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Abstract
Applications of data envelopment analysis (DEA) often include inputs and outputs rep-
resented as percentages, ratios and averages, collectively referred to as ratio measures. It is
known that conventionalDEAmodels cannot correctly incorporate suchmeasures. To address
this gap, the authors have previously developed new variable and constant returns-to-scale
models and computational procedures suitable for the treatment of ratio measures. The focus
of this new paper is on the scale characteristics of the variable returns-to-scale production
frontiers with ratio inputs and outputs. This includes the notions of the most productive scale
size (MPSS), scale and overall efficiency as measures of divergence fromMPSS. Additional
development concerns alternative notions of returns to scale arising in models with ratio
measures. To keep the exposition as general as possible and suitable in different contexts, we
allow all scale characteristics to be evaluated with respect to any selected subsets of volume
and ratio inputs and outputs, while keeping the remaining measures constant. Overall, this
new paper aims at expanding the range of techniques available in applications with ratio
measures.

Keywords Data envelopment analysis · Technology · Ratio measures · Scale efficiency ·
Returns to scale

1 Introduction

Applications of data envelopment analysis (DEA) often involve inputs and outputs repre-
sented by ratio data. Such data may reflect the environment in which the decision making
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units (DMUs) operate or describe the quality of inputs and outputs involved in the production
process. For example, in the context of assessment of school performance, ratio measures
may include the average income per capita in the catchment area of a school, proportion of
pupils with special needs and the percentage of students achieving a certain high level in
exams.

The two standard DEA models are based on the assumptions of constant and variable
returns-to-scale (CRS and VRS). These models were introduced in DEA by Charnes et al.
(1978) and Banker et al. (1984) and can be seen as continuing the earlier developments in the
economics literature byAfriat (1972), Shephard (1974), Färe andLovell (1978) and Färe et al.
(1983a). It has long been realised that the standard CRS and VRS DEAmodels are generally
not suitable if some data are given in the form of ratios—see, e.g., Dyson et al. (2001), Cooper
et al. (2007), and Emrouznejad and Amin (2009). The main reason for this is that production
technologies with ratio data do not generally satisfy the assumption of convexity which is
incorporated in the VRS and CRS technologies. In the case of CRS, a further problem arises
because ratio measures are generally not scalable in the same way as conventional volume
inputs and outputs such as costs, labor and physical levels of production or services. As also
noted by Pastor et al. (2013), the input and output projections of inefficient DMUs obtained
in the CRSmodel may result in the target values located outside the range of values observed
in the empirical data set. This becomes a particular problem in the case of ratio measures,
such as percentages, which may have a natural upper bound such as unity or 100%.1

In order to overcome the highlighted problems with the use of ratio data in DEA, Olesen et
al. (2015) introduced new ratio-VRS (R-VRS) and ratio-CRS (R-CRS) production technolo-
gies that incorporate both volume and ratio inputs and outputs as native types of data, i.e.,
without any modification. Both technologies are formally derived from the explicitly stated
sets of production axioms. In particular, to allow a different treatment of ratio measures com-
pared to volume measures, Olesen et al. (2015) utilize the axiom of selective convexity of
Podinovski (2005), instead of the conventional convexity assumption. In the case of R-CRS,
the standard axiom of full proportionality (scalability) is replaced by the axiom of selective
proportionality, which also distinguishes between the volume and ratio inputs and outputs.

TheR-VRS andR-CRSmodels with ratio data are further explored byOlesen et al. (2017).
The latter paper discusses efficiency concepts in models with ratio data, including the new
notion of potential ratio efficiency, and computational approaches for their testing. In the
most recent paper on this subject, Olesen et al. (2022) explore the geometric structure of
the R-VRS technology and the R-CRS technology with fixed ratio inputs and outputs. In
particular, they prove that the R-VRS technology is the union of a finite number of specially
constructed standard VRS technologies.

In the current paper we consider scale characteristics of the production frontier of the
R-VRS technology that have not yet been explored. This includes the notions of the most
productive scale size (MPSS), scale and overall efficiency, and the related notions of returns to
scale (RTS).All these notions have conceptually beendefined anddiscussed in the literature—
see, e.g., Frisch (1965) and Färe et al. (1983b, 1985). Methods of their evaluation in the
standard VRS technology (see, e.g., Banker 1984; Banker and Thrall 1992; Førsund and
Hjalmarsson 2004; Chambers and Färe 2008) and in the whole large classes of polyhedral
and convex technologies (Podinovski et al. 2016; Podinovski 2017) have also been developed.
However, these methods do not generally apply to the R-VRS technology (because it is not a

1 The bounded CRS model of Pastor et al. (2013) addresses this problem by incorporating upper bounds on
the outputs (and, similarly, lower bounds on the inputs). See also related work on bounded additive DEA
models by Cooper et al. (2011) and Pastor et al. (2015).
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convex technology), and even the known conceptual characteristics such as scale efficiency
may not appear to be uniquely defined. In our paper we address these issues.

Several contributions of our paper are worth highlighting. First, following the approach
of Banker (1984), we define and interpret scale efficiency in the R-VRS technology as a
measure of divergence from MPSS. A challenging problem here is that the cone and CRS
extensions of the R-VRS technology do not coincide. What appears to be a straightforward
extension of the traditional approach to the evaluation of scale efficiency turns out to be a
conceptual dilemma.

Second, to make the exposition as general as possible, we give the definition of MPSS and
scale efficiency with respect to any selected subsets of volume and ratio inputs and outputs,
while keeping the remaining measures constant. Conceptually, this is a generalization of
the approach of Banker and Morey (1986) who consider technical and scale efficiency with
respect to discretionary inputs and outputs only. However, because the R-VRS technology
has a more complex structure than the standard VRS technology, the actual extension of the
approach of Banker and Morey (1986) to the R-VRS technology is not straightforward.

In the additional development, we explore the notion of RTS. We differentiate between
the cases in which the types of RTS are evaluated with respect to volume inputs and outputs
only and the general case involving ratio measures. In the former case, we explore the local
characterization of RTS with respect to the selected inputs and outputs. In the latter case, we
show that the conventional local RTS characterization becomes trivial and uninformative.
Instead, we employ the global RTS characterization of production frontiers developed by
Podinovski (2004a, b) whose types are indicative of the direction to MPSS.

Themethodologydeveloped in our paper extends thewell-knownapproaches to the evalua-
tion of scale efficiency andRTS to the technologieswith ratio inputs andoutputs. Furthermore,
because our approach allows for a selection of inputs and outputs with respect to which we
measure scale characteristics, it nowbecomes possible to explore the relationship between the
volume inputs and outputs, while keeping the socio-economic and quality characteristics of
the production process (represented by percentages) constant. Alternatively, it is also possible
to explore the relationship between the socio-economic factors and quality characteristics of
the production process, for the given levels of volume inputs and outputs. We illustrate the
usefulness of such approach in an application to secondary schools in England.

We proceed as follows. In Sect. 2, we introduce basic definitions and notation. In Sect. 3,
we briefly outline the R-VRS technology and give a clarifying illustrative example.

Section 4 contains the main theoretical results of our paper. We first define the partial cone
extension of the R-VRS technology, which is subsequently used to define MPSS and overall
and scale efficiency of DMUs with regard to arbitrary subsets of volume and ratio inputs
and outputs. We also show that the cone and CRS extensions of the R-VRS technologies are
generally different sets and discuss implications of this result.

In Sect. 5, we operationalize the models developed for the assessment of scale charac-
teristics in the R-VRS technology. In Sect. 6, we show that several known technologies
and methods of evaluation of scale characteristics are special cases of our newly developed
approach. In Sect. 7, we consider local and global RTS characterizations in the R-VRS tech-
nology. In Sect. 8, we consider an application in the context of secondary education which
illustrates the evaluation of scale characteristics in the R-VRS technology. Section 9 contains
concluding remarks.

All mathematical proofs are given in Appendix A. An additional example clarifying the
discussion in Sect. 4 is considered in Appendix B. The full data set used in the application is
given in Appendix C. The GAMS code used for computations in the application is available
online.
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2 Preliminaries

Following the notation introduced by Olesen et al. (2015), let T ⊂ R
m+ ×R

s+ be a production
technology with the sets I = {1, ...,m} and O = {1, ..., s} of nonnegative inputs and outputs,
respectively. We denote IV ⊆ I and OV ⊆ O the subsets of volume inputs and outputs. The
complementary subsets IR = I\IV and OR = O\OV include ratio inputs and outputs. We
assume that both sets I = IV ∪ IR and O = OV ∪ OR are not empty, although any of their
subsets IV , IR , OV and OR may be empty.

DMUs are elements of technology T and are stated in the form

(X , Y ) = (XV , X R, Y V , Y R),

where X ∈ R
m+ and Y ∈ R

s+ are the vectors of inputs and outputs, and their subvectors XV ,
X R , Y V and Y R correspond to the sets of volume and ratio measures IV , IR , OV and OR ,
respectively.

Let (X j , Y j ) be observedDMUs,where j ∈ J = {1, ..., n}.We assume that each observed
DMU has at least one strictly positive input and at least one strictly positive output, i.e.,
X j �= 0 and Y j �= 0, for all j ∈ J . (We use bold symbols 0 and 1 to denote the vectors of
zeros and ones whose dimensions are clear from the context.)

Denote DMU (Xo, Yo) the particular DMU whose efficiency or scale efficiency is being
considered. This may be anyDMU from technology T , including one of the observed DMUs.

Often, ratio inputs and outputs have certain upper bounds, typically either unity or 100%.
Following Olesen et al. (2015), we state these bounds in the form

X R ≤ X̄ R and Y R ≤ Ȳ R, (1)

where each component of vectors X̄ R and Ȳ R can be either finite or+∞. (Vector inequalities
mean that the specified inequality is true for each component, e.g., X R ≤ X̄ R means that
X R
i ≤ X̄ R

i , for all i ∈ IR .) We naturally assume that the vectors of ratio inputs and outputs
X R

j and Y R
j of all observed DMUs j ∈ J satisfy the inequalities (1).

3 The R-VRS technology

Olesen et al. (2015) note that the conventional VRS technology of Banker et al. (1984) should
generally not be used if some inputs and outputs are ratio measures. The main reason for this
is that ratio measures cannot be assumed to satisfy the axiom of convexity which is explicitly
required by the definition of the VRS technology. Instead, Olesen et al. (2015) demonstrate
that one should exclude the ratio inputs and outputs from the convexity assumption, while
keeping the convexity property only for the volume measures.

For a formal definition of theR-VRS technology,Olesen et al. (2015) assume the following
three axioms, the last of which is a special case of the axiom of selective convexity introduced
by Podinovski (2005).

Axiom 1 (Feasibility of observed data) For any j ∈ J , (X j , Y j ) ∈ T .

Axiom 2 (Free disposability) Let (X , Y ) ∈ T . Consider any (X̃ , Ỹ ) = (X̃ V , X̃ R, Ỹ V , Ỹ R) ∈
R
m+ × R

s+ whose subvectors X̃ R and Ỹ R satisfy inequalities (1). Let X̃ ≥ X and Ỹ ≤ Y .
Then (X̃ , Ỹ ) ∈ T .

Axiom 3 (Selective convexity) Let (X̃ , Ỹ ) ∈ T and (X̂ , Ŷ ) ∈ T . Assume that X̃ R = X̂ R and
Ỹ R = Ŷ R . Then γ (X̃ , Ỹ ) + (1 − γ )(X̂ , Ŷ ) ∈ T , for any γ ∈ [0, 1].
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Table 1 An illustration to the notion of R-convex combination

DMU Volume input 1 Ratio input 2 Volume output 1 Ratio output 2 (%)

A 6 0.5 4 90

B 3 0.3 1 70

C 4 0.5 2 70

Axiom 3 reflects the fact that, although we cannot generally assume that convex combi-
nations of DMUs in the presence of ratio data remain in technology T , we can nevertheless
do so provided the combined DMUs have identical ratio inputs and outputs.2

Importantly, a combination of Axioms 2 and 3 also allows us to form convex combinations
of DMUs that have different ratio inputs and outputs. This is illustrated by the following
example.

Example 1 Consider DMUs A and B shown in Table 1, which are in some technology T
with two inputs and two outputs. Input 1 and Output 1 are volume measures, Input 2 is a
ratio measure (proportion), and Output 2 is a ratio measure (percentage). We assume that
technology T satisfies Axioms 1–3.

Suppose we wish to form a convex combination of DMUs A and B taken with the weights
1/3 and 2/3, respectively. Note that we cannot use Axiom 3 directly, because the ratio input
and output of DMUs A and B are not identical. Instead, we first employ Axiom 2 and reduce
the ratio output of DMU A from 90 to 70%, to match the ratio output of DMU B. Similarly,
we use Axiom 2 to raise the ratio input of DMU B from 0.3 to 0.5, to make it equal to the
ratio input of DMU A.

The resulting DMUs can be stated as A∗ = (6, 0.5, 4, 70%) and B∗ = (3, 0.5, 1, 70%).
By Axiom 2, both DMUs A∗ and B∗ are in technology T . Because the ratio input and output
of DMUs A∗ and B∗ are identical, by Axiom 3, any convex combination of these DMUs
is in technology T . In particular, using the weights 1/3 and 2/3 for DMUs A∗ and B∗,
respectively, we obtain DMU C shown in Table 1.

The above example shows that, although we cannot form convex combinations of DMUs
with different ratio inputs and outputs, we can still form their ratio-convex (R-convex) com-
binations as defined by Olesen et al. (2017). Namely, in a R-convex combination of DMUs,
the volume inputs and outputs form conventional convex combinations, while the ratio inputs
are taken at their maximum levels across all combined DMUs, and the ratio outputs are taken
at their minimum levels. In other words, the weighted average used for volume measures
is replaced by the operations of maximum for the ratio inputs and minimum for the ratio
outputs.

In line with the minimum extrapolation principle used by Banker et al. (1984) and Olesen
et al. (2015) give the following definition:

Definition 1 The R-VRS technology TR
VRS is the intersection of all technologies (sets) T ⊂

R
m+ × R

s+ that satisfy Axioms 1–3.

Following Olesen et al. (2015), technology TR
VRS can equivalently be stated as follows.

2 For example, assume that two schools of different sizes have the same proportion p of good passes in
exams, which is a ratio output. Then, regardless of the underlying (yet unknown to the analyst) numerators
and denominators of such proportions, any convex combination of the two schools will always have the same
proportion p of good passes.
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Table 2 DMUs A and B in
Example 2

DMU Volume input Volume output Ratio output

A 1 1 0.25

B 2 3 1.5

Theorem 1 Technology TR
VRS is the set of all DMUs (X , Y ) = (XV , X R, Y V , Y R) ∈ R

m+ ×
R
s+ for which there exists a vector λ ∈ R

n such that
∑

j∈J

λ j Y
V
j ≥ Y V , (2a)

∑

j∈J

λ j X
V
j ≤ XV , (2b)

λ j

(
Y R
j − Y R

)
≥ 0, ∀ j ∈ J , (2c)

λ j

(
X R

j − X R
)

≤ 0, ∀ j ∈ J , (2d)

1�λ = 1, (2e)

X R ≤ X̄ R, (2f)

Y R ≤ Ȳ R, (2g)

λ ≥ 0. (2h)

In this statement of technology TR
VRS, the first two vector inequalities (2a) and (2b) describe

conventional convex combinations of volume inputs and outputs of the observedDMUs taken
with the weights λ j ≥ 0, j ∈ J , that add up to 1 as in equality (2e).

To see the role of inequalities (2c) and (2d), restate them as follows:

if λ j > 0 then Y R
j ≥ Y R and X R

j ≤ X R, ∀ j ∈ J . (3)

Conditions (3) imply that an observed DMU (X j , Y j ), j ∈ J , may be used in the convex
combination of volume inputs and outputs in constraints (2a) and (2b) with a positive λ j only
if DMU (X j , Y j ) is not worse than the DMU (X , Y ) on all ratio inputs and outputs.

It is clear that technology TR
VRS stated by conditions (2) consists of all R-convex combi-

nations of observed DMUs and all DMUs outperformed (dominated) by them, subject to the
upper bounds (1) on the ratio measures. This is similar to the conventional VRS technology
which includes all convex combinations of observed DMUs and all DMUs outperformed by
them.

It is worth noting that TR
VRS is generally not a convex set, but is a closed set (Olesen et al.

2015).

Example 2 Consider DMUs A and B with one volume input, one volume output and one
ratio output as shown in Table 2. Fig. 1 shows technology TR

VRS generated by these two
DMUs. Observe that this technology does not include convex combinations of DMUs A and
B because they have different levels of the ratio output. (The line AB is not included in the
technology.) Instead, the technology includes the line AD which represents all R-convex
combinations of DMUs A and B. On this line, the ratio output is taken at the minimum level
0.25 of the ratio outputs of DMUs A and B, while the volume inputs and outputs of DMUs
A and B form standard convex combinations.
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Fig. 1 The R-VRS technology generated by DMUs A and B in Example 2

Also note that the technology in Fig. 1 satisfies Axioms 1–3. In particular, Axiom 3 of
selective convexity is satisfied because, for each level of ratio output, the corresponding
section of technology TR

VRS is a convex set. For example, the section corresponding to the
output level 0.25 of DMU A is the convex polyhedron KCADE . The section corresponding
to the output level 1.5 of DMU B is the polyhedron HFBG. However, the whole technology
TR
VRS is not a convex set.

Remark 1 Technology TR
VRS may be seen as a generalization of several technologies. Suppose

that there are no ratio inputs and outputs. In this case the inequalities (2c), (2d), (2f) and (2g)
are omitted and TR

VRS is the conventional VRS technology of Banker et al. (1984). If there are
no volume inputs and outputs then TR

VRS is free disposal hull (FDH) of Deprins et al. (1984),
with the additional upper bounds (1) on the ratio measures. If we have only volume and
ratio inputs and volume outputs, i.e., there are no ratio outputs, technology TR

VRS is similar
to model (7) stated by Ruggiero (1996) in which the ratio factor Z characterizes the quality
of the environment.

A subtle difference between our approach and the approach of Ruggiero (1996) is that we
consider any ratio input and output (including those of environmental nature) as yet another
dimension of technology TR

VRS. In contrast, Ruggiero (1996) does not formally include the
environmental factor Z as an input of the technology but instead defines the conventional
VRS technology TVRS(Z), for every value of Z treated as a parameter. It is clear that the
parametric family of technologies TVRS(Z) of Ruggiero is the collection of the sections of
technology TR

VRS defined in the volume input and output dimensions for each fixed value of
parameter Z .

The treatment of environmental factors (and anyother ratiomeasures) as inputs and outputs
of technology TR

VRS allows us, if required, to account for such factors in the evaluation of
efficiency and various scale characteristics. For example, we may explore the question of
optimal scale of production and returns to scale with regard to several inputs and outputs,
including environmental factors. These possibilities are considered in the general setting in
the subsequent sections.
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4 Scale efficiency in the R-VRS technology

In this section we follow the approach of Banker (1984) and show how the simultaneous
development of the notions of MPSS and scale efficiency in the standard VRS technology
could be extended to technology TR

VRS.

4.1 The general setting

To keep the exposition as general as possible, we consider scale properties of the production
frontier with respect to some selected nonempty subsets of inputs I′ and outputs O′:

I′ ⊆ I = IV ∪ IR, O′ ⊆ O = OV ∪ OR .

In different applications, the sets I′ and O′ may represent discretionary inputs and outputs
in the sense explored by Banker and Morey (1986) and Golany and Roll (1993). These sets
may also include measures that are not discretionary, such as certain exogenous factors.3

For example, consider a scenario in which the policy maker uses a DEA model with sev-
eral volume and ratio inputs and outputs for the assessment of school efficiency. Suppose
that this model uses the percentage of families from the higher socio-economic background
as an exogenously fixed non-discretionary ratio input x ′ and the percentage of school grad-
uates going to university y′ as a discretionary ratio output representing quality of education.
Suppose that the policy maker is interested in the relationship between these two factors on
the production frontier (i.e., among the efficient schools only) while keeping all the other
inputs and outputs constant. This leads to the question of optimal scale and returns to scale
defined in the selective (partial) sense, for which I′ = {x ′} and O′ = {y′}, even though the
input x ′ is not discretionary.

For a DMU (Xo, Yo) ∈ TR
VRS, define vectors Xo(ϕ) and Yo(ψ), where ϕ,ψ ≥ 0 are

scaling factors, as follows:

Xoi (ϕ) =
{

ϕXoi , if i ∈ I′,
Xoi , if i ∈ I\I′, Yor (ψ) =

{
ψYor , if r ∈ O′,
Yor , if r ∈ O\O′.

(4)

The output radial efficiency (technical efficiency) ofDMU (Xo, Yo)measuredwith respect
to the selected subset of outputs O′ is defined as the inverse of the optimal value of the
following program (in its statement, for consistency of notation maintained throughout this
paper, we change variable ψ to η):

η̃ = max η

subject to (Xo, Yo(η)) ∈ TR
VRS, η ≥ 0.

(5)

Assessing the efficiency ofDMU (Xo, Yo) by program (5) is straightforward. This requires
replacing the DMU (X , Y ) in conditions (2) by DMU (Xo, Yo(η)), and maximizing η subject
to the resulting conditions (Olesen et al. 2015, 2017).

3 Olesen et al. (2015) consider a similar setting for the assessment of input and output radial efficiency of
DMUs with respect to the selected subsets of inputs and outputs. The authors outline several scenarios in
which such a selective approach may be required.
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4.2 The partial cone extension of the R-VRS technology

In this section we consider the partial cone extension of technology TR
VRS definedwith respect

to the selected input and output sets I′ and O′. This cone extension is useful in exploring the
notions of MPSS and scale efficiency in TR

VRS undertaken in subsequent sections.
Define the partial cone extension C(I′,O′) of technology TR

VRS as follows:

C(I′,O′) =
{
(X , Y ) ∈ R

m+s | ∃(X̃ , Ỹ ) ∈ TR
VRS, α ≥ 0 : (X , Y ) = (X̃(α), Ỹ (α))

}
, (6)

where the DMU (X̃(α), Ỹ (α)) is as defined by (4) with ϕ = ψ = α. The cone C(I′,O′)
includes all partially scaled DMUs (X(α), Y (α)) obtained from all DMUs (X , Y ) ∈ TR

VRS,
for all α ≥ 0. If I′ = I and O′ = O, the cone C(I′,O′) = C(I,O) is the full cone extension
of technology TR

VRS.
It is straightforward to show that the cone C(I′,O′) is generally not a closed set.4 Define

its closure as

C̄(I′,O′) = cl C(I′,O′). (7)

The next result provides an explicit statement of the closed cone C̄(I′,O′). It is proved
under the following mild assumption about all observed DMUs.

Assumption 1 For each j ∈ J , there exists an i ∈ I′ (generally different for different j) such
that X ji > 0.

Theorem 2 Let Assumption 1 be true. Then the closed partial cone extension C̄(I′,O′) of
technology TR

VRS is the set of all DMUs (X , Y ) = (XV , X R, Y V , Y R) ∈ R
m+ × R

s+ for which
there exist a vector λ ∈ R

n and a scalar σ such that
∑

j∈J

λ jσY
V
jr ≥ Y V

r , ∀r ∈ OV ∩ O′, (8a)

∑

j∈J

λ j Y
V
jr ≥ Y V

r , ∀r ∈ OV \O′, (8b)

∑

j∈J

λ jσ XV
ji ≤ XV

i , ∀i ∈ IV ∩ I′, (8c)

∑

j∈J

λ j X
V
ji ≤ XV

i , ∀i ∈ IV \I′, (8d)

λ j (σY
R
jr − Y R

r ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR ∩ O′, (8e)

λ j (Y
R
jr − Y R

r ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR\O′, (8f)

λ j (σ X R
ji − X R

i ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR ∩ I′, (8g)

λ j (X
R
ji − X R

i ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR\I′, (8h)

1�λ = 1, (8i)

4 For example, consider the VRS technology T ′
VRS generated by the single DMU A = (1, 1, 5) whose first

two components are volume inputs and the third component is a volume output. This technology is special
case of technology TR

VRS. Let I
′ = I and O′ = O. Consider DMU B = (1, 0, 0). Because technology T ′

VRS
does not include points on the ray {(α, 0, 0) | α ≥ 0}, DMU B is not in the (full) cone C(I,O). However, B is
in the CRS technology T ′

CRS generated by DMU A which is the closure of C(I,O). (Note that B is dominated
by the origin (0, 0, 0) ∈ T ′

CRS and is included in T ′
CRS by the axiom of free disposability). Therefore, the cone

C(I,O) is not a closed set.
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Y R
r ≤ σ Ȳ R

r , ∀r ∈ OR ∩ O′, (8j)

Y R
r ≤ Ȳ R

r , ∀r ∈ OR\O′, (8k)

X R
i ≤ σ X̄ R

i , ∀i ∈ IR ∩ I′, (8l)

X R
i ≤ X̄ R

i , ∀i ∈ IR\I′, (8m)

λ ≥ 0, σ ≥ 0. (8n)

It is clear that conditions (8) are closely related to conditions (2). The difference is that,
in (8), the scaling factor σ is attached to all volume and ratio inputs i ∈ I′ and outputs r ∈ O′
with respect to which we define the cone extension, and the remaining inputs and outputs in
the sets I\ I′ and O\O′ are kept fixed. As a result, the closed partial cone extension C̄(I′,O′)
of technology TR

VRS includes all partially scaled R-convex combinations of the observed
DMUs, where only the inputs and outputs in the sets I′ and O′ are scaled by σ ≥ 0, and the
remaining inputs i ∈ I \ I′ and r ∈ O \ O′ are not scaled.

4.3 Themost productive scale size in the R-VRS technology

Recall that Banker (1984) introduces the notion of MPSS evaluated with respect to the entire
vectors of inputs and outputs in theVRS technology TVRS (which, according to Remark 1, can
be viewed as a special case of the R-VRS technology TR

VRS). Namely, let DMU (Xo, Yo) ∈
TVRS, and let ϕ > 0 and ψ > 0 be the scaling factors for the input and output vectors,
respectively. Consider the parametric set of all DMUs (ϕXo, ψYo) ∈ TVRS. All such DMUs
have the same structure of the input and output vectors as the original DMU (Xo, Yo). Then
DMU (Xo, Yo) is at MPSS if, for any ϕ and ψ such that (ϕXo, ψYo) ∈ TVRS, we have
ψ/ϕ ≤ 1. In other words, DMU (Xo, Yo) is at MPSS if it maximizes the average productivity
ψ/ϕ among all DMUs (ϕXo, ψYo) ∈ TVRS.

Below we follow the same approach and introduce the notion of MPSS in technology
TR
VRS evaluated with respect to the subsets I′ and O′. Consider the program

θ∗ = sup (ψ/ϕ)

subject to (Xo(ϕ), Yo(ψ)) ∈ TR
VRS, ϕ > 0, ψ ≥ 0,

(9)

where the vectors Xo(ϕ) and Yo(ψ) are defined as in (4).
If the sets I′ and O′ include all inputs and outputs (i.e., if I′ = I and O′ = O), the

condition (Xo(ϕ), Yo(ψ)) ∈ TR
VRS of program (9) is restated as (ϕXo, ψYo) ∈ TR

VRS. In this
case, similar to the standard definition of Banker (1984), program (9) maximizes the average
productivity ψ/ϕ among all DMUs stated in the form (ϕXo, ψYo) ∈ TR

VRS, i.e., preserving
the input and output structures of the DMU (Xo, Yo) under the consideration.

In the general case, program (9) maximizes the ratio ψ/ϕ which is interpretable as the
ratio of the quantity ψ of the subvector of selected outputs Yor , r ∈ O′, to the quantity ϕ of
the subvector of selected inputs Xoi , i ∈ I′, while keeping the remaining inputs and outputs
constant.

Because ϕ = ψ = 1 is a feasible solution of program (9), we always have θ∗ ≥ 1.

Definition 2 DMU (Xo, Yo) ∈ TR
VRS is at MPSS evaluated with respect to the subsets I′ and

O′ if θ∗ = 1.

Let us show that solving program (9) can be replaced by assessment of the partial output
radial efficiency of DMU (Xo, Yo) (with respect to the outputs in the set O′ only) in the
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closed partial cone extension C̄(I′,O′) of technology TR
VRS whose statement is obtained by

Theorem 2. This result is formally stated and proved as Theorem 3 below. Let us first provide
its intuitive explanation.

Consider program (9). Note that we can substitute technology TR
VRS in its constraints by its

cone extension C(I′,O′). Indeed, for any feasible solution 〈ϕ,ψ〉 of program (9), changing
TR
VRS to C(I′,O′) adds the full ray 〈αϕ, αψ〉, α > 0, to its feasible region. However, because

αψ/αϕ = ψ/ϕ, this change does not affect the supremum of the objective function.
Furthermore, because the value of the objective functionψ/ϕ of the resulting program (9)

with TR
VRS replaced by C(I′,O′) is constant along any ray of feasible solutions 〈αϕ, αψ〉,

α > 0, we can restrict the feasible set to only one point on each ray, by requiring that ϕ = 1.
After this normalization of variable ϕ and renaming variable ψ to η, we obtain the following
program:

η′ = sup η

subject to (Xo, Yo(η)) ∈ C(I′,O′), η ≥ 0.
(10)

Taking into account that the cone C(I′,O′) is generally not a closed set, we replace it in
the constraints of program (10) by the closed cone C̄(I′,O′). This results in a linear program
in which we conventionally change the supremum of the objective function to its maximum:

η∗ = max η

subject to (Xo, Yo(η)) ∈ C̄(I′,O′), η ≥ 0.
(11)

The next result requires an additional assumption about DMU (Xo, Yo) which should be
true in any meaningful application:

Assumption 2 There exists an r ∈ O′ such that Yor > 0.

Theorem 3 Let both Assumptions 1 and 2 be true. Then the supremum θ∗ of program (9) is
equal to the maximum η∗ of program (11), and both are attained.

Corollary 1 The DMU (Xo, Yo(η∗)) ∈ C̄(I′,O′) at which the maximum in program (11) is
attained is also in the cone C(I′,O′).

It is clear that program (11) which uses the statement (8) of the cone C̄(I′,O′) is nonlinear
and would be problematic in practical computations. Therefore, Theorem 3 should primarily
be of theoretical interest. It shows that the evaluation of MPSS for DMU (Xo, Yo) in technol-
ogy TR

VRS (with respect to the subsets I′ and O′) is equivalent to the evaluation of its partial
output radial efficiency (with respect to the subset O′) in the closed partial cone extension
C̄(I′,O′) of technology TR

VRS. In particular, DMU (Xo, Yo) is at MPSS with respect to I′ and
O′ in TR

VRS if and only if its partial output radial efficiency in C̄(I′,O′) evaluated with respect
to the subset O′ is equal to 1.

Consider the special case in which technology TR
VRS is the standard VRS technology TVRS

of Banker et al. (1984) and the sets I′ and O′ include all inputs and outputs. Then the closed
cone C̄(I′,O′) is the standard CRS technology TCRS of Charnes et al. (1978). In this case,
Theorem 3 becomes a well-known result that DMUo ∈ TVRS is at MPSS if and only if its
output radial efficiency η∗ in the benchmark CRS technology TCRS is equal to 1.

In Sect. 5, we consider computational approaches to solving program (9). We transform
this program to an equivalent form that, depending on the sets I, O, I′ and O′, either becomes
a linear program or can be solved as a mixed integer linear program.
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4.4 Overall and scale efficiency in the R-VRS technology

Following the approach of Banker (1984), we interpret the inverse optimal value 1/θ∗ of
program (9) [or, equivalently, the inverse value 1/η∗ of program (11)] as the overall efficiency
OE(Xo, Yo) of DMU (Xo, Yo) assessed with respect to the subsets I′ and O′.

By Definition 2, DMU (Xo, Yo) is at MPSS if and only if OE(Xo, Yo) = 1. Otherwise
we can decompose the overall efficiency into the product of its technical and scale efficiency
components T E(Xo, Yo) and SE(Xo, Yo):

OE(Xo, Yo) = T E(Xo, Yo) × SE(Xo, Yo),

where T E(Xo, Yo) = 1/η̃ is evaluated by solving program (5). Then SE(Xo, Yo) = η̃/η∗ is
the scale efficiency of DMU (Xo, Yo) evaluated with respect to the subsets I′ and O′. Because
TR
VRS ⊂ C̄(I′,O′), we have η̃ ≤ η∗ and SE(Xo, Yo) ≤ 1.
Following Banker (1984), the scale efficiency SE(Xo, Yo) is interpretable as a measure

of divergence from MPSS with respect to the sets I′ and O′. Indeed, let for simplicity DMU
(Xo, Yo) be technically efficient but scale inefficient. Then DMU (Xo, Yo) is not at MPSS
(for the selected sets I′ and O′) and, in program (9), we have θ∗ > 1. By Theorem 3, the
supremum θ∗ is attained at some feasible solution 〈ϕ∗, ψ∗〉 of program (9), and we have
θ∗ = ψ∗/ϕ∗ > 1.

The DMU (Xo(ϕ
∗), Yo(ψ∗)) defined by (4) represents MPSS for DMU (Xo, Yo). If DMU

(Xo, Yo) scales its inputs in the set I′ by the factor ϕ∗ and outputs in the set O′ by the factor
ψ∗, while keeping the remaining inputs and outputs fixed, its average productivity (measured
only with respect to the selected inputs and outputs) will increase by ψ∗/ϕ∗ > 1. Therefore,
the ratioψ∗/ϕ∗ = 1/SE(Xo, Yo) shows by howmuch the average productivity of this DMU,
measured with respect to the selected inputs and outputs in the sets I′ and O′, could increase
if it were to change these inputs and outputs by the factors ϕ∗ and ψ∗, respectively, to match
those of its MPSS. This is similar to the standard notion of MPSS in the VRS technology.
Following Banker (1984), the optimal ratioψ∗/ϕ∗ is interpretable as ameasure of divergence
of the technically efficient DMU (Xo, Yo) from its MPSS, if we restrict the scaling of the
inputs and outputs to the sets I′ and O′ only, while keeping the remaining inputs and outputs
constant.

This interpretation is illustrated by the following example.

Example 3 Let us refer to technology TR
VRS in Example 2. Consider the following three

scenarios in which the set I′ includes the single input but the sets O′ are defined differently.
Note that both DMUs A and B are technically efficient in all three scenarios.

(i) Let the set O′ include both the volume and ratio outputs. Consider assessing the scale
efficiency ofDMU A by program (9). Its unique optimal solution isϕ∗ = 2 andψ∗ = 3,
which corresponds to DMU P (see Table 3 and Fig. 2).5 DMU P uses twice the amount
of volume input of DMU A but produces three times its vector of outputs. The optimal
value of the objective function of program (9) is equal to 3/2, and the scale efficiency
of DMU A is 2/3. Note that, in the given scenario, DMU P represents MPSS for DMU
A.

5 We can consider ϕ changing from 1 to +∞ (ϕ = 1 corresponds to DMU A). For ϕ ∈ [1, 2), the maximum
value of ψ subject to the constraints of program (9) is equal to 1. This corresponds to the line AL in Fig. 2.
For ϕ ≥ 2, the maximum value of ψ changes to 3 and remains constant as ϕ increases. This corresponds to
the ray PQ. The maximum ratio ψ/ϕ is attained at ϕ = 2 and ψ = 3, i.e., at point P .
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Table 3 DMUs representing
MPSS in Example 3

DMU Volume input Volume output Ratio output

D 2 3 0.25

P 2 3 0.75

V 2 1 1.5

Volume input

Ratio 
output

Volume 
output

0 1 2 3 

0.25

1.5

1 

2 

3 

B 

A 

C 

G 

H 

V 

F 

L 

U 

E 
W 

P Q 

D 

K 
Z 

Fig. 2 MPSS in the R-VRS technology evaluated with respect to different sets of outputs O ′

Similarly, in the case of DMU B, the unique optimal solution to program (9) is ϕ∗ =
ψ∗ = 1. Therefore, DMU B is at MPSS.6

(ii) Let the set O′ include only the volume output but not the ratio output. In this case,
program (9) assesses the scale efficiency ofDMU A by keeping its ratio output constant,
i.e., by restricting the evaluation to the section of technology KCADE . In this case the
optimal solution is ϕ∗ = 2 and ψ∗ = 3. This means that the scale efficiency of DMU
A is equal to 2/3 and its MPSS is DMU D. Similarly, the scale efficiency of DMU B
is assessed on the section HFBG, and DMU B is at MPSS.

(iii) Let the set O′ include only the ratio output but not the volume output. To evaluate the
scale efficiency of DMU A, we search among all DMUs on the broken line ALVW .
The highest ratio of the ratio output to the volume input is achieved at DMU V , which
corresponds to ϕ∗ = 2 and ψ∗ = 6 in program (9). Therefore, in this scenario, the
scale efficiency of DMU A is ϕ∗/ψ∗ = 1/3, and DMU V represents MPSS for DMU
A. A similar investigation shows that DMU B is at MPSS.

4.5 The cone extension and the CRS extension of the R-VRS technology

The cone and CRS extensions of the standard VRS technology are the same sets, and both
can be used as the reference technologies in the evaluation of MPSS and scale efficiency
of the DMUs. The purpose of this section is to demonstrate that the same identity does not

6 For any ϕ ≥ 1 in program (9), the maximum value of ψ is equal to 1 which corresponds to the ray
BG. For ϕ ∈ [0.5, 1), the maximum value of ψ is equal to 1/6, which corresponds to the line UZ , where
U = (1, 0.5, 0.25). The values of ϕ < 0.5 are infeasible.
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hold for the R-VRS technology. Namely, its CRS extension is generally different from its
cone extension, and it is the latter that we employ in the evaluation of MPSS and other scale
characteristics.

In order to demonstrate this difference and avoid excessive technicalities, for the discussion
in this section, we assume that I′ = I and O′ = O. We also assume that the bounds (1) are
not specified.

As noted in Remark 1, if all inputs and outputs are volume measures, technology TR
VRS

is the standard VRS technology TVRS of Banker et al. (1984). In this case, program (9)
represents the standard approach of Banker (1984) for the assessment of MPSS in the VRS
technology. Further, the closed cone extension of technology TVRS coincides with its CRS
extension TCRS, which is the CRS technology of Charnes et al. (1978). This implies that the
evaluation ofMPSS for DMU (Xo, Yo) by solving program (9) (in the case in which all inputs
and outputs are volume measures) is equivalent to the assessment of output radial efficiency
of this DMU in the CRS technology TCRS.

Below we show that the same equivalence does not hold in the case of technology TR
VRS.

To demonstrate this, we use the CRS extension of technology TR
VRS introduced by Olesen et

al. (2015) in which the ratio inputs and outputs are of the proportional type with no bounds.
Such inputs and outputs are assumed to be scalable in the same proportion as the volume
measures. Following Olesen et al. (2015), we denote such technology T P

VRS. This technology
is defined (in the sense of the minimum extrapolation principle) by Axioms 1–3 and the
following additional axiom:

Axiom 4 (Proportionality) Let (XV , X R, Y V , Y R) ∈ T . Then, for all scaling factors α ≥ 0,
(αXV , αX R, αY V , αY R) ∈ T .

By Theorem 2 in Olesen et al. (2015), technology T P
CRS is the set of all DMUs (X , Y ) =

(XV , X R, Y V , Y R) ∈ R
m+ × R

s+ for which there exist vectors λ, σ ∈ R
n such that

∑

j∈J

λ jσ j Y
V
j ≥ Y V ,

∑

j∈J

λ jσ j X
V
j ≤ XV ,

λ j (σ j Y
R
j − Y R) ≥ 0, ∀ j ∈ J ,

λ j (σ j X
R
j − X R) ≤ 0, ∀ j ∈ J ,

1�λ = 1,

λ, σ ≥ 0.

(12)

The full closed cone extension C̄(I,O) of technology TR
VRS and its R-CRS extension T P

CRS
are in general different sets. Indeed, the former is stated by conditions (8) in which I′ = I and
O′ = O. In these conditions, all observed DMUs (X j , Y j ), j ∈ J , are scaled by the same
single factor σ . In contrast, in (12), all observed DMUs are scaled independently by generally
different factors σ j , j ∈ J . Therefore, we have C̄(I,O) ⊆ T P

CRS. Example 4 considered below
and a further example in Appendix B show that, generally, this embedding is not an equality.

To facilitate the graphical illustration in the next example, we first establish the following
useful result which is true if the specification of technology T P

CRS includes only a single ratio
measure. This measure can be a ratio input or a ratio output, but not both. This result is not
valid if the technology incorporates more than one ratio measure.
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Table 4 DMUs in Example 4
DMU xV x R yV

A 3 1 2

B 1 2 1.5

C 3 2 2

D = 0.5(B + C) 2 2 1.75

Fig. 3 Technology TR
VRS in Example 4

Theorem 4 Let technology T P
CRS include a single ratio measure, i.e., let the union of the sets

IR∪OR be a singleton. Also, let this ratiomeasure be strictly positive for every observedDMU.
(E.g., in the case of single ratio input X R, we assume that X R

j > 0, for all j = 1, . . . , n.)

Then technology T P
CRS is the standard CRS technology TCRS generated by the same set of

observed DMUs.

As established in Sect. 4.3, the maximum average productivity that DMU (Xo, Yo)
achieves at its MPSS in technology TR

VRS, as represented by the maximum of the objec-
tive function ψ/ϕ of program (9), is equal to the average productivity of its output radial
projection in the closed cone extension C̄(I,O). The following example illustrates the case
in which the maximum average productivity for DMU (Xo, Yo) with TR

VRS (or C̄(I,O)) as
the benchmark technology falls below the average productivity in technology T P

CRS.

Example 4 The example involves four DMUs A, B, C and D with one volume input xV , one
proportional ratio input x R and one volume output yV , as shown in Table 4.

Technology TR
VRS generated by DMUs A, B and C is shown in Fig. 3. It is not convex

and consists of the two shaded parts. Note that the ratio input x R of the DMUs B and C is
equal. By Axiom 3 of selective convexity, the line segment BC is included in technology
TR
VRS. Because the ratio input x

R of the DMUs A and B is different, the line segment AB is
not included in this technology.

Let us evaluate the scale efficiency of DMU D. This requires that we consider all DMUs
in TR

VRS stated as (2α, 2α, yV ) and identify the largest ratio yV /α among all such DMUs.
Consider the two-dimensional piecewise linear section of technology TR

VRS with the input
mix described parametrically as (2α, 2α). In other words, we measure input by α ≥ 0. The
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Fig. 4 The (α, yV )-diagram of the two-dimensional sections of technologies TR
VRS, T

P
CRS and the closed cone

C̄(I,O)

mix (α, yV ) = (1, 1.75) is feasible and corresponds to DMU D. This is illustrated in Fig. 4
in which the red piecewise linear line corresponds to the line D̄DLM in Fig. 3. The closed
cone C̄(I,O) = C̄ ({1, 2} , {1}) generated by technology TR

VRS according to (6) is represented
by the ray OK .

It is clear that DMU D is scale efficient. It achieves the maximum average productivity
equal to y/α = 1.75/1 among all DMUs stated in the form (2α, 2α, yV ) and plotted on the
red line in Fig. 4. Expressed differently, DMU D is also located on the ray OK . This ray
represents the upper boundary of the closed cone extension C̄(I,O) of TR

VRS.
The R-CRS technology T P

CRS is shown as the shaded area in Fig. 5. In this example, by
Theorem 4, it coincides with the standard CRS technology TCRS generated by the observed
DMUs A, B and C . The cone spanned by DMUs A and B of dimension 2 is a facet in T P

CRS.
7

DMU D is located below this facet and is an interior point of technology T P
CRS.

Consider the two-dimensional piecewise linear section of T P
CRS with the input mix fixed to

(2, 2) of DMU D. The possible increase in the observed average product for D (equal to 1.75)
to be obtained with T P

CRS as benchmark can now be estimated by the maximal expansion of
the current output (equal to 1.75) with inputs fixed at the level (2, 2).

Straightforward calculations show that the output projection of DMU D on the boundary
of technology T P

CRS is DMU D′ with the input mix equal to (2, 2) and yV = 2. Using the

7 It is also straightforward to show that the segment AB is in T P
CRS independently of Theorem 4. Both

DMUs
(
xVA , x RA , yVA

)
= (3, 1, 2) and

(
xVB , x RB , yVB

)
= (1, 2, 1.5) belong to T P

CRS. Applying Axiom 4 of

proportionality to DMU B with α = 0.5, we obtain DMU B∗ = (0.5, 1, 0.75) ∈ T P
CRS. By Axiom 3 of

selective convexity, any convex combination of DMUs A and B∗ (which have the same ratio input x R = 1),
belongs to T P

CRS. The facet spanned by these convex combinations is identical to the facet spanned by the line
segment AB.
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Fig. 5 Technology T P
CRS in Example 4

result of Theorem 4, we identify DMU D′ as the radial projection of DMU D in the standard
output-oriented CRS model with DMUs A, B and C as the three observed DMUs.

The maximal output expansion is shown by the movement of D to D′ in Fig. 5. DMU D′
is located on the facet spanned by A and B. Point D is MPSS and SE(D) = 1 with TR

VRS as
the benchmark technology, while D is not at MPSS with T P

CRS as the benchmark technology.
The output radial improvement factor for DMU D is now θ = 2/1.75 ≈ 1.143 with T P

CRS
as benchmark, because the maximal average product for DMU D increases from 1.75 with
TR
VRS as benchmark to 2 with T P

CRS as benchmark.

5 Computation of scale efficiency

Ashighlighted in Sect. 4, the evaluation ofMPSS and overall and scale efficiency by nonlinear
programs (9) or (11) is generally problematic. In this sectionweobtain an equivalent statement
of these programs whose use in practical computations is straightforward.

Below, when referring to program (9), we assume that its constraint (Xo(ϕ), Yo(ψ)) ∈
TR
VRS is replaced by conditions (2) in which the DMU (X , Y ) is changed to (Xo(ϕ), Yo(ψ)).

This program is stated in terms of the variable vector λ and scalars ϕ and ψ . Similarly, we
restate program (11) using the statement of the closed partial cone C̄(I′,O′) by Theorem 2.
(The full statement of the resulting program (11) is shown as program (28) in the proof of
Theorem 5.) We now use the substitution λ′ = λσ . Suppressing the prime symbol, we state
the resulting program as

η̂ = max η (13a)

subject to
∑

j∈J

λ j Y
V
jr ≥ ηY V

or , ∀r ∈ OV ∩ O′, (13b)

∑

j∈J

λ j Y
V
jr ≥ σY V

or , ∀r ∈ OV \O′, (13c)
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∑

j∈J

λ j X
V
ji ≤ XV

oi , ∀i ∈ IV ∩ I′, (13d)

∑

j∈J

λ j X
V
ji ≤ σ XV

oi , ∀i ∈ IV \I′, (13e)

λ j (σY
R
jr − ηY R

or ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR ∩ O′, (13f)

λ j (Y
R
jr − Y R

or ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR\O′, (13g)

λ j (σ X R
ji − X R

oi ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR ∩ I′, (13h)

λ j (X
R
ji − X R

oi ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR\I′, (13i)

1�λ = σ, (13j)

ηY R
or ≤ σ Ȳ R

r ∀r ∈ OR ∩ O′, (13k)

Y R
or ≤ Ȳ R

r , ∀r ∈ OR\O′, (13l)

X R
oi ≤ σ X̄ R

i , ∀i ∈ IR ∩ I′, (13m)

X R
oi ≤ X̄ R

i , ∀i ∈ IR\I′, (13n)

λ ≥ 0, σ, η ≥ 0. (13o)

In program (13), the bounds (13l) and (13n) do not restrict decision variables. They are
included only to show the relationship of program (13) with the statement (8) of the closed
cone C̄(I′,O′) and can be omitted as redundant in actual computations.

The next result establishes a one-to-one correspondence between the optimal solutions of
programs (9) and (13). We prove it under the following stronger variant of Assumption 2:

Assumption 3 Either there exists an r ′ ∈ OV ∩ O′ such that Yor ′ > 0, or there exists an
r ′′ ∈ OR ∩ O′ such that both Yor ′′ > 0 and the upper bound Ȳ R

r ′′ in the corresponding
constraint (13k) is finite. (Such constraint needs to be specified and should not be omitted.8)

Clearly, a simple sufficient, but not necessary, condition that guarantees that Assumption 3
is satisfied, is that all outputs of DMU (Xo, Yo) are strictly positive and, additionally, all ratio
outputs have a specified finite upper bound (1).

Theorem 5 Let Assumptions 1 and 3 be true. Then the following statements are true:

(i) The maximum value η̂ of program (13) is attained and equal to the supremum θ∗ of
program (9).

(ii) In any optimal solution 〈λ, σ, η〉 to program (13), we have σ > 0.
(iii) Solution 〈λ̂, η̂, σ̂ 〉 is optimal in program (13) if and only if the solution 〈λ′, ϕ′, ψ ′〉,

where λ′ = λ̂/σ̂ , ϕ′ = 1/σ̂ and ψ ′ = η̂/σ̂ , is optimal in program (9).

To see the importance of Theorem 5, recall that the evaluation of MPSS and the overall
efficiency of DMU (Xo, Yo) rely on our ability to solve program (9). Any of its optimal
solutions 〈ϕ′, ψ ′〉 would correspond to the MPSS (Xo(ϕ

′), Yo(ψ ′)) of DMU (Xo, Yo) in
technology TR

VRS, defined with respect to the selected input and output sets I′ and O′. The

8 To see the importance of Assumption 3, suppose it is not true. Consider any scenario in which the con-
straint (13m) is redundant (e.g., the set IR ∩ I′ = ∅ or the bounds for inputs in this set are not specified). Then
λ = 0, σ = 0 and any η ≥ 0 is a feasible solution of program (13), and its supremum η̂ is unbounded.
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inverse of the optimal value 1/θ∗ is the overall efficiency of the DMU (Xo, Yo). Because
program (9) is nonlinear, we face obvious computational challenges in its practical use.

Theorem 3 stated in Sect. 4.3 appears to suggest a conventional way to overcome this
computational difficulty. Namely, instead of evaluating the maximum average productivity
ψ/ϕ by solving the nonlinear program (9), we may equivalently solve program (11) which
evaluates the partial (with respect to the set O′) output radial efficiency of DMU (Xo, Yo) in
the closed partial cone extension C̄(I′,O′) of technology TR

VRS.
Unfortunately, the described conventional approach based on solving program (11) instead

of (9) does not resolve all computational problems. First, if we state program (11) in the full
extended form (shown in the proof of Theorem 5), we obtain a nonlinear program. Second,
even if we solve this program and identify its optimal solution 〈λ∗, η∗, σ ∗〉, Theorem 3 does
not tell us how to convert this solution to an optimal solution of program (9) and identify the
MPSS of DMU (Xo, Yo).

The new Theorem 5 resolves the above problems. It shows that the nonlinear program (11)
can be equivalently restated as program (13). As discussed in Remark 2 below, the latter
program is easy to solve. Furthermore, Theorem 5 establishes a one-to-one correspondence
between the optimal solutions of programs (9) and (13), and provides simple formulae that
transform an optimal solution of either program to an optimal solution of the other program.
This means that, in practice, we can solve only program (13) and subsequently convert its
optimal solution to an optimal solution of program (9), thus identifying the MPSS of DMU
(Xo, Yo).

Remark 2 In practical applications, solving program (13) should be unproblematic. Indeed,
if the sets I′ andO′ do not include ratio inputs and outputs, then the sets IR∩I′ andOR∩O′ are
empty, the constraints (13f), (13h), (13k) and (13m) are omitted and program (13) becomes
a linear program. If at least one ratio input or output is included in the sets I′ and O′,
then program (13) is nonlinear. In this case, the constraints (13f) and (13h) can be restated
as “either-or” conditions and further linearized using the “big M” method as discussed in
Olesen et al. (2017). This transforms program (13) to a mixed integer linear program.

6 Special cases

Below we consider several special cases of program (13). Recall that, as discussed in Sect. 5,
solving this program is equivalent to the identification of MPSS by program (9).

6.1 Themodel of Banker andMorey (1986)

Suppose that there are no ratio measures, i.e., I = IV and O = OV . In this case, the inequal-
ities (13f)–(13i) and (13k)–(13n) are omitted from program (13). If the set O′ includes all
volume outputs but I′ does not include all volume inputs, the resulting program (13) is the
model of Banker andMorey (1986) inwhich the inputs in the complementary subset IV \I′ are
regarded as non-discretionary. If additionally some (non-discretionary) outputs are permitted
and are not included in the set O′, program (13) is a generalization of the model of Banker
andMorey (1986) provided byGolany and Roll (1993). In bothmodels, the inequalities (13c)
and (13e) disallow proportional scaling of the volume measures that are not included in the
sets I′ and O′.
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6.2 The partial cone extension of themodel of Ruggiero (1996)

Let I′ = IV and O′ = OV . This corresponds to an important practical situation in which
the ratio inputs and outputs, often representing environmental and quality characteristics, are
assumed constant in the evaluation of the technical and scale efficiency (Ruggiero 1996). In
the described scenario, conditions (13c), (13e), (13f), (13h) and (13k)–(13n) are omitted, and
equality (13j) and variable σ become redundant. Then program (13) is stated as follows:

η̂ = max η

subject to
∑

j∈J

λ j Y
V
j ≥ ηY V

o ,

∑

j∈J

λ j X
V
j ≤ XV

o ,

λ j

(
Y R
j − Y R

o

)
≥ 0, ∀ j ∈ J ,

λ j

(
X R

j − X R
o

)
≤ 0, ∀ j ∈ J ,

λ ≥ 0, η ≥ 0.

(14)

The technology employed by model (14) allows proportional scaling of the volume inputs
and outputs while keeping the ratio measures constant. This corresponds to the special case
of the R-CRS technology, denoted T F

CRS, in which all ratio inputs and outputs are of the fixed
type (Olesen et al. 2015).9 Technology T F

CRS can be viewed as the partial cone extension (with
respect to the volume inputs and outputs only) of technology TR

VRS stated by Theorem 1. It can
also be seen as the CRS extension of themodel of Ruggiero (1996) which allows proportional
scaling of the volume measures, while keeping the exogenous ratio measures fixed.

6.3 The full scale efficiency

Let the sets I′ and O′ include all volume and ratio measures, i.e., let I′ = I and O′ = O. This
case was illustrated by scenario (i) of Example 3. As a practical example, in an application
to schools, volume measures may represent the teaching hours, expenditure and the number
of pupils. The ratio inputs and outputs may represent the percentage of pupils with good
grades on entry and exit, and also the percentage of pupils from the higher socio-economic
background. The policy maker may be interested in the full scale characterization of the
production frontier, in which case the sets I′ and O′ include all, volume and ratio, inputs
and outputs. Note that, regardless of whether some inputs or outputs are discretionary or
non-discretionary, it may still be useful to consider the full scale characterization that takes
into account all such measures—see Sect. 4.1.

In the described scenario, program (13) takes on the following simplified form:

η∗ = max η (15a)

subject to

9 As a special case of program (13), program (14) is based on Assumption 3. This means that Y V
o �= 0. As

proved by Olesen et al. (2015), under this assumption, the technology employed by model (14) coincides with
technology T F

CRS. Without the assumption that Y V
o �= 0, the statement of technology T F

CRS is more complex.
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∑

j∈J

λ j Y
V
j ≥ ηY V

o , (15b)

∑

j∈J

λ j X
V
j ≤ XV

o , (15c)

λ j (σY
R
j − ηY R

o ) ≥ 0, ∀ j ∈ J , (15d)

λ j (σ X R
j − X R

o ) ≤ 0, ∀ j ∈ J , (15e)

1�λ = σ, (15f)

ηY R
o ≤ σ Ȳ R, (15g)

X R
o ≤ σ X̄ R, (15h)

λ ≥ 0, σ, η ≥ 0. (15i)

All observed DMUs (X j , Y j ), j ∈ J , and the bounds on the ratio measures (1) in pro-
gram (15) are fully scaled by the scaling factor σ . Note that the factor σ is not explicitly
present in constraints (15b) and (15c). However, taking into account (15f), the conical com-
binations of the volume inputs and outputs of the observed DMUs in (15b) and (15c) can
also be viewed as the convex combinations of the scaled vectors σY V

j and σ XV
j taken with

the weights λ j/σ that add up to 1.

7 Returns to scale in the R-VRS technology

If a DMU is scale inefficient, a further question arises: is it too small or too large compared
to its MPSS? Answering this question leads to the RTS characterization of the production
frontier. For the conventional VRS technology, such characterization is based on the under-
lying notion of (one-sided) scale elasticity. It was originally developed by Banker (1984)
and Banker and Thrall (1992) and further explored in the literature—see, e.g., Førsund and
Hjalmarsson (2004), Hadjicostas and Soteriou (2006), Chambers and Färe (2008), Zelenyuk
(2013) and Sahoo and Tone (2015).

In this section, we show that the notion of RTS can also be extended to the R-VRS
technology. Because the R-VRS technology is generally nonconvex, such extension is not
straightforward. In particular, the scale elasticity as a marginal scale characteristic and the
RTS characterization based on it are not generally suitable indicators of a direction to MPSS.

In order to extend the notion of RTS to the R-VRS technology, we employ two approaches,
depending on the selected sets I′ and O′ of inputs and outputs with respect to which we
measure the scale efficiency. Namely, if the selected inputs and outputs are volumemeasures,
we employ a variant of the standard notion of local RTS (Banker and Thrall 1992). If at least
one of the selected inputs or outputs is a ratio measure, we identify a direction to MPSS
by exploring the range of optimal values of variable σ in program (13). This approach is
conceptually related to the approach of Färe et al. (1983b, 1985) and leads to the notion of
global RTS (Podinovski 2004a, b).

The returns-to-scale characterization applies to DMUs located on the production fron-
tier.10 We therefore require that DMU (Xo, Yo) satisfies the following assumption:

10 In the literature, the RTS characterization is sometimes also extended to projections of inefficient DMUs
on the frontier, which are not unique and depend on the direction of projection. While such extensions are
unproblematic, in order to simplify the exposition, and without loss of generality, we assume that the DMU
(Xo, Yo) under the investigation is technically efficient with respect to the chosen set of outputs O′.
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Assumption 4 DMU (Xo, Yo) is output radial efficient with respect to the subset of outputs
O′, i.e., in program (5), we have η̃ = 1.

7.1 Local RTS in the R-VRS technology

Below we define the local RTS characterization of the production frontier of technology
TR
VRS with respect to the volume inputs and outputs only, while keeping the ratio inputs and

outputs fixed.
Let the sets I′ and O′ include all volume measures and exclude all ratio measures: I′ = IV ,

O′ = OV . Also, let DMU (Xo, Yo) satisfy Assumption 4. The conventional RTS characteriza-
tion of the VRS production frontier is determined by the one-sided (left-hand and right-hand)
scale elasticities evaluated at DMU (Xo, Yo). This RTS characterization is local in nature as
it depends on the production frontier in a marginal neighborhood of the DMU (Xo, Yo).

In the case of technology TR
VRS, we can similarly define local RTS (with respect to volume

inputs and outputs only) by evaluating the one-sided scale elasticities at the DMU (Xo, Yo) in
the section
T of technology TR

VRS obtained for the fixed vectors X
R
o andY R

o . The section
T
can be regarded as a technology which represents all volume input and output combinations
(XV , Y V ) possible for the fixed vectors X R

o and Y R
o of the ratio inputs and outputs.

Taking into account Theorem 1, technology 
T is the set of all nonnegative DMUs
(XV , Y V ) for which there exists a vector λ ∈ R

n such that the following conditions are true
(note that the vectors X R

o and Y R
o are fixed, and there is no need to specify bounds (1) on the

ratio measures):
∑

j∈J

λ j Y
V
j ≥ Y V ,

∑

j∈J

λ j X
V
j ≤ XV ,

λ j

(
Y R
j − Y R

o

)
≥ 0, ∀ j ∈ J ,

λ j

(
X R

j − X R
o

)
≤ 0, ∀ j ∈ J ,

1�λ = 1,

λ ≥ 0.

Technology 
T can be viewed as the standard VRS technology generated by the subset
J ′ of observed DMUs (X j , Y j ) such that both vector inequalities Y R

j ≥ Y R
o and X R

j ≤ X R
o

are true. If an observed DMU (X j , Y j ) does not satisfy these inequalities, we have λ j = 0,
which excludes this DMU from the subset J ′.

By Assumption 4, DMU (Xo, Yo) is output radial efficient in technology 
T . Denote
ε+(XV

o , Y V
o ) and ε−(XV

o , Y V
o ) the partial right-hand and left-hand scale elasticities evaluated

at the DMU (XV
o , Y V

o ) on the boundary of 
T . Because 
T is a VRS technology, their
computation is straightforward. Indeed, let ωmin and ωmax be the minimum and maximum
optimal values of the dual variable ω to the normalizing equality 1�λ = 1 of the output-
oriented linear programstated forDMU (Xo, Yo). (Identifyingωmin andωmax requires solving
two linear programs.) Then

ε+(XV
o , Y V

o ) = 1 − ωmax, ε−(XV
o , Y V

o ) = 1 − ωmin. (16)

In line with Banker and Thrall (1992), we have the following definition.
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Definition 3 DMU (Xo, Yo) ∈ TR
VRS exhibits the following types of partial RTS evaluated

with respect to the volume inputs and outputs only:

(i) IRS if 1 < ε+(Xo, Yo) ≤ ε−(Xo, Yo);
(ii) DRS if ε+(Xo, Yo) ≤ ε−(Xo, Yo) < 1;
(iii) CRS if ε+(Xo, Yo) ≤ 1 ≤ ε−(Xo, Yo).

Remark 3 The one-sided scale elasticities ε+(XV
o , Y V

o ) and ε−(XV
o , Y V

o ) can also be calcu-
lated using the linear program that evaluates the input radial efficiency of the DMU (XV

o , Y V
o )

in the VRS technology
T (Førsund and Hjalmarsson 2004; Hadjicostas and Soteriou 2006;
Sahoo and Tone 2015; Zelenyuk 2013). Furthermore, in some applications, only a subset of
volume inputs and outputs may be of interest and included in these sets, i.e., we may have
I′ ⊆ IV , O′ ⊆ OV . The partial one-sided scale elasticities with respect to the selected subsets
I′ and O′ can be evaluated in technology 
T using the linear programming approach of
Podinovski et al. (2016) of which formulae (16) are a special case.

7.2 Global RTS in the R-VRS technology

The globalRTS (GRS) characterization of production frontierswas introduced by Podinovski
(2004a, b). The types of GRS are indicative of the direction in which DMU (Xo, Yo) should
resize to achieve MPSS. For example, DMU (Xo, Yo) exhibits global increasing RTS if it is
smaller than its MPSS and, therefore, needs to increase the scale of its operations to achieve
its MPSS.11

In any convex technology, including the VRS technology, the local and global RTS char-
acterizations are identical (Podinovski 2017). However, in a nonconvex technology such as
the R-VRS technology, the local types of RTS are no longer indicative of the direction to
MPSS (see the example in Sect. 7.3), and the global characterization needs to be used instead.

In this section, we consider arbitrary nonempty subsets of volume and ratio inputs and
outputs I′ ⊆ I and O′ ⊆ O. Let DMU (Xo, Yo) satisfy Assumption 4. In order to evaluate its
scale efficiency with respect to the selected sets I′ and O′, we solve program (9) or equivalent
program (13).

Any optimal solution 〈ϕ∗, ψ∗〉 of program (9) defines the MPSS of DMU (Xo, Yo) eval-
uated with respect to the inputs and outputs from the sets I′ and O′ and stated as

(Xo(ϕ
∗), Yo(ψ∗)) ∈ TR

VRS. (17)

Assume thatDMU (Xo, Yo) is scale inefficient, i.e., thatψ∗/ϕ∗ > 1. Then eitherϕ∗ < 1 or
ϕ∗ > 1.12 If ϕ∗ < 1, the correspondingMPSS (17) is smaller than DMU (Xo, Yo). If ϕ∗ > 1,
the MPSS (17) is larger than DMU (Xo, Yo). It is theoretically possible that program (9) has
alternative optimal solutions 〈ϕ∗, ψ∗〉, each identifying a different MPSS (17).

By statement (iii) of Theorem 5, the case ϕ∗ < 1 corresponds to σ̂ > 1 in an optimal
solution of program (13), and the case ϕ∗ > 1 corresponds to σ̂ < 1. We can now extend the

11 Mostafaee and Soleimani-damaneh (2020) suggest a further refinement of the GRS characterization by
identifying two subtypes of each of the G-IRS and D-GRS types of global RTS.
12 The case ϕ∗ = 1 is impossible because, by Assumption 4, if ϕ∗ = 1 then ψ∗ = 1 and ψ∗/ϕ∗ = 1, which
contradicts the assumption that DMU (Xo, Yo) is scale inefficient. Also, ϕ∗ > 1 implies ψ∗ > 1, and ϕ∗ < 1
implies ψ∗ ≤ 1. If, in addition to Assumption 4, DMU (Xo, Yo) is input radial efficient with respect to the
subset of inputs I′, then ϕ∗ < 1 implies ψ∗ < 1 (Podinovski 2004a).
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characterization of GRS defined in Podinovski (2004a) in the case I′ = I and O′ = O to the
case of partial GRS evaluated only with respect to the sets of inputs and outputs I′ and O′.

Let DMU (Xo, Yo) ∈ TR
VRS satisfy Assumption 4. In order to determine if DMU (Xo, Yo)

is at MPSS and, if not, whether there exists an MPSS that is smaller or larger than DMU
(Xo, Yo), we solve two additional programs derived from program (13). The first can be
viewed as the non-increasing returns-to-scale (NIRS) analogue of program (13), and the
second as its non-decreasing returns-to-scale (NDRS) analogue.

η̂1 = max η

subject to (13b) − (13o) and σ ≤ 1,
(18)

and

η̂2 = max η

subject to (13b) − (13o) and σ ≥ 1.
(19)

It is clear that η̂1 ≥ 1 and η̂2 ≥ 1. We also have η̂ = min{η̂1, η̂2}, where η̂ is the optimal
value of program (13). The following four mutually exclusive cases are now possible.

If η̂1 = η̂2 = 1, the optimal value η̂ of program (13) is equal to 1 and DMU (Xo, Yo) is at
MPSS with respect to the sets I′ and O′. In this case, we class DMU (Xo, Yo) as exhibiting
global CRS (G-CRS).

Let 1 ≤ η̂2 < η̂1. Then η̂ = η̂1 > 1 and, for any optimal solution 〈λ̂, σ̂ , η̂〉 to (13), we have
σ̂ < 1. By statement (iii) of Theorem 5, for any optimal solution 〈ψ∗, ϕ∗〉 of program (9), we
have ϕ∗ = 1/σ̂ > 1. The MPSS of DMU (Xo, Yo) calculated by formula (17) is larger than
DMU (Xo, Yo), for any optimal solution of (13), and we class DMU (Xo, Yo) as exhibiting
global IRS (G-IRS).

Similarly, if 1 ≤ η̂1 < η̂2, then for any optimal solution 〈λ̂, σ̂ , η̂〉 to (13) we have σ̂ > 1
and, in program (9), ϕ∗ = 1/σ̂ < 1. Therefore, any MPSS of DMU (Xo, Yo) is smaller than
this DMU and the latter exhibits global DRS (G-DRS).

The final logical possibility is the case in which 1 < η̂1 = η̂2. In this case, DMU (Xo, Yo)
is scale inefficient and has at least two different directions to MPSS, one of which is larger,
and the other smaller, than the DMU (Xo, Yo). We class DMU (Xo, Yo) as exhibiting global
sub-constant RTS (G-SCRS).

Remark 4 Assume that DMU (Xo, Yo) does not satisfy Assumption 4, i.e., it is not efficient
with respect to the vector of outputs included in the set O′. It is straightforward to show
that, in this case, the described approach will characterize GRS at the projection of DMU
(Xo, Yo) on the boundary of technology TR

VRS. Indeed, let the efficiency of DMU (Xo, Yo)
in technology TR

VRS evaluated with respect to the outputs in the set O′ by program (5) be
equal to 1/η̃ < 1. Denote (X∗, Y ∗) = (Xo, Yo(η̃)) the projection of DMU (Xo, Yo) on the
boundary of technology TR

VRS. Then the projected DMU (X∗, Y ∗) satisfies Assumption 4 and
we can characterize its type of GRS by solving programs (18) and (19). Let the corresponding
optimal values of these two programs be η̂∗

1 and η̂∗
2, respectively. It is clear that η̂∗

1 = η̂1/η̃

and η̂∗
2 = η̂2/η̃, where η̂1 and η̂2 are the optimal values of programs (18) and (19) stated

for the evaluation of DMU (Xo, Yo). Then η̂∗
1 ≤ η̂∗

2 if and only if η̂1 ≤ η̂2. This implies
that the procedure for the characterization of GRS based on the optimal values η̂1 and η̂2 of
programs (18) and (19) stated for DMU (Xo, Yo) (at which the notion of GRS is undefined)
in fact characterizes GRS at the projection (X∗, Y ∗).
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7.3 Example of evaluation of RTS

Let TR
VRS be the R-VRS technology considered in Examples 2 and 3. We first illustrate the

notion of local RTS, by referring to scenario (ii) in which we define I′ = I and O′ = O. In
this case, technology 
T is the section KCADE shown in Fig. 1 and, separately, in Fig. 6.

Consider DMU A and note that it satisfies Assumption 4. The left-hand scale elasticity
at DMU A is undefined because it is not possible to reduce its input in technology 
T ,
and we can conventionally take ε−(A) = +∞. The right-hand scale elasticity ε+(A) = 2.
It corresponds to the movement along the side AD away from A and can be calculated as
the ratio of the marginal productivity (equal to the slope 2 of the line AD) to the average
productivity at A (equal to 1/1 = 1). By Definition 3, DMU A exhibits IRS with respect to
the volume input and output.

Because the section 
T is convex, the local type of RTS of DMU A coincides with its
global (G-IRS) type, and both are indicative of the direction to its MPSS at DMU D.

Now consider scenario (i) in which the set I′ includes the single volume input and the
set O′ includes both volume and ratio outputs. As shown in Example 3, DMU A is scale
inefficient and its MPSS is DMU P . Because DMU P is larger than A, the latter exhibits
G-IRS with respect to all inputs and outputs. Note that, in this scenario, the right-hand scale
elasticity ε−(A) = 0 and corresponds to the movement along the line AL (see Footnote 5).
Therefore, locally, DMU A exhibits DRS to the right, although in the global sense, it should
increase the scale of its operations to achieve its MPSS at DMU P .

Finally, consider scenario (iii) in which the set O′ includes only the ratio output. As shown
in Example 3, DMU A is scale inefficient and its MPSS is at DMU V , which is larger than
A. Therefore, DMU A exhibits G-IRS in this scenario as well. As in scenario (i), the right-
hand scale elasticity at A in the section of technology TR

VRS defined by its boundary ALVW
is equal to zero and corresponds to the marginal movement along the line AL away from
A. Therefore, DMU A exhibits DRS, and this local characterization is not indicative of the
direction to MPSS.

8 Illustrative application

In this section, we illustrate the application of the developed methodology using a sample
of 39 secondary schools in the West Midlands region of England. The data was collected in
2020-21 and is publicly available from the official website of Department for Education.

Fig. 6 Section 
T of the R-VRS
technology for DMU A

Volume input

Volume 
output

0 1 2 

1 

2 

A 

C

E D 
3 

K
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Table 5 Descriptive statistics for the application

Measure Mean Median Minimum Maximum Standard deviation

Input 1: teachers 66.12 63.9 22.2 124.9 22.19

Input 2: expenses 2773.69 2543.9 1184 5638.9 1127.32

Input 3: NFSM 79.33 81.3 55.7 96.8 11.31

Output 1: pupils 1070.08 1059 396 19.33 344.73

Output 2: HE 0.69 0.72 0.45 0.91 0.12

Table 5 shows summary statistics of the measures used in the application. (The full data
set used in this application is given in Appendix C.) The volume inputs 1 and 2 represent the
number of teachers and expenses in thousands of British pounds (excluding teacher salaries)
at each school. The ratio input 3 measures the percentage of pupils who are not eligible for
free school meals (NFSM). This input is a socio-economic characteristic of the catchment
area which is assumed to have a positive effect on the performance of the school. The volume
output 1 is the number of all pupils at the school. The ratio output 2 is the proportion of
the final year (sixth form) pupils proceeding to higher education (HE) and is included in the
model as a measure of quality of education. (In Sect. 8.4, we discuss potential computational
issues arising from the use of small ratios in DEA models.13)

We consider three scenarios of evaluation of scale characteristics, by choosing the sets I′
and O′ in different ways: first, as the sets of all (volume and ratio) measures; second, as the
sets of all volume inputs and outputs; and third, as the sets of all ratio inputs and outputs,
respectively.

Preliminary calculations show that 23 schools in the current sample are strongly (Pareto)
efficient and, therefore, satisfy Assumption 4. It also turns out that, in each scenario, no
additional observed DMUs satisfy this assumption, i.e., the set of observed DMUs that are
efficient with respect to the outputs in the set O′ is the set of strongly efficient DMUs of
technology TR

VRS.
14

8.1 Evaluation with respect to both volume and ratio measures

Consider the evaluation of scale efficiency and RTS characterization of the schools with
respect to all, volume and ratio, inputs and outputs. In this scenario, we define the sets I′ = I
and O′ = O.

Table 6 shows the results of computations. Its second column shows the output radial
efficiency of each school in the R-VRS technology TR

VRS evaluated with respect to the vector
of two outputs. The next three columns show the output radial efficiency of the schools in
models (13), (18) and (19) which are based on the closed full cone extension C̄(I,O) of

13 We use percentages for input 3 and fractions between 0 and 1 for output 2 in line with the way the data are
reported by Department for Education. An obvious alternative would be to convert percentages to fractions or
fractions to percentages. Rescaling data in such a way does not affect radial measures of efficiency (evaluated
with respect to the set O′) and scale characteristics based on them.
14 To verify strong efficiency of DMU (Xo, Yo), we solve the additive model that seeks the maximum sum
of individual improvements (slacks in the input and output constraints) of all volume and ratio inputs and
outputs, under the condition that the resulting DMU is in technology TR

VRS. This model is stated as model (12)

in Olesen et al. (2017) in which we take (X̂ , Ŷ ) = (Xo, Yo).
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Table 6 Efficiency and scale characteristics evaluated with respect to both volume and ratio measures (for
inefficient schools, see Remark 5)

School R-VRS Cone model (13) NIRS cone
model (18)

NDRS cone
model (19)

Scale effi-
ciency

Global RTS

1 0.9337 0.9122 0.9122 0.9147 0.977 G-IRS

2 1 1 1 1 1 MPSS

3 1 1 1 1 1 MPSS

4 1 1 1 1 1 MPSS

5 1 1 1 1 1 MPSS

6 0.8462 0.8163 0.8462 0.8163 0.9647 G-DRS

7 1 1 1 1 1 MPSS

8 1 1 1 1 1 MPSS

9 1 1 1 1 1 MPSS

10 1 1 1 1 1 MPSS

11 1 0.9463 0.9463 1 0.9463 G-IRS

12 0.7066 0.6974 0.7066 0.6974 0.987 G-DRS

13 0.9753 0.9391 0.9664 0.9391 0.9629 G-DRS

14 1 1 1 1 1 MPSS

15 1 0.9779 0.9779 1 0.9779 G-IRS

16 1 0.8618 0.8618 1 0.8618 G-IRS

17 1 0.9898 0.9898 1 0.9898 G-IRS

18 0.8853 0.8704 0.8853 0.8704 0.9832 G-DRS

19 0.9881 0.9308 0.9789 0.9308 0.942 G-DRS

20 0.9427 0.9292 0.9292 0.9322 0.9857 G-IRS

21 1 0.8955 0.8955 1 0.8955 G-IRS

22 0.8941 0.7919 0.8941 0.7919 0.8857 G-DRS

23 0.9733 0.9352 0.9733 0.9352 0.9609 G-DRS

24 1 0.9813 1 0.9813 0.9813 G-DRS

25 0.9765 0.8477 0.9765 0.8477 0.8681 G-DRS

26 0.8941 0.8908 0.8941 0.8908 0.9963 G-DRS

27 1 0.9105 0.9105 1 0.9105 G-IRS

28 0.9519 0.9225 0.9519 0.9225 0.9691 G-DRS

29 0.8927 0.8706 0.8706 0.8757 0.9752 G-IRS

30 1 1 1 1 1 MPSS

31 1 0.7711 0.7711 1 0.7711 G-IRS

32 1 0.8869 0.8869 1 0.8869 G-IRS

33 1 1 1 1 1 MPSS

34 0.8012 0.7712 0.8012 0.7712 0.9626 G-DRS

35 1 1 1 1 1 MPSS

36 0.9017 0.8767 0.8834 0.8767 0.9723 G-DRS

37 0.7406 0.7273 0.7406 0.7273 0.982 G-DRS

38 1 1 1 1 1 MPSS

39 1 1 1 1 1 MPSS
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technology TR
VRS and its NIRS and NDRS analogues. Note that the efficiencies shown in

Table 6 are inverse to the optimal values η̂, η̂1 and η̂2 of these programs.15

Following thediscussionofSect. 6.3, insteadof solvingprogram (13),we solve the simpler,
but equivalent, program (15).We also solve this programwith the additional constraintsσ ≤ 1
and σ ≥ 1, instead of the NIRS and NDRS programs (18) and (19).

According to Sect. 4.4, the overall scale efficiency of each school is equal to its efficiency
in model (13), as shown in the third column of Table 6. The scale efficiency of each school is
shown in the second last column of this table. It is obtained as the ratio of its output efficiency
in model (13) to its efficiency in technology TR

VRS.
Let us now consider the RTS characterization of schools located on the frontier of tech-

nology TR
VRS. As highlighted in Sect. 7, because this technology is not convex, the standard

RTS characterization of its frontier is generally not well-defined and is not indicative of the
direction to MPSS. Instead, we use the global RTS characterization to identify the direction
to MPSS for each school.

As already established, 23 schools from the sample are output radial efficient and are
located on the frontier of technology TR

VRS. (The efficiency of these schools in the R-VRS
model is equal to 1, as shown in the second column of Table 6.) As discussed in Sect. 7.2,
the characterization of GRS for these schools can be obtained by comparing their efficiency
in the NIRS and NDRS programs (18) and (19).

The last column of Table 6 shows the resulting GRS characterization. For example,
School 2 is at MPSS (or, equivalently, exhibits G-CRS). School 11 exhibits G-IRS and
is, therefore, smaller than its MPSS. (Note that, in this case, for the optimal values of pro-
grams (18) and (19), we have η̂1 = 1/0.9463 > 1/1 = η̂2). School 24 exhibits G-DRS and
is, therefore, larger than its MPSS.

Remark 5 For the inefficient schools, the last column of Table 6 shows the GRS characteri-
zation of their radial projections on the boundary of technology TR

VRS (see Remark 4 for the
discussion of GRS evaluated at the projections of inefficient DMUs). For example, School 1
is inefficient. Improving its efficiency by proportional increase of both outputs (by the factor
1/0.9337 = 1.071) would result in the school that exhibits G-IRS. Such projection would
be smaller than its MPSS.

8.2 Evaluation with respect to volumemeasures only

Consider the evaluation of scale efficiency and RTSwith respect to volumemeasures only, by
keeping the ratio input and output fixed. Define I′ = {input 1, input 2} and O′ = {output 1}.
In this scenario, we investigate the relationship between the volume parameters of the
schools (teachers, expenses and pupils) by assuming that the socio-economic characteris-
tic of the school catchment area (ratio input 3) and quality of education (ratio output 2)
remain unchanged.

In this case, model (13) becomes program (14). Models (18) and (19) are obtained from
the latter program by the reinstatement of constraint (13j) and the incorporation of additional
constraints σ ≤ 1 and σ ≥ 1, respectively.

15 Solving the output-oriented R-VRS model as a mixed integer linear program was discussed in Sect. 3.2 of
Olesen et al. (2017). Solving the cone model (13) and its NIRS and NDRS variants (18) and (19) (in all three
scenarios considered in the current application) is similar to solving the R-CRS models, as also discussed by
Olesen et al. (2017). In all these models, we restate the nonlinear inequalities (13f) and (13h) as “either-or”
conditions and linearize them using the common “Big M” approach. The big constant M can be assessed
using the constraints of program (13). In all our computations, we used the same value M = 100.
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Table 7 shows the results of computations in a format similar to Table 6. The difference
with the previous scenario is that the efficiencies of all schools are now evaluated with respect
to the volume output 1 only.16 Also, as discussed in Sect. 7.1, in this scenario, the local and
global characterizations of RTS are identical.

Consider for example, School 3. As shown in Table 7, this school exhibits DRS (or G-DRS
in the equivalent terminology of GRS). This means that a marginal proportional increase of
the number of teachers and expenses of this school would result in a smaller rate of increase of
the number of pupils, assuming that the ratiomeasures (input 3 and output 2) remain constant.
From a policy-maker’s perspective, School 3 is scale inefficient and moving to MPSS means
making the school smaller, without any change to the socio-economic environment and
without affecting the quality of education.

8.3 Evaluation with respect to ratio measures only

Suppose that we are interested in the impact of the socio-economic environment on the
proportion of pupils going to university, while keeping the volume measures fixed. Define
I′ = {input 3} and O′ = {output 2}.

Table 8 shows the results of computations using appropriately specified programs (13),
(18) and (19).

For example, consider School 11. Because it exhibits G-IRS, it is smaller than its MPSS
evaluated with respect to the ratio input and output. This implies that, if we keep the size of
the school unchanged (represented by the number of teachers, expenses and pupils), then the
socio-economic characteristic of the pupil intake (percentage of pupils not eligible for free
school meals) has a more than proportional impact on the quality of education (proportion
of pupils going to university).

8.4 Notes on computations with small ratios

Asmentioned in Footnote 13, in the discussed application, output 2 represents the proportion
of final-year pupils proceeding to higher education.We could, of course, convert these propor-
tions to percentages, by rescaling the proportions by a factor of 100. However, we preferred
to keep this output unchanged, in line with the way the data was reported by Department for
Education.

Using proportions and any other very small numerical values (compared, for example,
with the numerical values for school expenditure all of which are in excess of 1000) in DEA
models may present well-known computational problems, and rescaling the data prior to
calculations may be required in order to obtain correct results. (In the reported application,
we were aware of potential problems and repeated our computations with the rescaled ratios,
but did not detect any discrepancy between the results.)

The scaling of linear optimization problems is a technique utilized in linear optimization
solvers with the aim to improve the conditioning of the constraint matrix and decrease the
computational effort for solution—see, e.g., Bixby (2002). As observed by Elble and Sahini-
dis (2012), scaling provides a relative point of reference for absolute tolerances. This is
especially important when solving the linearized counterparts of models (13), (18) and (19),

16 Also, in this case, the cone extension of the R-VRS technology and its NIRS and NDRS variants are
obtained with respect to the volume measures only. These sets are different from the cone (and NIRS and
NDRS) extensions obtained with respect to all, volume and ratio, measures. Therefore, the efficiency scores
in Tables 6 and 7, and also in Table 8, are not directly comparable.
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Table 7 Efficiency and scale characteristics evaluated with respect to volume measures only

School R-VRS Cone
model (13)

NIRS cone
model (18)

NDRS cone
model (19)

Scale effi-
ciency

Global
(=local) RTS

1 0.9239 0.9041 0.9239 0.9041 0.9786 DRS

2 1 1 1 1 1 MPSS

3 1 0.9453 1 0.9453 0.9453 DRS

4 1 1 1 1 1 MPSS

5 1 1 1 1 1 MPSS

6 0.7773 0.6746 0.7773 0.6746 0.8679 DRS

7 1 1 1 1 1 MPSS

8 1 0.9765 1 0.9765 0.9765 DRS

9 1 0.9408 1 0.9408 0.9408 DRS

10 1 1 1 1 1 MPSS

11 1 0.9622 0.9622 1 0.9622 IRS

12 0.7066 0.6228 0.7066 0.6228 0.8814 DRS

13 0.9753 0.7754 0.9753 0.7754 0.795 DRS

14 1 0.9111 1 0.9111 0.9111 DRS

15 1 1 1 1 1 MPSS

16 1 0.9935 1 0.9935 0.9935 DRS

17 1 0.8534 1 0.8534 0.8534 DRS

18 0.8853 0.8553 0.8853 0.8553 0.9661 DRS

19 0.9377 0.9279 0.9377 0.9279 0.9895 DRS

20 0.9427 0.9322 0.9427 0.9322 0.9889 DRS

21 1 0.811 0.811 1 0.811 IRS

22 0.846 0.6793 0.846 0.6793 0.803 DRS

23 0.9518 0.8707 0.9518 0.8707 0.9148 DRS

24 1 0.7734 1 0.7734 0.7734 DRS

25 0.8874 0.7504 0.8874 0.7504 0.8456 DRS

26 0.7238 0.6749 0.7238 0.6749 0.9324 DRS

27 1 1 1 1 1 MPSS

28 0.9519 0.9225 0.9519 0.9225 0.9691 DRS

29 0.8927 0.7875 0.8927 0.7875 0.8822 DRS

30 1 0.8661 1 0.8661 0.8661 DRS

31 1 1 1 1 1 MPSS

32 1 0.9019 0.9019 1 0.9019 IRS

33 1 1 1 1 1 MPSS

34 0.7876 0.7543 0.7876 0.7543 0.9577 DRS

35 1 1 1 1 1 MPSS

36 0.9017 0.8441 0.9017 0.8441 0.9361 DRS

37 0.7339 0.6653 0.7339 0.6653 0.9065 DRS

38 1 1 1 1 1 MPSS

39 1 0.8866 0.8866 1 0.8866 IRS
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Table 8 Efficiency and scale characteristics evaluated with respect to ratio measures only

School R-VRS Cone
model (13)

NIRS cone
model (18)

NDRS cone
model (19)

Scale effi-
ciency

Global RTS

1 0.8276 0.7662 0.8276 0.7662 0.92581 G-DRS

2 1 1 1 1 1 MPSS

3 1 1 1 1 1 MPSS

4 1 1 1 1 1 MPSS

5 1 1 1 1 1 MPSS

6 0.7912 0.5885 0.7912 0.5885 0.743807 G-DRS

7 1 0.9408 0.9408 1 0.9408 G-IRS

8 1 1 1 1 1 MPSS

9 1 0.9179 0.9179 1 0.9179 G-IRS

10 1 1 1 1 1 MPSS

11 1 0.8686 0.8686 1 0.8686 G-IRS

12 0.6322 0.4562 0.6322 0.4562 0.721607 G-DRS

13 0.8706 0.8054 0.8706 0.8054 0.925109 G-DRS

14 1 0.95 0.95 1 0.95 G-IRS

15 1 1 1 1 1 MPSS

16 1 0.6625 0.6625 1 0.6625 G-IRS

17 1 0.8642 0.8642 1 0.8642 G-IRS

18 0.5952 0.5736 0.5952 0.5736 0.96371 G-DRS

19 0.9881 0.9006 0.9789 0.9006 0.911446 G-DRS

20 0.8391 0.7222 0.8391 0.7222 0.860684 G-DRS

21 1 0.9031 0.9031 1 0.9031 G-IRS

22 0.8941 0.7583 0.8941 0.7583 0.848115 G-DRS

23 0.9733 0.9482 0.9733 0.9482 0.974211 G-DRS

24 1 1 1 1 1 MPSS

25 0.9765 0.8342 0.9765 0.8342 0.854275 G-DRS

26 0.8941 0.8196 0.8941 0.8196 0.916676 G-DRS

27 1 1 1 1 1 MPSS

28 0.7059 0.6343 0.7059 0.6343 0.898569 G-DRS

29 0.6471 0.5892 0.6471 0.5892 0.910524 G-DRS

30 1 1 1 1 1 MPSS

31 1 1 1 1 1 MPSS

32 1 0.8869 0.8869 1 0.8869 G-IRS

33 1 1 1 1 1 MPSS

34 0.7176 0.6707 0.7176 0.6707 0.934643 G-DRS

35 1 1 1 1 1 MPSS

36 0.5647 0.5345 0.5647 0.5345 0.94652 G-DRS

37 0.5977 0.5048 0.5977 0.5048 0.844571 G-DRS

38 1 1 1 1 1 MPSS

39 1 1 1 1 1 MPSS
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because the linearization of constraints (13f) and (13h) involves one binary variable used
with one “Big M” for each DMU in the sample. (The value of “Big M” should of course
be chosen sufficiently large but not much larger than necessary. To avoid too large “Big M”
values, it is of course valid to use two different “Big M” values, one for constraints (13f) and
the other for (13h).)

Absolute tolerances are applied to every node of the branch-and bound tree used in the
simplex method to determine when a binary variable in a relaxed solution is considered to
be integer or a reduced cost coefficient is considered to be nonnegative. The use of absolute
tolerances is challenging when, for example, rows in the constraint matrix are of different
numerical magnitude as in the constraint matrix for the data set in Table 10. For example,
in the discussed application, the numerical values for school expenditure are up to five
orders of magnitude larger than the corresponding proportions of pupils proceeding to higher
education. A further computational challengemay arise with the use of the “BigM” approach
to the linearization of optimization programs with an unbalanced constraint matrix.

In the reported application, we could balance the constraint matrix by restating expen-
ditures in £100,000, pupils in hundreds and their proportion going to higher education as
percentages. This would result in all data being in the range [0; 100]. It has been decided to
maintain data as is rather than to rescale it. This provednot to be a problem for industry-leading
solvers, e.g., CPLEX or Gurobi, because their presolvers include sophisticated rescaling of
the constraint matrix by default.

9 Conclusion

The notions of the most productive scale size, scale and overall efficiency play an important
role in efficiency and productivity analysis based on the conventional VRSmodel. This paper
develops an extension of such scale characteristics to the R-VRS technology of Olesen et
al. (2015). The latter technology is defined axiomatically and allows both volume and ratio
inputs and outputs to be incorporated in the model.

Following the approach of Banker (1984), we start by defining the notion of MPSS in
the R-VRS technology. Continuing with the same approach, we define and interpret scale
efficiency as a measure of divergence from MPSS and decompose the overall efficiency of a
DMU into its technical and scale components.

Similar to the case of conventional VRS technology, the evaluation of MPSS and scale
efficiency of a DMU in the R-VRS technology turns out to be equivalent to the assessment of
its output radial efficiency in the closed cone extension of the R-VRS technology. Obtaining
an explicit statement of such cone extension suitable for optimization is a nontrivial task
accomplished in our paper.

Despite the conceptual similarities between the cases of VRS and R-VRS technologies,
there is an important distinction to be noted. In the former case, the closed cone extension
of the VRS technology is the CRS technology. This allows the scale efficiency in the VRS
technology to be alternatively interpreted as the technical efficiency in the benchmark CRS
technology. However, as shown in this paper, the closed cone extension of the R-VRS tech-
nology is generally different from the R-CRS technology axiomatically defined by Olesen et
al. (2015). As demonstrated by examples in this paper, the MPSS and scale efficiency in the
R-VRS technology defined according to the approach of Banker (1984) cannot generally be
evaluated using the R-CRS technology.
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In order to keep the exposition more general and suitable for different applications, we
allow the evaluation of MPSS and scale efficiency with respect to any selected subsets of
inputs and outputs, while keeping the remaining measures constant. This corresponds to the
scenario in which we want to test the response of a selected subset of outputs to changes
of a selected subset of inputs while treating the other inputs and outputs as fixed exogenous
measures.

We also consider returns-to-scale characterizations of the production frontier of the R-
VRS technology. Depending on the choice of inputs and outputs with respect to which we
evaluate the MPSS and scale efficiency of a DMU, we employ the local and global variants
of the notion of returns to scale. For a scale inefficient DMU, the type of returns to scale
(increasing or decreasing) is indicative of the direction to its MPSS, when the resizing is
allowed only with respect to the selected inputs and outputs.

To outline further potential research avenues, it is worth noting that the use of ratio data
presents similar difficulties in many alternative convex DEAmodels, for example the models
based on assumptions of weak disposability, models incorporating value judgements in the
form of weight restrictions and models with complex network structures. It is clear that
ratio inputs and outputs are inconsistent with the assumption of convexity and the additional
assumption of scalability often made in such models. Exploring the ways to incorporate ratio
data and developing approaches to the efficiency and RTS evaluation in such models is a
challenging task for future research.
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Appendix A: Proofs

Lemma 1 Define W as the set of all DMUs (X , Y ) ∈ R
m+s+ that satisfy conditions (8) with

some λ and σ . Then W is a closed set.

Proof of Lemma 1 Let a sequence of DMUs {(Xk, Y k)} ⊂ W converge to (X∗, Y ∗) ∈ R
m+s

as k → +∞. We need to prove that (X∗, Y ∗) ∈ W .
For each k = 1, 2, . . . , (Xk, Y k) satisfies (8) with some vector λk and scalar σ k . Because

the sequence {λk} is contained in the compact set [0, 1]n , where n is the number of observed
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DMUs, there exists some (not necessarily unique) convergent subsequence {λkt }, t = 1, 2, ...,
of the sequence {λk}. Let the limit point of {λkt } be λ∗. Because [0, 1]n is a closed set,
λ∗ ∈ [0, 1]n . Therefore, {λkt } → λ∗ as t → +∞. To simplify the proof, and without loss of
generality, let us assume that the sequence {λk} itself is converging, i.e., that {λk} → λ∗ as
k → +∞.

Let us prove that the sequence {σ k} is contained in a compact set. Because {Xk} converges
to X∗, it is bounded and there exists anM > 0 such that Xk

i < M , for all i ∈ I and k = 1, 2, ...
Because λ∗ satisfies (8i), there exists a j ′ ∈ J such that λ∗

j ′ > 0. Because {λkj ′ } → λ∗
j ′ as

k → +∞, there exists an ε > 0 and k̄ ≥ 1 such that λkj ′ ≥ ε > 0, ∀k > k̄.

The inequalities (8c) and (8g) stated for all DMUs (Xk, Y k), k > k̄, imply

λkj ′σ
k XV

j ′i ≤ (Xk
i )

V , ∀i ∈ IV ∩ I′,

λkj ′(σ
k X R

j ′i − (Xk
i )

R) ≤ 0, ∀i ∈ IR ∩ I′. (20)

By definition, we have 0 < ε ≤ λkj ′ and M > Xk
i , ∀k > k̄ and ∀i ∈ I. Then, from the

inequalities (20), for all k > k̄, we have

εσ k XV
j ′i ≤ λkj ′σ

k XV
j ′i ≤ (Xk

i )
V ≤ M, ∀i ∈ IV ∩ I′, (21a)

σ k X R
j ′i ≤ (Xk

i )
R ≤ M, ∀i ∈ IR ∩ I′. (21b)

By Assumption 1, there exists an i ′ ∈ I′ such that X j ′i ′ > 0. If i ′ ∈ IV , then XV
j ′i ′ > 0

and (21a) implies that σ k ≤ σ1, for all k > k̄, where σ1 = M/(εXV
j ′i ′) > 0. If i ′ ∈ IR , then

X R
j ′i ′ > 0 and (21b) implies that σ k ≤ σ2, for all k > k̄, where σ2 = M/X R

j ′i ′ > 0. Denote

σ̄ = min{σ1, σ2}. We have proved that the sequence {σ k}, k ≥ k̄, is contained in the compact
set [0, σ̄ ]. Then there exists its subsequence that converges to some σ ∗ ∈ [0, σ̄ ]. Without loss
of generality, assume that the sequence {σ k} itself is converging, i.e., that {σ k} → σ ∗ ∈ [0, σ̄ ]
as k → +∞.

By assumption, conditions (8) are true for each DMU (Xk, Y k) with the corresponding
λk and σ k , k = 1, 2, .... We also have (Xk, Y k) → (X∗, Y ∗), as k → +∞. Furthermore, as
proved, without loss of generality, we can assume that λk → λ∗ and σ k → σ ∗ as k → +∞.
This implies that conditions (8) are also true at the limit, i.e., for (X∗, Y ∗), λ∗ and σ ∗.
Therefore, (X∗, Y ∗) ∈ W . ��
Proof of Theorem 2 Define W as in Lemma 1. We need to prove that C̄(I′,O′) = W . First,
consider any DMU (X , Y ) = (X̃(α), Ỹ (α)) ∈ C(I′,O′), where (X̃ , Ỹ ) ∈ TR

VRS and α ≥ 0.
DMU (X̃ , Ỹ ) satisfies (2) with some vector λ. Then (X , Y ) satisfies (8) with the same vector
λ and σ = α. Therefore, (X , Y ) ∈ W and C(I′,O′) ⊆ W . Taking the closure of both sides
and noting equality (7) and Lemma 1, we have C̄(I′,O′) ⊆ W .

It remains to be proved thatW ⊆ C̄(I′,O′). Consider anyDMU (X̂ , Ŷ ) ∈ W . Then (X̂ , Ŷ )

satisfies (8) with some λ̂ and σ̂ . We need to prove that (X̂ , Ŷ ) ∈ C̄(I′,O′).
The idea of the proof is to consider two possibilities: σ̂ > 0 and σ̂ = 0. In the former

case, the proof is straightforward. In the latter case, we first define a sequence of DMUs
{(X(k), Y(k))}, k = 1, 2, ..., such that (X(k), Y(k)) ∈ TR

VRS ⊂ C(I′,O′). In other words,
(X(k), Y(k)) satisfies conditions (2), ∀k. In addition, the sequence {(X(k), Y(k))} is constructed
in such a way that the DMU (X̂ , Ŷ ) is its limit point. Therefore, (X̂ , Ŷ ) ∈ C̄(I′,O′), which
completes the proof.

(i) Let σ̂ > 0. Using notation (4), where ϕ = ψ = 1/σ̂ , define (X ′, Y ′) =
(X̂(1/σ̂ ), Ŷ (1/σ̂ )). Dividing both sides of inequalities (8a), (8c), (8e), (8g), (8j) and (8l)
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by σ̂ , observe that (X ′, Y ′) satisfies (2) with λ̂ and is therefore in TR
VRS. Because (X̂ , Ŷ ) =

(X ′(σ̂ ), Y ′(σ̂ )), we have (X̂ , Ŷ ) ∈ C(I′,O′) ⊆ C̄(I′,O′).
(ii) Let σ̂ = 0. We now use the following extended notation for any DMU (X , Y ):

(X , Y ) = (XV ′
, XV ′′

, X R′
1 , X R′

2 , X R′′
, Y V ′

, Y V ′′
, Y R′

, Y R′′
). (22)

In (22), we use the single prime symbol for the measures in the sets I′ and O′, and the
double prime for the measures in I \ I′ and O \O′. For example, the subvector XV ′

includes
inputs i ∈ IV ∩ I′, and Y R′′

includes outputs r ∈ OR \ O′. The subvector X R′
1 includes the

inputs from the set IR∩I′ for which we have a finite bound in (1). The subvector X R′
2 includes

the inputs from IR ∩ I′ for which the bound in (1) is either not specified or is infinite.
Because σ̂ = 0, inequalities (8a) and (8l) imply that Ŷ V ′

and X̂ R′
1 are zero vectors. By (8i),

there exists a j ′ ∈ J such that λ̂ j ′ > 0. Then the inequality (8e) for j = j ′ implies that Ŷ R′

is also a zero vector. Using notation as in (22) and replacing the three zero subvectors by 0,
state DMU (X̂ , Ŷ ) as follows:

(X̂ , Ŷ ) = (X̂ V ′
, X̂ V ′′

, 0, X̂ R′
2 , X̂ R′′

, 0, Ŷ V ′′
, 0, Ŷ R′′

). (23)

Define the sequence of DMUs {(X(k), Y(k))}, k = 1, 2, ..., as follows. Denote J ′ = { j ∈
J : λ̂ j > 0}. For each k, define

XV ′
(k) =

∑

j∈J ′
λ̂ j X

V ′
j + k X̂V ′

,

X
R′
1

(k) = max j∈J ′ {X R′
1

j }, X
R′
2

(k) = max j∈J ′ {X R′
2

j } + k X̂ R′
2 ,

where max is the operator of component-wise maximum. For example, each component

X
R′
1

(k),i is defined as the maximum of the corresponding components X
R′
1

j,i , where j ∈ J ′.
Let the other components of (X(k), Y(k)) be the same as in (X̂ , Ŷ ). Note that component

X
R′
1

(k) satisfies (1). It is straightforward to verify that each DMU (X(k), Y(k)) satisfies (2) with

the same λ = λ̂ and is therefore in TR
VRS. Using notation (4), where ϕ = ψ = 1/k, define

(X̂(k), Ŷ(k)) = (X(k)(1/k), Y(k)(1/k)), for any k = 1, 2, . . . We have:

(
X̂(k)

Ŷ(k)

)
=

⎛

⎜⎜⎜⎜⎜⎝

(1/k)
(∑

j∈J ′ λ̂ j XV ′
j

)
+ X̂ V ′

, X̂ V ′′
,

(1/k)
(
max j∈J ′ {X R′

1
j }

)
,

(1/k)
(
max j∈J ′ {X R′

2
j }

)
+ X̂ R′

2 , X̂ R′′

(1/k)Ŷ V ′
, Ŷ V ′′

, (1/k)Ŷ R′
, Ŷ R′′

⎞

⎟⎟⎟⎟⎟⎠
.

By definition, (X̂(k), Ŷ(k)) ∈ C(I′,O′). DMU (X̂ , Ŷ ) stated in (23) is the limit point of
{(X̂(k), Ŷ(k))}. Therefore, (X̂ , Ŷ ) ∈ C̄(I′,O′). Cases (i) and (ii) imply that W ⊆ C̄(I′,O′). ��
Lemma 2 If Assumptions 1 and 2 are true, the supremum of program (11) is attained.

Proof of Lemma 2 By Theorem 2, the feasible region  of program (11) includes all triplets
〈λ, σ, η〉 that satisfy conditions (8) in which DMU (X , Y ) is substituted by (Xo, Yo(η)).
It suffices to prove that the set  is closed and bounded. Conditions (8i) and (8n) imply
λ ∈ [0, 1]n . As proved in Lemma 1, Assumption 1 implies that there exists a σ̄ > 0 such
that σ ∈ [0, σ̄ ]. Then condition (8a) stated as

∑
j∈J λ jσY V

jr ≥ ηY V
or , for all r ∈ OV ∩ O′,

and Assumption 2 imply that there exists an upper bound M > 0 on η. Therefore,  is a
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bounded set. Furthermore,  is a closed set because it is defined by nonstrict inequalities
and an equality with continuous functions on both sides. Because the objective function η is
continuous on , its supremum is attained at some 〈λ∗, σ ∗, η∗〉 ∈ . ��
Proof of Theorem 3 and Corollary 1 Replace TR

VRS in program (9) by C(I′,O′). For any fea-
sible solution 〈ϕ,ψ〉 of program (9), we now have the ray of feasible solutions 〈αϕ, αψ〉,
α > 0, in the modified program. Because αψ/αϕ = ψ/ϕ, the supremum of ψ/ϕ is not
affected. The ratio ψ/ϕ is constant along each ray 〈αϕ, αψ〉, α > 0, and remains unchanged
if we require ϕ = 1 and rename ψ as η. Program (9) is now restated as (10).

We have proved that θ∗ = η′. Let us prove that η′ = η∗. Because C(I′,O′) ⊆ C̄(I′,O′),
we have η′ ≤ η∗. By Lemma 2, η∗ in program (11) is attained. It now suffices to prove that
(Xo, Yo(η∗)) ∈ C(I′,O′), as stated in Corollary 1.

We first note that η∗ ≥ 1. Because (Xo, Yo(η∗)) ∈ C̄(I′,O′), by Theorem 2, it satisfies
conditions (8) in which we take (X , Y ) = (Xo, Yo(η∗)), with some λ̂ and σ̂ . If we assume
that σ̂ = 0, conditions (8a) imply that Y V

or = 0, ∀r ∈ OV ∩ O′, and (8e) and (8i) imply that
Y R
or = 0, ∀r ∈ OR ∩ O′, which contradicts Assumption 2. Therefore, σ̂ > 0. Following (4),

define DMU (X̃ , Ỹ ) = (
Xo(1/σ̂ ), Yo(η∗/σ̂ )

)
. Then (X̃ , Ỹ ) satisfies (2) with λ̂ and is in

TR
VRS. Because (Xo, Yo(η∗)) = (X̃(σ̂ ), Ỹ (σ̂ )), we have (Xo, Yo(η∗)) ∈ C(I′,O′). ��

Proof of Theorem 4 By definition (Olesen et al. 2015), technology T P
CRS is the intersection of

all sets in R
m+ × R

s+ that satisfy Axioms 1–4. Similarly, technology TCRS is the intersection
of all sets in R

m+ × R
s+ that satisfy Axioms 1, 2, 4 and the standard axiom of convexity

(Banker et al. 1984). It suffices to prove that, under the assumptions of Theorem 4, Axiom 3
of selective convexity implies the standard axiom of convexity. (The opposite is always
true). To be specific, let the single ratio measure be a ratio input. (The case of ratio output
is similar and is not considered.) Consider any two DMUs (X̃ V , X̃ R, Ỹ V ) ∈ T P

CRS and
(X̂ V , X̂ R, Ŷ V ) ∈ T P

CRS, and any scalar γ ∈ [0, 1]. Define
(XV

γ , X R
γ , Y V

γ ) = γ (X̃ V , X̃ R, Ỹ V ) + (1 − γ )(X̂ V , X̂ R, Ŷ V ). (24)

We need to prove that (XV
γ , X R

γ , Y V
γ ) ∈ T P

CRS. As assumed, X̃ R > 0 and X̂ R > 0. Then

X R
γ > 0, and we can also define the two strictly positive scaling factors

α̃ = X R
γ /X̃ R, α̂ = X R

γ /X̂ R . (25)

From (24), we have γ X̃ R + (1 − γ )X̂ R = X R
γ . Dividing both sides of this equality by

X R
γ > 0, noting (25) and rearranging, we have

γ

α̃
+ (1 − γ )

α̂
= 1. (26)

Restate (24) as follows:

(XV
γ , X R

γ , Y V
γ ) = γ

α̃
(α̃ X̃ V , α̃ X̃ R, α̃Ỹ V ) + (1 − γ )

α̂
(α̂ X̂ V , α̂ X̂ R, α̂Ŷ V ). (27)

By Axiom 4, the scaled DMUs (α̃ X̃ V , α̃ X̃ R, α̃Ỹ V ) and (α̂ X̂ V , α̂ X̂ R, α̂Ŷ V ) are in T P
CRS.

Note that the scaling is defined in such away that the resulting ratio inputs are now
equal. Indeed, from (25), α̃ X̃ R = α̂ X̂ R = X R

γ . Taking into account (26) and (27),

DMU (XV
γ , X R

γ , Y V
γ ) is a convex combination of these two scaled DMUs. By Axiom 3,

(XV
γ , X R

γ , Y V
γ ) ∈ T P

CRS. ��
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Lemma 3 The incorporation of the additional inequality η ≥ 1 in the constraints of pro-
grams (13) and (28) (as defined in the proof of Theorem 5) does not affect the value and
attainability of their suprema η̂ and η∗, and does not affect any of their optimal solutions. If
Assumption 3 is satisfied, in any of the feasible solutions 〈λ, σ, η〉 of the resulting programs,
we have σ > 0.

Proof of Lemma 3 The first statement follows from the fact that the solution 〈λ′, σ ′, η′〉, where
λ′ is any vector with which DMU (Xo, Yo) ∈ TR

VRS satisfies (2) and σ ′ = η′ = 1, is feasible
in (13). Further, assume that in program (13) with the constraint η ≥ 1, we have σ = 0.
Then (13j) and (13o) imply λ = 0. Then (13b) and (13k) contradict Assumption 3 and the
inequality η ≥ 1. Therefore, σ > 0. The proof for program (28) is similar. ��
Proof of Theorem 5 Using Theorem 2, we can restate program (11) as follows:

η∗ = max η

subject to
∑

j∈J

λ jσY
V
jr ≥ ηY V

or , ∀r ∈ OV ∩ O′,

∑

j∈J

λ j Y
V
jr ≥ Y V

or , ∀r ∈ OV \O′,

∑

j∈J

λ jσ XV
ji ≤ XV

oi , ∀i ∈ IV ∩ I′,

∑

j∈J

λ j X
V
ji ≤ XV

oi , ∀i ∈ IV \I′,

λ j (σY
R
jr − ηY R

or ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR ∩ O′,

λ j (Y
R
jr − Y R

or ) ≥ 0, ∀ j ∈ J , ∀r ∈ OR\O′,

λ j (σ X R
ji − X R

oi ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR ∩ I′,

λ j (X
R
ji − X R

oi ) ≤ 0, ∀ j ∈ J , ∀i ∈ IR\I′,
1�λ = 1,

ηY R
or ≤ σ Ȳ R

r , ∀r ∈ OR ∩ O′,
Y R
or ≤ Ȳ R

r , ∀r ∈ OR\O′,
X R
oi ≤ σ X̄ R

i , ∀i ∈ IR ∩ I′,
X R
oi ≤ X̄ R

i , ∀i ∈ IR\I′,
λ ≥ 0, σ, η ≥ 0.

(28)

By Theorem 3, the optimal value η∗ of program (28) is attained. Incorporate the inequality
η ≥ 1 as a constraint in programs (13) and (28). Statement (ii) now follows from Lemma 3.
Note that, with the constraint η ≥ 1 incorporated (which guarantees σ > 0), any feasible
solution 〈λ∗, σ ∗, η∗〉 of program (28) becomes a feasible solution 〈λ̂, σ ∗, η∗〉 of program (13),
where λ̂ = λ∗σ ∗, and vice versa. As noted, η∗ is attained. Therefore, η̂ = η∗ is also attained
in program (13), which proves statement (i). To prove (iii), note that 〈λ̂, η̂, σ̂ 〉 is feasible
in (13) if and only if 〈λ′, ϕ′, ψ ′〉, where λ′ = λ̂/σ̂ , ϕ′ = 1/σ̂ and ψ ′ = η̂/σ̂ , is feasible
in (9). Because ψ ′/ϕ′ = η̂ and, by statement (i), η̂ = θ∗, solution 〈λ′, ϕ′, ψ ′〉 is optimal
in (9) if and only if 〈λ̂, η̂, σ̂ 〉 is optimal in (13). ��
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Table 9 DMUs in the example Measure A B F G

Volume output 1 4 2 3

Volume input 1 4 2 3

Ratio output 1 2 2 2

Ratio input 1 2 2 2

Appendix B: Comparison of cone C̄(I,O) and technology TP
CRS

The following example clarifies the difference between the full closed cone extension C̄(I,O)

of technology TR
VRS and technology T P

CRS of Olesen et al. (2015). It shows that (i) C̄(I,O)

does not satisfy Axiom 3 of selective convexity and (ii) C̄(I,O) �= T P
CRS. For simplicity, we

assume that there are no upper bounds (1) on the ratio input and output.
Let DMUs A and B in Table 9 be observed. DMU F is not observed and is obtained by

scaling DMU A with α = 2. All three DMUs A, B and F belong to C̄(I,O) and to T P
CRS.

By definition, technology T P
CRS satisfies Axiom 3 of selective convexity. Because both

ratio input and output of DMUs B and F are equal, by Axiom 3, DMU G, constructed as the
average of DMUs B and F , belongs to technology T P

CRS. Let us show that G /∈ C̄(I,O) and,
therefore, the closed cone C̄(I,O) does not satisfy Axiom 3 of selective convexity.

We need to prove that conditions (8) in which I′ = I and O′ = O and DMU (X , Y ) is G
cannot be satisfied. Changing notation from λ1 and λ2 to λA and λB , we have:

1σλA + 4σλB ≥ 3, (29a)

1σλA + 4σλB ≤ 3, (29b)

λA(1σ − 2) ≥ 0, (29c)

λA(1σ − 2) ≤ 0, (29d)

λB(2σ − 2) ≥ 0, (29e)

λB(2σ − 2) ≤ 0, (29f)

λA + λB = 1, (29g)

λA, λB , σ ≥ 0. (29h)

Let λA = 1 and λB = 0. Then (29a) and (29b) imply σ = 3. However, (29c) and (29d)
imply σ = 2. Therefore, this case is impossible. Similarly, if λA = 0 and λB = 1, then (29a)
and (29b) imply σ = 3/4, while (29e) and (29f) imply σ = 1. Therefore, this case is also
impossible. Finally, assume that λA > 0 and λB > 0. Then (29c) and (29d) imply σ = 2.
This is inconsistent with conditions (29e) and (29f) which imply σ = 1.

We have shown that DMU G /∈ C̄(I,O). Therefore, the cone C̄(I,O) does not satisfy
Axiom 3 of selective convexity. In contrast, technology T P

CRS satisfies Axiom 3 by definition
(Olesen et al. 2015). In particular, DMU G satisfies (12) with λA = λB = 1/2, σA = 2 and
σB = 1. Therefore, G ∈ T P

CRS. This also implies that C̄(I,O) �= T P
CRS.

Appendix C: The data set used in the application is Sect. 8

Table 10 shows the inputs and outputs of all schools used in the application in Sect. 8. The
latter section includes description of the inputs and outputs. Summary statistics for these data
were given in Table 5.
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Table 10 The data set used in the
application

School Teachers Expenditure NFSM Pupils HE

1 70.2 3203.4 66.1 1013 0.72

2 93.7 3425.8 55.7 1225 0.75

3 124.9 5239.7 68.7 1830 0.82

4 85.3 4472.2 57.2 1434 0.91

5 40.8 1778.7 81.5 1010 0.85

6 90.5 5638.9 76.9 1242 0.72

7 71.8 3184 64.7 1184 0.69

8 101 4297.3 71.2 1536 0.87

9 57 2120.8 86.3 1133 0.63

10 72.6 4023.1 74.1 1477 0.84

11 64.3 3212 57.5 1004 0.71

12 57.6 3260.3 84.8 888 0.55

13 71.5 2743.6 88.1 1208 0.74

14 76 2425.8 90 1255 0.68

15 34.4 1253.1 76.1 503 0.6

16 73.8 2655.5 79.6 1059 0.55

17 95.5 2949 90.2 1429 0.62

18 83.6 4454.1 76.9 1409 0.5

19 60.5 2728.2 81.3 963 0.83

20 53.8 2151.4 71.1 765 0.73

21 47.3 1620 84 746 0.7

22 64.6 2773.8 96.1 1070 0.76

23 71.6 2425.2 96.8 1199 0.73

24 80.3 3185.7 92.9 1399 0.83

25 63.5 2543.9 95.4 1084 0.83

26 49 2011.8 81.8 771 0.76

27 29.9 1216.7 80 490 0.45

28 63.9 1960.6 90.7 1027 0.6

29 63.7 2406.3 89.5 1076 0.55

30 84 3060.3 94.3 1505 0.75

31 38.6 1612.4 75.8 628 0.6

32 45.7 2283 80 769 0.74

33 22.2 1184 64.1 396 0.5

34 48.6 1977.5 87.2 847 0.61

35 45.1 1724.2 61.2 678 0.87

36 62.4 2019.6 86.1 968 0.48

37 55.1 2154.6 84.3 814 0.52

38 116.4 5275.7 68.9 1933 0.69

39 48 1521.6 86.7 766 0.8
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