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Abstract
The location planning of relief distribution centres (DCs) is crucial in humanitarian logistics
as it directly influences the disaster response and service to the affected victims. In light of
the critical role of facility location in humanitarian logistics planning, the study proposes a
two-stage relief distribution location problem. The first stage of the model determines the
minimum number of relief DCs, and the second stage find the optimal location of these DCs
to minimize the total cost. To address a more realistic situation, restrictions are imposed on
the coverage area and capacity of each DCs. In addition, for optimally solving this complex
NP-hard problem, a novel two-phase algorithm with exploration and exploitation phase is
developed in the paper. Thefirst phase of the algorithm i.e., exploration phase identifies a near-
optimal solution while the second phase i.e. exploitation phase enhances the solution quality
through a close circular proximity investigation. Furthermore, the comparative analysis of
the proposed algorithm with other well-known algorithms such as genetic algorithm, pattern
search, fmincon, multistart and hybrid heuristics is also reported and computationally tested
from small to large data sets. The results reveal that the proposed two-phase algorithm is
more efficient and effective when compared to the conventional metaheuristic methods.

Keywords Heuristic · Location problem · NP-hard problem · Relief distribution

1 Introduction

Disaster is an occurrence that affects human functioning, causes human suffering, environ-
mental damage, and economic and human life loss on such a scale that renders coping up
with the situation is beyond the ability of the affected community (Boonmee et al., 2017).
For handling such a situation, the affected community requires help from external sources.
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Humanitarian logistics is one of the operations that play a significant role in managing
disaster situations and serving the affected areas (Praneetpholkrang et al., 2021). It involves
planning, procurement, and controlling the efficient, cost-effective flow and storage of goods
and materials for alleviating the suffering of vulnerable people (Thomas and Kopczak, 2005;
Elluru et al., 2019; Kaur and Singh, 2019). These aspects of humanitarian logistics are crucial
in both pre-and post-disaster situations (Behl and Dutta, 2019).

Humanitarian logistics in the pre-disaster phase include pre-planning operations against
possible future disaster situations, such as pre-positioning of facilities, allocation of inventory,
capacity, planning for supply, relief distribution in disaster-prone areas (Abazari et al., 2021;
Yáñez-Sandivari et al., 2020). In disaster situations, it involves performing immediate actions
after the disaster occurs, such as evacuating affected people, providing emergency services,
blood and medical supplies (Duhamel et al., 2016; Sharma et al., 2019). Moreover, post-
disaster helps people to get back to normal life and enhance human and economic growth.
In addition, the disaster also impacts the firm’s layout and location decisions due to a surge
in demand during and post-disaster.

Tayal and Singh (2019) studied layout issues for disaster relief. Very recently, Devi et al.
(2021) studied the location-allocation problem of health care facility networks and developed
a mixed-integer linear program. Recent research shows promising efficiency improvements
through studies using advanced technologies such as big data, blockchain, artificial intel-
ligence and predictive analytics to improve humanitarian operations (Dubey et al., 2019a,
2020; Gupta et al., 2021; Jha et al., 2021; Modgil et al., 2020).

The effects of natural disasters are usually instant and reflected through a single disruptive
event. Advancements in disaster management areas have made it possible that disaster-prone
regions can usually be prepared in advance with all possible options to quickly start the relief
operations to provide maximum relief to the affected ones. However, exceptional challenges
still remain a possibility, such as the case of pandemics. Contrary to natural disasters, it grew,
evolved and continued with no certainty, thus making the relief operation more challenging
(Ivanov, 2021a, 2021b). An example of such a disastrous situation is the pandemic resulting
from the novel Coronavirus that has afflicted the entire world in the last two years. The
virus also referred to as COVID-19, has spread globally in a short span of time and severely
affected human life and economic growth (Chowdhury et al., 2021).

The impact of the ongoing pandemic has been global and unpredictable, and it involves
multiple shocks and long term uncertain states creating panic situations, unavailability
of resources, disruption in logistics and relief operations. The most distinctive feature of
Covid-19 is that the virus spreads through contact, which makes the relief operation more
challenging. The relief work, in this case, had to face additional restrictions in the form of
the largest quarantine in human history (Kharroubi & Saleh, 2020), which included lock-
down situations imposed by a number of countries. Restrictions during these lockdowns
included movement restriction, social distancing and prohibition of mass gathering, which
usually cause undesirable outcomes, including resource unavailability, movement restriction,
labour shortage and logistics disruptions (Singh et al., 2021). To address these challenges, the
paper considers a similar case where the movement is restricted, and the existing structures
are unable to satisfy the demand due to limited resources and movement restrictions. To
serve essential items to the unsatisfied demand points, the aid providing organization has to
establish temporary relief distribution centres or service facilities.

The decision of location and allocation of service facilities plays a significant role in the
humanitarian relief operation. In the case of the pre-disaster situation, the strategic planning
of location decisions is critical for risk prevention against future disaster occurrence. Also, the
disaster response cost can be reduced by disaster preparedness and preparation (Goldschmidt
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and Kumar, 2019). However, in a post-disaster situation, relief planning involves decision
making regarding the location of the relief distribution centres, medical care centres, shelter
locations, evacuation centres, and other critical facility centres (Liu et al., 2019; Li and Teo,
2019; Sun et al., 2021).

The planning of relief distribution centres includes two main issues viz. what is the min-
imum number of DCs needed to serve the entire demand? And where to locate DCs for
cost-effective operations? To optimally answer these two challenging issues, the paper con-
siders a two-stage relief distribution location problem, where the objective is to determine
the minimum number of DCs required and to optimize the location of DCs to minimize the
cost for serving the unmet demand points. Most of the past studies in relief location plan-
ning focus on the minimization of unmet demand, maximization of survivor, minimization
of response time, and cost-effective operations (Burkart et al., 2017; Sharma et al., 2019;
Oksuz and Satoglu, 2020; Farrokhizadeh et al., 2021; Praneetpholkrang et al., 2021). Most
of the available research in relief distribution planning either consider coverage or capacity
limitation (Paul et al., 2017; Zhang et al., 2017; Liu et al., 2019; Munyaka and Yadavalli,
2021), while in a real-life scenario, delivery distance and capacity are jointly restricted by
resource limitations.

However, as mentioned above, the purpose of this study is to obtain the minimum number
of DCs and their optimal location in planar decision space for cost-effective operation. In
this paper, the capacity and the coverage area of each DC is assumed to be restricted within
a certain range. In order to avoid mass gathering at the DCs in the light of pandemics such
as Covid-19, the paper considers relief transportation at a demand location and employs
a maximum delivery distance restriction for each DCs. The distribution involves delivery
at the demand location as the movement of the individuals are restricted within a certain
range. The DCs can only deliver the goods to the demand points within a certain distance as
the affected area is large and one DC can not fulfil the demand of the entire affected area.
Moreover, in disaster situations, DCs facing capacity restrictions is very common due to
the size limitations and unavailability of resources, especially in the case of temporary DCs
(Gutjahr and Dzubur, 2016; Zhong et al., 2020). Thus, to make the problem closer to the real
scenario both capacity and coverage limitations is included in this study.

To address the above challenging issues, a two-stage model is formulated where, the first
stage optimizes the minimum number of DCs, and the second stage optimize the optimal
location of DCs to meet the unsatisfied demands. Figure 1 shows the two stages of the
proposed model.

Optimal location of M
distribution centres

Second Stage

Obj2 (F2): Minimise the 
cost.

Optimal Location of the 
DCs for minimum cost

Minimum number of DCs to 
locate.

First Stage

Obj1 (F1): Minimise the 
total unsatisfied demand. 

M number of DCs required 
for satisfying all the demand 

Fig. 1 Two stages of the proposed model
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To optimally solve the two-stage relief distribution location problem, a novel two-phase
algorithm is proposed. The first phase is the exploration phase based on obtaining an optimal
or near-optimal solution. This phase investigates the entire search space thoroughly. The
second phase is the exploitation phase that performs an intensive search in close circular
proximity of the solution obtained from the exploration phase to further improve the solution
quality. The two major contributions of the paper are (1) formulating a two-stage model for
finding the number of relief distribution centres and their optimal location (2) developing an
effective and efficient algorithm for solving this NP-hard problem.

The rest of the paper is organized as follows. Section 2 provides the literature review.
Section 3 describes the mathematical modelling of the problem. Section 4 introduces the pro-
posed algorithm. Section 5 presents numerical analysis and discussion of the result. Section 6
provides implications of the study. Section 7 is dedicated to the conclusion and future scope.

2 Literature review

Humanitarian logistics has three planning stages for the pre-and post-disaster situation. These
stages are as follows—(1) Preparedness phase is a pre-disaster situation that includes risk
prevention actions and preparation against future disaster possibility in disaster-prone areas;
(2) Response phase includes actions taken immediately after disaster occurrence; and (3)
Recovery phase involves road clearing, relief distribution, helping people in resuming normal
life, and improving economic growth (Özdamar and Ertem, 2015).

Facility location planning is an important stage in both pre-and post-disaster situations
and plays a significant role in the proper functioning of the humanitarian logistics system.
In recent years due to the increasing severity of disasters across the globe, more attention
is being paid to modelling a location problem, developing optimization approaches, and
simulation processes in humanitarian logistics. These studies involve the location decision
of facilities such as relief distribution centres, shelters, medical centres and waste disposal
centres. Recent research includes the survey and review on humanitarian logistics (Özdamar
and Ertem, 2015; Banomyong et al., 2019; Behl and Dutta, 2019), operations research (OR)
models (Gösling & Geldermann, 2014; Ivanov and Dolgui 2021), mathematical models in
humanitarian supply chain management (Habib et al., 2016; Sawik, 2020), and humanitarian
operations for COVID-19 (Ghorbanzadeh et al., 2021; Queiroz et al., 2020; Singh et al.,
2021).

Dönmez et al. (2021) reviewed the impacts of facility location uncertainties on humani-
tarian logistics. Dubey et al. (2019b) provide research questions and future research direction
for disaster relief operations. Some other research studies involve disruption risk possibilities
in the location decision to deal with future uncertainties (Cui et al., 2010; Wang and Ouyang,
2013; Ghavamifar et al., 2018).Wei et al. (2020) formulated a bi-objective optimization prob-
lem for location and routing for relief supply. Zhong et al. (2020) implement a risk-average
approach for location and routing of relief distribution under stochastic demand in disaster-
affected areas. Sanci and Daskin (2021) proposed an L shaped integrated algorithm to solve
the location and network restoration problem. Manopiniwes and Irohara (2017) formulated
a stochastic optimization model to prepare for disaster response in pre-and post-disaster
operations.

Several studies in humanitarian relief planning have introduced single and multi-objective
facility location models for improving both the effectiveness and efficiency of the humani-
tarian system (Abazari et al., 2021; Burkart et al., 2017; Duhamel et al., 2016; Vahdani et al.,
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2018). The current study considered a two-stage relief distribution location problem with
both monetary and non-monetary objectives for the optimal planning of relief distribution
centres. To deal with the more realistic scenario the study includes both delivery distance and
capacity constraint. Related facility location literature addressing single and multi-objective
problems with capacity and coverage limitations in humanitarian logistics are reviewed in
Table 1.

Demand coverage is an important decision in relief distribution planning. As in disaster-
affected areas, aid providing organizations aim to provide essential items including food,
water, medical services, and hygiene items to all the affected people to reduce human suf-
fering. Thus, a number of research studies emphasize locating DCs to maximize demand
coverage. For instance, Jia et al. (2007) presented a problem of location decision for provid-
ing relief operation tomaximumcoverage area.Najafi et al. (2015) proposed amulti-objective
logit model for relief centre location. Paul et al. (2017) demonstrate a new multi-objective
approach for modifying the existing Chemical Response Enterprise structure for rapid
response to maximize coverage by relocation and minimize the associated cost. Zhang et al.
(2017) employed uncertainty theory to solve the problem of maximum demand coverage in
an uncertain environment.

Also, in a disaster situation, the availability of resources is a huge challenge. Hence,
several studies in disaster planning introduce capacity limitations in their studies (Gutjahr
and Dzubur, 2016; Muggy and Stamm, 2017; Liu et al., 2019; Nagurney, 2021; Sun et al.,
2021; Munyaka and Yadavalli, 2021). Gutjahr and Dzubur (2016) formulate a bi-objective
bi-level problem for optimally locating capacitated relief distribution centres. Muggy and
Stamm (2017) present a two-stage model for post-disaster health care locations. The study
consists of nine cases for capturing uncertainties in the capacity of the facility and individual
ability for travelling. Liu et al. (2019) presented a modelling framework for medical service
location and causality allocation for the post-disaster situation to maximize the expected
survival and minimize the total operational costs of the process. Nagurney (2021) construct a
supply chain networkmodel formultiple firms competing for profitmaximization considering
labour constraints.

We can observe from the preceding discussion and Table 1 that only a few studies consider
both capacity and coverage limitations in the location of DCs (Najafi et al., 2015; Gutjahr and
Dzubur 2016;Burkart et al., 2017; Farrokhizadeh et al., 2021).However, usually, relief centres
face both capacity and coverage limitations. It is particularly true for pandemic situations like
Covid-19. As countries imposed lockdowns to control the spread of the virus, which caused
movement restriction and the unavailability of food, water, medicine, hygiene products and
other essential items, especially for the poor labour class people (Berman, 2020). To address
these challenges in the future, the current study included both maximum delivery distance
and capacity limitation for each distribution centre. In this paper, it is considered that relief
materials are to be transported at demand locations that lie within the coverage range of
the distribution centre. Capacity restrictions are also employed for each DC to address the
limitation in resource availability.

Facility location literature relating to humanitarian logistics is summarised in Table 1.
It shows a comprehensive review of prior studies addressing facility location planning for
pre-and post-disaster situations. The literature is grouped based on the objective function,
modelling characteristics such as decision space, capacity, coverage, demandandother unique
feature of the problem, solution approaches and area of implementation. The classification
helps in identifying the modelling characteristics and solution approaches employed in the
literature to solve various humanitarian logistics problems.
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Table 1 also presents the distinguishing feature of the current study from past literature.
Only a few studies consider both capacity and coverage constraints in relief location planning.
However, the current study is performed on planar search space considering both capacity
and coverage limitation for optimal location planning of relief distribution centres. Most
of the models discussed in Table 1 are hard-to-solve optimization problems; thus, studies
employed metaheuristics and hybrid heuristics solution approaches. The complexity of the
model increases with the inclusion of capacity and coverage constraints; thus, a novel two-
phase algorithm is developed in this study to provide the optimal solution.

Further, it can be observed from Table 1 that research studies in disaster cases are mainly
focused on the pre-planning of the relief facilities (Munyaka and Yadavalli, 2021; Abazari
et al., 2021), evacuation planning (Yahyaei andBozorgi-Amiri, 2019; Praneetpholkrang et al.,
2021), blood and medical supply (Farrokhizadeh et al., 2021; Sharma et al., 2019; Oksuz
and Satoglu 2020), post-disaster recovery and planning (Duhamel et al., 2016; Gutjahr and
Dzubur, 2016; Manopiniwes and Irohara, 2017; Li and Teo, 2019; Sun et al., 2021;Wei et al.,
2020).

The number of facilities to be located and their optimal location is an important question in
all these humanitarian logistics operations. Moreover, in relief distribution centre planning,
to serve the affected people in minimum time, the location and proximity of the distribution
centre become crucial. However, establishing a large number of DCs incur high costs and
also becomes limited by resource availability (Oksuz and Satoglu, 2020; Praneetpholkrang
et al., 2021).

The proposed two-stage relief distribution location problem discuss these challenging
issues jointly to provide the minimum number of distribution centres to meet demand at min-
imum cost. Only limited studies considered both these objectives in relief centres location
planning. Oksuz and Satoglu (2020) formulated a two-stage stochastic problem for finding
the optimal location and number of medical centres to open and determining the optimal
location of these facilities. Praneetpholkrang et al. (2021) formulated a multi-objective opti-
mization model for minimizing the total cost required, minimization of victim evacuation
time and minimization the number of shelters required to service the victims in shelter
location-allocation problems. The distinguishing characteristics of the proposed model can
be observed in Table 1. As shown in Table 1, rarely any study is available on determining the
number of DCs and their optimal location to meet unsatisfied demand with consideration of
relief transportation at demand location providing coverage and capacity constraints. More-
over, these characteristics of the model make the study adaptable in real-life scenarios and
for dealing with situations like Covid-19.

The optimal locations of facilities are crucial for the effective and efficient functioning
of humanitarian logistics. There are a substantial number of algorithms available in the
literature for solving various location problems. Exact methods like branch-and-cut, branch-
and-bound (Gutjahr and Dzubur (2016), Integer programming (Zhang et al., 2017), Multi
integer linear programming, Lagrangian relaxation (Jia et al., 2007; Zhen et al., 2014) have
been previously used in the literature. However, the location problems are mostly NP-hard
and exact methods required excessive computational time even for small data set problems.
Thus, meta-heuristic algorithms are used for complex location problems such as tabu search
(Ramshani et al., 2019), genetic algorithm (Jia et al., 2007; Najafi et al., 2015; Li and Teo,
2019; Zhong et al., 2020), ant colony (Wei et al., 2020; Yegane et al., 2016), firefly algorithm
(MirHassani et al., 2015), particle swarm optimization (Plastria and Vanhaverbeke, 2007).

The effectiveness of the algorithm is crucial for location decisions in disaster management
as it has a direct impact on human life and human survival. In many cases, the results of these
metaheuristic algorithms diverge significantly from the optimal solution. Thus,many research
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studies are devoted to developing model-based heuristics for providing the optimal result in
a reasonable time (Jia et al., 2007; Nagurney, 2021; Ramshani et al., 2019). Considering
the criticality of location decisions in disaster relief operations, this study also attempts
to determine the optimal location of the proposed problem by developing a new heuristic
approach in this paper.

3 Mathematical model

3.1 Problem Statement and assumptions

This study has two objectives, the first objective is to find theminimumnumber of distribution
centres (DCs) required for satisfying demand in the disaster-affected area, and the second
objective is to optimally locate these DCs to minimize the delivery cost. For a more realistic
scenario, the coverage area and capacity of each distribution centre are assumed to be limited.
The two-stage model formulated in the paper wherein the first stage of the model focuses
on determining the minimum number of DCs while the second stage determine the optimal
location of DCs identified from the first stage. The study includes two stages to meet all
demands and to provide full relief at minimum cost. The first stage of the model determines
the minimum number of DCs required to meet demands, which acts as an input to the
second stage. The second stage provide optimal locations for the DCs to provide full relief
at minimum cost. The two-stage process is shown in Fig. 2.

The assumptions considered in the problem to optimally solve the problem are: the Search
space is assumed to be planar, the demand is satisfied by the nearest distribution centre, and
each demand point is allocated to only one distribution centre, and the demand is assumed
to be known and constant. In addition, each distribution centre has a capacity limitation and
can provide relief to the demand points that lie within the coverage range. Also, the relief

Fig. 2 A proposed two-stage model
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Table 2 Notations used in modelling of the problem

Parameters • i: Indices for demand point (i = 1, 2……….n)

• j:Indices for DCs (j = 1, 2……….m)

• f: Already existing firms

• ai: Location of demand points (xi, yi) (i = 1, 2……….n)

• n: Number of demand points

• di: Maximum possible demand at i

• Lf: Search space for facility location of DC j Xj= (xj, yj), Xj ⊂ Lj
• Cj: Capaity of DC j

• �: Penalty cost associated with unsatisfied demand

Variables • m: Number of DC

• Xj: DC location j, Xj = (xj, yj), Xj ⊂ Lj

• t
j
i : Unit demand transportation cost from DC location Xj to demand point i

• d.j (xj, ai): Distance between DCj and demand point i

• d.f (Xf, ai): Distance between already existing firm f and demand point i

• Di: Demand at the demand point

• W: Total demand
n∑

i=1
di

Functions • f (d(X j , ai ): Unit cost of transportation as a function of distance

• M: Total available demand share

• MDf: Maximum possible delivery distance of the existing firm

• MDdcj: Maximum possible delivery distance of DC

• Mf: Demand share of already existing firms

• Mu: Unsatisfied demand points

• Mj: Market share attracted by DC j

material is transported at demand locations from relief distribution centres. The location and
possible coverage range of already existing firms are known.

3.2 Parameters, variables and functions

The list of various notations used to define parameters variables and functions are presented
in Table 2.

3.3 Problem formulation

In many disaster-affected areas, people suffer from the unavailability of essential items and
health services. The existing firms face difficulties in serving these demands due to the
impact of the disaster and resource unavailability. This study assumes that due to resource
limitation, the existing firms limit their services to an optimal coverage area and satisfy only
limited demand points. The focus of this paper is to locate temporary DCs to serve the people
suffering from the unavailability of essential goods.
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The demand points satisfied by the already existing facilities in the affected area are given
by Eq. (1).

M f = i ∈ (1.....n) : d f (X f , ai ) ≤ MD f ∀ f (1)

It can be observed fromEq. (1) that the already existing firms restrict the delivery coverage.
The unsatisfied demand points due to this limitation are given by Eq. (2).

Mu = M − M f (2)

The objective of this study is to first determine the number of distribution centres required
to satisfy the unsatisfied demand points considering coverage and capacity limitations and
then determine the optimal location of these DCs to minimize the cost required to satisfy
these demand points. The two objective functions are given by Eqs. (3) and (4). The first
objective is to minimize the number of unsatisfied demands. The second objective determines
the optimal location of these DCs to minimize the cost of satisfying the demand points.

Min F1 =
⎛

⎝W −
∑

j∈m

∑

i∈Mjc

Di

⎞

⎠ (3)

Min F2 =
∑

i∈M1c

(
t1i (X1)

)
Di +

∑

i∈M2c

(
t2i (X2)

)
Di ....

∑

i∈Mmc

(
tmi (Xm)

)
Di

+
∑

i∈(Mu−(M1c+M2c......Mmc)

λ (4)

Subjected to:

M ja(X
1, X2, ., Xm) = i ∈ (1 . . . Mu) : d j (X j , ai ) < MDj∀ j ∈ (1 . . . .m) (5)

M1b(X1, X2, ., Xm ) = i ∈ (1 . . . M1a ) : d1(X1, ai ) < min(d2(X2, ai ), d
3(X3, ai ), ...., d

m (Xm , ai ))

M2b(X1, X2, ., Xm ) = i ∈ (1 . . . M2a ) : d2(X2, ai ) < min(d1(X1, ai ), d
3(X3, ai ), ...., d

m (Xm , ai ))

Mmb(X1, X2, ., Xm ) = i ∈ (1 . . . Mma ) : dm (Xm , ai ) < min(d1(X1, ai ), d
2(X2, ai ), ., d

m−1(Xm−1, ai ))

⎫
⎪⎬

⎪⎭
(6)

Mjc(X
1, X2, ., Xm) = i ∈ (

1 . . . Mjb
) :

∑

i

Di ≤ C j . . . ∀ j ∈ (1 . . . .m) (7)

t fi
(
X f

) = f
(
d
(
X f , ai

)) =
[

2∑

k=1

(xkf − xki )
2

]1/2

(8)

L f ⊆ R2 (9)

W =
i=n∑

i=1

di (10)

Equation (5) shows the restriction on coverage area at each distribution centre. Equation (6)
states that the demand is satisfied by the nearest DCs. Equation (7) represents capacity
limitation at each distribution centre. Equation (8) represents the function used for measuring
transportation cost. Equation (9) restrict the search to planar search space. Equation (10)
represents the amount of maximum possible demand.

4 Proposed algorithm

The proposed algorithm integrates two phases for optimal search. These phases are termed
as Exploration and Exploitation phases. The first phase focuses on identifying near-optimal
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solutions, while the second phase investigates the solution of the first phase for improvement
of solution quality. The Exploration phase examines the search space for a near-optimal
solution. On the other hand, the Exploitation phase concentrates the search concentrically on
the circular proximity of the first phase solution.

The proposed algorithm implements the relationship of leader and follower in the search
process for an optimal solution. The leader motivates the follower to achieve a higher objec-
tive, and the follower follows this lead for improvement of the performance and proceeds
towards the new leadership position. In this context, the leader points are decision variables
with the best solutions, and follower points are a fraction of good points selected from the
population. The complete discussion of these two phases is explained in the following section.

4.1 Phase 1: exploration phase

The steps involved in the Exploration phase are discussed below.
Step1: Initial Population Generation: This step initiates the search by randomly gen-

erating the initial population. In an optimization problem of N variables, the solution point
is represented by an array of size 1xN. The randomly generated initial population with N
variables and M size is given below.

Q1 = [q11,q12,q13 . . . q1n]
Q2 = [q21,q22,q23 . . . q2n]
·
·
QM = [qn1,qn2,qn3 . . . qnm]

Q represent the solution points of the optimization problem.
Step 2: Selection of Initial Active Population: In this step, a portion of the initial pop-

ulation from step 1 is selected as an active population. The active population takes part in
the next step as the leader and follower points. The objective function value is evaluated for
the population points generated in Step 1 and arranged on the basis of their attractiveness.
A portion of these attractive solution points (Pib) is selected as an active population for the
next step.

Step 3: Selection of Leader and follower points: The leader and follower points are
selected in this step for the next population generation. The decision variables with the best
solutions are selected as leaders, while followers are a combination of good and worst points.
The follower points with good solutions have more tendency toward advancement while the
worst solution points add divergence in the search process. The search starts from all the
leader points simultaneously. For the first iteration, a portion of the active population acts as
the leader points, while the other points act as followers.

Step 4: Interaction process (New Population Generation): In this step, the next popu-
lation is generated by the interaction between leaders and followers. The leader points guide
the follower points toward improvement. The search process is a multi-point search, which
is guided by different leader points at different locations of the search space.

This interaction between leader and follower points is performed by a rectangular cor-
ner and diagonal mean movement. In each iteration, the follower point moves towards the
leader point in search of a possible optimal solution. The new population generated by the
interacting leader and follower points are shown in Fig. 3a. ((Xl, Y l), (Xl

′
,Yl

′
)) are leader

points and ((Xf,Y f ), (Xf
′
,Yf

′
)) are follower points and ((Xm,Ym), (Xm

′
,Ym

′
)) is obtained by

mean diagonal movement.
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(a)                                                                                 (b)

(Xm, Ym)
(Xf, Yf)* (Xl, Yf)

(Xf, Yl) (Xl, Yl)

(Xl’, Yf’)(Xf’, Yf’)

(Xm’,Ym’)

(Xl’, Yl’)+
(Xf’, Yl’)

(Xb, Yb) *

(Xb’, Yb’) +

Fig. 3 a Interaction process of exploration phase. b Interaction process of the exploitation phase

The combinations of leader and follower for m variable points are shown in Fig. 4. The
total 5(number of firms) x number of leaders x number of followers, number of new population
points are generated by the interaction of each leader and follower point. The objective
function is calculated for the new population points and arranged in ascending order based
on attractiveness. A portion of the good and worst population are selected as good solution
points (Pb) and as weak solution points (Pw) for the new active population.

Step 5: Diversification: In each iteration, some new random populations (Pd) are added
to avoid the possibility of trapping the solution at the local minima.

Step 6: New active Population: In this step new active population is selected. It is a
combination of good (Pb), weak (Pw) and diversification population (Pd). The good popu-
lation points help to focus the search on the proximal region of the optimal solution. The
weak population increases the range of the search, and the addition of the diversification
population avoids trapping at local minima.

Fig. 4 Possible combinations of new population
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Step 7: Termination Criterion 1: Calculate the difference between the best FB and the
previous best solution FBprev for determining the error. The process between step 3 to step 7
will be continued till termination criteria are met, i.e. the error is less than 10–6.

Step 8: Report optimal solution: Report the best solution PBest and corresponding deci-
sion variable. This decision variable will act as an initial start point for the exploitation
phase.

4.2 Phase 2: exploitation phase

In the exploitation phase, the search is concentrated on the near-optimal solution point
obtained from phase 1. In this phase, the search converges toward an optimal global solution
with each iteration. The steps involved in the second phase are mentioned below.

Step 1: Initial start point and search region: The decision variables corresponding to
the best solution from phase 1 will act as an initial start point in this phase. The Exploitation
phase aims to closely examine the neighbourhood region of the best solution obtained by the
exploration phase. The initial search process is performed in the circular region with the start
point as centre and radius r.

Step 2: Random population generation: In this step, the random populations are gen-
erated in the close circular proximity of the start point. The search process employed in the
exploitation phase is shown in Fig. 3b.

Step 3: Selection of leader and follower: In this step, the objective function value is
calculated for each population points generated in step 2 (Exploitation phase). The objective
function value is arranged in ascending order. The decision variables with the best solution
act as leader points. However, the combinations of good (Pb2) and worst points (Pw2) are
selected as followers.

Step 4: Interaction process: In this step, the new population is generated by interacting
leaders and followers points. The interaction between leader and follower points is performed
by a rectangular corner and diagonalmeanmovement, as explained in the exploitation phase.
For the interaction process, refer to step 4 of phase 1.

Step 5: New start point: In this step, the objective function value is calculated for each
population points generated in step 4 and the decision variable with the best solution is
selected as the new start point. The previous start point is substituted by the new start point,
which acts as a new leader point.

Step 6: New search region: This step converges the search towards the best result. The
coverage radius decreases by half after each iteration. and concentrate the new population
towards the centre. In this step, the circular region of radius ( R/2numberof i teration) are
explored. The new search region is explored and steps 2 to step 6 are repeated till termination
criteria are met.

Step 7: Termination Criteria: The exploitation phase terminates after 20 iterations (I)
and reports the optimal result.

The flow diagram and the pseudo-code of the proposed algorithm are presented in Figs. 5
and 6. The flow diagram follows the steps as explained in the exploration and exploitation
phase. The first seven steps of the exploration phase are performed till termination criteria
are met. The decision variable with the best solution is reported in step 8, which will act as an
initial start point of the exploitation phase. Furthermore, step 2 to step 7 of the exploitation
phase is performed till the termination criteria are met. The best solution and corresponding
decision variable are reported as the final optimal solution of the exploitation phase.
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Fig. 5 Flow chart of the proposed algorithm

5 Computational analysis

Fifteen data sets are generated randomly to examine the proposed algorithm and compare it
with other well-known heuristics. The proposed algorithm and all other heuristics are coded
in MATLAB 2017a (Appendix A for MATLAB code for 4 variables). It is executed in a
machine having intel-i3 processor 2.0 GHz with 4 GB RAM.
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Fig. 6 Pseudo-code for the proposed algorithm

5.1 Experimental setup

The performance of the proposed algorithm is evaluated for 15 cases. The problem is per-
formed for 15 data sets randomly generated in a planar search space with ([0 10], [0 10]). The
problem is conducted for demand points that varies between n= [10, 5000]. It is assumed that
demand points are uniformly randomly distributed in the range of (0, 10], and the maximum
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possible demand (di) at any demand point lies between (1, 100]. The penalty cost constant is
taken as 50. The delivery range for any distribution centre is given between (0, 3.5], and the
capacity of each distribution centre is assumed to be one-third of the total demand. However,
the location that already existed in the market is (2, 2), and the maximum delivery range is
(0, 3].

In the first stage of the problem, the performance of the proposed algorithm is compared
with two metaheuristic methods genetic algorithm and pattern search algorithm. However,
in the second stage for objective two, the comparison is provided with six different meth-
ods viz. Genetic Algorithm (GA), Fmincon, Genetic Algorithm-Fmincon (GA-Fmincon),
Pattern Search (PS), Genetic Algorithm-Pattern Search (GA-PS), and Multistart (MS). The
parameters of these algorithms are briefly discussed below.

Genetic Algorithm: In this paper, the traditional GA (Deb, 1999) is employed. The com-
bination of the parameters is referred fromLai et al. (2010). Population size (P): 50, Selection
process: Tournament selection, Crossover probability (Pc): 0.75% and mutation probability
(Pm) 1%.

PatternSearch:For pattern search operation initialmesh size of 1 andmaximummesh size
of infinite is employed. The other parameters, such as mesh expansion factor and contraction
factor, are 2 and 0.5 respectively, while the start point of the search is random.

Genetic-PatternSearchalgorithm:The twoheuristics approachGAandPS, are integrated
into this method. The best result of the genetic algorithm is selected as a start point for pattern
search optimization (Guo et al., 2018). The pseudo-code for GA-PS is mentioned below.

Pseudo code: GA-PS

GAopt (TBest) → (Xg,Yg,Xg
′
, Yg

′
) optimal solution of GA.

(Xg,Yg,Xg,Yg
′
) ⊂ Lf .

Lf ε R.2

PS → Fstart (Xg,Yg,Xg
′
,Yg

′
).

Report PSopt.

Fmincon: This heuristic approach is used for solving constrained nonlinear multivariable
functions. An interior-point algorithm is employed in this method. The start point selected
in this problem is random.

Genetic-Fmincon: This hybrid heuristic is an integration of genetic algorithm and Fmin-
con. The optimal result of the genetic algorithm is selected as a start point for Fmincon. The
pseudo-code for GA-Fmincon is mentioned below.

Pseudo code: GA-Fmincon

GAopt (TBest) → (Xg,Yg,Xg
′
,Yg

′
) optimal solution of GA.

(Xg,Yg,Xg
′
,Yg

′
) ⊂ Lf .

Lf ε R.2

Fmincon → Fstart (Xg,Yg,Xg
′
,Yg

′
).

Report Fminconopt.
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Fig. 7 a Exploration phase. b Exploitation phase

Multistart: In MultiStart (MS) heuristic, the search starts from multiple start points. In
this method, multiple local solutions to a problem are obtained. The start point is selected
randomly in this problem with 100 start points.

Proposed Algorithm: The process of the proposed algorithm is described in Sect. 4. The
search process in the decision space of the two phases of the proposed algorithm is shown
in Fig. 7. The process is performed using MATLAB 2017a software. Figure 7a represent
the search process of the exploration phase. The stars are leader points, while the positive
sign represents follower points. Figure 7b shows the exploitation phase process. The star
represents the near-optimal solution or leader point obtained by phase 1, and the positive
sign is the population of follower points generated in the close circular proximity of the
solution. Figure 7a shows that the search process is performed in the entire decision space to
obtain a near-optimal solution.

Figure 7a represents output obtained from the first phase, i.e. exploration phase. However,
in Fig. 7b, the search is concentrated on the proximity of the solution obtained from the explo-
ration phase. Figure 7b represents output obtained from the second phase, i.e. exploitation
phase.

5.2 Result and discussion

The results obtained by the proposed algorithm for both stages are discussed in this section.
The comparative analysis of the proposed algorithm is also provided for fifteen cases.

5.2.1 Stage level 1: minimum number of distribution centre

The first stage of the proposed model is focused on finding the minimum number of distri-
bution centres to cover all unsatisfied demand points. The experiment is conducted for 15
random data sets with the smallest data set of 10 to the largest data set of 5000. The com-
parison of the proposed algorithm with well-known metaheuristic GA and PS are conducted
for evaluation of performance analysis. The algorithms are executed five times for each data
set, and the best result is reported in Table 3. The heuristics are compared for accuracy of 1
= 10–6. The best solution comparing all three heuristics are reported in the ObjBest1 column.
The unsatisfied demands considering the various number of distribution centres for each
data set are also reported. The minimum number of distribution centres required to serve the
unsatisfied demand points are given in ObjBest1 column.
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It can be observed from Table 3 that for five test problems (1,2,3,4,5), the
proposed algorithm recommends locating three DCs, while for other test problems
(6,7,8,9,10,11,12,13,14,15) minimum of four DCs are recommended to serve the unsatis-
fied demand points. However, the result of the genetic algorithm deviated from the best result
for two test problems (14,15). The algorithm suggests locating five firms for test problems
14 and 15. Same as, the result of pattern search differs from the best result for instances 4
and 5 and proposes to locate four firms instead of 3. It can be observed from the result that
the performance of the proposed algorithm is better than the genetic algorithm and pattern
search methods for both the unsatisfied demand points and the minimum number of DCs. In
the second stage of the proposed model, the best result of stage one is employed for obtaining
the optimal location of the DCs.

5.2.2 Stage level 2: optimal location of distribution centres

In the second stage of the proposed model, the minimum number of DCs recommended
by the first stage is employed for obtaining the optimal location of DCs. The performance
of the proposed algorithm is compared with six well-known meta-heuristic methods, GA,
FMINCON, GA-FMINCON, PS, GA-PS and MS. The performance is for the same data sets
employed in stage one. The algorithms are executed 5 times for each data set and the best
result is reported in Table 4 for comparison. The algorithms are compared for the accuracy
of 1= 10–6. The optimal result comparing all seven algorithms for each instance is reported
under the column ObjBest2.

It can be observed from Table 4 that algorithms GA, Fmincon, GA-Fmincon deviate from
the best result for all the fifteen datasets and MS, PS, GA-PS deviate for fourteen instances
out of fifteen. However, the proposed algorithm only deviates for three instances (7,8,10)
with a deviation of less than 1%. The proposed algorithm performs better than PS, GA-PS,
MS for 14 test problems and from GA, Fmincon, GA-Fmincon for all 15 test problems. The
performance of the proposed algorithm is significantly better than all six algorithms.

The percentage deviation of all seven algorithms from the best result (ObjBest2) are reported
in Table 5. Themaximum deviation is highlighted for each heuristic. Themaximum deviation
reported for MS, GA, PS, GA-PS, Fmincon and GA-Fmincon is 1.7612, 2.8823, 6.1499,
2.7782, 2141.9437 and 950.9738, respectively. However, the maximum percentage deviation
for the proposed algorithm is less than 1% (0.9906). It can be concluded from Tables 4 and
5 that the performance of the proposed algorithm is much better than all the six algorithms,
MS GA, PS, GA-PS, Fmincon, GA-Fmincon in terms of solution quality.

Figure 8a and b shows the percentage deviation of all seven algorithms for each data
set. As shown in Fig. 8a, MS, GA, PS, and GA-PS deviate continuously and significantly
from the best solution. However, the proposed algorithm varies from the best value for only
three instances with a deviation of less than 1%. However, Fmincon and GA-Fmincon highly
deviate from the optimal value with the maximum deviation of 2141.9437 and 950.9738
respectively.

It is important to highlight that even a small % deviation in many cases can lead to a
significant difference in location. The execution time of all seven algorithms is reported in
Table 6. It can be observed that the proposed algorithm requires more time than GA, PS,
GA-PS, Fmincon, GA-Fmincon for almost all the instances and the MS algorithm less time
than the proposed algorithm. Although, it is important to mention here that the effectiveness
of the algorithm is more important than efficiency in the location decision. The proposed
algorithm provides a significantly better result than all the six algorithms in a reasonable
time.
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Table 5 Comparison of percentage deviation

S.
no

Demand % Deviation

MS GA PS GA-PS Fmincon GA-
Fmincon

Proposed
Algorithm

1 10 0.0005 0.0015 6.1499 0.0011 2141.9437 0.0012 0.0000

2 100 1.7612 0.1127 1.0239 0.1127 109.9357 950.9738 0.0000

3 200 0.0767 0.1496 0.0023 0.0023 1.9250 0.0023 0.0000

4 300 0.1247 0.0017 0.1845 0.0016 29.1004 0.0016 0.0000

5 400 0.0029 0.0010 0.0056 0.0010 10.9210 0.0009 0.0000

6 500 0.0673 0.0000 0.0407 0.0000 62.7732 0.0000 0.0000

7 1000 0.5050 0.0001 3.3232 0.0000 4.7143 0.0001 0.4837

8 1500 0.0000 2.8823 0.2849 2.8822 4.6291 2.8822 0.2581

9 2000 0.0124 2.3464 2.3758 2.3464 5.9659 2.3464 0.0000

10 2500 0.1080 0.9835 0.0000 0.9835 13.1072 0.9835 0.9906

11 3000 1.6836 0.0059 3.1908 0.0058 15.0114 0.0059 0.0000

12 3500 0.0031 2.6943 2.9752 2.6943 0.3530 2.6943 0.0000

13 4000 0.2314 2.7782 1.5459 2.7782 1.0111 2.7782 0.0000

14 4500 0.2815 2.0046 0.0077 2.0044 2.2589 2.0046 0.0000

15 5000 0.1445 0.3946 1.2530 0.3946 3.2871 0.3946 0.0000

5.2.3 Cost comparison between stage level one and stage level two

This section shows the deviation in the total operational cost by locating DCs with the
objective of demand coverage (Objective 1) and by locating with the objective of the total
cost minimization (Objective 2). It can be observed from Table 7 that there is a significant
difference in the operational cost by adding stage two. The maximum percentage deviation
in cost is 32.9835. Mostly the studies either consider locating the minimum number of DCs
for maximum demand coverage or locate a fixed number of DCs with the objective of cost
minimization. It can be observed that the proposed two-stage model not only recommend
the minimum number of DCs and cover all unsatisfied demand points but also minimize the
operational cost significantly by locating each DCs at the optimal location.

It can be observed fromFig. 9 that the percentage deviation in operational cost is significant
for each data set. It implies that the addition of the second stage enhanced the location decision
significantly.

The two-stage selection process employed in this paper is shown in Fig. 10. It is executed
using the software MATLAB 2017a. The location selection process for demand data set 100
are presented.

Figure 10a shows the location of one DCs, already existing firm and positive points
represent unsatisfied demand points. Figure 10b shows two DCs, an already existing firm
and unsatisfied demand points. Figure 10c shows three DCs and an already existing firm.
Figure 10d shows the optimal location of DCs. The magenta-coloured star represents the
demand covered by an already existingfirm.The other coloured star signifies demand satisfied
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Fig. 8 a Comparison of percentage deviation of MS, GA, PS, GA-PS and proposed algorithm with the best
solution. b Comparison of percentage deviation of Fmincon- GA-Fmincon with the best solution

by DCs, the circle represents coverage area, the dot represents the location of the DCs, and
the positive sign represents unsatisfied demand point.

6 Implications of the study

(a) Theoretical and methodological implications
The current study contributes to literature both theoretically and methodologically. The
paper presents amathematical model for relief planning operations in disaster situations.
A novel two-stage model developed in the paper presents a methodological perspective
throughwhich bothmonetary and non-monetary kind of objectives can be fulfilledwhile
achieving better optimal outputs compared to a single-stage method. Most of the past
work consider minimization of unmet demand or maximization of survival (Burkart
et al., 2017; Duhamel et al., 2016; Liu et al., 2019). However, the focus on monetary
aspects often compromises the focus towards demand satisfaction. This proposed math-
ematical model is an improvement above those studies since it takes care of monetary
and non-monetary kind of objectives i.e., satisfying the full demand and provide full
relief. Meeting all demand with full relief are the few crucial things that should be con-
sidered while practicing and modelling relief distribution problem. The proposed model
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Table 6 Computational time for different data sets

S.no Time

MS PS GA Fmincon Fmincon-GA PS-GA Proposed algorithm

1 10 313.1 10.4 15 1.7 17.1 18.1 73.2

2 100 201.4 8.1 44 2.2 45.9 50.7 86.1.1

3 200 234.5 12.8 52 2.4 66 56.8 94.9

4 300 214.2 8.1 96 2.3 98.9 100.6 99.6

5 400 240.9 11.7 86.2 2 94.9 91.6 128.3

6 500 215.4 8.3 92 2.1 95.1 99.1 187.2

7 1000 340.3 15.9 180 3.6 184.9 188.2 1920.5

8 1500 362.1 10.2 220 4.9 223.1 226.9 2440.9

9 2000 430.5 22.1 261 4.8 263.4 268.8 3100.6

10 2500 434.2 20.6 309 5.4 314.1 318.6 3256.1

11 3000 473.5 19.3 312 5.8 315.2 323.8 3612.9

12 3500 408.2 19.5 380 6.9 384.7 390.5 4679.3

13 4000 417.1 24.9 386.5 5.6 391.3 399.4 3804.9

14 4500 467.1 24.6 240 6.1 243.8 251 4652.7

15 5000 512.7 29.2 261 5.7 265.7 269.1 4791.5

Table 7 Operational cost by stage one and stage two

S.NO Demand Operational cost by
Objective 1 (Demand
coverage)

Operational cost by
Objective 2 (Cost
minimization)

Percentage
Deviation

1 10 5.288800278037078e + 02 3.977035878839719e + 02 32.9835

2 100 8.326407354612082e + 03 8.218309365295794e + 03 1.3153

3 200 1.578197724020343e + 04 1.549765074543557e + 04 1.8346

4 300 2.339432558053250e + 04 2.318366237673021e + 04 0.9087

5 400 3.010575251252444e + 04 2.992492463787193e + 04 0.6043

6 500 4.139556791218394e + 04 3.973172925839003e + 04 4.1877

7 1000 7.554535152713383e + 04 6.759948662687567e + 04 11.7543

8 1500 1.025602820410913e + 05 9.996232157794613e + 04 2.5989

9 2000 1.451258493746368e + 05 1.317117204582614e + 05 10.1845

10 2500 1.813412753088776e + 05 1.749292211970448e + 05 3.6655

11 3000 2.185053265287638e + 05 2.109710017339862e + 05 3.5713

12 3500 2.613202905274121e + 05 2.421240217530740e + 05 7.9283

13 4000 2.864574731500480e + 05 2.749429730551978e + 05 4.1880

14 4500 3.211757299250345e + 05 3.053368946882575e + 05 5.1873

15 5000 3.567360290223259e + 05 3.491205917955199e + 05 2.1813
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Fig. 10 a One DC and an already existing firm. b Two DCs and an already existing firm. c Three DCs and
already existing firm. d Optimal location of DCs

captures these two vital aspects of the relief distribution problem and brings uniqueness
in the proposed model. Moreover, the proposed model also demonstrates significant
cost savings as compared to the single-stage coverage based model (Jia et al., 2007;
Zhang et al., 2017). The cost comparison is shown in Table 7. Thus, the proposed work
provides a significant improvement over earlier methods.
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Themodel provided in the study also covers location planning of relief centres in disaster
situations, especially Covid-19 like crises, where human movement is restricted, and
relief needs to be delivered at demand points. The model thus can guide further work in
the direction of relief location planning for disaster situations where pre-positioned sites
andpreparedness are unavailable. Further, the optimality of the result is crucial in disaster
planning as it affects the humanitarian operations and service for the affected people.
The novel two-phase algorithm developed in the study thoroughly search the decision
space to ensure optimal results. Due to this unique exploration and exploitation search
processes, the proposed algorithm performed extremely well for location problems and
can be implemented for solving relief centres and other location-related problems.

(b) Managerial Implications
The proposed model will help relief planning managers in the effective planning of DCs
in both pre-and post-disaster cases. Human life is the primary concern in the disaster
situation; thus, the DCs need to be located in close proximity to the demand, but too
many DCs can cause a waste of resources and money. However, insufficient DCs can
cause the demand unsatisfaction. The proposed work assists the relief planning manager
in determining the optimal number of DCs to satisfy the demand of affected peoplewhile
at the same time minimizing the wastage of money and resources arising from too many
DCs.
During the Covid-19 situation, the main challenges that the decision-makers faced
included avoiding mass gathering at DCs, movement restriction due to lockdown,
resources unavailability, decisions on relief distribution planning, and locations. The
present work helps the decision-maker to plan relief operations in the presence of these
challenges. Covid-19 caused multiple shocks, and due to lack of proper planning, sec-
ond waves hit human life and the economy more severely. The proposed work can assist
decision-makers and relief planning agencies in pre-planning the relief centre location
against such disasters impact in the future.

7 Conclusion, limitations and future scope of the study

In this paper, a two-stage model is proposed for locating relief distribution centres in disaster-
affected areas. The first stage of the model is focused on finding the minimum number of
DCs while the second stage determines the optimal location of these DCs to minimize the
total cost. The coverage area and capacity of each relief distribution centre are limited by
resource availability. To optimally solve this model, a two-phase algorithm is proposed in
this paper. The first phase of the algorithm, i.e., exploration phase identifies a near-optimal
solution while the second phase, i.e. exploitation phase improve the solution quality through
investigating the close circular proximity of the best solution obtained in phase 1.

The performance of the proposed algorithm is tested on 15 data sets. In the first stage, a
comparison is provided between the proposed algorithm and GA, PS algorithm. However, in
the second stage, the comparative analysis is performed with MS, GA, PS, GA-PS, Fmincon
and GA-Fmincon algorithms. The experimental analysis shows that in the first stage, the
proposed algorithm provides the optimal result for all the test problems in a reasonable time.
In the second stage, the algorithm deviates for three instances with a maximum deviation of
less than 1%. However, the performance of the proposed algorithm is significantly better than
the other well-known heuristics such as MS, GA, PS, GA-PS, Fmincon, and GA-Fmincon

123



Annals of Operations Research (2024) 335:1363–1399 1395

in solution quality. These heuristics deviate from the best solution continuously and signifi-
cantly for almost all the test problems. The paper also indicates that the proposed two-stage
model provides optimal location as compared to the demand coverage model. The major
contributions of this study are (a) proposing a two-stage model for the relief distribution cen-
tre, (b) introducing both capacity and coverage constraint (c) proposing a novel two-phase
algorithm to optimally locate the DCs.

The work proposed in the paper is an effort to model a real scenario of relief distribution
problem. However, the proposed study has also few limitations like any other study. Some of
these limitations are related to the modelling assumptions considered in Sect. 3. The demand
data is considered to be known and fixed for the study. However, in a real-life scenario, the
demand canfluctuate because ofmultiple uncontrollable factors resulting in altered outcomes.
Furthermore, the scope of this study does not include the possibility of delivery disruptions
in the model and unavailability of resources. These limitations can be addressed in the future
as well to further improve the proposed model.

In future, refinement of the model can be done by additional survey. The uncertainties
in demand and disruption in delivery can be introduced in the future by considering the
probability distribution function of the demand and delivery. In addition, the competitive
factor between already existing firms can be performed.

Appendix A (MATLAB Code)

See Table 8.
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Table 8 Optimal location of DCs

S. no. Demand Optimal Location

1 10 (6.478670, 8.111774) (8.147237, 1.576131)
(1.269868, 9.571670)

2 100 (7.367749, 2.241030), (1.777632, 7.575504),
(6.398254, 7.759252)

3 200 (7.482605, 2.0581779), (6.597941, 7.484263),
(2.169083, 7.696552)

4 300 (7.632851, 7.428594), (7.33987, 2.406851),
(2.670916, 7.336997)

5 400 (7.198386, 7.518608), (7.332037, 2.399892),
(2.172289, 7.002603)

6 500 (8.124467, 7.776386), (7.642779, 2.117346),
(3.233149, 7.104526)

7 1000 (8.378268, 7.362111) (7.574775, 2.349993)
(1.712344, 7.416179) (5.040473, 6.557472)

8 1500 (7.349475, 2.327294), (4.505742, 6.521729),
(1.461435, 7.659459)), (7.860669, 7.723567)

9 2000 (8.414071, 7.206314) (7.230204, 2.380852)
(1.638024, 7.473028) (4.984683, 7.124113)

10 2500 (7.249521, 2.108470), (8.313077, 7.552475),
(4.999358, 6.612372), (1.869906, 7.498676)

11 3000 (7.316564, 2.166229), (4.990984, 6.797730),
(1.619450, 7.450014), (8.389143, 7.55238)

12 3500 (7.33968, 2.150158), (1.505828, 7.162321),
(4.833992, 7.378361), (8.278271, 7.055343)

13 4000 (7.452032, 8.38707), (6.759058, 4.976557),
(2.164873, 7.17172), (7.561801, 1.715282)

14 4500 (7.225931, 2.199880), (1.622073, 7.181577),
(4.861103, 7.583102), (8.29659, 7.154021)

15 5000 (7.745488, 8.28223), (6.514195, 5.012629),
(2.173873, 7.285376), (7.571205, 1.657550)

References

Abazari, S. R.,Aghsami,A.,&Rabbani,M. (2021). Prepositioning and distributing relief items in humanitarian
logistics with uncertain parameters. Socio-Economic Planning Sciences, 74, 100933. https://doi.org/10.
1016/j.seps.2020.100933

Banomyong, R., Varadejsatitwong, P., & Oloruntoba, R. (2019). A systematic review of humanitarian opera-
tions, humanitarian logistics and humanitarian supply chain performance literature 2005 to 2016. Annals
of Operations Research, 283(1), 71–86.

Behl, A., & Dutta, P. (2019). Humanitarian supply chain management: A thematic literature review and future
directions of research. Annals of Operations Research, 283(1), 1001–1044.

Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humani-
tarian logistics. International Journal of Disaster Risk Reduction, 24, 485–498.

Breman, J. (2020). The pandemic in India and its impact on footloose labour. The Indian Journal of Labour
Economics, 63(4), 901–919.

Burkart, C., Nolz, P. C., & Gutjahr, W. J. (2017). Modelling beneficiaries’ choice in disaster relief logistics.
Annals of Operations Research, 256(1), 41–61.

123

https://doi.org/10.1016/j.seps.2020.100933


Annals of Operations Research (2024) 335:1363–1399 1397

Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, M. A. (2021). COVID-19 pandemic related supply chain
studies: A systematic review. Transportation Research Part e: Logistics and Transportation Review.
https://doi.org/10.1016/j.tre.2021.102271

Cui, T., Ouyang, Y., & Shen, Z. J. M. (2010). Reliable facility location design under the risk of disruptions.
Operations Research, 58(4-part-1), 998–1011.

Deb, K. (1999). An introduction to genetic algorithms. Sadhana, 24(4–5), 293–315.
Devi, Y., Patra, S., & Singh, S. P. (2021). A location-allocation model for influenza pandemic outbreaks: A

case study in India. Operations Management Research, 1–16.
Dönmez, Z., Kara, B. Y., Karsu, Ö., & Saldanha-da-Gama, F. (2021). Humanitarian facility location under

uncertainty: Critical review and future prospects. Omega. https://doi.org/10.1016/j.omega.2021.102393
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Wamba, S. F., Giannakis, M., & Foropon, C. (2019a).

Big data analytics and organizational culture as complements to swift trust and collaborative performance
in the humanitarian supply chain. International Journal of Production Economics, 210, 120–136.

Dubey, R., Gunasekaran, A., & Papadopoulos, T. (2019b). Disaster relief operations: Past, present and future.
Annals of Operations Research, 283(1), 1–8.

Dubey, R., Gunasekaran, A., Bryde, D. J., Dwivedi, Y. K., & Papadopoulos, T. (2020). Blockchain technol-
ogy for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting.
International Journal of Production Research, 58(11), 3381–3398.

Hu, S., & Dong, Z. S. (2019). Supplier selection and pre-positioning strategy in humanitarian relief. Omega,
83, 287–298. https://doi.org/10.1016/j.omega.2018.10.011

Duhamel, C., Santos, A. C., Brasil, D., Châtelet, E., & Birregah, B. (2016). Connecting a population dynamic
model with a multi-period location-allocation problem for post-disaster relief operations. Annals of
Operations Research, 247(2), 693–713.

Elluru, S., Gupta, H., Kaur, H., & Singh, S. P. (2019). Proactive and reactive models for disaster resilient
supply chain. Annals of Operations Research, 283(1), 199–224.

Farrokhizadeh, E., Seyfi-Shishavan, S. A., & Satoglu, S. I. (2021). Blood supply planning during natural
disasters under uncertainty: a novel bi-objective model and an application for red crescent. Annals of
Operations Research, 1–41.

Ghavamifar, A., Makui, A., & Taleizadeh, A. A. (2018). Designing a resilient competitive supply chain
network under disruption risks: A real-world application. Transportation Research Part e: Logistics and
Transportation Review, 115, 87–109.

Ghorbanzadeh, M., Kim, K., Ozguven, E. E., & Horner, M. W. (2021). Spatial accessibility assessment of
COVID-19 patients to healthcare facilities: A case study of Florida. Travel Behaviour and Society, 24,
95–101.

Goldschmidt, K. H., & Kumar, S. (2019). Reducing the cost of humanitarian operations through disaster
preparation and preparedness. Annals of Operations Research, 283(1), 1139–1152.

Gösling, H., & Geldermann, J. (2014). A framework to compare OR models for humanitarian logistics.
Procedia Engineering, 78, 22–28.

Guo, N., Yang, Z., Wang, L., Ouyang, Y., & Zhang, X. (2018). Dynamic model updating based on strain mode
shape and natural frequency using hybrid pattern search technique. Journal of Sound and Vibration, 422,
112–130.

Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2021). Artificial intelligence for decision support systems
in the field of operations research: review and future scope of research. Annals of Operations Research,
1–60.

Gutjahr, W. J., & Dzubur, N. (2016). Bi-objective bilevel optimization of distribution center locations consid-
ering user equilibria. Transportation Research Part e: Logistics and Transportation Review, 85, 1–22.

Habib, M. S., Lee, Y. H., & Memon, M. S. (2016). Mathematical models in humanitarian supply chain
management: A systematic literature review.Mathematical Problems in Engineering. https://doi.org/10.
1155/2016/3212095

Ivanov, D. (2021a). Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in
supply chains. Annals of Operations Research, 1–18.

Ivanov, D. (2021b). Introduction to supply chain resilience: management, modelling, technology. New York:
Springer.

Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during
COVID-19pandemic:Managerial insights and research implications. International Journal ofProduction
Economics, 232, 107921. https://doi.org/10.1016/j.ijpe.2020.107921

Jia, H., Ordonez, F., & Dessouky, M. M. (2007). Solution approaches for facility location of medical supplies
for large-scale emergencies. Computers & Industrial Engineering, 52(2), 257–276.

123

https://doi.org/10.1016/j.tre.2021.102271
https://doi.org/10.1016/j.omega.2021.102393
https://doi.org/10.1016/j.omega.2018.10.011
https://doi.org/10.1155/2016/3212095
https://doi.org/10.1016/j.ijpe.2020.107921


1398 Annals of Operations Research (2024) 335:1363–1399

Jha, P. K., Ghorai, S., Jha, R., Datt, R., Sulapu, G., & Singh, S. P. (2021). Forecasting the impact of epidemic
outbreaks on the supply chain: modelling asymptomatic cases of the COVID-19 pandemic. International
Journal of Production Research, 1–26.

Kaur, H., & Singh, S. P. (2019). Sustainable procurement and logistics for disaster resilient supply chain.
Annals of Operations Research, 283(1), 309–354.

Kharroubi, S., & Saleh, F. (2020). Are lockdown measures effective against COVID-19? Frontiers in Public
Health, 8, 610. https://doi.org/10.3389/fpubh.2020.549692

Kınay, Ö. B., Saldanha-da-Gama, F., & Kara, B. Y. (2019). On multi-criteria chance-constrained capacitated
single-source discrete facility location problems. Omega, 83, 107–122.

Lai, M. C., Sohn, H. S., Tseng, T. L. B., & Chiang, C. (2010). A hybrid algorithm for capacitated plant location
problem. Expert Systems with Applications, 37(12), 8599–8605.

Li, S., & Teo, K. L. (2019). Post-disaster multi-period road network repair:Work scheduling and relief logistics
optimization. Annals of Operations Research, 283(1), 1345–1385.

Liu, Y., Cui, N., & Zhang, J. (2019). Integrated temporary facility location and casualty allocation planning for
post-disaster humanitarianmedical service.TransportationResearchPart e: Logistics andTransportation
Review, 128, 1–16.

Maghfiroh,M. F.,&Hanaoka, S. (2020).Multi-modal relief distributionmodel for disaster response operations.
Progress in Disaster Science, 6, 100095. https://doi.org/10.1016/j.pdisas.2020.100095

Manopiniwes, W., & Irohara, T. (2017). Stochastic optimization model for integrated decisions on relief
supply chains: Preparedness for disaster response. International Journal of Production Research, 55(4),
979–996.

MirHassani, S. A., Raeisi, S., & Rahmani, A. (2015). Quantum binary particle swarm optimization-based
algorithm for solving a class of bi-level competitive facility location problems. Optimization Methods
and Software, 30, 756–768.

Modgil, S., Singh, R. K., & Foropon, C. (2020). Quality management in humanitarian operations and disaster
relief management: A review and future research directions. Annals of operations research, 1–54.

Mohammadi, S., Darestani, S. A., Vahdani, B., & Alinezhad, A. (2020). A robust neutrosophic fuzzy-based
approach to integrate reliable facility location and routing decisions for disaster relief under fairness and
aftershocks concerns. Computers & Industrial Engineering, 148, 106734. https://doi.org/10.1016/j.cie.
2020.106734

Mondal, T., Boral, N., Bhattacharya, I., Das, J., & Pramanik, P. (2019). Distribution of deficient resources
in disaster response situation using particle swarm optimization. International Journal of Disaster Risk
Reduction, 41, 101308. https://doi.org/10.1016/j.ijdrr.2019.101308

Muggy, L., & Stamm, J. L. H. (2017). Dynamic, robust models to quantify the impact of decentralization in
post-disaster health care facility location decisions. Operations Research for Health Care, 12, 43–59.

Munyaka, J. C. B., & Yadavalli, V. S. S. (2021). Decision support framework for facility location and demand
planning for humanitarian logistics. International Journal of System Assurance Engineering and Man-
agement, 12(1), 9–28.

Nagurney, A. (2021). Supply chain game theory network modeling under labor constraints: Applications to
the Covid-19 pandemic. European Journal of Operational Research, 293(3), 880–891.

Najafi, M., Farahani, R. Z., De Brito, M. P., & Dullaert, W. (2015). Location and distribution management
of relief centers: A genetic algorithm approach. International Journal of Information Technology &
Decision Making, 14(04), 769–803.

Oksuz,M.K.,&Satoglu, S. I. (2020). A two-stage stochasticmodel for location planning of temporarymedical
centers for disaster response. International Journal of Disaster Risk Reduction, 44, 101426. https://doi.
org/10.1016/j.ijdrr.2019.101426

Özdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in humanitarian logistics.
European Journal of Operational Research, 244(1), 55–65.

Paul, N. R., Lunday, B. J., & Nurre, S. G. (2017). A multiobjective, maximal conditional covering location
problem applied to the relocation of hierarchical emergency response facilities. Omega, 66, 147–158.

Plastria, F., &Vanhaverbeke, L. (2007). Aggregationwithout loss of optimality in competitive locationmodels.
Networks and Spatial Economics, 7, 3–18.

Praneetpholkrang, P., Huynh, V. N., & Kanjanawattana, S. (2021). A multi-objective optimization model for
shelter location-allocation in response to humanitarian relief logistics. The Asian Journal of Shipping
and Logistics, 37(2), 149–156.

Queiroz, M. M., Ivanov, D., Dolgui, A., & Wamba, S. F. (2020). Impacts of epidemic outbreaks on supply
chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review.
Annals of operations research, 1–38.

123

https://doi.org/10.3389/fpubh.2020.549692
https://doi.org/10.1016/j.pdisas.2020.100095
https://doi.org/10.1016/j.cie.2020.106734
https://doi.org/10.1016/j.ijdrr.2019.101308
https://doi.org/10.1016/j.ijdrr.2019.101426


Annals of Operations Research (2024) 335:1363–1399 1399

Ramshani, M., Ostrowski, J., Zhang, K., & Li, X. (2019). Two level uncapacitated facility location problem
with disruptions. Computers & Industrial Engineering, 137, 106089. https://doi.org/10.1016/j.cie.2019.
106089

Sanci, E., & Daskin, M. S. (2021). An integer L-shaped algorithm for the integrated location and network
restoration problem in disaster relief. Transportation Research Part b: Methodological, 145, 152–184.

Sawik, T. (2020). Supply chain disruption management (2nd ed.). Berlin: Springer.
Sharma, B., Ramkumar, M., Subramanian, N., & Malhotra, B. (2019). Dynamic temporary blood facility

location-allocation during and post-disaster periods. Annals of Operations Research, 283(1), 705–736.
Singh, S., Kumar, R., Panchal, R., & Tiwari, M. K. (2021). Impact of COVID-19 on logistics systems and

disruptions in food supply chain. International Journal of Production Research, 59(7), 1993–2008.
Sun, H., Wang, Y., & Xue, Y. (2021). A bi-objective robust optimization model for disaster response planning

under uncertainties. Computers & Industrial Engineering, 155, 107213. https://doi.org/10.1016/j.cie.
2021.107213

Tayal, A., & Singh, S. P. (2019). Formulating multi-objective stochastic dynamic facility layout problem for
disaster relief. Annals of Operations Research, 283(1), 837–863.

Thomas, A. S., & Kopczak, L. R. (2005). From logistics to supply chain management: The path forward in
the humanitarian sector. Fritz Institute, 15(1), 1–15.

Vahdani, B., Veysmoradi, D., Noori, F., & Mansour, F. (2018). Two-stage multi-objective location-routing-
inventory model for humanitarian logistics network design under uncertainty. International Journal of
Disaster Risk Reduction, 27, 290–306.

Wang, X., & Ouyang, Y. (2013). A continuum approximation approach to competitive facility location design
under facility disruption risks. Transportation Research Part B: Methodological, 50, 90–103.

Wei, X., Qiu, H., Wang, D., Duan, J., Wang, Y., & Cheng, T. C. E. (2020). An integrated location-routing
problemwith post-disaster relief distribution.Computers & Industrial Engineering, 147, 106632. https://
doi.org/10.1016/j.cie.2020.106632

Yahyaei, M., & Bozorgi-Amiri, A. (2019). Robust reliable humanitarian relief network design: An integration
of shelter and supply facility location. Annals of Operations Research, 283(1), 897–916.

Yáñez-Sandivari, L., Cortés, C. E.,&Rey, P.A. (2020).HumanitarianLogistics andEmergenciesManagement:
New perspectives to a sociotechnical problem and its optimization approach management. International
Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2020.101952

Yegane, B. Y., Kamalabadi, I. N., & Farughi, H. (2016). A non-linear integer bi-level programming model for
competitive facility location of distribution centers. International Journal of Engineering-Transactions
b: Applications, 29, 1131–1140.

Zhang, B., Peng, J., & Li, S. (2017). Covering location problem of emergency service facilities in an uncertain
environment. Applied Mathematical Modelling, 51, 429–447.

Zhen, L., Wang, K., & Liu, H. C. (2014). Disaster relief facility network design in metropolises. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 45(5), 751–761.

Zhong, S., Cheng, R., Jiang, Y., Wang, Z., Larsen, A., & Nielsen, O. A. (2020). Risk-averse optimization of
disaster relief facility location and vehicle routing under stochastic demand. Transportation Research
Part e: Logistics and Transportation Review, 141, 102015. https://doi.org/10.1016/j.tre.2020.102015

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.cie.2019.106089
https://doi.org/10.1016/j.cie.2021.107213
https://doi.org/10.1016/j.cie.2020.106632
https://doi.org/10.1016/j.ijdrr.2020.101952
https://doi.org/10.1016/j.tre.2020.102015

	Two phase algorithm for bi-objective relief distribution location problem
	Abstract
	1 Introduction
	2 Literature review
	3 Mathematical model
	3.1 Problem Statement and assumptions
	3.2 Parameters, variables and functions
	3.3 Problem formulation

	4 Proposed algorithm
	4.1 Phase 1: exploration phase
	4.2 Phase 2: exploitation phase

	5 Computational analysis
	5.1 Experimental setup
	5.2 Result and discussion
	5.2.1 Stage level 1: minimum number of distribution centre
	5.2.2 Stage level 2: optimal location of distribution centres
	5.2.3 Cost comparison between stage level one and stage level two


	6 Implications of the study
	7 Conclusion, limitations and future scope of the study
	Appendix A (MATLAB Code)
	References




