step 3 has only achieved utilization maximization of the primary beds without
considering patient discharge. Once a patient is discharged, a bed is released and becomes
available for the next patient. It is worth noting that the bed can only be reassigned to a
patient who is admitted later than the day on which the bed is released. The next patient
candidate for receiving the bed can be selected by sorting the dummy pool of patients that
was not assigned a bed at the initial assignment stage, the sorting rule remaining the same
as in Step 1. Once the candidate patient is added, it is necessary to determine whether
the daily bed occupancy within the planning horizon is less than two (i.e., the number of
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primary beds). If it is less than two, then the current candidate patient is added successfully;
otherwise, the current candidate patient cannot be added.

• Step 5: Update with the next released bed, and repeat Step 4 until either all the patients
with bed assignments are discharged or no candidate patient qualifies for a primary bed.

• Step 6: Assign non-primary beds to the remaining patients. For clarity, note that the allo-
cation of a dummy bed and dummy day does not affect bed scheduling.

To implement those steps, we develop a bed assignment algorithm which is reported as
Algorithm 2 in Appendix "Heuristic of OR assignment and bed assignment".

6 Computational experimentations

In this section, we implement our developed solution approaches in numerical experiments.

6.1 Experimental design

The experimental data is classified as follows: (1) By level of surgery: The level of surgery
is classified as basic, moderate, normal, difficult, and superior based on the surgery duration
and its estimated length of stay (cf. Table 8 in Appendix C). (2) By hospital size: The size
of hospital is classified as extra small, small, medium, and large size based on the number
of surgeries, operating rooms, surgeons, types of surgery and LOS (cf. Tables 9 and 10 in
Appendix C).

Based on the data classification scheme, a set of experimental data is randomly generated,
so-called the waiting list. Next, the waiting list is randomly put into several sets and divided
into two groups, the mimic group and the simulation group. In particular, the former imitates
real patients with similar medical conditions; the latter simulates possible actualizations of
patients. In compliance with the practice of experts estimating surgery durations and LOS
from historical data, fuzzy data is generated accordingly from the mimic group’s data. The
experiment process is demonstrated in Fig. 8. It is worth noting that although a lack of expert’s
rationale in estimations might diminish the performance of the model, the robustness of the
model is not affected.

In the sequel, we shall consider random durations of the form m + v, where v is a random
number with an interval of 1% to 30% of the average duration, m. This setting has been
adopted in other works in the medical scheduling literature, e.g., Behmanesh and Zandieh
(2019).

Fuzzy models are considered as a-priori solutions (Gonzalez-Rodriguez et al., 2008).
To evaluate an a-priori solution, we can find a series of U crisp problems caused by fuzzy
estimation, and then define them as realizations of fuzzy problems. To simulate such pos-
sible realizations, we randomly generate fuzzy estimations following a selected probability
distribution.

Finally, we apply the data, including a training dataset and a testing dataset controlled by
the levels of surgery and hospital sizes, through the following models: 1) GA-P method; 2)
Overflow model; 3) Fuzzy model. The algorithm in this study is programmed with Python,
and it is performed on a 3.7 GHz Intel Core i7 CPU computer with 16 GB memory, and
employs the solver CPLEX in the Python docplex package to solve the MIP model.

The parameters and their values in the model are summarized in Table 1. There are
two types of planning horizons considered, 5 days and 10 days. There are two types of
beds (primary and non-primary), which could be easily extended to a more generic setting
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Table 1 Model parameters

Parameter Value

Planning horizon(D) 5 days and 10 days

Bed types(V ) 2

The allocation ratio of primary beds and nonprimary beds 1:2

Open duration of an OR each day 8 h

Maximum overtime of OR each day (Mo
d j ) 3 h

Maximum working time of each surgeon team each day (Wsd ) 11 h

Unit cost of OR overtime (po) $15/min

Unit revenue of OR (r ) $10/min

Per bed per day cost at stages of intensive care, step-down, acute care,
post-acute care

$4,000/$2,500/$1,000/$600

Unit overflow cost (Ph
1 ) $500

with multiple types. The ratio of available primary beds and nonprimary beds is 1:2. In
particular, there are 30 available inpatient beds in the hospital, including 10 primary beds and
20 nonprimary beds. The normal operating hours for an OR is 8 h per day, with maximum
overtime of 3 h per day, and the surgery team follows the OR schedule scheme. To ensure
practicality of our model, several hospitals are interviewed, which reveals that the unit cost
of OR overtime and unit revenue of OR do likely vary hospital by hospital. However, several
hospitals have a similar cost and revenue structure, as examined by the study of Gerchak et al.
(1996). Following their work, we set the unit cost of OR overtime to $15/min (po = $15), and
the unit revenue of an OR to $10/min (r = $10). The per-bed costs at the stages of intensive
care, step-down, acute care, and post-acute care, are set as $4000/day, $2500/day, $1000/day,
and $600/day, respectively, by following the estimations in Bretthauer et al. (2011). The unit
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overflow cost is set as $500 (ph1 = $500) by referring to Dai and Shi (2019). The overflow
cost is equal to the cost difference between a primary bed and an overflow bed, and various
levels of unit overflow cost will be examined later in Sect. 6.2.

In addition to the parameters previously discussed, we need to further define the following
parameters in the algorithm: population size (pop), crossover rate (cp), mutation rate (mp) and
number of iterations (iter). Given that the meta-heuristic algorithm is sensitive to the change
of parameters, we instead employ the Taguchi Method (Mountgomery, 2005; Taguchi, 1987)
to configure these parameters to minimize the number of experiments. In this case, we fix
cp = 1, mp = 0.1 and vary the values of population size and the number of iterations by the
scale of problem.

6.2 Model performance and evaluation

6.2.1 GA-P versus other algorithms

Several algorithms are selected and performed as benchmarks in comparison with our GA-P.
Specifically, the Genetic Algorithm (GA) is a classic algorithm, which is widely applied
in combinatorial optimization in various fields. GA has also been introduced to operations
management. For example, hybrid particle swarmPSO-GA is proposed byNiu et al. (2008) to
solve the problem of job shop scheduling, which shares similarities with surgery scheduling.

Several measurements are employed to evaluate the performance of the algorithms. The
relative percentage deviation (RPD), as a common performance indicator, is applied to eval-
uate the optimization effect of algorithms. Since each algorithm needs to run M times, we
further use ARPD (AR), BRPD (BR), andWRPD (WR) as performance evaluation indicators
by following the work ofWang et al. (2017). More details of each performance measurement
can be found in Appendix D.

The results of each algorithm are summarized in Table 2. As the scale of setting increases,
the algorithm of CPLEX cannot find the optimal solution, and the algorithm of PSO-GA and
GA cannot even (in 10 h) find a feasible solution. Importantly, the errors of GA-P do not
increase significantly with setting scale. Therefore, we conclude that GA-P delivers the most
plausible and reliable performance regardless of the growing scale of problem.

In order to further gauge the performance of the heuristic rules in the GA-P algorithm,
we compare GA-P with GA-OR and GA-BED, where GA-OR refers to the traditional GA
algorithm combined with the OR assignment heuristic algorithm, and GA-BED refers to the
GA algorithm combined with bed assignment heuristic algorithm. As exhibited in Table 3, it
is shown that theOR assignment algorithm and the bed assignment algorithm can enhance the
algorithm’s solving capability. Importantly, if both the heuristic algorithms are incorporated
into the GA algorithm simultaneously, the solution efficiency can be greatly improved.

6.2.2 Overflow policy versus Naive policy

In order to examine the effectiveness of the overflow strategy, we conduct an experimental
analysis and compare it with the benchmark strategy, which only admits and schedules
patients on primary beds. It is worth noting that the experiments are conducted without any
consideration of uncertain surgery duration and LOS in order to mitigate the interference of
uncertainty.

The experiment results are summarized in Table 4. OR-O represents the overtime of the
OR; OR-U denotes the idle time of the OR; and B represents the number of overflow beds.
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Table 4 Comparison of OR utilization under overflow strategy and naive strategy

Problem Model OR-O/min OR-U/min B R1/% R2/% R3/%

1 Naive 0 3330 0 69.38 14.96 2.99

Overflow 0 2612 5 54.42

2 Naive 0 2947 0 61.40 19.90 2.84

Overflow 20 1992 7 41.50

3 Naive 209 1917 0 39.94 29.60 2.96

Overflow 55 496 10 10.33

4 Naive 65 1032 0 14.33 13.35 1.48

Overflow 16 71 9 0.99

5 Naive 3 2062 0 21.48 18.31 1.41

Overflow 36 304 13 3.17

6 Naive 35 2713 0 28.26 22.11 1.38

Overflow 110 590 16 6.15

7 Naive 0 4817 0 33.45 22.28 1.11

Overflow 2 1608 20 11.17

8 Naive 5 4046 0 28.10 20.01 0.95

Overflow 79 1164 21 8.08

9 Naive 37 3070 0 21.32 17.34 0.87

Overflow 52 573 20 3.98

10 Naive 43 155 0 8.04 7.12 0.89

Overflow 146 1351 8 0.92

In this numerical comparison, we examine the idle rate of ORs (R1), the relative reduction of
idle rate with an implementation of the overflow strategy (R2), and the relative reduction of
idle rate per overflow bed (R3). The idle rate of ORs is successfully reduced by 7.2−29.6%
with an implementation of the overflow policy. Furthermore, an overflow bed can reduce the
idle rate of the OR by 0.87%-2.99% on average.

In practice, the unit cost of the ORs is steady and could be easily assessed, but the unit
overflowcostmayvary significantly fromonehospital to another. Therefore, it is our intension
to conduct a sensitivity analysis in terms of the unit overflow cost to examine the robustness
of the model. The results are summarized in Table 5 and Fig. 9. There are several interesting
findings in the sensitivity analysis. To begin with, it is shown that the higher the unit overflow
cost, the fewer the surgeries can be scheduled, and the surgery revenue decreases accordingly.
Moreover, when the unit overflow cost reaches around $3000, the advantage of the overflow
strategy is almost fully compromised. The advantage of the overflow strategy tends to be
salient when the scale of problem is small. Even when the unit overflow cost skyrockets
to extremely high as $999,999 or beyond, the overflow strategy still successfully assigns
an overflow bed in Problem 1. This would happen when a hospital has exhausted the bed
capacity, but some patients remain and must undergo surgeries within the planning horizon.
In summary, the overflow strategy will benefit for either a small hospital or one with lower
overflow costs, and the overflow strategy empowers a hospital with more flexibility to handle
excessive demand.
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Fig. 9 Assignment of overflow
beds under different levels of unit
overflow cost
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6.3 Fuzzymodel

For performance evaluation, severalmodels are selected and run as benchmarks in conjunction
with the Fuzzy model; cf. Lee and Yih (2014). As depicted in Fig. 10, we select the following
key statistical measurements to model the crisp time decision: mode (MODE), median of the
interval (MED),maximum (MAX) andminimum (MIN) of the support of the triangular fuzzy
number (TFN). Given that the uncertainties considered in this model are from the surgery
duration and LOS, minimum estimates lead to the most optimistic and aggressive scheduling

Fig. 10 Measurements of
triangular fuzzy number (TFN)
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plan, and maximum estimates yield the most pessimistic and conservative scheduling plan,
while the plans of median and mode likely stay in between.

Fuzzy theory is leveraged in this study for its advantage in analyzing data with limited
size and uncertain probability distribution. It can model multiple probability distributions,
while simulation experiments can only be performed with a single predetermined probability
distribution. The probability distributions considered in this study for the surgery duration
are assumed to be normal, lognormal, and uniform distribution (Lee & Yih, 2014; Marcon &
Dexter, 2006; Min & Yih, 2010); those for the length of stay (LOS) are normal, exponential,
and uniform distribution (Augusto et al., 2010; Best et al., 2015; Moosavi & Ebrahimne-
jad, 2020). Fuzzy theory allows us to consider various combinations of distributions for
surgery duration and LOS, e.g., lognormal distribution for surgery duration and exponential
distribution for LOS. In other words, Fuzzy theory enables scenario analysis of probability
distribution for the combined uncertainty of surgery duration and LOS to make a thorough
examination of the model robustness.

To deliver the best performance in Sect. 6.2.1, we employ our GA-P for all the Fuzzy
models in this section. In practice, surgical and bed scheduling must be done prior to the
realizations of uncertain surgery duration and LOS, which intensifies the difficulty in perfor-
mance evaluation of scheduling models. In this case, Monte Carlo simulation with U (U =
100) repetitions is adopted for simulating the realizations of uncertainties.

To evaluate the performance of the selected models via the simulation experiments, we
consider the following evaluation measures:

ob = 1

N
×

∑N

n=1
obn; (29)

cons =
∑N

n=1 obn × consnumn

N × ∑N
n=1 obn

, (30)

where n indicates the nth problem setting generated in the simulation experiment, obn and
consnumn denote the objective value and the number of constraint violations of solutions,
respectively. In particular,cons implies the adaptability of the solution scheme in an uncertain
environment, which can also be considered as a measurement of model robustness.

We have conducted extensive numerical studies. The complete result of scenario analysis
for various combinations of various probability distributions can be retrieved in the Appendix
C (Table 11, 12 and 13). The scenario of normal distribution for both surgery duration and
LOS is reported in Table 6 for elaboration purposes. The number assigned to the problem is
chosen to reflect the problem scale in an ascending order; RP is the average ratio of surgery
duration to total OR capacity; ob and cons denote the objective value in the simulation
experiment and adaptability of the solution scheme respectively, as defined in Eqs. (29) and
(30). Results of minimum (MIN), maximum (MAX), median of the interval (MED), mode
(MODE) in crisp time decision accompanied with the Fuzzy model are listed in Table 6.
For ease of exposition, we use “Normal distribution + Normal distribution” to represent the
combination of both normal distributions of the surgery duration and LOS.

In viewing the results of Problems 1 and 2, it is shown that the difference among various
schemes is trivial, and a similar pattern can be observed in the other scenarios (cf. Table
Table 11, 12 and 13 in Appendix C). The difference among various schemes is shown to be
significant only comparing Problems 3 to 10. This can be intuitively explained by that when
the problem scale is small, OR utilization is relatively slack, and surgery demand is relatively
modest, the number of admitted patients is not sensitive to the estimation models. In other
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Table 7 Results of the LSD test for different models with α = 95% confidence level

Distributions MED MODE

cons ob cons ob

Normal + Normal 0.005(**) 0.56 0.01(*) 0.35

Uniform + Uniform 0.018(*) 0.76 0.23 0.80

Lognormal + Uniform 0.002(**) 0.36 0.002(**) 0.29

Lognormal + Exponential 0.21 0.34 0.07 0.17

(*) p value < 0.05; (**) p value < 0.01.

words, the effect of various models becomes significant only when the resource shortage
emerges in play.

The maximum estimation scheme, MAX , provides a conservative estimate of surgery
duration and LOS, and thus admits and schedules the least number of patients, while enjoying
a minimum of constraint violations. On the contrary, the minimum estimation scheme,MIN ,
yields an aggressive estimate of surgery duration and LOS, and thus admits and schedules the
most patients, while suffering frommore constraint violations. TheMAX scheme is obviously
not favorable to hospital management for its poor profitability, but the patient satisfaction
level may be compromised by the MIN scheme. In addition, the MAX scheme is more
susceptible to extreme values, so hospitals are generally not able to adopt it. Surprisingly,
the MIN scheme does not always bring the highest income for each problem setting, from
Problems 1 to 10, compared to the MED, MODE, and FUZZY. For example, for Problem
NO.10, the ob of MIN is not the largest in all distributions. The reason for this is that theMIN
scheme admits toomany patients and exhausts the bed capacity, which erodes the profitability
by additional OR overtime costs.

An analysis of variance and the least significant difference (LSD) test are further performed
to rigorously examine themodel performance (specifically,MED,MODE, and FUZZY). The
results show that there is no significant difference in the number of admitted patients among
the various schemes and models, while the number of constraint violations does vary signifi-
cantly by schemes/models as shown inTable 7. This implies that the Fuzzymodel and the crisp
models (MODE andMED) have similar effects on the value of the objective function, while
departing in their robustness. Among the schemes/models of FUZZY ,MODE, andMED, the
fuzzy model (FUZZY ) consistently gives the best reliability performance2 across the various
combinations of probability distributions (Figs. 11, 12, 13 and 14). For ease of exposition, we
use ‘’Normal distribution + Normal distribution” to denote the combination of the normal
distributions of both the surgery duration and LOS. The same abbreviation applies for other
combinations. We can thus draw the conclusion that the fuzzy model outperforms the others
and delivers the most desirable result, in terms of both performance and reliability. More
importantly, the fuzzy data generated in the experiments is to simulate the estimations made
by inexperienced physicians (without any self-corrections); in practice, however, physicians
repeatedly refine their estimations based on their accumulation of experience, which can be
leveraged gradually to improve the performance of the Fuzzy model.

2 It has been discussed that the effect of schemes/models only becomes significant with an increase in the
scale of the problem (from Problems 3 to 10). Therefore, the conclusion on reliability performance is made
based only on the results from Problem 3 to Problem 10.
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Fig. 11 Simulation results of different models (Normal distribution + Normal distribution)
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Fig. 12 Simulation results of different models (Uniform distribution + Uniform distribution)
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Fig. 13 Simulation results of different models (Lognormal distribution + Uniform distribution)
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Fig. 14 Simulation results of different models (Lognormal distribution + Exponential distribution)

7 Concluding remarks

Operating rooms, as one type of the most expensive medical resources, easily draw research
attention, and the scheduling and management of the OR has been comprehensively studied.
However, the strong nexus between the upstream ORs and the downstream inpatient beds is
often overlooked. Operationally, a surgery cannot be performed if a downstream inpatient
bed is not available. Some studies have revealed that the overflow strategy, albeit an effective
solution for a resource balancing between the upstream and downstream, leads to an increase
in both readmission rate and LOS. Additionally, surgery duration and LOS are both critical
data needed for medical resource scheduling and allocation, but they are simply assumed to
be deterministic or stochastic with pre-determined distributions. In practice, surgery duration
and LOS are uncertain and estimated by doctors, and the estimation distributions are also
usually unknown. Fuzzy theory iswell known for its advantages in analyzing datawith limited
size and with uncertain probability distributions. This study thus leverages the fuzzy theory,
and at the same time incorporates an additional cost of the overflow strategy to consider the
strong upstream and downstream nexus. As a solution approach, a hybrid heuristic method
(GA-P) is proposed to solve the NP-hard resource scheduling and allocation problem.

Computational experiments are carefully designed to test the proposed GA-P heuristic
model with the overflow strategy in a fuzzy environment. Several interesting observations
aremade from the experiments. First, the algorithmofGA-Pdelivers the best andmost reliable
model compared to the benchmark algorithms of CPLE, PSO-GA and GA, especially when
the scale of problem becomes large. Further, the overflow strategy is shown to be effective
in terms of improving utilization of operating room, but its advantages are compromised as
the unit overflow cost increases. However, the overflow strategy is still beneficial for small
hospitals even when the overflow cost is abnormally high. Finally, although the number
of admitted patients is indifferent to estimation models, our Fuzzy model outperforms the
crisp models in terms of reliability, having less constraint violations. More importantly, the
fuzzy scheduling can be constantly improved with the continuously accumulated and refined
estimations of physicians.

Severalmanagerial insights can be gleaned from the study: (1)OurGA-P is an effective and
reliable algorithm for upstream and downstream scheduling of medical resources, especially
for large hospitals. (2) The overflow cost (including the intangible cost of increasing both
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re-admission rate and LOS) plays a critical role in the effectiveness of the overflow strategy.
For large hospitals, the overflow strategy is effective in solving the imbalance between the
upstream and downstream resources only if the unit overflow cost is not too high. Therefore,
it is recommended that large hospitals must carefully examine their overflow costs prior to
implementing the overflow strategy. However, the overflow strategy is always effective for
small hospitals, regardless of the unit overflow cost. (3) The Fuzzy model requires merely
minimum knowledge of the estimations for surgery durations and patient LOS, yet yields
a viable and reliable scheduling solution, while maintaining a satisfactory level of patient
admission rate.

The hospital management system is full of uncertainties, and both surgery duration and
patient LOS are considered in this study. Future research may empirically study these time
durations, as well as the inherent overflow costs, so as to further mitigate the uncertainties
involved in medical resource management.
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Appendix

Appendix A: review of fuzzy theory

A.1 Definition of triangle fuzzy number

Denote T = (
aL , aM , aR

)
, where 0<aL ≤ aM ≤ aR . T is called a triangular fuzzy number,

and its membership function can be expressed as:

μA(x) =

⎧
⎪⎨

⎪⎩

x−aL

aM−aL
, if aL <x <aM

x−aR

aM−aR
, if aM <x <aR

0, Otherwise

.

A.2 Fuzzy number operation rules

For any two TFNs, M̃ = (m1,m2,m3) and Ñ = (n1, n2, n3). Addition: M̃ + Ñ = (m1 +
n1,m2 + n2,m3 + n3). Subtraction: M̃ − Ñ = (m1 − n3,m2 − n2,m3 − n1). Scalar
multiplication:

∀λ > 0, λ ∈ R, λM̃ = (λm1, λm2, λm3);
∀λ < 0, λ ∈ R, λM̃ = (λm3, λm2, λm1).

A.3 Ranking of TFNs

For any twoTFNs, M̃ = (m1,m2,m3) and Ñ = (n1, n2, n3). Fuzzy ranking can be expressed
as:

Criterion 1: If C1(M̃) = m1+2m2+m3
4 > (<)C1(Ñ ) = n1+2n2+n3

4 , then M̃ > (<)Ñ .
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Criterion 2: If C1(M̃) = C1(Ñ ), then compare C2(M̃) = m2 with C2(Ñ ) = n2 to rank
them.

Criterion 3: If C1(M̃) = C1(Ñ ) and C2(M̃) = C2(Ñ ), then C3(M̃) = m3 − m1 is
compared with C3(Ñ ) = n3 − n1 as the last criterion.

A.4 Fuzzy expectation range and expectation interval

For any TFN, M̃ = (m1,m2,m3), expectation interval E I [M̃] and expectation value EV [M̃]
can be expressed as: E I [M̃] = [

EM
1 , EM

2

] = [m1+m2
2 , m2+m3

2

]
, EV [M̃] =

[
EM
1 +EM

2
2

]
=

[
m1+2m2+m3

4

]
.

Appendix B: heuristic of OR assignment and bed assignment
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Appendix C

See Tables 8, 9, 10, 11, 12 and 13.
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Table 8 Different levels of surgery duration and LOS

Surgery type Basic (B) Moderate (M) Normal (N) Difficult (D) Superior (S)

Duration (min) (33,15) (86,17) (153,17) (213,17) (316,62)

LOS1(day) (1,1) (2,1) (3,1) (4,1) (5,1)

LOS2(day) (1,2) (2,2) (3,2) (5,2) (7,2)

LOS1 indicates that the planning horizon is 5 days, and LOS2 indicates that the planning horizon is 10 days

Table 9 Test cases and structure (LOS1)

Cases Problem Number of
operations

ORs Surgeons Surgery type
(B:M:N:D:S)

LOS type
(B:M:N:D:S)

Case 0 1 16 2 8 2:4:1:1:0 2:2:2:2:0

(extra
small)

2 24 2 8 2:4:1:1:0 2:2:2:2:0

Case 1 3 40 2 10 2:4:1:1:0 2:2:2:2:0

(small) 4 60 3 14 2:6:1:1:0 2:6:1:1:0

5 70 4 14 2:5:2:1:0 2:5:2:1:0

Case 2 6 80 4 20 4:8:2:2:0 3:9:2:2:0

(medium) 7 100 6 20 4:12:3:1:0 4:12:3:1:0

8 100 6 20 4:10:3:3:0 4:10:3:3:0

Case 3 9 120 6 30 7:16:3:2:2 7:16:3:2:2

(large) 10 150 7 30 3:15:3:2:2 5:15:1:4:0

Table 10 Test cases and structure (LOS2)

Cases Problem Number of
operations

ORs Surgeons Surgery type
(B:M:N:D:S)

LOS type (B:
M:N:D:S)

Case 0 1 16 2 8 2:4:1:1:0 2:2:2:2:0

(extra
small)

2 24 2 8 2:4:1:1:0 2:2:2:2:0

Case 1 3 40 2 10 2:4:1:1:0 2:2:2:2:0

(small) 4 60 2 14 2:6:1:1:0 2:6:1:1:0

5 70 2 14 2:5:2:1:0 2:5:2:1:0

Case 2 6 80 2 20 4:8:2:2:0 3:9:2:2:0

(medium) 7 100 3 20 4:12:3:1:0 4:12:3:1:0

8 100 3 20 4:10:3:3:0 4:10:3:3:0

Case 3 9 120 4 30 7:16:3:2:2 7:16:3:2:2

(large) 10 150 4 30 3:15:3:2:2 5:15:1:4:0
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Appendix D: dexa evaluation criteria of the algorithm

The relative percentage deviation (RPD), as a common performance indicator, is used to
evaluate the optimization efficiency of the algorithm. It is formulated as follows:

RPD = Rk − Rbest

Rbest
× 100, (31)

where Rk represents the target value of algorithm k, and Rbest denotes the target value of the
optimal solution.

Due to the inherent randomness of meta-heuristics, each iteration of the experiment may
produce different solutions; hence RPD cannot be directly applied to algorithm evaluation.
Instead, we average out the above evaluation formulas to obtain the average relative percent-
age deviation (ARPD). Its formula is given as follows:

ARPD = 1

n

n∑

l=1

|Rl
k − Rbest |
Rbest

× 100, (32)

where n represents the number of iterations. Likewise, the best value for each run is the best
relative percentage deviation (BRPD), with the formula given as follows:

BRPD = |BRk − Rbest |
Rbest

× 100 (33)

where BRk indicates the best target value among n runs.
Similarly, the worst value for each run is theworst relative percentage deviation (WRPD),

the formula being defined as follows:

WRPD = |WRk − Rwost |
Rwost

× 100, (34)

where WRk represents the worst target value among n runs.
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