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Abstract
Not all products meet customers’ quality expectations after the steelmaking process. Some of
them, labelled as ‘non-prime’ products, are sold in a periodic online auction. These products
need to be grouped into the smallest feasible number of bundles as homogeneous as possible,
as this increases the attractiveness of the bundles and hence their selling prices. This results in
a highly complex optimisation problem, also conditioned by other requirements, with large
economic implications. It may be interpreted as a variant of the well-known bin packing
problem. In this article, we formalise it mathematically by studying the real problem faced
by a multinational in the steel industry. We also propose a structured, three-stage solution
procedure: (i) initial division of the products according to their characteristics; (ii) cluster
analysis; and (iii) allocation of products to bundles via optimisation methods. In the last
stage, we implement three heuristic algorithms: FIFO, greedy, and distance-based. Building
on previous works, we develop 80 test instances, which we use to compare the heuristics.
We observe that the greedy algorithm generally outperforms its competitors; however, the
distance-based one proves to be more appropriate for large sets of products. Last, we apply
the proposed solution procedure to real-world datasets and discuss the benefits obtained by
the organisation.

Keywords Bin packing problem · Distance-based heuristics · FIFO algorithm · Greedy
algorithm · Online auctions · Steel industry

1 Introduction

This work considers an important optimisation problem faced by many steel companies.
This concerns the grouping of ‘non-prime’ steel products, i.e. those not meeting the quality
requirements of prime orders for any reason (e.g. technical defects) that are then unassigned to
the specific order, into bundles that are later sold through an auctionmechanism. The grouping
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needs to consider several product characteristics and operational restrictions. Well-designed
bundles are more attractive in the eyes of bidders (potential customers); thus, the problem has
considerable effects on the selling prices. In large, multinational steel companies, the auction
generally takes place on a periodic basis with extensive amounts of non-prime products from
many origins. This makes the optimisation problem computationally very demanding. All in
all, we highlight that the grouping decision is a complex optimisation problem that is central
to the auction process, and providing an effective solution strategy would arguably result in
substantial benefits.

From an algorithmic perspective, this optimisation problemmay be interpreted as a variant
of the bin packing problem (BPP) (e.g. Coffman et al., 2013; Taylor et al., 2017; Yao, 1980),
where a set of products of different volumes have to be allocated into the smallest possible
number of bins of a given capacity. In terms of computational complexity, this is an NP-hard
problem (Berlińska, 2020; Garey & Johnson, 1979). Therefore, finding optimal solutions is
frequently impractical and approximate algorithms are commonly used, which are often able
to provide high-quality solutions in reasonably low computational times.

In this article, we address the grouping problem of non-prime products by focusing on a
specific case study in the steel sector. We examine the relevant characteristics of the prob-
lem under study, highlighting the distinctive features in comparison with the general BPP.
We argue that it represents a new BPP model that has not been studied in prior literature.
Then, we discuss different methodological approaches to solve this problem, from which
we suggest a three-stage solution procedure. Our structured approach integrates a variety of
methods, through which we deal with the complexity of the problem. The third stage, which
optimises the allocation of products to bundles, incorporates three heuristic algorithms. We
compare their performance, in terms of solution quality and computation time, through dif-
ferent experiments.

The remaining of this article is structured as follows. Section 2 describes in detail the
specific problem under consideration, emphasising its economic relevance. We highlight the
constraints that must be satisfied and the additional requirements that good solutions should
meet. Sections 3 and 4 review the BPP and clustering streams of literature, respectively,
which provide the theoretical background for our study. Section 5 formalises the optimisa-
tion problem mathematically. Section 6 develops our solution strategy, providing in-depth
information on its structure and the different algorithms. Section 7 describes the 80 test
instances developed for our study, which are built on existing datasets. Section 8 shows and
discusses the results obtained by our solution procedure in these instances. Section 9 anal-
yses the application of our solution strategy to the real-world problem under study. Finally,
Sect. 10 concludes and suggests interesting avenues for future research.

2 Problem description

The steel industry is a pillar of the global economy. Steel is a fundamental component of
many other prominent sectors, including construction, automotive, transportation, energy,
and food. This is thanks to its excellent mechanical and structural properties along with a
relatively low production cost. In addition, this material is environmentally friendly, as it can
be reused almost infinitely and is 100% recyclable (Johnson et al., 2008). Furthermore, it is
highly available due to iron being a very abundant metal; it makes up more than 5% of the
Earth’s crust and most of its core, with existing iron ore mines all over the world.
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Steels can be classified according to their chemical composition and/or physical properties,
with over 2000 steel grades existing nowadays (Thelning, 2013). Broadly speaking, steel
products can be categorised into flat and long products. In the production of high-quality
steel products, generally flat, some outputs do not satisfy customer requirements due to
different motives. These products, which are referred to as non-prime, cannot be sold to their
original customer, thus being unassigned to the prime order.

In this work, we consider the problem faced by a large steel company in their operations
in Europe, which could be extrapolated to other enterprises in this industry. This company
first offers non-prime products to affiliated companies and regular customers, often in the
local regions of their plants. Unsold non-prime products go to a weekly online auction, where
around 20 plants from all over Europe participate together with about 300 regular bidders.
Approximately 500,000 tons of flat steel products are sold yearly through this mechanism.
This corresponds to roughly 10,000 tons per week. This means that several thousands of
non-prime products with very different weights are auctioned on a weekly basis. Products
are only removed from the auction list to be reused in the manufacturing processes if they
have received no offers after several weeks.

Due to the high volume of products, the auction is a fundamental part of the sales process.
Indeed, it has a considerable impact on the financial performance of the organisation. Non-
prime products are not auctioned individually, but they are grouped into bundles, which need
to be carefully designed prior to the auction. All bundles are auctioned at the same time, with
the auction being held in the form of a first-price sealed-bid auction with a reserve price. The
bundles, with different capacities (which depend on the plant that offers the bundle), have to
be as homogeneous as possible. This makes them more attractive to bidders, which increases
the selling price, and hence the profits of the company. This emphasises the importance of
the grouping problem. Also, large sets of non-prime products are often more attractive for
bidders and small sets are generally expensive to deliver, so the number of bundles should
be minimised for the sake of profitability. In this fashion, a minimum weight requirement is
defined for each bundle.

Each non-prime product is defined by a set of parameters that refer to its characteristics
and properties. Due to reasons of different nature, all the products in the same bundle need
to have some parameters in common, which will be referred to as ‘global parameters’. These
are: manufacturing plant, location, category, family, and coating sides. For the other relevant
parameters, which are named ‘local parameters’, there may be some discrepancies within the
same bundle, but these should be minimised to keep the bundles as homogeneous as possible.
The local parameters are: subfamily, steel grade, oiling, weight, width, thickness, and coating
thickness (on one or both sides). Not all customers prioritise the same parameters, whichmust
be considered in the solution procedure.

A key aspect to mention is the limited time available to design and prepare the bundles for
the auction. This involves all the necessary tasks from updating the list of non-prime products
to uploading the bundles’ information to the online platform. In between, our solution strategy
will need to be applied to the grouping problem, and the execution time should be reasonable.
Therefore, the algorithms employed do not only need to be accurate but also time-efficient.

Finally, we summarise the main features and criteria of the grouping problem under
consideration:

• Non-prime products have to be grouped into bundles, considering a set of global parameters
that all the products in each bundle must have in common and a set of local parameters
that determine the degree of homogeneity of the bundle, which needs to be maximised.
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• The degree of homogeneity needs to be defined in a flexible manner as a function of the
local parameters, given that the parameters that should be prioritised may vary across
bundles.

• The number of bundles and the number of unassigned non-prime products should be
minimised simultaneously. In doing so, the weight of each bundle needs to be as close
as possible to its capacity, which depends on the plant where the non-prime products
were manufactured. Also, the weight of each bundle must be compliant with a minimum
requirement.

• Despite the computational complexity of the optimisation problem (up to around 5000
products per auction), the algorithmmust be able to provide a good solution in a reasonable
amount of time.

3 Theoretical background (I): the bin packing problem

The grouping problem that we formulated in the previous sectionmay be encapsulated within
the theoretical framework defined by the BPP. There are many variants of this well-known,
industrially relevant problem in the operations management discipline. Coffman et al. (2013)
categorised them into four main classes: (i) dual versions; (ii) variations on bin sizes; (iii)
variations on item packing; and (iv) additional conditions.

First, dual versions address different objectives, such as the maximisation of the total
number of items that are packed in a fixed number of bins (Azar et al., 2002) and the
maximisation of the number of bins that are used for packing all the items with each bin
weighing at least a predefined value (Coffman et al., 1987). Second, variations on bin sizes
cover different models of variable-sized bins (e.g. Kang & Park, 2003; Liu et al., 2021)
and problems with resource augmentation or bin stretching (e.g. Csirik & Woeginger, 1998;
Dhahbi et al., 2021). Third, variations on itempacking comprise awide range of variants, such
as the dynamicBPP (Coffman et al., 1983), selfishBPP (Bilò, 2006),BPPwith rejection (Dósa
& He, 2006), and BPP with fragile objects (Chan et al., 2007). Fourth, additional conditions
include item-size restrictions (Gutin et al., 2006), item types (Adler et al., 2002), constrained
cardinality (Kellerer&Pferschy, 1999), constrained distances (Beaumont et al., 2010), partial
orders (Wee&Magazine, 1982), conflicts (Epstein&Levin, 2008), and compatible categories
(Santos et al., 2019), among others.

Finally, we note that some authors developed generalisations of the BPP. For instance,
we refer to the multi-dimensional BPP, in which items need to be packed according to more
than one dimension, such as width and height (e.g. Dahmani et al., 2015; Polyakovskiy &
M’Hallah, 2021), and the generalised BPP, which is characterised by multiple items and bins
attributes (e.g. Baldi & Bruglieri, 2017; Baldi et al., 2019).

None of these variants matches exactly the requirements and captures all the complexities
of our case study. Rather, our grouping problem combines characteristics of different BPP
variants. We highlight three:

• Conflicts. Products that have differences in the global parameters cannot be grouped
together.

• Constrained distances. Homogeneity in the items of each bin (a bundle of non-prime steel
products) is rewarded. The distance between items is measured through the differences in
the local parameters.

• Minimum weight requirements. Each bin needs to be compliant with a minimum weight
established.

123



Annals of Operations Research (2022) 315:591–621 595

Our solution strategy, which we present in Sect. 6, deals with conflicts by splitting the
input data in accordance with the global parameters. Thereby, P sub-problems emerge. These
are solved via algorithms that need to consider both the constrained distances and minimum
weight requirements. Next, we briefly review the literature on algorithms for BPPs.

3.1 Algorithms for bin packing problems

Algorithms for BPPs can be broadly classified into online and offline (Coffman et al., 2013).
The former assign items to bins as items appear. Hence, the bin for each item is selected
without knowledge of the following items. Traditional online algorithms include: next-fit
(Johnson, 1973), first-fit (Johnson, 1973), worst-fit (Johnson, 1974a), refined first-fit (Yao,
1980), best-fit (Falkenauer & Delchambre, 1992), and bounded-space (Csirik & Johnson,
2001). Nonetheless, this area is in continuous development, andmany other online algorithms
have been proposed to solve different variants of the BPP, such as the recent articles by Verma
et al. (2020), Balogh et al. (2020), and Epstein and Mualem (2021).

In contrast, offline algorithms have full information about the list of items and use it to
make the overall allocation. The most popular offline algorithms are those with presorting
(i.e. reordering algorithms), such as the next-fit decreasing (Baker & Coffman, 1981), first-
fit decreasing (FFD) (Baker, 1985), refined fist-fit decreasing (Yao, 1980), and best two-fit
(Friesen & Langston, 1991). Their time complexity is at least O(n · logn). Other algorithms
propose solutions faster, without presorting, such as the Group-X-Fit Grouped (Johnson,
1974b) and H7 (Békési et al., 2000). More advanced methods have been recently applied to
solveBPPs. For instance,Abdel-Basset et al. (2018) proposed awhale optimisation algorithm;
Abdul-Minaam et al. (2020) developed an adaptive fitness-dependent optimiser with swarm
intelligence; andMunien et al. (2020) implemented two hybridmetaheuristics (hybrid cuckoo
search genetic algorithm and mutated firefly algorithms). These prior works focused on
one-dimensional BPPs, while others developed metaheuristics for two-dimensional packing
problems, such as Grandcolas and Pain-Barre (2021).

In between both extremes, semi-online algorithms do not have information about the
complete list of items (like in offline ones) but have more information than pure online ones.
In this sense, repacking items is sometimes allowed. This leads to different algorithms, such
as the buffered next-fit (Galambos, 1985), which uses two open bins, and REP3 (Galambos
& Woeginger, 1993), with three open bins. In other cases, the algorithm is allowed to look
ahead to later items, such as in the revised warehouse (Grove, 1995).

In the following subsection, we focus on algorithms that have been used for solving BPPs
with conflicts, in which items in conflict cannot be assigned to the same bin, due to the
similarities with our problem noted above.

3.2 Methodological approaches for bin packing problems with conflicts

The BPP with conflicts is an NP-hard optimisation problem that can be interpreted as a
combination of the BPP and the vertex colouring problem (e.g. Diaby, 2010). Different
methods have been used in the literature to approach this problem,which are briefly discussed
below.

• Asymptotic approximation scheme. This refers to a family of algorithms where, for all ε

> 0, there is an algorithm of performance ratio at most 1 + ε, where the running time is
polynomial in n (Epstein & Levin, 2020). Given a set of items V � {1,…,n} and a conflict
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graph G � (V ,E), Jansen (1999) proposed this scheme for a BPP with conflicts restricted
to d-inductive graphs with constant d.

• Modified FFD algorithm. Gendreau et al. (2004) adapted the conventional FFD algorithm
to consider the conflicts. Specifically, in this algorithm (H1), the items are assigned to the
first bin in which there is enough capacity without incurring conflicts with the already
assigned items.

• Graph colouring algorithms. Gendreau et al. (2004) developed three heuristics (H2, H3,
H4) that make use of a conflict graph G. They colour the vertices of V through the DSatur
heuristic (Brélaz, 1979). H2 creates sets of mutually non-conflicting items and applies the
FFD algorithm to each set. H3 uses the same rationale after removing the less conflictive
items, which are later assigned to bins with the modified FFD algorithm. H4 is based on
the iterated use of the FFD algorithm.

• Clique-based algorithms. Gendreau et al. (2004) proposed two heuristics (H5, H6) based
on cliques determined through Johnson’s (1974a) greedy heuristic. H5 uses a clique of non-
conflicting items, which are then assigned to bins. H6 uses a clique of conflicting items,
which are considered for computing cliques of non-conflicting items. This inspired Maiza
and Radjef (2011) in their MSS-based heuristic, which converts the BPP with conflicts to
a set of sub-problems without conflicts.

• Greedy-approximation algorithms. Beaumont et al. (2010) showed that the BPP with
constrained distances could be transformed into a BPP with conflicts. Their solution is
based on the algorithm developed by Epstein and Levin (2008), using an FFD algorithm
to fill the bins.

• Adapted minimum bin slack (MBS) heuristic. Maiza and Radjef (2011) extended the MBS
algorithm developed by Gupta and Ho (1999) for BPPs to the case with conflicts. This
heuristic executes the MBS procedure with a compatibility test of the current item with
those already considered.

• Branch-and-price algorithm. Elhedhli et al. (2011) solved the BPPwith conflicts bymeans
of this algorithm. First, they employ a branching rule to match the conflicting constraints.
Later, they create maximal clique valid inequalities according to these constraints. Similar
approaches were used by other authors, such as Sadykov and Vanderberck (2013).

• Iterated local search (ILS) metaheuristic. To solve the BPP with conflicts, Capua et al.
(2018) developed an ILS, with several classes of local and large neighbourhoods for solu-
tion improvement.

• Sequential maximum degree packing heuristic. Ekici (2021) proposed this algorithm for
BPPs with conflicts and item fragmentation. The key idea of this approach is to start
the allocation with the items with the highest number of conflicts, as these are the most
problematic ones.

All these algorithms used for BPPs, and particularly BPPs with conflicts, are heuristics or
metaheuristics that look for near-optimal solutions due to their complexity, as discussed by
prior works (e.g. Asta et al., 2016; Fernandez et al., 2013; López-Camacho et al., 2013). In our
case, the complexitymay be even higher because of the interactions of conflicts with the other
characteristics of the grouping problem of non-prime steel products (restricted distances,
minimumweight) and the size of the problem (number of products, set of parameters, different
weights, etc.). Also, the solution needs to be provided in a short period of time.
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4 Theoretical background (II): clustering

In the light of previous discussions, cluster analysis (Duran & Odell, 1974; Farnè & Vouldis,
2021) emerges as an interesting approach for grouping similar non-prime products and sepa-
rating those very different in an attempt to reduce computational requirements. This section
briefly reviews the main set of techniques that are used for clustering, based on the categori-
sation by Xu and Wunsch (2005).

• Hierarchical clustering algorithms structure data in a hierarchical manner according to a
proximity matrix (Kou& Lou, 2012). They may be divided into agglomerative algorithms,
such asBIRCHandCURE, and divisive algorithms, such asMONAandDIANA (Kaufman
& Rousseeuw, 2005).

• Squared error-based clustering assigns the objects into non-hierarchical clusters by using
the sum of squared error criterion function. The most popular algorithm is the traditional
k-means algorithm (Morissette & Chartier, 2013), but many other examples can be found;
see e.g. Yu et al. (2018).

• Combinatorial clustering defines the problemvia an objective function that aims to allocate
the objects into clusters by optimising a criterion function (Kim et al., 2017). As this is
computationally demanding, metaheuristics are generally used to achieve high-quality
solutions (Levin, 2015).

• Graph-based clustering uses graph-theoretical concepts and properties to create hierarchi-
cal or non-hierarchical clusters. There are different clustering approaches based on graphs,
including spectral clustering (Hendrickson & Leland, 1995), dynamic modelling (Karypis
et al., 1999), and density peaks (Xu et al., 2021). We also highlight the work by Kawaji
et al. (2004), who developed an algorithm for the clustering of a large set of proteins that
finds distantly-related proteins. Vertices of the graph denote proteins, and edges denote
their similarity. The graph is partitioned repetitively by removing edges with small weights
(dissimilar proteins), achieving promising results.

• Fuzzy clustering algorithms may assign an object to several clusters simultaneously, with
different degrees of membership (Sakawa, 2013), unlike the previous approaches. The
most popular fuzzy clustering algorithm is the Fuzzy c-means algorithm; see Pantula et al.
(2020).

• Other clustering approaches include mixture densities (Chacón, 2019), neural networks
(Du, 2010), and kernel-based clustering (Piciarelli et al., 2013). Also, several interesting
approaches have been recently proposed for clustering, such as self-organising features
maps (Li et al., 2020a), adaptive hyper-spheres (Li et al., 2020b), and dual iterative local
search (González-Almagro et al., 2020).

We conclude our review by highlighting that graph-based clustering facilitates the rep-
resentation of the problem and allows for a rapid generation of clusters with similar
characteristics. Therefore, it provides an interesting approach from which to address the
grouping problem under consideration. In Sect. 6, we describe how clustering fits within our
solution strategy, together with the other elements.

5 Mathematical formalisation of the problem

In linewith the description of the problem in Sect. 2 and the discussion of relevant background
in Sects. 3 and 4, we now formalise the grouping problem of non-prime steel products
mathematically.
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The restriction on the global parameters (i.e. they need to be equal for all products in a
bundle) will be dealt with by dividing the initial set of products into P subsets, thus resulting
in P sub-problems. Each of them can be interpreted as a BPP with restricted distances,
which emerge as homogeneity in the local parameters is rewarded, and minimum weight
requirements. In this sense, it is important to note that the goal of the problem is not only to
minimise the bundles used, and the number of non-prime steel products unassigned, but also
to make the bundles as homogeneous as possible. We call it the ‘homogeneous bin packing
problem with minimum weight requirements’ (HBPPMWR).

5.1 Notation

In the mathematical formulation of the problem, we use the following indices:

• i refers to items (non-prime steel products), i � 1, 2, . . . , n, where n is the number of
items,

• h refers to bins (bundles), h � 1, 2, . . . ,m, where m is the number of bins;

the following decision variables:

• yh is a binary variable, with yh � 1 indicating that bin h is used in the proposed assignment,
and yh � 0 otherwise (note: yh results in a row vector of m binary variables),

• xih is a binary variable, with xih � 1 indicating that item i is assigned to batch h, and
xih � 0 otherwise (note: xih results in a matrix of n × m binary variables);

and the following parameters:

• wi is a set (row vector) of n binary variables, with wi denoting the weight of item i ,
• C is the capacity of the bins,
• wmin is the minimum allowed weight of the bins,
• dmax is the maximum allowed distance between any pair of items in a bin.

Finally, the variable u refers to the number of items that have not been allocated to any
bin in a proposed assignment, and dh refers to a variable that includes the maximum distance
between items within batch h for the proposed assignment. Thus, u and dh depend on the
decision variables yh and xih .

5.2 Optimisation problem

Mathematically, the optimisation problem for a specific set of products with the same global
parameters can be expressed as follows:

minJ � zy
∑m

h�1
yh + zd

∑m

h�1
dh + zuu (1)

s.t.
∑m

h�1
xih ≤ 1 ∀i (2)

∑n

i�1
wi xih ≤ Cyh ∀h (3)

∑n

i�1
wi xih ≥ wmin yh ∀h (4)

dh ≤ dmax ∀h (5)

yh ∈ {0, 1} ∀h (6)
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xih ∈ {0, 1} ∀i, h (7)

Equation (1) defines the objective function. This is a cost function that attempts tominimise
the number of bins used, the heterogeneity of these bins, and the number of unassigned items.
In this equation, zy , zd , and zu (such that zy+zd +zu � 1) is the weight given to each criterion,
depending on the prioritisation strategy. Constraint (2) ensures that each item is assigned to
at most one bin. Constraint (3) makes sure that the total weight of each bin does not exceed
its capacity. Constraint (4) ensures that the minimum weight is achieved by the sum of items
in the bin. Constraint (5) ensures that the degree of homogeneity of all bundles fulfils the
requirements. Last, constraints (6) and (7) ensure that the variables yh and xih have binary
values.

6 Solution procedure

Given the complexity of the problem under study, our solution strategy for the HBPPMWR
aims to achieve near-optimal solutions in a time-efficient manner. Figure 1 provides an
overview of the procedure, which is composed of three main stages:

(1) Initial division of the products according to the global parameters.
(2) Cluster analysis of the products based on similarity in the local parameters.
(3) Optimisation-based allocation of non-prime steel products to bundles.

This three-stage solution procedure fitswell with the nature of the industrial problemunder
consideration. It allows the users to easily fine-tune the model for each specific sub-problem

Fig. 1 Schematic representation of the solution strategy
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(wi ,C ,wmin ,dmax , zy , zd , and zu differ in the various subsets due to the different resources and
requirements of each plant and family of products, among others). This procedure also adds
transparency to the allocation problem, facilitating that managers understand the generation
of the final bundles of non-prime steel products. Each of the stages that characterise the
proposed solution strategy is developed in depth below.

6.1 Initial division

After receiving the data with the non-prime products of the different plants, the overall
dataset is divided into P subsets, such that all the products in each one have the same global
parameters. This stage ensures that this fundamental restriction will be satisfied in all the
bundles of the final solution. We thus deal with conflicts by dividing the overall problem
into smaller ones without conflicts, which is in line with some of the approaches described
in Sect. 3. This stage also reduces considerably the computational complexity faced by the
clustering and optimisation algorithms in the following phases of the solution procedure.

6.2 Cluster analysis

In each of the P subsets with the same global parameters, clustering is applied to guide the
optimisation algorithm towards more homogeneous and time-efficient solutions. Clustering
is performed according to the local parameters, whose distance should be minimised in each
bundle. Following the discussion in Sect. 4, we adopt a graph-based approach. Each item
is represented by a node, which is linked to the other items in the same subset by means
of undirected edges characterised by their distances di j (where i and j represent the nodes
under consideration). Next, we describe how such distances, which measure the similarity
between products, are computed.

6.2.1 Definition of distance

We consider an eight-dimensional space, where the dimensions refer to the eight local param-
eters of our homogeneous grouping problem (i.e. subfamily, steel grade, oiling,weight, width,
thickness, and two coating thicknesses).

Then, we use a weighted Euclidean distance to measure the difference between two items.
On the one hand, we selected the Euclidean distance, instead of other alternatives, as it
is a common and recommended practice for measuring the distance between items when
parameters of different nature are involved, as in our case (Kou et al., 2014; Xu & Wunsch,
2005). On the other hand, weighing the differences in the various parameters allows us
to define the degree of homogeneity in a flexible manner, which is a requirement of our
real-world problem, as discussed before. To define the importance of homogeneity in each
parameter, we use weights, γt , with t � {1, 2, . . . , 8}. These weights can be configured
between 0.1 and 10; therefore, they cover differences of importance of up to two orders of
magnitude. These weights have been rescaled through geometric means, thus resulting in the

normalised weights γ
′
t � γt/

(
8
√∏8

q�1 γq

)
.

Finally, we note that we have normalised the five numerical parameters, namely, weight,
width, thickness, and the two coating thicknesses. Also, we have transformed the three
categorical parameters, that is, subfamily, steel grade, and oiling, into a numerical (and
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normalised) format. We explain how we have normalised and transformed the different
parameters in the following subsection.

Taking all the above into consideration, the distance between items i and j, di j , can be
obtained via

di j �
√√√√

8∑

t�1

γ
′
t

(
ϕ

′
t,i − ϕ

′
t, j

)2
,

where ϕ
′
t,i and ϕ

′
t, j refer to the normalised values of parameter t for items i and j, respectively.

6.2.2 Normalisation and transformation

Normalising the numerical parameters is essential to ensure the robustness of the distance
measurements. In this sense, we have rescaled the values of the parameters into a range of
[0,1]. Specifically, we have used

ϕ
′
t,i � ϕt,i − ϕt,min

ϕt,max − ϕt,min
,

where ϕt,i denotes the actual value of parameter t for item i, and ϕt,max and ϕt,min denote the
maximumandminimumvalues, respectively, of parameter t in the subset under consideration.

For the categorical parameters, it was necessary to transform their distances into a numeri-
cal format, as discussed before. To this end, we have assigned the distance values, ϕ

′
t,i −ϕ

′
t, j ,

ranging between 0 and 1 based on the evaluations of experts in the different processes.
They considered the degree of similarities between each pair of categorical levels for each
parameter.

Byway of example, we focus on the parameter ‘subfamily’. In this case, the experts agreed
to define three levels of distances: 0 (no distance), 0.1 (low), and 1 (high). For the organic
coating (OC) product family, there are eight subfamilies, characterised by the following
labels: OCR, OCH, OAS, OAZ, OZ, OZA, OZE, and OZO. The ideal is to bundle together
products of the same subfamily (ϕ

′
t,i − ϕ

′
t, j � 0). Nonetheless, products of subfamilies

OCR and OAH can also be included in the same bundle at a low cost (ϕ
′
t,i − ϕ

′
t, j � 0.1).

The same happens with products of subfamilies OAS, OAZ, OZ, OZA, OZE, and OZO
(ϕ

′
t,i − ϕ

′
t, j � 0.1). However, combining products of both groups in the same bundle (e.g.

OCR and OAS, or OAH and OZ) is not desirable, as this would reduce the attractiveness of
bundles to potential customers (ϕ

′
t,i − ϕ

′
t, j � 1). This information is summarised in Table 1.

Although we do not include all tables here for the sake of brevity, we clarify that the
same methodological approach has been followed for the rest of the product families, as
well as for the other two categorical parameters. In the case of the steel grade, we have also
used three levels of distances with the aim of promoting the bundling of products with the
same (ϕ

′
t,i − ϕ

′
t, j � 0) or similar steel grades (ϕ

′
t,i − ϕ

′
t, j � 0.1) rather than those with

highly different steel grades (ϕ
′
t,i − ϕ

′
t, j � 1). In contrast, in the case of oiling, we only use

two values: ϕ
′
t,i − ϕ

′
t, j � 1 if one product went through oiling but the other did not; and

ϕ
′
t,i − ϕ

′
t, j � 0 if both or none of them went through this oxidation prevention process.

6.2.3 Clustering algorithm

In line with the discussion in Sect. 4, we follow a graph-based approach to generate clusters
(groups) of non-prime steel productswith lowdistances among them. To this end,we gathered
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Table 1 Distances assigned to the parameter ‘subfamily’ for products that belong to the OC family

OCR OCH OAS OAZ OZ OZA OZE OZO

OCR 0 0.1 1 1 1 1 1 1

OCH 0.1 0 1 1 1 1 1 1

OAS 1 1 0 0.1 0.1 0.1 0.1 0.1

OAZ 1 1 0.1 0 0.1 0.1 0.1 0.1

OZ 1 1 0.1 0.1 0 0.1 0.1 0.1

OZA 1 1 0.1 0.1 0.1 0 0.1 0.1

OZE 1 1 0.1 0.1 0.1 0.1 0 0.1

OZO 1 1 0.1 0.1 0.1 0.1 0.1 0

ideas fromHendrickson and Leland (1995), who use spectral graphs, Zhou et al. (2016), who
implement a weighted summation, and Kawaji et al. (2004), who repeatedly partition the
graph by removing edges with low similarities, among others.

The clustering algorithm, which operates in each of the P subsets by means of a specific
function (SPLIT), follows the sequence of events described in Fig. 2. In this sense, the
operation of the clustering algorithm is based on four steps that are executed as follows:

1. An initial undirected graph is generated, which represents products in the form of nodes.
These are linked by edges, characterised by their distance di j (calculated as explained
before). The undirected graph is created such that the distances are lower than a predefined
threshold, ϑ , i.e. di j ≤ ϑ∀i, j .

2. The initial graph is divided into several subgraphs by considering the connected com-
ponents. In this sense, we generate initial clusters that are formed by relatively similar
non-prime steel products.

Fig. 2 Schematic representation of the operations of the clustering algorithm
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3. The number of items in each initial cluster is compared to a predefined range,
[MinSize, MaxSize].

a. If the number of items in the initial cluster is within the limits, we create a cluster.
b. If it is lower than desired (i.e. < MinSize), the initial cluster is dissolved and its

products are defined as ‘singles’.
c. If it is higher than desired (i.e. > MaxSize), the threshold is readjusted as follows:

ϑ∗ � τ · ϑ , where τ < 1 is the step parameter. Then, the sequence starts again for
the products in this large cluster. As the new threshold is more restrictive (τ < 1 ⇒
ϑ∗ < ϑ), this cluster will tend to generate several initial clusters of a smaller size. If
necessary, this occurs recursively until the threshold becomes lower than 10−6 (when
this occurs, the cluster is formed).

4. Singles are regrouped into the clusters created, when this is possible. To this end, a
new threshold is defined with the geometric mean of the last two thresholds, i.e. ϑ∗∗ �√

ϑ · ϑ∗. Then, we evaluate if ϑ∗∗ (ϑ∗ < ϑ∗∗ < ϑ) allows for the incorporation of any
of the singles to the new cluster created.

6.3 Allocation of products to bundles

For each cluster, the products need to be allocated to a set of bundles, taking into considera-
tion both their minimum allowed weight and their capacity, which are introduced as inputs,
and making sure that they are as homogeneous as possible. In order to provide the best pos-
sible solution for the online auction, the algorithm creates many assignments using different
strategies, which are described in the following subsection, and finally selects the best one
according to a user-defined fitness function (based on Eq. 1).

6.3.1 Algorithm structure

The algorithm, which has to be executed several times before each auction, needs to provide
a high-quality allocation of the non-prime steel products in a short amount of time. In line
with the description in Sect. 5, it will aim to minimise the number of bundles employed, the
differences in the items of each bundle, and the number of unassigned items, according to
the weights assigned by the user.

The structure of the algorithm, which has been implemented in a specific function (CRE-
ATE_BUNDLES), is summarised in Fig. 3. There are three main phases:

1. Item sorting. The products in each cluster first need to be sorted according to a predefined
criterion. We consider three methods: random sorting (used L-2 times per call to the
function, where L is a decision parameter that considers the replications of each heuristic
method), largest-first sorting (1 time per call), and smallest-first sorting (1 time per call).

2. Item allocation. Now the products are allocated to bundles. To do this, we implement
three heuristics: FIFO, greedy, and distance-based. The traditional models have been
adapted to accommodate the homogeneity requirements, as we will discuss in the next
subsection.

3. Fitness evaluation. Once the L solutions of each algorithm have been generated, all the
allocations (3L) are analysed, and the one that provides the lowest cost, according to
Eq. (1), is selected. This allocation is proposed to be used in the online auction.
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Fig. 3 Schematic representation of the operations of the algorithm for allocating the non-prime products to
bundles

6.3.2 Heuristic techniques

The first heuristic algorithm adopts a FIFO (first-in-first-out) approach. It assigns items to
bundles by going over the list of items in sequential order. If the following item in the list
verifies the maximum distance requirement and there is enough capacity in the bundle, it
is assigned to the open bundle. If there is enough capacity but the item does not verify
the homogeneity requirement, then the next item is checked. As soon as an item cannot be
introduced in a bundle due to capacity restrictions, the bundle is closed and a new one will
be opened. Therefore, the time complexity of this algorithm is O(n).

The second heuristic is a greedy algorithm. In this case, if a product cannot be assigned to a
bundle because of capacity limitations, the bundle is not closed.Rather, the followingproducts
may be assigned to this bundle (if this was possible considering the maximum distance and
capacity). Logically, this requires more time. Thus, we have implemented additional checks
to avoid consuming unnecessary time. For example, if the smallest-first sorting method is
used, and an item cannot be included in a bundle for capacity reasons, the rest of the items
will not be considered for that bundle. Similarly, for the largest-first sorting method, when an
item cannot be introduced into a bundle due to capacity limitations, the algorithm evaluates
if the last (i.e. the smallest) item could be introduced. If not, there is no need to consider the
remaining items for the bundle. The time complexity of this algorithm is O(n2).

Last, the distance-based algorithm makes decisions based on the similarity between the
items in the open bundles and the rest of the items. This heuristic works as follows. The
first item goes to the first bundle. Then, the closest item to the first one (lowest di j ) is also
introduced in this bundle. Subsequently, the item that is closest to those two items is added
(specifically, we consider the maximum di j to those items in the bundle). The process is
repeated as long as there is enough capacity. If, at some point, the closest item cannot be
introduced for capacity reasons, the second closest item is evaluated, and so on. Finally, once
no more items can be accepted (due to capacity and/or maximum distance restrictions), the
bundle is closed. Then, the process starts again for the next bundle. The time complexity of
the distance-based algorithm is O(n3).
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7 Design of experiments

In this paper, we first evaluate our solution strategy for the HBPPMWR through a new set of
test instances. In this section, we describe the procedure followed to generate these instances
based on existing datasets.

7.1 Existing sets of test instances

ESICUP, the EURO’s Working Group on Cutting and Packing, collects on their website1

several test instances from different works (e.g. Falkenauer, 1996; Scholl et al., 1997; Schw-
erin & Wäscher, 1997) that have been widely used in the BPP literature. As discussed by
Bai et al. (2012), those test instances generated by Falkenauer (1996) are probably the most
commonly employed dataset in the BPP field.

Authors dealing with BPPs with conflicts have also used these instances, adapting them
to the new context. Gendreau et al. (2004) selected the first 10 Falkenauer’s (1996) uniform
instances for different numbers of products, n � {100, 250, 500, 1000}. These instances
consider items with discrete weights that are uniformly distributed within the range [20,100],
and the bin capacity is 150. The authors also used the first 10 triplet instances developed by
Falkenauer (1996) for n � {60, 90, 249, 501}, and multiplied the weights by 10 to obtain
integer numbers. In this case, the bin capacity was set equal to 1000. They added 10 graphs
of random conflicts, characterised by density values within 0 and 0.9, which resulted in 800
test instances.

Muritiba et al. (2010) followed the same procedure as in Gendreau et al. (2004) and
generated 800 new test instances,2 which were also used by Yuan et al. (2014) and Maiza
et al. (2016), among others. Sadykov and Vanderberck (2013) also followed Gendreau et al.’s
(2004) procedure to generate a new set of instances for the BPP with conflicts.

7.2 Generating test instances for our problem

To create the test instances for the HBPPMWR, we also start from Falkenauer’s (1996)
dataset. Specifically, we consider their 80 uniform instances, that is, 20 instances for each
n, with n � {100, 250, 500, 1000}. In our problem, we also need to provide the other local
parameters (in addition to the weight, which is used in the original dataset) with values for
the different instances. To this end, we have proceeded as follows. We note that the test
instances have been developed for the hot-dip galvanised steels (HD) family, which is very
representative of the problem under consideration. Also, we highlight that the probabilities
and data provided below in brackets for the various local parameters are based on actual
information provided by the steel company studied.

• Subfamily. We consider two subfamilies within the HD family labelled as Z (90%) and
ZM (10%).

• Steel grade. We consider the most common (12) grades in the HD family: DX51 (24%),
DX52 (1%), DX53 (16%), DX54 (19%), DX56 (6%), HCT590X (4%), HX700LAD (2%),
S220GD (12%), S350GD (5%), S390GD (1%), S450GD (4%), and S550GD (6%).

• Oiling. We establish a difference between oiled (80%) and unoiled (20%) steel products.

1 Available at https://www.euro-online.org/websites/esicup/data-sets/ (accessed on 14/10/2021).
2 Available at http://or.dei.unibo.it/library/bin-packing-problem-conflicts (accessed on 14/10/2021).
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• Weight. As in Falkenauer’s (1996) dataset, we employ a uniform distribution between 20
and 100.

• Width. According to a preliminary analysis (Kolmogorov–Smirnov goodness-of-fit P-
value: 0.105), we use a generalised Pareto distribution with k � −1.4106, σ � 1, 651.9,
and μ � 838.65.

• Thickness. According to a preliminary analysis (Kolmogorov–Smirnov goodness-of-fit P-
value: 0.187), we use a Kumaraswamy distribution with α1 � 0.44024 and α2 � 1.5529,
adjusted to the interval [0.56,6].

• Coating thicknesses. According to a preliminary analysis (Kolmogorov–Smirnov
goodness-of-fitP-value: 0.162 for side 1, and 0.175 for side 2), we useDagumdistributions
with the following parameters: k � 1.2080, α � 6.8828, β � 90.655, and γ � −31.139
for side 1; and k � 1, 1793, α � 7.2491, β � 94.253, and γ � −33.785 for side 2.

The set of 80 instances is available upon request. In the following numerical study, we
will assume that all the instances have the same values for the global parameters.

8 Numerical results

We now apply the solution strategy proposed in Sect. 6 to the 80 test instances generated
as described in Sect. 7. In the tests reported here, we use the following configuration of the
parameters of the system:

• Prioritisation strategy. We give the same importance to the three criteria, zy � zd � zu �
1/3.

• Capacity. We employ C � 150, as in the original Falkenauer’s (1996) dataset.
• Minimum weight requirement. We define wmin � 2C/3 � 100.
• Maximum distance allowed. We employ dmax � 1.
• Weight of local parameters. We use γt � 1∀t .

In relation to the configuration of the clustering algorithm, the interval of products allowed
for the creation of clusters is defined by MinSize � 5 and MaxSize � 100. In addition, the
initial threshold is defined by ϑ � dmax � 1, and the threshold adjustment (step parameter)
is set to τ � 0.8. Nonetheless, we note that we do not focus on the cluster analysis in this
section; rather, we compare the performance of the algorithms.

Regarding the configuration of the algorithm for allocating non-prime products to bundles,
we use L � 200 replications. This is based on a preliminary analysis, in which this value has
proven to provide a good trade-off between the quality of the allocation and the computation
time required.

We also clarify that, while the function CREATE_BUNDLES selects the most appropri-
ate assignment (that with the lowest J ) in its final phase, it stores the best solution and the
computation time required by each heuristic. This facilitates the comparison of the effective-
ness and the efficiency of the different algorithms. Moreover, due to the randomness in the
performance of our solution strategy, we have carried out 10 runs with each of the 80 test
instances. In this sense, the results we report are the average of these 10 runs.

In line with our objective function, we analyse the quality of the solutions by looking at
the number of bundles used, the unassigned non-prime steel products, and the heterogeneity
of the bundles (i.e. measured as the maximum distance between the items of a bundle). We
also evaluate the mean computation time.
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Table 2 Distribution of the best heuristic algorithm for different numbers of products

Algorithm Number of products (n) Overall

120 250 500 1000

FIFO 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Greedy 13 (65%) 19 (95%) 13 (65%) 5 (25%) 50 (62.5%)

Distance-based 7 (35%) 1 (5%) 7 (35%) 15 (75%) 30 (37.5%)

Table 3 Mean computation time (in seconds) of each heuristic algorithm for different numbers of products

Algorithm Number of products (n) Overall

120 250 500 1000

FIFO 1.15 1.16 3.65 13.34 4.83

Greedy 1.32 2.21 6.07 20.06 7.42

Distance-based 1.92 4.07 10.14 30.45 11.64

8.1 Overall performance vs computation time

First, we consider the cost function J . Table 2 shows the heuristic algorithm that provided
(on average) the lowest value of J in the 80 test instances (20 instances for each n, with
n � {100, 250, 500, 1000}). Note that the FIFO algorithm did not provide the best solution
for any of the 80 instances. The greedy algorithm achieved the best result in 50 instances,
a 62.5%, while the distance-based algorithm provided the best result in the remaining 30
instances, a 37.5%. From this perspective, we may conclude that the greedy algorithm gen-
erally outperforms its competitors. Nonetheless, it can be highlighted that the distance-based
algorithm offers better performance for large datasets (namely, for n � 1000).

Table 3 reports the mean time (in seconds) spent by the optimisation algorithm in the
different tests. As expected, we can observe that the FIFO algorithm is the fastest one.
Interestingly, the greedy heuristics requires less time than the distance-based algorithm. This
order applies to the four scenarios defined by different numbers of products. Note that the
time difference between the algorithms grows as n increases. By combining the insights from
Tables 2 and 3, we can conclude that the additional time that the distance-based algorithm
requires over the greedy algorithm may only be justified for high numbers of products.

8.2 Number of bundles and unassigned items

To better understand the different performances of the three algorithms, we now look at two
components of the cost function that are highly interrelated, i.e. the number of bundles used
in the allocation and the number of unassigned items.

Figures 4 and 5 show the mean value of these metrics and the sum of both for the 20
test instances with n � 250 and n � 1000, respectively. Detailed inspection of these graphs
reveals that the distance-based algorithm is the heuristic that generally uses the lowest number
of bundles (see top-left bar diagrams). However, in most cases, the greedy algorithm is able
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Fig. 4 Comparison of bundles generated (top left), unassigned items (top right), and sum (bottom) for 250
products

Fig. 5 Comparison of bundles generated (top left), unassigned items (top right), and sum (bottom) for 1000
products
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to provide the lowest number of unassigned items (see top-right diagrams). When these
two perspectives are considered simultaneously, both algorithms provide a relatively similar
performance (see bottom line charts). Nonetheless, the sum of bundles used and unassigned
items is more often lower for the greedy heuristic than for the distance-based heuristic.
Looking at the FIFO algorithm, we observe that it is clearly outperformed by its competitors.

Figures 6 and 7, in Appendix, represent the same information for n � 120 and n � 500,
respectively. Their analysis leads to the same general conclusion: the distance-based algo-
rithm generates allocations with fewer bundles, but the greedy algorithm is able to assign a
higher number of products to the bundles. In thisway,we highlight that themost suitable algo-
rithm for a specific company would depend on the prioritisation strategy (the distance-based
algorithm is more appropriate when minimising bundles is more important; if minimising
the unassigned items was the priority, the greedy algorithm would be preferable).

All in all, in 71 out of the 80 instances, a 88.75%, the distance-based algorithm generated
the lowest number of bundles. However, this occurs at the expense of leaving a higher number
of products unassigned, given that in 69 instances, a 86.25%, it was the greedy algorithm that
allocated the most items into the bundles. Considering the sum of both, the greedy algorithm
provided the best results in 48 instances, a 60%.

8.3 Homogeneity in the bundles

Finally, we complete the picture by analysing the third component of the cost function.
This refers to the homogeneity in the bundles, which is measured by the distance in the
local parameters of the non-prime steel products that are included in the same bundle (low
distances results in high homogeneity).

Tables 7, 8, 9, 10, in Appendix, provide information about the algorithm that generates the
most homogeneous solution in the 80 test instances. In 59 instances, a 73.75%, the greedy
algorithm outperformed its competitors, while in the remaining 21 instances, a 26.25%, the
most homogeneous result was offered by the distance-based algorithm. Nevertheless, it is
interesting to note that the number of instances inwhich the greedy algorithm outperforms the
distance-based algorithm decreases as n grows. Specifically, for n � {100, 250, 500, 1000},
the greedy algorithm was the one that provided the most homogeneous solution in 20, 19,
15, and 5 instances, respectively. That is, the distance-based algorithm tends to produce more
homogeneous allocations than the greedy algorithm for high values of n.

In this sense, we conclude that the fact that the distance-based algorithm is the most
appropriate option for large datasets can be explained from the perspective of the homogeneity
of the solutions that it generates (rather than by the sum of the number of bundles and
unassigned items). This can also be observed from the analysis of Table 10, which reports
the best algorithm from the viewpoint of the different criteria.

9 Real-world application

We now apply the solution strategy developed to the specific problem under study. From
this perspective, we address its usefulness in real-world environments, providing a comple-
mentary lens to the previous analysis. We use a dataset of non-prime products provided by
the organisation for one of their online auctions. This contains all the necessary information
about the global and local parameters for 2771 steel products. It should also be noted that
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in this case the capacity of the different bundles is C � 25 tons, and the minimum weight
accepted per bundle is wmin � 3C/5 � 15 tons.

To preserve confidentiality, we use the same values for the weights of the local parameters
as in the previous experiments (i.e. γt � 1∀t) as well the same weights for the different
criteria (zy � zd � zu � 1/3), but we note that in the real-world use of the system these
parameters need to be dynamically adjusted by the experts in agreementwith themanagement
team. Regarding the maximum distance allowed, we use two different levels, dmax � 1 and
dmax � 1.5, to better understand the impact of this controllable parameter.

Moreover, we configure the clustering and allocation algorithms in a similar manner as
the previous study of the instances. That is, the parameters and conditions remain unchanged;
specifically: MinSize � 5; MaxSize � 100, ϑ � dmax , τ � 0.8, L � 200, and number of
runs per algorithm � 10.

Following our solution strategy, the first step requires splitting the steel products according
to the global parameters. Then, we have run the clustering algorithm, which provides the
results that are shown in Table 4. The algorithm generated 132 clusters with at least 5 items,
which together contain 2256 products (out of the 2771 products). The average number of
non-prime products per cluster then is 17.1. Also, note that, despite the clusters being allowed
to have until 100 items, the largest cluster has 48 items. Indeed, there are only three clusters
with more than 40 items, while 38 clusters have less than 10 items.

The allocation algorithm is then applied to assign the products to the final bundles. The
(mean) results provided by each heuristic technique in the three main criteria (i.e. number
of bundles, unassigned items, and sum of distances in bundles) are displayed in Table 5 for
both levels of the maximum distance.

First, we compare the results of the algorithms with dmax � 1 and dmax � 1.5. Table 5
provides evidence that when the homogeneity requirements are more demanding (i.e. dmax

is reduced), the solution procedure provides more uniform bundles (i.e. the mean distance
decreases) and the number of bundles decreases. However, these improvements come at the
expense of a considerable increase in the number of unassigned items. Note that this holds
for the three algorithms. Specifically, when dmax decreases from 1.5 to 1, the mean distance
decreases more than 0.2 in the three algorithms and the number of bundles used reduces by
more than 170 bundles in all cases, but the number of unassigned products increases by at
least 700 items.

Table 4 Distribution of non-prime products in clusters

No. of
items

No. of
clusters

No. of
items

No. of
clusters

No. of
items

No. of
clusters

No. of
items

No. of
clusters

5 12 14 4 23 2 33 2

6 7 15 2 24 6 35 1

8 11 16 4 25 4 38 1

9 8 17 1 26 3 39 1

10 7 19 2 27 3 40 2

11 8 20 6 28 4 42 1

12 5 21 8 30 1 45 1

13 3 22 9 31 2 48 1
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Table 5 Performance of the algorithms in the three criteria defined

Algorithm Max. distance Criterion

No. of bundles Unassigned items Mean distance in
the bundles

FIFO dmax � 1 251 1816 0.59

dmax � 1.5 471 1063 0.87

Greedy dmax � 1 266 1766 0.60

dmax � 1.5 463 1055 0.87

Distance-based dmax � 1 265 1652 0.51

dmax � 1.5 438 916 0.76

Second, we analyse the performance of the three optimisation algorithms. To this end, we
focus on the case with dmax � 1.5. Table 5 shows that the distance-based algorithm is able
to generate an allocation that simultaneously utilises a lower number of bundles (438 versus
463 and 471), it leaves fewer unassigned items (916 versus 1055 and 1063), and it produces
more homogeneous bundles (0.76 versus 0.84 and 0.87). The same general findings hold
for dmax � 1, with an interesting exception: in this case, the FIFO algorithm proposes an
allocation with fewer bundles than its competitors (251 versus 265 and 266), although this
is partially because the number of unassigned items is higher (1816 versus 1652 and 1766).
All in all, we conclude that the superiority of the distance-based algorithm is in line with
the findings of the previous section, where we observed that, while the greedy algorithm
generally provided better results, the distance-based algorithm often emerges as the most
appropriate alternative for a high number of products.

At this point, we note that the average total execution time of our solution procedure,
including the clustering and the allocation algorithms, has been 244 s. This is a reasonable
amount of time, which fits the requirements of the problem under study, and would allow
the users to test different configurations of the parameters for each auction. In this sense, the
procedure is not only effective but also efficient.

To provide further insights on the behaviour of the algorithms, we finally consider three
scenarios, in addition to the base one in which the same weight is given to the three criteria
(scenario 0, zy � zd � zu � 1/3). Scenario I assumes that the minimisation of the number
of bundles is prioritised (zy � 0.6, zd � zu � 0.2). Scenario II considers that minimising
the unassigned items is the priority of the company (zu � 0.6, zd � zy � 0.2). Scenario
III models the case in which the homogeneity in the bundles is the most important criterion
(zd � 0.6, zy � zu � 0.2).

Table 6 provides information on the cost function J in the four scenarios (0, I , II , and III) in
relative terms to the minimum value of J for each value of dmax . We can see that the distance-
based heuristic offers the best allocation in the four scenarios. This can be easily understood
given that, as we discussed before, when the number of items is high, this algorithm tends
to generate allocations not only more homogeneous but also with fewer bundles and a lower
number of unassigned items. In addition, we observe that the greedy algorithm outperforms
the FIFO heuristic in seven out of the eight cases, although both entail a significantly higher
cost than the distance-based heuristic. In this regard, it is also interesting to note that the
relative difference between this heuristic and its competitors increases as dmax grows.
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Table 6 Ratio of the metric J of the algorithms to the minimum J in the four scenarios and for both maximum
distances

Max.
distance

Algorithm Scenario

Scenario 0:
equal weights

Scenario I:
prioritising the
minimisation of
bundles

Scenario II:
prioritising the
allocation of
products

Scenario III:
prioritising the
homogeneity in
the bundles

dmax � 1 FIFO 1.080 1.053 1.092 1.083

Greedy 1.068 1.055 1.069 1.082

Distance-based 1 1 1 1

dmax �
1.5

FIFO 1.152 1.126 1.157 1.174

Greedy 1.140 1.112 1.146 1.161

Distance-based 1 1 1 1

10 Concluding remarks

This work has studied the grouping of non-prime products into homogeneous bundles that
are later auctioned, a problem that significantly affects the economic performance of many
steel producers. The objective is to simultaneously minimise the number of bundles used,
the number of unassigned items, and the differences (in a set of parameters) of the products
that are included in each bundle. In addition, the allocation problem needs to be solved with
a moderate computational effort due to time limitations. We have modelled the problem
mathematically as a variant within the family of BPPs that is characterised by the interaction
of conflicts, constrained distances, and minimum weight requirements.

To solve the grouping problem of non-prime steel products, we have developed a three-
stage solution procedure that employs clustering techniques and optimisation algorithms.
Specifically, we have implemented three heuristics; namely, a FIFO, a greedy, and a distance-
based algorithm. The value of our solution strategy has been demonstrated bothwith a sample
of test instances and with data from the real-world problem under consideration. It is capable
of providing an effective allocation of products to bundles in a reasonable amount of time.We
have also observed that in general terms the greedy algorithm outperforms its competitors;
however, when the number of items is very high, the distance-based algorithm generally
provides better performance. In such cases, this heuristic is able to generate fewer and more
homogeneous bundles with fewer unassigned items.

Interesting avenues for research emerge from this work. Studying the effects of the weight
of the local parameters and/or the criteria in the objective function would help managers to
configure their decision support systems more precisely. We may also include other optimi-
sation algorithms to increase the effectiveness of our solution tool. Nonetheless, this may
increase the computation time considerably. Therefore, due to the limited time available, this
would motivate us to look for ways to improve the efficiency of our solution procedure. This
can be done by delving into the interplays between the sorting methods and the allocation
algorithms. In this sense, we also plan to get inspiration from recent developments in different
streams of the operational research literature, yet adjacent to the BPP literature, including
cluster analysis (e.g. Xu et al., 2021), conflict management (e.g. Ficker et al., 2021), multi-
objective optimisation (e.g. Denstad et al., 2021), and multi-criteria decision making (e.g.
Kou et al., 2020).
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Appendix

See Figs. 6, 7 and Tables 7, 8, 9, 10.

Fig. 6 Comparison of bundles generated (top left), unassigned items (top right), and sum (bottom) for 120
products
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Fig. 7 Comparison of bundles generated (top left), unassigned items (top right), and sum (bottom) for 500
products
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Table 7 Algorithm that provided the best allocation for different criteria when n � 120

Instance Criterion

No. of bundles + unassigned items Homogeneity Cost function J

120_00.csv Distance-based Greedy Greedy

120_01.csv Distance-based Greedy Distance-based

120_02.csv Distance-based Greedy Distance-based

120_03.csv Greedy Greedy Greedy

120_04.csv Greedy Greedy Greedy

120_05.csv Distance-based Greedy Distance-based

120_06.csv Distance-based Greedy Distance-based

120_07.csv Distance-based Greedy Distance-based

120_08.csv Greedy Greedy Greedy

120_09.csv Distance-based Greedy Greedy

120_10.csv Greedy Greedy Greedy

120_11.csv Distance-based Greedy Greedy

120_12.csv Distance-based Greedy Distance-based

120_13.csv Greedy Greedy Greedy

120_14.csv Distance-based Greedy Greedy

120_15.csv Distance-based Greedy Distance-based

120_16.csv Greedy Greedy Greedy

120_17.csv Greedy Greedy Greedy

120_18.csv Distance-based Greedy Greedy

120_19.csv Distance-based Greedy Greedy
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Table 8 Algorithm that provided the best Allocation for different criteria when n � 250

Instance Criterion

No. of bundles + unassigned items Homogeneity Cost function J

250_00.csv Greedy Greedy Greedy

250_01.csv Distance-based Greedy Greedy

250_02.csv Greedy Greedy Greedy

250_03.csv Distance-based Greedy Greedy

250_04.csv Distance-based Greedy Greedy

250_05.csv Distance-based Greedy Greedy

250_06.csv Distance-based Greedy Greedy

250_07.csv Greedy Greedy Greedy

250_08.csv Greedy Greedy Greedy

250_09.csv Greedy Greedy Greedy

250_10.csv Greedy Greedy Greedy

250_11.csv Greedy Greedy Greedy

250_12.csv Greedy Greedy Greedy

250_13.csv Greedy Greedy Greedy

250_14.csv Distance-based Distance-based Distance-based

250_15.csv Greedy Greedy Greedy

250_16.csv Greedy Greedy Greedy

250_17.csv Greedy Greedy Greedy

250_18.csv Greedy Greedy Greedy

250_19.csv Greedy Greedy Greedy
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Table 9 Algorithm that provided the best allocation for different criteria when n � 500

Instance Criterion

No. of bundles + unassigned items Homogeneity Cost function J

500_00.csv Greedy Greedy Greedy

500_01.csv Distance-based Greedy Greedy

500_02.csv Greedy Distance-based Distance-based

500_03.csv Distance-based Greedy Greedy

500_04.csv Greedy Greedy Greedy

500_05.csv Greedy Greedy Greedy

500_06.csv Greedy Greedy Greedy

500_07.csv Distance-based Distance-based Distance-based

500_08.csv Distance-based Greedy Distance-based

500_09.csv Greedy Greedy Greedy

500_10.csv Greedy Distance-based Distance-based

500_11.csv Distance-based Greedy Greedy

500_12.csv Greedy Distance-based Distance-based

500_13.csv Distance-based Greedy Greedy

500_14.csv Greedy Greedy Greedy

500_15.csv Greedy Greedy Greedy

500_16.csv Greedy Greedy Greedy

500_17.csv Distance-based Distance-based Distance-based

500_18.csv Distance-based Greedy Distance-based

500_19.csv Greedy Greedy Greedy
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Table 10 Algorithm that provided the best allocation for different criteria when n � 1000

Instance Criterion

No. of bundles + unassigned items Homogeneity Cost function J

1000_00.csv Greedy Distance-based Distance-based

1000_01.csv Greedy Distance-based Distance-based

1000_02.csv Greedy Distance-based Distance-based

1000_03.csv Greedy Greedy Greedy

1000_04.csv Distance-based Greedy Greedy

1000_05.csv Greedy Greedy Greedy

1000_06.csv Distance-based Distance-based Distance-based

1000_07.csv Greedy Distance-based Distance-based

1000_08.csv Greedy Distance-based Distance-based

1000_09.csv Greedy Distance-based Distance-based

1000_10.csv Greedy Distance-based Distance-based

1000_11.csv Distance-based Distance-based Distance-based

1000_12.csv Distance-based Distance-based Distance-based

1000_13.csv Greedy Greedy Greedy

1000_14.csv Greedy Distance-based Distance-based

1000_15.csv greedy Distance-based Distance-based

1000_16.csv Greedy Greedy Greedy

1000_17.csv Greedy Distance-based Distance-based

1000_18.csv Distance-based Distance-based Distance-based

1000_19.csv Greedy Distance-based Distance-based
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