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Abstract The Unsplittable Flow on a Path (UFP) problem has garnered consid-
erable attention as a challenging combinatorial optimization problem with notable
practical implications. Steered by its pivotal applications in power engineering, the
present work formulates a novel generalization of UFP, wherein demands and ca-
pacities in the input instance are monotone step functions over the set of edges. As
an initial step towards tackling this generalization, we draw on and extend ideas
from prior research to devise a quasi-polynomial time approximation scheme (QP-
TAS) under the premise that the demands and capacities lie in a quasi-polynomial
range. Second, retaining the same assumption, an efficient logarithmic approxima-
tion is introduced for the single-source variant of the problem. Finally, we round
up the contributions by designing a (kind of) black-box reduction that, under
some mild conditions, allows to translate LP-based approximation algorithms for
the studied problem into their counterparts for the Alternating Current Optimal
Power Flow (AC OPF) problem – a fundamental workflow in operation and con-
trol of power systems.
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Nomenclature

Notation Description

Summary of key notations related to the generalized UFP

G Line graph

V Set of vertices (indexed by i or j)

E Set of m edges (indexed by e or (i, j))

I Set of n users (indexed by k)

Q Grouping (of cardinality Q) of users based on utility-to-demand ratio

Iq Set of users in group q ∈ Q
Lq Set of users with “large” demands in group q ∈ Q
Sq Set of users with “small” demands in group q ∈ Q

d Number of dimensions

uk User k’s utility value

xk Decision variable for user k

frk (·) User k’s demand function over E in dimension r ∈ {1, 2, . . . , d}
erk, ê

r
k User k’s demand function’s binding edges in dimension r ∈ {1, 2, . . . , d}

cr(·) Capacity function over E in dimension r ∈ {1, 2, . . . , d}

T1, . . . , Td d positive integers

T Maximum among T1, . . . , Td

C1, . . . , Cd d integers each greater than 1

Pr Number of edge partitions in dimension r ∈ {1, 2, . . . , d}
ε Constant in (0, 1)

Summary of key notations related to AC OPF

T Graph of a radial distribution network

V+ Set of vertices excluding the root 0

V+
i Set of vertices in V+ excluding the node i

N Set of all users (electrical loads) (indexed by k)

Uj Set of users at node j

Nj Set of users residing on the subpath rooted at node j

F Set of users with elastic power demands

Pj The (unique) path from node j to the root 0

sk User k’s complex power demand

zi,j Impedance of power line (i, j)

Vj Voltage at node j

vj Voltage magnitude square at node j

Ii,j Current traversing through line (i, j)

li,j Squared magnitude of current flowing through line (i, j)

Si,j Complex power flowing from node i to node j

1 Introduction

The UFP, in its most generic form, takes as input a capacitated line graph along
with a collection of flow requests, each parameterized by a demand, a profit (utility)
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and a pair of source-sink vertices. Constrained by edge capacities, the pursued ob-
jective is to compute a maximum profit subset of requests routable simultaneously.
Despite its apparent simplicity, UFP specializes to a number of classical NP-hard
combinatorial problems, including the Knapsack problem (when the graph com-
prises a solitary edge) and the Maximum Edge-disjoint Path problem (when all
demands and capacities are set to unity). On the practical side, this problem un-
derlies a spectrum of real-world applications in communication networks (Bar-Noy
et al., 2001), space missions (Hall and Magazine, 1994), the Web (Albers et al.,
1999) and data centers management (Bansal et al., 2006), to name a few.

Recently, several studies have revisited UFP generalizing it from different per-
spectives. In (Momke and Wiese, 2015), UFP is extended to the Storage Allocation
problem, where the requests are additionally characterized by a vertical position
(i.e., height) and a coupling constraint is imposed enforcing a non-overlapping
drawing of them. Another line of work in (Adamaszek et al., 2016), adapted the
problem to the setting of a submodular objective function stimulated by theoret-
ical and practical appeal thereof. Expanding the application scope further, this
paper introduces a novel generalization of UFP. Previously, Cook et al. (Cook
et al., 1998) developed an interesting framework linking electrical power trans-
mission with the unsplittable flow on general graphs. Solidifying this nexus, we
establish a formal bond between UFP and the AC OPF, an essential problem in
power systems engineering introduced by Carpentier in 1962 (Carpentier, 1962)
(see Section 5 for particulars). Formally, the proposed generalization is defined in
what follows.

Generalization of UFP: In the d-dimensional Unsplittable Stairstep Flow on a
Path (d-USFP) problem, defined here for a fixed positive integer d ∈ Z+, given
is a line network G = (V, E) rooted at node 0 and a set I of n users. Assuming
an ascending ordering of the edges by distance from the root (i.e., e1 < e2 <
. . . < em, where ei = (i− 1, i)), each user demand is captured by a d-dimensional
vector fk = (f1

k , . . . , f
d
k ), where for ∀ r, frk : E → R+ are either monotone non-

increasing or monotone non-decreasing step functions over E (e.g., frk is monotone
non-decreasing if frk (e) ≤ frk (e′) whenever e ≤ e′). As with UFP, if fk is satisfied
(routed), uk ≥ 0 is the perceived utility for customer k and each edge e ∈ E is
associated with a capacity, which in the current context is a d-dimensional vector
c = (c1, . . . , cd), where cr : E → R+ is a monotone non-decreasing function on E .
With this input, d-USFP then takes the form(

d-USFP[I, c]
)

max
x

∑
k∈I

ukxk,

s.t.
∑
k∈I

frk (e)xk ≤ cr(e), ∀ e ∈ E , r ∈ {1, ..., d} (1)

xk ∈ {0, 1}, ∀ k ∈ I . (2)

In the above formulation, we may assume without loss of generality (by reversing
the order on E if necessary) that frk (·) is monotone non-decreasing for ∀ k ∈
I, r ∈ {1, ..., d}. While d-USFP can be defined for any such frk (·), this paper
confines the scope to functions of separable form. More precisely, given positive
integers T1, . . . , Td, monotone (non-decreasing) functions br,t : E → R+, for t =
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1, . . . , Tr, r ∈ [d] as well as non-negative numbers ar,tk ∈ R+ and edges erk, ê
r
k ∈ E ,

for t = 1, . . . , Tr, it is assumed that

frk (e) =

Tr∑
t=1

ar,tk b̃r,tk (e), where b̃r,tk (e) =


0 if e < erk,
br,t(e) if erk ≤ e < êrk .
br,t(êrk) otherwise.

(3)

This choice of functions1 stems from the relevant structural properties of OPF
constraints, as elaborated in Section 5.2. Yet, even with this condition in place,
d-USFP remains substantially more complicated than UFP as it entails the pack-
ing of monotone step functions of special type (rather than intervals) within a
given capacity function. Hence, known techniques for UFP, if amenable, have to
be extrapolated in a non-trivial manner to deal with d-USFP. In the proceeding
paragraphs, we briefly review these techniques.

Related Work: As noted previously, UFP is NP-hard since it specializes to the
Knapsack problem. In fact, even under the setting of uniform profits and capacities,
it has proven to be strongly NP-hard (Chrobak et al., 2012). In light of this
hurdle, most of the prior studies attempted simplified variants of UFP, with the
two predominantly common ones being the uniform capacity UFP (UCUFP) and
the UFP with the no-bottleneck assumption (UFP-NBA).

For UCUFP, which was also studied under the name of Resource Allocation
problem, the first constant factor approximation was presented in (Phillips et al.,
2000), attaining a 6-approximation via LP rounding techniques. This factor was
then refined by (Calinescu et al., 2002) to (2 + ε). The approach therein decouples
the instance into small and large requests, subsequently tackling the former in
a fashion analogous to (Phillips et al., 2000), while the latter through dynamic
programming.

Ensuing from a more general case, UFP-NBA restricts the maximum demand
to be at most the minimum capacity of any edge. The crux of this condition is
rooted in the integrality gap of the natural LP relaxation of UFP, which was shown
to be Ω(n) in (Chakrabarti et al., 2007), whereas that of UFP-NBA is O(1). For
UFP-NBA, the first constant factor approximation was derived in (Chakrabarti
et al., 2007). Improving upon this, Chekuri et al. (Chekuri et al., 2007) obtained
a (2 + ε)-approximation. These both studies broadly follow the aforementioned
framework of decomposing the requests into small and large.

Turning to UFP, in 2006 Bansal et al. (Bansal et al., 2006) developed a de-
terministic QPTAS under the assumption that the capacities and demands are
bounded by 2polylog(n), thereby ruling out UFP’s APX-hardness and hinting to
the likely existence of a PTAS. The first polynomial-time approximation algorithm
for UFP, yielding O(logn) guarantee, was introduced in (Bansal et al., 2014). The
algorithm is combinatorial, thus allowing to bypass the Ω(n) integrality gap of
the natural LP relaxation. Later on, this result was extended in (Anagnostopou-
los et al., 2014) to a (2 + ε)-approximation. Beating the barrier of 2, Grandoni
et al. (Grandoni et al., 2018) provided a dynamic programming-based polyno-
mial time algorithm with an approximation factor of (5

3 + ε), which in (Grandoni

1 Note that, for ∀ r ∈ {1, ..., d}, the capacity function cr(·) adheres to this form trivially
with Tr = ar,t = 1, br,t(·) = cr(·) for ∀ t and er = e1, êr = em.
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et al., 2022b) was subsequently improved to 1 + 1
1+e + ε < 1.269 (in expecta-

tion) via a novel randomized sketching technique. Closing the search for a PTAS,
very recently Grandoni et al. (Grandoni et al., 2022a) devised a polynomial time
(1 + ε)-approximation algorithm which tackles UFP by rephrasing the problem as
a solitary game and is the best possible result unless P=NP.

Contributions and Paper Outline: As such, this study advances extant re-
search in the following two aspects:

ã We introduce a practically-driven generalization of UFP and initiate the search
for its efficient approximations. As a first step in this direction, we extend
the ideas in (Bansal et al., 2006) to construct a QPTAS for separable d-
USFP, under the assumption that the demands and capacities lie in a quasi-
polynomial range. Second, relying on the same assumption, we devise an LP-
based O(d logn)-approximation for the single-source setting of the problem
(i.e., when all the requests share the same origin). The algorithm hinges on a
simple reduction allowing to transform the problem to an easier instance with
only O(d logn) constraints.

ã A (kind of) black-box reduction is derived that, under some practical assump-
tions, translates an LP-based approximation for separable d-USFP into its
analog for OPF on line distribution networks. This result complements the
strand of research in (Karapetyan et al., 2018; Chau et al., 2018; Khonji et al.,
2019; Elbassioni et al., 2019; Karapetyan et al., 2021) concerned with devel-
oping efficient approximations tailored for combinatorial optimization of AC
electric power systems.

The remainder of this article is organized as follows. Section 2 covers the
adopted notation along with a basic result on partitioning of the studied step
functions. Section 3 presents the QPTAS for separable d-USFP. In Section 4 we
provide the logarithmic approximation for single-source separable d-USFP. Sec-
tion 5 contains an overview of AC OPF problem, followed by its mathematical
formulation and the proposed reduction procedure producing LP-based approx-
imations for OPF on line networks. Lastly, Section 6 concludes the paper with
a discussion on applications and connotations of present contributions as well as
prospective directions for further developments.

2 Notational Convention and Preliminaries

In what follows, unless otherwise explicitly mentioned, constants or variables are
denoted in normal font (e.g., C, d), while sets in calligraphic capital letters (e.g.,
E). We let 0 and 1 symbolize the vectors of all zeros and ones, respectively, and as a
shorthand, we shall write [n] to encode the range {1, ..., n} for an integer n. Unless
stated differently, we designate the operators ¯ , to capture the maximum and
minimum values of a variable/parameter/function, respectively. Given a complex
number ν ∈ C, we let |ν| be its magnitude, arg(ν) be the phase angle that it
makes with the real axis, ν∗ be its complex conjugate and write νR , Re(ν),
νI , Im(ν) for its real and imaginary components, respectively. With a slight abuse
of notation, we shall also use the superscript ∗ to mark the optimal solutions.
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In line with (Bansal et al., 2006), we suppose the range of demands and ca-
pacities is quasi-polynomial. Mathematically,

max

{
maxe∈E,k∈I,r∈[d] f

r
k (e)

mine∈E,k∈I,r∈[d]:frk (e)>0 f
r
k (e)

,
maxe∈E,r∈[d] c

r(e)

mine∈E,r∈[d]:cr(e)>0 cr(e)

}
= 2polylog(n).

This assumption is leveraged both, in the QPTAS and the logarithmic approxi-
mation, however, one can possibly discard it with techniques from (Batra et al.,
2015).

The proposed approximations employ the following simple, yet crucial, lemma
which, in a sense, states that the line can be partitioned into logarithmic (in n)
number of regions such that, for each user k, the function fk(·) is roughly constant
in each region.

Lemma 1 For any Cr > 1, r ∈ [d], E can be partitioned along each coordi-

nate r ∈ [d] into Pr < Tr logCr
(
b
r

br

)
intervals Er =

⋃Pr
p=1 E

r
p , where Erp :=

{ei(p,r), ei(p,r)+1, . . . , ei(p,r)}, and

· · · < ei(p−1,r) < ei(p,r) < ei(p,r)+1 < · · · < ei(p,r) < ei(p+1,r) < · · · ,

with the following property:

f
p,r
k ≤ Cr · fp,rk , ∀k ∈ I, ∀p ∈ [Pr], ∀r ∈ [d], (4)

where br := mine∈E, t∈[Tr]: br,t(e)>0 b
r,t(e), b

r
:= maxe∈E, t∈[Tr] b

r,t(e) = br,t

(en), fp,r
k

:= mine∈Erp : frk (e)>0 f
r
k (e) and f

p,r
k := maxe∈Erp f

r
k (e) = frk (ei(p,r)).

Proof: Fix r ∈ [d]. For t ∈ [Tr], let jt,1 ∈ V be the smallest index such that

br,t((jt,1, jt,1 + 1)) > 0, and for `′ = 2, 3, . . . , let jt,`
′
∈ V, be the smallest index

such that

br,t((jt,`
′
, jt,`

′
+ 1)) > Cr · br,t((jt,`

′−1, jt,`
′−1 + 1)). (5)

Let ¯̀ be the largest index for which (5) is possible (if no such index exists, then
the lemma follows with Pr = 1), and set `t := ¯̀+ 1 and jt,`t := m. The inequality
in (5) implies that br,t(en) > C`t−1

r · br,t((jt,1, jt,1 + 1)) which implies in turn that

`t ≤ logCr
br,t(en)

br,t((jt,1, jt,1 + 1))
≤ logCr

(br
br

)
. (6)

Moreover, (5) implies

br,t((j − 1, j))

br,t((j′ − 1, j′))
≤ Cr, ∀j, j′ ∈ {jt,`

′
+ 1, . . . , jt,`

′+1},∀`′ = 2, . . . , `t − 1. (7)

The set
⋃
t∈[Tr]

{jt,`
′

: `′ ∈ [`t]} ⊆ V defines a partition of E into Pr ≤∑Tr
t=1(`t − 1) intervals Er1 , . . . , ErPr . By (6),

Pr < Tr logCr

(br
br

)
. (8)
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Consider any interval Erp :=
{
ei(1,p), ei(1,p)+1, . . . , ei(1,p)

}
in the partition. Then

by (3) and (7), for any e, e′ ∈ Erp , we have

b̃r,t(e) ≤ Cr · b̃r,t(e′), whenever e′ ≥ erk

and thus, it follows form (3) that, whenever frk (e′) > 0 (and hence e′ ≥ erk), we
have

frk (e) =

Tr∑
t=1

ar,tk b̃r,tk (e) ≤
Tr∑
t=1

ar,tk Cr b̃
r,t
k (e′) ≤ Crfrk (e′),

as required by (4). �

3 A QPTAS for separable d-USFP

This section presents an LP-based approach that arrives at a QPTAS for separa-
ble d-USFP with the main result stated in Theorem 1. The high-level idea behind
the provided scheme is to segment the users’ demand functions in each partition
of edges guaranteed by Lemma 1 into “large” and “small”, then effectively com-
bine their solutions by exploiting monotonicity and separability of these functions.
As the number of “large” demands in the optimal solution turns to be provably
bounded, we guess the corresponding decision variables through exhaustive search.
On the other hand, the situation with “small” demands is more complicated since
their presence in the optimal solution can be significant. However, as shown in
Lemma 2, for such demands, a given fractional solution x̃ for separable d-USFP
can be rounded to an integral one that fits within x̃’s resource requirements with-
out a notable sacrifice in the objective value.

For exposition clarity, the analysis is arranged into two subsections, which are
then further dissected into more concise paragraphs. We proceed by exploring the
properties of near-optimal solutions.

3.1 Structure of Near-optimal Solutions

Discretizing the instance: Let umax := maxk∈I uk and ε ∈ (0, 1) be a given
constant. Define Î := {k ∈ I : uk ≥ εumax

n }. Note that umax ≤ Opt for a feasible
instance, where Opt is the value of an optimal solution for d-USFP[I, c]. It follows
that

∑
k∈I\Î uk ≤ εumax ≤ εOpt and hence,

∑
k∈Î uk ≥ (1− ε)Opt.

For k ∈ Î and r ∈ [d], let fr
k

:= mine: frk (e)>0 f
r
k (e), f

r
k := maxe f

r
k (e) =

frk (en), fr := mink f
r

k
and f

r
:= maxk f

r
k. We consider discrete levels of function

values: for l = −∞, 0, 1, 2, . . . ,
⌈
log(1+ε)

nf
r

fr

⌉
let F rl := (1 + ε)lfr, and F r :={

F rl : l = −∞, 0, 1, 2, . . . ,
⌈
log(1+ε)

nf
r

fr

⌉}
with F := max

{
|F r| : r ∈ [d]

}
.
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Partitioning the instance: For each r ∈ [d], we assume the partition of E guar-
anteed by Lemma 1, and let ar := mink∈Î, t∈[Tr]: a

r,t
k >0 a

r,t
k and ar := maxk∈Î, t∈[Tr]

ar,tk . Note that if ar,tk > 0 and k ∈ Î, then εumax

nar ≤
uk
ar,tk
≤ umax

ar . We partition the

users in Î into Q :=
∏d
r=1

∏Tr
t=1Qr,t groups, where Qr,t :=

⌈
log nar

εar

⌉
+ 1:

Iq =
{
k ∈ Î : 2qr,t−1L ≤ uk

ar,tk
< 2qr,tL for all t ∈ [Tr], r ∈ [d]

}
, (9)

for q = (qr,t : t ∈ [Tr], r ∈ [d]) ∈ Q :=
∏d
r=1

∏Tr
t=1{1, . . . , Qt,r − 1,∞}, where2

L := εumax

nar . Let Q := maxt,r Qr,t,. Then Q ≤ Q
∑d
r=1 Tr .

Structure of the optimal solution: Consider an optimal solution x∗ to sepa-
rable d-USFP[I, c]. For q ∈ Q, let T ∗ = {k ∈ Î : x∗k = 1}. Then (f∗)q,r(e) :=∑
k∈T ∗∩Iq f

r
k (e), for r ∈ [d], defines a monotone non-decreasing function on E . We

call such a function a “profile” defined by the optimal solution in group Iq. For
p ∈ [Pr], let (h∗)q,p,r = maxe∈Erp (f∗)q,r(e) be the peak demand defined by the

optimal solution (from group q) within the interval Erp .
For q ∈ Q, let (L∗)q := {k ∈ Iq∩T ∗ : fp,r

k
> ε2(h∗)q,p,r for some p ∈ [Pr], r ∈

[d]} be the set of “large” demands within group Iq in the optimal solution, and
let Sq := Iq ∩ T ∗ \ (L∗)q be the set of “small” demands within the same group.
Note that, by definition of (h∗)q,p,r and the monotonicity of frk (·), there cannot
be more than 1

ε2 demands k in Iq ∩ T ∗ such that fp,r
k

> ε2(h∗)q,p,r, and hence

|(L∗)q| ≤
∑d
r=1 Pr
ε2 . The situation with small demands is more complicated as

their number in the optimal solution can be high. However, with a small loss in
the objective value, the profile defined by such small demands can be restricted
into one that admits a small description. This motivates the following definition
(generalizing that of in (Bansal et al., 2006)).

Definition 1 ((h, ε)-restricted profile) Let ε > 0 be such that 1/ε ∈ Z+. For
r ∈ [d] and p ∈ [Pr], let h = (hp,r)p∈[Pr], r∈[d] be a given vector of numbers such

that hp,r ∈ F r and hp,r ≥ hp−1,r, for all p = 2, . . . , Pr and r ∈ [d]. An (h, ε)-
restricted profile g = (gr)r∈[d] is vector of monotone functions gr : E → R+ such
that gr(e) ∈ {lεhp,r : l ∈ {0, 1 . . . , 1/ε}, p ∈ [Pr]} (see Figure 3 in Section A for
pictorial interpretation of an (h, ε)-restricted profile).

Accordingly, the total number of (h, ε)-restricted profiles is at most m
∑d
r=1 Pr/ε.

For q ∈ Q and for p ∈ [Pr], define

Hq,p,r :=

Tr∑
t=1

br,t
(
ei(p,r)

)
2qr,tL

. (10)

Note that

∀p ∈ [Pr] : Hq,p,r > 0 ⇔ ∃t ∈ [Tr] : qr,t 6=∞
⇔ ∀k ∈ Iq ∃t ∈ [Tr] : ar,tk > 0

⇔ ∀k ∈ Iq : frk (en) > 0. (11)

2 For clarity, it is assumed in (9) that the strict inequality is replaced by an inequality when

ar,tk = 0.
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Let Hq := {r ∈ [d] : Hq,Pr,r > 0}, and α :=
∑d
r=1 Pr∑
r∈Hq Pr

. Assume Hq 6= ∅ since

otherwise, frk (en) = 0 for all k ∈ Iq and hence all the users in Iq can be taken in
the solution without affecting the constraints.

In proving Theorem 1, we shall resort to the below Lemma, which builds on
top of the findings in (Bansal et al., 2006) and is proved in Section A.

Lemma 2 Fix q ∈ Q and ε ∈ (0, 1). Let Sq ⊆ Iq be a set of demands within
group q such that fp,r

k
≤ Bp,q,r for all k ∈ Sq, p ∈ [Pr], r ∈ [d], and some

numbers Bp,q,r ∈ R+. Let hq = (hq,p,r)p∈[Pr], r∈[d] be a given vector of numbers

such that hq,p,r ∈ F r and hq,p,r ≥ hq,p−1,r, for all p = 2, . . . , Pr and r ∈ [d], and
(x̃k)k∈Sq ∈ [0, 1]S

q

be such that∑
k∈Sq

f
p,r
k x̃k ≤ (1 + ε)hq,p,r, ∀p ∈ [Pr], ∀r ∈ [d]. (12)

Then we can find in polynomial time an integral vector (x̂k)k∈Sq ∈ {0, 1}S
q

and
an (h, ε)-restricted profile gq, such that

(i)
∑
k∈Sq f

r
k (e)x̂k ≤ gq,r(e) ≤

∑
k∈Sq f

r
k (e)x̃k for all e ∈ E , r ∈ [d], and

(ii)
∑
k∈Sq

ukx̂k ≥
∑
k∈Sq

ukx̃k −
∑
r∈Hq

(
Pr∑
p=1

(
Cr

Hq,p,r (εhq,p,r +Bq,p,r)
)

+ αPrB
q,Pr,r

εHq,Pr,r

)
.

In other terms, Lemma 2 establishes that, when all demands are small, a given
fractional solution x̃ for separable d-USFP can be rounded to an integral solution
x̂ that fits within a capacity profile with a small description, losing only a small
part of the utility of x̃.

3.2 Approximation Scheme

The featured QPTAS, formally stated in Alg. 1, proceeds as follows. As Opt ≥
umax, by restricting the set of demands to Î (defined in Section 3.1) we lose only a
value of at most εOpt from the optimal solution. Next, the algorithm discretizes
the instance and partitions the users in Î into Q groups (Iq)q∈Q, as described in
Section 3.1. Additionally, Alg. 1 partitions E into intervals Er satisfying assump-
tion (4), as per Lemma 1 (with Cr = 2).

Then for each group q ∈ Q, Alg. 1 guesses the set of large demands Lq ⊆ Iq
in the optimal solution, and the peaks hq,p,r, within 1 + ε, of the small de-
mands in the optimal solution within the interval Erp . Let L = (Lq)q∈Q and
hq = (hq,p,r)p∈[Pr], r∈[d] where hq,p,r ∈ F r. Define the set of small demands
within group q ∈ Q as

Sq :=
{
k ∈ Iq : fp,r

k
≤ Bq,p,r for all p ∈ [Pr], r ∈ [d]

}
, (13)

where Bq,p,r := ε2
[
hq,p,r +

∑
k∈Lq f

p,r
k

]
.

Let T := maxr Tr and M := max
{

maxr
ar

ar ,maxr
b
r

br

}
.

Theorem 1 For any fixed ε ∈ (0, 1), Alg. 1 attains a (1 − ε)-approximation for

separable d-USFP in time
(
nm log(dnTM)

ε

)dT ·O(log dnTM
ε )

dT

.
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Algorithm 1 d-USFP-QPTAS

Require: An approximation parameter ε ∈ (0, 1); separable d-USFP input (frk )k∈I, r∈[d]

satsifying (3); capacities (cr)r∈[d]

Ensure: An integral solution x̂ to d-USFP such that
∑
k∈I ukx̂k ≥ (1−O(ε))Opt

1: for each selection
(
L = (Lq)q∈Q, h =

(
hq = (hq,p,r)p∈[Pr ], r∈[d]

)
q∈Q

)
such that Lq ⊆ I,

|Lq | ≤
∑d
r=1 Pr
ε2

and hq,p,r ∈ F r do

2: if
∑
k∈L f

r
k (e)+

∑
p∈[Pr ], q∈Q h

q,p,r ≤ cr(e) ∀e ∈ E, r ∈ [d] then

3: x̂′k ← 1 ∀ k ∈ L
4: for q ∈ Q do
5: Let Sq be given by (13)
6: for every (h, ε)-restricted profile gq do
7: (x̂′k)k∈Sq ← Integral vector returned by applying Lemma 2 with vector hq ,

and (x̃k)k∈Sq = (x′k)k∈Sq

8: if
∑
k∈I ukx̂

′
k >

∑
k∈I ukx̂k then

9: x̂← x̂′

10: return x̂

Proof: Let ε := ε
2β+1 , where β = maxr∈Hq 2 (2Cr + αPr) = O(d3(T logM)2). The

number of possible choices for each Lq in step 1 of Alg. 1 is at most n
∑d
r=1 Pr/ε

2

.

Thus, using Q ≤ Q
∑d
r=1 Tr , and Q = O(log nM

ε ), the number of possible choices
for L is at most

n
∑d
r=1 PrQ/ε

2

≤ n
∑d
r=1 PrQ

∑d
r=1 Tr/ε2 = ndT logM·O(log nM

ε
)dT/ε

2

. (14)

The number of choices for each hq = (hq,p,r)p∈[Pr], r∈[d] is

F
∑d
r=1 Pr = O

(( log(nTM)

ε

)dT logM
)
,

and the number of choices for Q in step 4 is

Q
∑d
r=1 Tr ≤ O

(
log

nM

ε

)dT
, (15)

giving at most

(
O

(
log(nTM)

ε

)dT logM
)Q

=

(
O

(
log(nTM)

ε

)dT logM
)O(log nM

ε )
dT

(16)

choices for h = (hq)q∈Q in step 1. The number of choices for the ε-restricted

profiles in step 6 is bounded from above by m
∑d
r=1 Pr/ε = mO( dT logM

xε
). The bound

on the running time of Alg. 1 follows from this and (14),(15),(16).
We now argue that the solution x̂ outputted by Alg. 1 is (1−O(ε))-approximation

for separable d-USFP. Let x∗ be an optimal solution for d-USFP of objective value
Opt ,

∑
k∈I ukx

∗
k. By the definition of Î, we have∑

k∈I\Î

uk ≤ εOpt. (17)
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Define T ∗ , {k ∈ Î | x∗k = 1} and (h∗)q,p,r =
∑
k∈T ∗∩Iq f

p,r
k , for p ∈ [Pr],

r ∈ [d] and q ∈ Q. Let (L∗)q :=
{
k ∈ Iq ∩ T ∗ : fp,r

k
> ε2(h∗)q,p,r for some p ∈

[Pr], and some r ∈ [d]
}

be the set of “large” demands within group Iq in the

optimal solution, and let (S∗)q := Iq ∩ T ∗ \ (L∗)q be the set of “small” demands

within the same group. Note by this definition that |(L∗)q| ≤
∑d
r=1 Pr
ε2 , and thus

L∗ = ((L∗)q)q∈Q and h = (hq)q∈Q will be one of the guesses considered by the
algorithm in step 1. Let us focus on this particular iteration of the loop in step 1.
Let hq,p,r = (1 + ε)`fr, where ` is the smallest integer (including −∞) such that

hq,p,r +
∑
k∈(L∗)q f

p,r
k ≥ (h∗)q,p,r. Note that hq,p,r ∈ F r, and

1

1 + ε
hq,p,r +

∑
k∈(L∗)q

f
p,r
k ≤ (h∗)q,p,r ≤ hq,p,r +

∑
k∈(L∗)q

f
p,r
k . (18)

Note that for any k ∈ (S∗)q, q ∈ Q, p ∈ [Pr], and r ∈ [d], we have by (18),

fp,r
k
≤ ε2(h∗)q,p,r ≤ ε2

hq,p,r +
∑

k∈(L∗)q
f
p,r
k

 ,

and hence (S∗)q ⊆ Sq. Note also that

Bq,p,r = ε2

hq,p,r +
∑

k∈(L∗)q
f
p,r
k


≤ ε2

hq,p,r + (1 + ε)
∑

k∈(L∗)q
f
p,r
k

 ≤ ε2(1 + ε)(h∗)q,p,r. (19)

For each q ∈ Q, there is an (h, ε)-restricted profile gq and an integral solution
(x̂′k)k∈Sq that satisfy Lemma 2 (applied with x̂ ← x̂′ and x̃ ← x∗). Since all the
possible (h, ε)-restricted profiles are probed, the profile gq will be identified in one
of the iterations of the loop in step 6 of Alg. 1. Let us consider this iteration. By
condition (ii) of Lemma 2 and (19),

∑
k∈Sq

ukx̂
′
k ≥

∑
k∈Sq

ukx
∗
k −

∑
r∈Hq

 Pr∑
p=1

(
Cr (εhq,p,r +Bq,p,r)

Hq,p,r

)
+
αPrBq,Pr,r

εHq,Pr,r


=
∑
k∈Sq

ukx
∗
k −

∑
r∈Hq

 Pr∑
p=1

(
Crε(1 + ε)2(h∗)q,p,r

Hq,p,r

)
+
αPrε2(1 + ε)(h∗)q,Pr,r

εHq,Pr,r


=
∑
k∈Sq

ukx
∗
k − ε(1 + ε)

∑
r∈Hq

 Pr∑
p=1

(
Cr(1 + ε)(h∗)q,p,r

Hq,p,r

)
+
αPr(h∗)q,Pr,r

Hq,Pr,r

 .

(20)

On the other hand, for k ∈ Sq and r ∈ [d] such that frk (en) > 0 (and hence
Hq,p,r > 0 for all p ∈ [Pr] by (11)), we have uk ≥ 2qr,t−1Lar,tk and thus

uk
br,t(ei(p,r))

2qr,t−1L
≥ ar,tk br,t(ei(p,r)) ≥ a

r,t
k b̃r,t(ei(p,r)). (21)
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Summing up (21) over t ∈ [Tr], we get uk ≥
f
p,r

k

2Hq,p,r . Recall that (h∗)q,p,r =∑
k∈T ∗∩Iq f

p,r
k , then summing this inequality over k ∈ T ∗ ∩ Iq yields

Optq :=
∑

k∈T ∗∩Iq
uk ≥

∑
k∈T ∗∩Iq

f
p,r
k

2Hq,p,r
=

(h∗)q,p,r

2Hq,p,r
. (22)

Summing (22), over r ∈ Hq and p ∈ [Pr] gives

Optq ≥
∑
r∈Hq

Pr∑
p=1

(h∗)q,p,r

2Hq,p,r

=
1

β
·
∑
r∈Hq

Pr∑
p=1

β(h∗)q,p,r

2Hq,p,r

≥ 1

β
·
∑
r∈Hq

Pr∑
p=1

2 (2Cr + αPr) (h∗)q,p,r

2Hq,p,r

≥ 1

β
·
∑
r∈Hq

Pr∑
p=1

(
2Cr(h

∗)q,p,r

Hq,p,r
+
αPr(h

∗)q,p,r

Hq,p,r

)

≥ 1

β
·
∑
r∈Hq

(
Pr∑
p=1

(1 + ε)Cr(h
∗)q,p,r

Hq,p,r
+

Pr∑
p=1

αPr(h
∗)q,p,r

Hq,p,r

)

≥ 1

β
·
∑
r∈Hq

(
Pr∑
p=1

(
Cr

Hq,p,r
(1 + ε)(h∗)q,p,r

)
+
αPr(h

∗)q,Pr,r

Hq,Pr,r

)
, (23)

where β = maxr∈Hq 2 (2Cr + αPr) as defined previously. Thus, it follows from (20)
and (23) that∑
k∈Sq

ukx̂
′
k ≥

∑
k∈Sq

ukx
∗
k − ε(1 + ε)βOptq ≥

∑
k∈(S∗)q

ukx
∗
k − ε(1 + ε)βOptq. (24)

Summing (24) over all q ∈ Q and using (17) and (24) gives

∑
k∈I

ukx̂
′
k =

∑
q∈Q

 ∑
k∈(L∗)q

ukx̂
′
k +

∑
k∈Sq

ukx̂
′
k


≥
∑
q∈Q

 ∑
k∈(L∗)q

ukx
∗
k +

∑
k∈(S∗)q

ukx
∗
k − ε(1 + ε)βOptq


=
∑
k∈T ∗

ukx
∗
k − ε(1 + ε)β

∑
k∈T ∗

uk

=
∑
k∈Î

ukx
∗
k − ε(1 + ε)β

∑
k∈T ∗

uk

≥
∑
k∈I

ukx
∗
k − ε(2β + 1)Opt = (1− ε)Opt.
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It follows that the solution x̂ returned by Alg. 1 satisfies∑
k∈I

ukx̂k ≥
∑
k∈I

ukx̂
′
k ≥ (1− ε)Opt ,

thus concluding the proof. �
Note that the running time is quasi-polynomial if M = 2polylog(m,n) and d =

O(1), T = O(1).

4 A Logarithmic approximation for single-source separable d-USFP

Notwithstanding its theoretical appeal, the QPTAS devised in Sec. 3 is computa-
tionally prohibitive even for modest problem sizes, hence is of limited practicality.
This section presents an efficient logarithmic approximation for single-source sep-
arable d-USFP[I, c] with a running time complexity dominated by solving an LP.
Before stating the result formally, we rewrite the problem in a suitable matrix
notation and briefly outline the underlying technique. Notice that d-USFP[I, c]
can be cast as a general packing integer program (PIP) of the form(

P
[
(Ar)r∈[d], u, (c

r)r∈[d]

])
max
x

uTx

s.t. Arx ≤ cr, ∀ r ∈ [d] (25)

x ∈ {0, 1}n, (26)

where u ∈ Rn+ is the utility vector, cr ∈ Rm+ denotes the edge capacities in di-
mension r ∈ [d] and Ar ∈ Rm×n+ resembles the edge-demand incidence relation for
the corresponding dimension r ∈ [d], with the rows signifying the edges and the
columns the demands (i.e., Arik = frk (ei) for ∀i ∈ [m], k ∈ I).

Exploiting the special structure of P induced by the monotonicity and sepa-
rability of demands, we develop a simple grouping and scaling method allowing
to reduce the problem to an easier instance with only logarithmically many con-
straints. Recall that an analogously named technique was derived in (Kolliopoulos
and Stein, 2001) for the single-source unsplittable flow problem. Deviating from
the setting in (Kolliopoulos and Stein, 2001) of partitioning the instance in the
demand space, the proposed approach, instead, decomposes the edges into disjoint
segments, each defining a subproblem of P where each capacity and demand varies
within a preset range. These subproblems, after certain alterations, are then recon-
solidated, effectively formulating the compacted problem with O(d logn) number
of constraints. It’s noteworthy that this reduction subroutine holds irrespective
of the rather restrictive NBA condition, which is stipulated in (Kolliopoulos and
Stein, 2001). Thereafter, invoking the standard randomized rounding algorithm on
the natural LP relaxation of the reduced problem ensures the claimed approxima-
tion factor. Formally, the preceding analysis culminates in Theorem 3.

In proving Theorem 3, we capitalize on several established results on random-
ized rounding and its derandomization (codified in the theorem to follow) as a
unified black box technique and thereby omit the intricate particulars.

Theorem 2 ((Srinivasan, 1999; Raghavan and Tompson, 1987) ) Let B
be a PIP of the form max{uTx : Ax ≤ c, x ∈ {0, 1}n}, where A ∈ [0, 1]m×n,
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u ∈ [0, 1]n and c ∈ [1,∞)m with maxj uj = 1. Then, there exists an algorithm
outputting in deterministic polynomial time a feasible solution to P of value

Ω

(
max

{
OptL
m1/ν

,

(
OptL
m1/ν

) ν
ν−1
})

,

where OptL is the optimum of the linear relaxation of B and ν = minj cj.

Theorem 3 There is an O(d logn)-approximation for single-source separable d-
USFP, provided the edge capacities and demands are bounded by 2polylog(n).

Proof: Let Λ =
(

(Ar)r∈[d], u, (c
r)r∈[d]

)
be an input instance of P with Opt

denoting the value of its optimal solution x∗. From Λ, construct an augmented

instance Λ′ =
(( [

Ar cr
] )
r∈[d]

, (u, 0), (cr)r∈[d]

)
, which essentially models the out-

come of incorporating a dummy request with a utility of 0 and a demand equal to
edge capacities. This auxiliary step, meant to streamline the proof, incurs no loss
of generality as neither x∗ nor its structure is affected in the aftermath. Thus, to
elude cumbersome notation, (Ar)r∈[d] and u are hereafter assumed implicitly of
the augmented form as in Λ′.

At a loss of only a constant factor in Opt, we shall now transform P to a
problem with O(d logn) constraints. Let Π denote the LP relaxation of P, ob-
tained by allowing x to lie in [0, 1]n. Fix a constant C > 1, along with the
corresponding partitions (Er)r∈[d] guaranteed by Lemma 1, and denote by Ar,p

the submatrix of Ar restricted to the rows in
{
i ∈ [m] | ei ∈ Erp

}
. Observe

that each interval Erp in (Er)r∈[d] naturally defines a subproblem Π
[
Ar,p, u, cr,p

]
,

where
maxi A

r,p
ij

mini:Ar,p
ij

>0 A
r,p
ij
≤ C for ∀j ∈ [n + 1] and, by introduced ancillary de-

mands,
maxi c

r,p
i

mini:cr,p
i

>0 c
r,p
i
≤ C. Given Π

[
Ar,p, u, cr,p

]
, compose a simplified instance

Π
[
A
r,p
, u, cr,p

]
, with cr,p := mini c

r,p
i · 1 and A

r,p
standing for the matrix whose

i, j-th entry equals maxiA
r,p
ij if Aij 6= 0 and 0 otherwise. In a sense, this amounts

to setting each demand to its maximum, therein flattening out the step functions
into lines, and uniforming the edge capacities across the interval. Consider an op-
timal solution y∗ of Π

[
Ar,p, u, cr,p

]
and set ỹ := y∗

C2 . As a corollary, ỹ becomes a

feasible solution for Π
[
A
r,p
, u, cr,p

]
. On the other hand, any feasible solution to

Π
[
A
r,p
, u, cr,p

]
translates into that of Π

[
Ar,p, u, cr,p

]
of the same value. Taken

together and generalized over all the partitions, these observations imply that

ÕptΠ ≥
OptΠ
C2

≥ Opt

C2
, (27)

where ÕptΠ and OptΠ are the optimal objective values ofΠ
[
(A

r
)r∈[d], u, (c

r)r∈[d]

]
and Π

[
(Ar)r∈[d], u , (c

r)r∈[d]

]
, respectively. Furthermore, a finer inspection of the

former problem can render the majority of its constraints redundant. Indeed, by
construction, each subproblem Π

[
A
r,p
, u, cr,p

]
of Π

[
(A

r
)r∈[d], u, (cr)r∈[d]

]
boils

down to a single Knapsack inequality3 since both, demands and capacities, are
levelled therein, and all the requests share the same origin. Compounding these

3 This inequality is captured by the first constraint appearing in the subproblem, and thus
can be extracted in O(1) time.
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m̃ = O(d logn) inequalities into Ã ∈ Rm̃×n+1
+ and c̃ ∈ Rm̃×1

+ , formulate a new

PIP P
[
Ã, u, c̃

]
minding that ÕptΠ is the optimum value of its linear relaxation.

Henceforth, it remains to invoke Theorem 2 on P
[
Ã, u, c̃

]
after some proper

scaling. In particular, without loss of generality, assume for ∀i, j, Ãi,j ≤ c̃i since
otherwise we might as well set the corresponding j-th decision variable to 0. This
being so, scale down each row i of Ã and c̃ by maxj Ãi,j , consequently letting
Ã ∈ [0, 1]m̃×n+1 and c̃ = 1 (due to the dummy requests). Next, scaling u such that
maxj uj = 1, conforms P

[
Ã, u, c̃

]
to the form in Theorem 2. Accordingly, we obtain

a feasible integral solution to P
[
Ã, u, c̃

]
, and hence to P

[
(Ar)r∈[d], u, (c

r)r∈[d]

]
, of

value ÕptΠ
O(d logn) , which together with (27) yields the theorem. �

Remark: For the sake of variety, the result in this section was provided in an
existential form, rather than in an algorithmic variant as in Section 3. However,
the algorithm is straightforward and follows immediately from the proof. Also, it
should be noted that, at an additional loss of O(logn) factor, one can possibly ex-
tend this result to separable d-USFP through the approach in (Bansal et al., 2014)
of decomposing the given instance into one in which all the demands intersect.

5 From Unsplittable Flows to Electrical Flows: Application to Power
Systems

In this section, we develop a reduction procedure that can be applied to LP-based
approximations for separable d-USFP to produce approximations for AC OPF
on line distribution networks. To this end, Section 5.1 first outlines the pertinent
background on OPF and formulates the problem mathematically, then Section 5.2
expounds the proposed reduction.

5.1 AC OPF and its Exact Relaxation for Radial Networks

The AC OPF problem, introduced by Carpentier in 1962 (Carpentier, 1962), lies
at the heart of techniques routinely deployed in power systems for performance
optimization and control (see e.g., (Frank et al., 2012) for a comprehensive survey
on OPF). As such, the input of OPF comprises an electrical network, such as the
one depicted in Fig. 1, represented by an undirected graph where nodes stand
for electric buses, whereas the edges model power lines. Among the buses, some
correspond to AC generators while others to demand nodes (loads). The objective
is to determine an operating point, optimal with respect to a given objective (e.g.,
minimizing generation cost), that satisfies user demands while meeting operational
(engineering) constraints (e.g. line thermal limit) and physical properties (imposed
by Ohm’s and Kirchoff’s laws) of the electrical network.

From computational perspective, OPF is notoriously toilsome due mainly to
the existence of non-convex constraints involving complex-valued entities of power
system parameters such as current, voltage and power. Recently, there has been
a major progress on tackling OPF through convex relaxations (Bose et al., 2015;
Huang et al., 2017; Gan et al., 2015; Low, 2014a,b). These papers focus chiefly on
radial (i.e., tree) networks, since they are fairly common in real-world, and derive



16 A. Karapetyan, K. Elbassioni , M. Khonji and S. C.-K. Chau

Fig. 1 An example of a radial electrical network.

sufficient conditions under which the convex relaxation is exact (i.e., equivalent to
the original non-convex problem); for example, relaxing the rank-1 constraint in
the semidefinite programming (SDP) formulation (Bose et al., 2015), or relaxing
the equality constraints in the second order cone programming (SOCP) formu-
lation (Huang et al., 2017; Gan et al., 2015; Low, 2014a,b). While these results
yield polynomial time algorithms for OPF, their scope is limited to the case with
continuously adjustable power injection constraints; control variables responsible
for modulating power loads are fractional and defined in terms of buses). In a
more general setting, however, it is often necessary to account for discrete (or a
mix of discrete and continuous) variables (Chapman et al., 2013; Mhanna et al.,
2016; Karapetyan et al., 2021; Khonji et al., 2020). Specifically, certain loads and
devices, e.g., TV, vacuum cleaner or washing machine, operate only under a par-
ticular supply of electricity; are either switched on with a fixed power consumption
rate or turned off. This combinatoric structure renders a substantially more com-
plicated instance of OPF. Concretely, as demonstrated in (Khonji et al., 2018),
OPF with discrete demands in a delta network is hard to approximate within
any polynomial guarantees unless P=NP. Prior studies on OPF with discrete con-
trol variables, e.g., (Briglia et al., 2017; Lin and Lin, 2008; Hijazi et al., 2017),
mainly resort to heuristic techniques, which, per se, are devoid of any optimality
guarantees or theoretical guidance.

With the above background in view, we next provide a model of an electrical
network and define OPF formally. Recall from the convention in Sec. 2 that given
a complex number ν ∈ C we let |ν| be its magnitude, arg(ν) be the phase angle
that it makes with the real axis, ν∗ be its complex conjugate and write νR ,
Re(ν), νI , Im(ν) for its real and imaginary components, respectively. Consider
a radial distribution network represented by a line graph T = (V, E), where V =
{0, 1, . . . ,m} denotes the electric buses, whereas E symbolizes the distribution
lines. Each line e ∈ E is characterized by a complex impedance ze ∈ C, with a non-
negative real part resembling the resistance of the line (to the flow of current) and
imaginary part quantifying the reactance (inductance if positive and capacitance
if negative). In the setup under study, a substation generator is attached to the
root of T , node 0. By convention, it is assumed that power flows from the root to
the nodes. Let V+ , V \ {0} and V+

i , Vi \ {i}. When referring to an edge, we
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Fig. 2 Conservation of power flow at node j.

shall use the (ordered) pair of subscripts (i, j) and e interchangeably, where it is
assumed that i is the parent of j in T .

At each node j ∈ V+, attached is a set Uj of users (electrical loads). Let N ,
∪j∈V+Uj be the set of all users (|N | = ñ), whileNj be those residing in the subpath
rooted at node j ∈ V+. Among these users, some have inelastic (discrete) power
demands, denoted by I ⊆ N . A discrete demand is either completely satisfied
or dropped. An example is an appliance that is either switched on with a fixed
power consumption rate or switched off. The rest of users, denoted by F , N\I,
have elastic demands which can be partially satisfied. The demand of user k is
represented by a complex-valued number sk ∈ C; the real part sR

k denotes the
so-called active power while the imaginary part sI

k captures the reactive power;

the apparent power is defined as the magnitude |sk| =
√

(sR
k )2 + (sI

k)2 of sk.

Additionally, each user k ∈ I is associated with a number uk ∈ R+ indicating the
utility of user k if her demand sk is fully satisfied.

Denote the unique path from node j to the root 0 by Pj . For each user k ∈ Uj ,
define Pk , Pj . With a slight abuse of notation, we interchangeably refer as Pj
to the set of edges as well as the set nodes on the path from j to the root.

A steady-state power flow in a distribution network is generally described by
a system of equations. For radial networks (which include paths), these can be
framed through the Branch Flow (a.k.a. DistFlow) Model (BFM) (Baran and
Wu, 1989). Under BFM, OPF in T is embodied by the following mixed-integer
programming problem.

Input : v0; (vj , vj)j∈V+ ; (Se, `e, ze)e∈E ; (sk)k∈N

Output : s0; (vj)j∈V+ ; (Se, `e)e∈E ; (xk)k∈N

(OPF) max
s0,x,v,`,S

fOPF(s0, x),

s.t. `i,j =
|Si,j |2

vi
, ∀(i, j) ∈ E (28)

Si,j =
∑
k∈Uj

skxk +
∑

t:(j,t)∈E

Sj,t + zi,j`i,j , ∀(i, j) ∈ E (29)
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S0,1 = −s0 (30)

vj = vi + |zi,j |2`i,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E (31)

vj ≤ vj ≤ vj , ∀j ∈ V
+ (32)

|Se| ≤ Se, | − Se + ze`e| ≤ Se, ∀e ∈ E (33)

`e ≤ `e ∀e ∈ E (34)

xk ∈ {0, 1}, ∀k ∈ I, xk ∈ [0, 1], ∀k ∈ F (35)

vj ∈ R+, ∀j ∈ V+ `e ∈ R+, Se ∈ C, ∀e ∈ E . (36)

The variables: In the above formulation, the complex variable Si,j represents the
power output at node i along the edge (i, j), z∗i,j denotes the complex conjugate

of zi,j , and vj , |Vj |2 and `e , |Ie|2 define the voltage and current magnitude
squares at node j and link e, respectively. Note that in BFM phase angles for the
voltages and currents, arg(Vj) and arg(Ie), are eliminated from the formulation.
However, as proved in (Farivar and Low, 2013), this relaxation is exact for radial
networks. That is, one can (in polynomial time) uniquely recover the phase angles
once a solution to the relaxation is obtained. Finally, each user demand k ∈ N is
assigned a control variable xk; if k ∈ I, then xk ∈ {0, 1}, otherwise, xk ∈ [0, 1] for
k ∈ F . Define vectors S , (Se)e∈E , ` , (`e)e∈E , x , (xk)k∈N , v = (vi)i∈V+ .

The objective: OPF seeks to assign values to the control vector x, complex power
vector S as well as current and voltage magnitude vectors ` and v, such that the
following concave non-negative objective function4

fOPF(s0, x) = f0(sR
0 ) + f1

(
(sR
k xk)k∈F

)
+
∑
k∈I

ukxk,

is maximized, without violating the physical and operating constraints described
below.

The constraints: Let vj , vj ∈ R+ be respectively the minimum and maximum

allowable voltage magnitude squares at node j, and Se, `e ∈ R+ be the maximum
allowable apparent power and current magnitude on edge e ∈ E , respectively. As
customary, it is assumed that the generator voltage v0 ∈ R+ is given. In the
above formulation, Eqn. (28) is immediate from the definition of the magnitude
of the complex power Si,j = ViI

∗
i,j . Eqn. (29) (in complex variables) captures

the power flow conservation rule at node j (see Figure 2). The rule equates the
power output at node i along the edge (i, j) minus the power lost on that line
(zi,j`i,j = zi,j |Ii,j |2) to the total power consumed by the loads at node j (namely,∑
k∈Uj skxk) plus the total power output on the lines outgoing from j (which

is
∑
t:(j,t)∈E Sj,t). Eqn. (30) is the special case of Eqn. (29) applied to node 0

4 Traditionally, the objective is to minimize the generation cost c(SR
0,1), which is typically a

non-decreasing convex function of the active generation power SR
0,1. In the discrete demand case

under study, we combine the minimization of the generation cost with the utility maximization
of the satisfied demands by using the function fOPF(s0, x), where f0(sR0 ) , Y − c(SR

0,1) = Y −
c(−sR0 )), for a sufficiently large number Y , is a nonnegative concave function, non-decreasing

in sR0 ).
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(assuming an artificial edge (0, 0)), where the demand s0 is negated to indicate
power generation (rather than consumption). Eqn. (31) is a consequence of Ohm’s
law: Vi − Vj = zi,jIi,j , and the definition of power Si,j = ViI

∗
i,j . The inequalities

in (32) and (34) limit the voltage and current magnitudes at each node and on
each line, respectively, to the allowable range. While those in (33) cap the apparent
power on each link in both directions by the capacity of the link: |Si,j | ≤ Si,j and
|Sj,i| ≤ Si,j , where Sj,i = VjI

∗
j,i = −VjI∗i,j = −(Vi − zi,jIi,j)I

∗
i,j = −Si,j +

zi,j |Ii,j |2.

5.1.1 Assumptions

In tackling OPF, we shall rely on the following practical assumptions.

A0: f0(·) is non-decreasing in sR
0 . Recall that by definition f0(sR

0 ) = Y −c(−sR
0 )),

where c(−sR
0 ) = c(SR

0,1) captures the active power generation cost. As is cus-
tomary in power systems literature (Huang et al., 2017; Farivar and Low, 2013;
Gan et al., 2015; Zhang and Tse, 2013), we treat the generation cost c(·) as a
non-decreasing convex function of SR

0,1. Consequently, one can set Y to be a
sufficiently large number such that f0(·) is non-negative and non-decreasing in
sR
0 ).

A1: ze ≥ 0 for all e ∈ E , which naturally holds in distribution networks.
A2: vj ≤ v0 ≤ vj for all j ∈ V+. Typically in a distribution network, v0 = 1 (per

unit), vj = (0.95)2 and vj = (1.05)2; in other words, a 5% deviation from the
nominal voltage is allowed.

A3: Re(z∗esk) ≥ 0 for all k ∈ N , e ∈ E . Equivalently, the angle difference between
ze and sk is at most π

2 .
A4:

∣∣ arg(sk) − arg(sk′)
∣∣ ≤ π

2 for any k, k′ ∈ N . In practical settings, the so-
called load power factor usually varies between 0.8 to 1 (Korovesis et al., 2004)
and thus the maximum phase angle difference between any pair of demands
is restricted to be in the range of [0, 36◦]. We also assume sR

k ≥ 0 for all
k ∈ N , which always holds in power systems (assuming no power generation
at non-root nodes in V+).

A5: The range of impedances and demands is quasi-polynomial, that is,

max

 maxe∈E z
R
e

mine:zRe >0 z
R
e

,
maxe∈E z

I
e

mine:zIe>0 z
I
e

,
maxk∈N sRk

mink:sR
k
>0 s

R
k

,
maxk∈N sIk

mink:sI
k
>0 s

I
k

 = 2polylog(m,ñ).

Assumptions A3 and A4 are motivated, from a theoretical point of view, by the in-
approximability results in (Khonji et al., 2018) (if either one is invalid, the problem
cannot be approximated within any polynomial factor unless P=NP). Assumption
A3 holds in reasonable practical settings (Huang et al., 2017). As clarified in the
next subsection, by performing an axis rotation, A4 implies sk ≥ 0. Clearly, under
this and A1, the reverse power constraint in (33) is implied by the forward power
one (|Se| ≤ Se). Similarly, under A1, A2 and A3, the voltage upper bounds in (32)
can be dropped, as elaborated in subsection 5.1.2. Lastly, A5 is required merely for
the analysis of the featured approximations and may possibly be bypassed with
techniques from (Batra et al., 2015).
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5.1.2 Rotational Invariance of OPF

In the below lemma, it is argued that complex quantities in the OPF formulation
(namely, ze, sk) can be rotated by a fixed angle without affecting the problem’s
structure. This property allows to replace A0 and A4 by the ones listed below.

A0′: f0(sR
0 cosφ+ sI

0 sinφ) is non-decreasing in sR
0 , s

I
0.

A4′: sk ≥ 0 for all k ∈ N .

Note that A1 and A4′ already imply A3.

Lemma 3 Assume A4 and suppose that sk, for all k ∈ N , and ze, for all e ∈
E, are rotated by an angle φ , min{maxk∈N − arg(sk), 0} ∈ [0, π2 ]. Denote the

resulting OPF problem by OPFφ:

(OPFφ) max
s0,x,v,`,S

fOPF(s0e
−iφ, x),

s.t. (28)− (36), with ze replaced by zee
iφ, and sk replaced by ske

iφ .

Then OPFφ is equivalent to OPF and satisfies assumptions A0′, A1, A2, A3 and
A4′.

Proof: One can easily show that a feasible solution F = (s0, x, v, `, S) to (OPFφ)

can be converted to a feasible solution ¯̄F = (¯̄s0, x, v, `,
¯̄S) to OPF, such that

¯̄Si,j , Si,je
−iφ, ¯̄s0 , s0e

−iφ are rotated by φ, and vise versa. Moreover, the two
objective functions are equal. It is immediate to see that assumptions A0′ A1, A2,
A3, and A4′ hold for OPFφ. �

Hereafter, we implicitly consider the rotated problem which, with a slight abuse
of notation, is simply denoted by OPF.

5.1.3 Exact Second Order Cone Relaxation

As observed from the preceding formulation, OPF’s feasible set is non-convex due

to the quadratic equality constraint (28). Replacing this by `i,j ≥ |Si,j |2
vi

, one

obtains an SOCP relaxation of OPF5, defined below and denoted by cOPF.

(cOPF) max
s0,x,v,`,S

fOPF(s0, x)

s.t. (29)− (36),

`i,j ≥
|Si,j |2

vi
, ∀(i, j) ∈ E . (37)

Let rcOPF be the relaxation of cOPF where the integrality constraints in (35)
are replaced by xk ∈ [0, 1] for all k ∈ N . For a given x̂ ∈ [0, 1]ñ, define by cOPF[x̂]
the restriction of cOPF where x = x̂.

5 Note that Cons. (37) can be rewritten as∥∥∥∥∥
 2SR

i,j

2SI
i,j

`i,j − vi

∥∥∥∥∥
2

≤ `i,j + vi .
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Recently, studies in (Low, 2014b; Huang et al., 2017; Gan et al., 2015) presented
sufficient conditions for cOPF to have an optimal solution in which Cons. (37)
holds with equality. For current purposes, we avail of the following lemma which
is a slightly simplified version of that in (Huang et al., 2017) and is proved in
Section B.

Lemma 4 Under assumptions A0, A1, A2, and A3, for any given x′ ∈ [0, 1]ñ,
there exists an optimal solution F ′ = (s′0, x

′, v′, `′, S′) of cOPF[x′] that satisfies

`i,j =
|S′i,j |

2

v′i
for all (i, j) ∈ E . Such a solution can be found in polynomial time.

5.2 Reduction Scheme

Having defined OPF formally, we next present the developed technique that ob-
tains approximations for OPF on path distribution networks from LP-based ap-
proximations intended for separable d-USFP.

Lemma 5 Let F ′ =
(
s′0, x

′, v′, `′, S′
)

be a feasible solution for rcOPF. Let x̄ ∈
[0, 1]ñ be such that ∑

k∈I

ukx̄k ≥
∑
k∈I

ukx
′
k − εfOPF(s′0, x

′), for some ε ∈ [0, 1]

(38)∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x̄k ≤

∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x′k ∀(i, j) ∈ E ,

(39)∑
k∈Nj

sR
k x̄k ≤

∑
k∈Nj

sR
k x
′
k ∀(i, j) ∈ E , (40)

∑
k∈Nj

sI
kx̄k ≤

∑
k∈Nj

sI
kx
′
k ∀(i, j) ∈ E , (41)

x̄k = x′k ∀k ∈ F , (42)

where fOPF(·) is the objective function of OPF. Then, under assumptions A0′,
A1, A2, A3 and A4′, rcOPF[x̄] has a feasible solution F̃ =

(
s̃0, x̃, ṽ, ˜̀, S̃

)
such

that fOPF(s̃0, x̃) ≥ (1− ε)fOPF(s′0, x
′), where rcOPF[x̄] denotes the restriction of

rcOPF with x set to x̄.

Observe that, in Lemma 5 (which is proved in Section C), the inequalities (39),
(40) and (41) taken together form a single-source separable d-USFP with d = 3.
Indeed, for k ∈ I and e = (i, j) ∈ E , define

f1
k (e) = Re

( ∑
e′∈Pk∩Pj

z∗e′sk

)
, f2

k (e) =

{
sR
k if k ∈ Nj

0 otherwise,
f3
k (e) =

{
sI
k if k ∈ Nj

0 otherwise.

Note that f1
k is monotone non-decreasing on E when ordered by distance from the

root, while f2
k and f3

k are monotone non-decreasing considering the reverse order
on E . Moreover, these functions are of the form (3) (i.e., separability condition in
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d-USFP). For r = 2 (similarly, for r = 3), set T2 = 1, a2,1
k := sR

k , e2
k = ê2

k := ej(k),

b2,1(e) := 1. As for r = 1, note that

f1
k (e) =

( ∑
e′∈Pk∩Pj

zR
e′

)
sR
k +

( ∑
e′∈Pk∩Pj

zI
e′

)
sI
k for ∀e = (i, j) ∈ E . (43)

Thus, setting T1 = 2, a1,1
k := Re(sk), a1,2

k := Im(sk), e1
k := e1, ê1

k := ej(k),

b̃1,1((i, j)) :=
∑
e′∈Pj Re(ze′) and b̃1,2((i, j)) :=

∑
e′∈Pj Im(ze′) writes f1

k (e) in

the form (3).

The above arguments coupled with Lemma 5, imply the following theorem.

Theorem 4 Under assumptions A0′, A1, A2, A3, A4′, and A5, there is a quasi-
polynomial time algorithm that for any ε ∈ (0, 1) produces a (1− ε)-approximation
for OPF on line networks with single substation generator.

Proof: Let Ôpt be the optimal objective value of OPF. Consider the approxima-
tion scheme detailed in Alg. 2, which is the analog of Alg. 1 for OPF.

Algorithm 2 QPTAS-OPF

Require: An approximation parameter ε ∈ (0, 1); OPF input v0; (vj , vj)j∈V+ ; (Se, `e, ze)e∈E

Ensure: A solution F̂ to OPF such that fOPF(F̂ ) ≥ (1−O(ε))Ôpt

1: for each selection
(
L = (Lq)q∈Q, h =

(
hq = (hq,p,r)p∈[Pr ], r∈[d]

)
q∈Q

)
such that Lq ⊆ I,

|Lq | ≤
∑d
r=1 Pr
ε2

and hq,p,r ∈ F r do

2: if rcOPF[L, h] is feasible then
3: F ′ ← Solution of rcOPF[L, h]
4: for q ∈ Q do
5: Let Sq be given by (13)
6: for every (h, ε)-restricted profile gq do
7: (x̂k)k∈Sq ← Integral vector returned by applying Lemma 2 with vector hq ,

and (x̃k)k∈Sq = (x′k)k∈Sq

8: x̄k ←
{
x̂k if k ∈

⋃
q∈Q Sq ,

x′k if k ∈ N \ (
⋃
q∈Q Sq)

9: F̃ ← Solution of cOPF[x̄]

10: if fOPF(F̃ ) > fOPF(F̂ ′) then

11: F̂ ′ ← F̃
12: Apply Lemma 4 to convert F̂ ′ to a feasible solution F̂ for OPF
13: return F̂

Similar to Alg. 1, the algorithm guesses the set of large demands Lq ⊆ Iq in
the optimal solution for each group q ∈ Q, and the peaks hq,p,r, within 1+ε, of the
small demands in the optimal solution within the interval Erp . Let L = (Lq)q∈Q
and hq = (hq,p,r)p∈[Pr], r∈[d] where hq,p,r ∈ F r. Define a restrictive version of
rcOPF, denoted by rcOPF[L, h], which enforces that xk = 1 for all k ∈ Lq and
q ∈ Q and that the peak total contribution of the small demands in group q within
the interval Erp is at most hq,p,r:

∑
k∈Sq f

p,r
k xk ≤ (1 + ε)hq,p,r.
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(rcOPF[L, h]) max
s0,x,v,`,S

fOPF(s0, x),

s.t. (29)− (34), (36), (37) (44)∑
k∈Sq

f
p,r
k xk ≤ hq,p,r, ∀p ∈ [Pr], ∀r ∈ [d], ∀q ∈ Q (45)

xk = 0, ∀k ∈ I \
⋃
q∈Q

(Lq ∪ Sq) (46)

xk = 1, ∀k ∈ Lq, ∀q ∈ Q (47)

xk ∈ [0, 1], ∀k ∈ F ∪ (
⋃
q∈Q
Sq). (48)

Here, the set of small demands within group q ∈ Q is

Sq =
{
k ∈ Iq : fp,r

k
≤ Bq,p,r for all p ∈ [Pr], r ∈ [d]

}
, (49)

where Bq,p,r = ε2
[
hq,p,r +

∑
k∈Lq f

p,r
k

]
. Given a feasible solution F ′ =

(
s′0, x

′,

v′, `′, S′
)

to rcOPF[L, h], Alg. 2 applies Lemma 2 with x̃ = x′. By the lemma,
one can find (in polynomial time) an integral solution x̂ satisfying conditions (i)
and (ii). Next, the algorithm recalculates s0, S, `, v utilizing the program cOPF[x̄]
given in Section 5.1.3, and then applies Lemma 4 to obtain a feasible solution to
OPF.

Define

M̃ := max

{
z

z
,max

r

f
r

fr

}

= max

 z

z
, max
k,k′∈I

sRk
sR
k′
, max
k,k′∈I

sIk
sI
k′
, max
k,k′∈I, (i,j),(i′,j′)∈E

Re
(∑

e′∈Pk∩Pj z
∗
e′sk

)
Re
(∑

e′∈Pk′∩Pj′
z∗
e′sk′

)
 ,

(50)

where z := min{mine:Re(ze)>0 Re(ze),mine:Im(ze)>0 Im(ze)} and z := maxe∈E
max{Re(ze), Im(ze)}.

In what follows, we prove that, for any fixed ε ∈ (0, 1), Alg. 2 arrives at a

(1− ε)-approximation in time ( ñ log(ñmM̃)
ε )O(log9( ñmM̃

ε
)/ε2).

Let ε := ε
3(2β+1) , where β = maxr∈Hq 2 (2Cr + αPr) = O(log2(mM̃)). The

number of possible choices for each Lq in step 1 of Alg. 2 is at most ñ
∑d
r=1 Pr/ε

2

,
where ñ = |N |. Thus, with d = 3, P1 = O(log(mM̃)), P2 = P3 = 1, T1 = 2,

T2 = T3 = 1, Q ≤ Q
∑d
r=1 Tr , and Q = O(log ñM̃

ε ), hence the number of possible
choices for L is at most

ñ
∑d
r=1 PrQ/ε

2

≤ ñ
∑d
r=1 PrQ

∑d
r=1 Tr/ε2 = ñO(log(mM̃) log4( ñM̃

ε
)/ε2). (51)

The number of choices for each hq = (hq,p,r)p∈[Pr], r∈[d] is

F
∑d
r=1 Pr = O

(( log(ñM̃)

ε

)log(mM̃)
)
,
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and that of for Q in step 4 is

Q
∑d
r=1 Tr ≤ log4

(
ñM̃

ε

)
, (52)

giving at most

O

( log(ñM̃)

ε

)log(mM̃)
Q = O


( log(ñM̃)

ε

)log(mM̃)
Q

∑d
r=1 Tr


= O

( log(ñM̃)

ε

)log(mM̃) log4( ñM̃
ε

)
 (53)

choices for h = (hq)q∈Q in step 1. The number of choices for the ε-restricted

profiles in step 6 is bounded from above by m
∑d
r=1 Pr/ε = mO(log (mM̃)/ε). Thus,

the bound on the running time follows from this and (51),(53),(52).
We now argue that the solution F̂ outputted by Alg. 2 is (1−O(ε))-approximation

for OPF. Let F ∗ =
(
s∗0, x

∗, v∗, `∗, S∗
)

be an optimal solution for OPF of objective

value Ôpt = fOPF(F ∗). By the definition of Î, we have∑
k∈I\Î

uk ≤ εÔpt ≤ εfOPF(F ∗). (54)

Define T ∗ , {k ∈ Î | x∗k = 1} and (h∗)q,p,r =
∑
k∈T ∗∩Iq f

p,r
k , for p ∈ [Pr],

r ∈ [d] and q ∈ Q. Let (L∗)q := {k ∈ Iq ∩ T ∗ : fp,r
k

> ε2(h∗)q,p,r for some p ∈
[Pr], and some r ∈ [d]} be the set of large demands within group Iq in the optimal
solution, and let (S∗)q := Iq ∩ T ∗ \ (L∗)q be the set of “small” demands within

the same group. Note by this definition that |(L∗)q| ≤
∑d
r=1 Pr
ε2 , and thus L∗ =

((L∗)q)q∈Q and h = (hq)q∈Q will be one of the guesses considered by the algorithm
in step 1. Let us focus on this particular iteration of the loop in step 1. Let
hq,p,r = (1 + ε)`

′
fr, where `′ is the smallest integer (including −∞) such that

hq,p,r +
∑
k∈Lq f

p,r
k ≥ (h∗)q,p,r. Note that hq,p,r ∈ F r, and

1

1 + ε
hq,p,r +

∑
k∈(L∗)q

f
p,r
k ≤ (h∗)q,p,r ≤ hq,p,r +

∑
k∈(L∗)q

f
p,r
k . (55)

Moreover, for any k ∈ (S∗)q, q ∈ Q, p ∈ [Pr], and r ∈ [d], we have by (55),

fp,r
k
≤ ε2(h∗)q,p,r ≤ ε2

hq,p,r +
∑

k∈(L∗)q
f
p,r
k

 ,

and hence (S∗)q ⊆ Sq. Note also that

Bq,p,r = ε2

hq,p,r +
∑

k∈(L∗)q
f
p,r
k


≤ ε2

hq,p,r + (1 + ε)
∑

k∈(L∗)q
f
p,r
k

 ≤ ε2(1 + ε)(h∗)q,p,r. (56)
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Furthermore, x∗ is feasible for the constraint (45) as∑
k∈Sq

f
p,r
k x∗k =

∑
k∈(S∗)q

f
p,r
k x∗k =

∑
k∈(S∗)q

f
p,r
k = (h∗)q,p,r −

∑
k∈(L∗)q

f
p,r
k ≤ hq,p,r.

It follows that F ∗ is feasible for R1[L, h], implying by (54) that the solution F ′

obtained in step 3 of the algorithm satisfies

fOPF(F ′) ≥ (1− ε)fOPF(F ∗). (57)

For each q ∈ Q, there is an (h, ε)-restricted profile gq and an integral solution
(x̂k)k∈Sq that satisfy Lemma 2. Since all the possible (h, ε)-restricted profiles are
probed, the profile gq will be found in one of the iterations in the loop in line 6.
Let us consider this iteration. By condition (i) of the lemma,

∑
k∈Sq f

r
k (e)x̂k ≤∑

k∈Sq f
r
k (e)x′k for all e ∈ E and r ∈ [d], which implies that conditions (39)-(42)

of Lemma 5 hold for the vector x̄, defined in line 8 of Alg. 2.
At this point, following exactly the same lines as in the proof of Theorem 1, it

can be shown that

∑
k∈I

ukx̄k ≥
∑
k∈Î

ukx
′
k − 3ε(2β + 1)fOPF(F ′).

Thus condition (38) in Lemma 5 is satisfied with ε = 3ε(2β + 1) implying that F̃
is a feasible solution for cOPF, and hence for OPF by Lemma 4, with fOPF(F̃ ) ≥
(1− ε)fOPF(F ′) ≥ (1− ε)fOPF(F ∗). �

Remark: Following arguments analogous to those in the above proof, it is con-
ceivable to generalize the logarithmic approximation devised in Section 4 to OPF
on line networks with single substation generator, provided assumptions A0′, A1,
A2, A3, A4′ and A5 hold. To this end, however, an additional constant factor would
be lost in the approximation ratio for bounding the capacities (i.e., the right hand
sides of inequalities (39), (40) and (41)).

6 Concluding Remarks

This study defined a novel generalization of UFP, dubbed as d-USFP, and bridged
it with AC OPF, which is a fundamental problem in power systems engineering. In
a preliminary step towards tackling this extended problem, we devised a QPTAS
and an efficient logarithmic approximation for its single-source variant. Leverag-
ing the connection between separable d-USFP and AC OPF, a (kind of) black-box
reduction is developed that, under some mild conditions, allows one to convert an
approximation for the former problem to that of for AC OPF on line distribu-
tion networks with discrete demands. It’s noteworthy that this reduction applies
only to algorithms that depend on LP-rounding techniques, hence the focus of the
present study on LP-based approximations. Whereas for future work, it would be
interesting to generalize and extend the known alternative techniques (e.g., the
surveyed combinatorial and dynamic programming based ones) to d-USFP, conse-
quently improving upon the current results. As from power systems perspective,
one future avenue to explore, would be extension of the established framework to
a more practical setting with multiple generation sources and tree networks.
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Appendix

A Proof of Lemma 2

Proof: For r ∈ [d], consider the graph of the fractional profile
∑
k∈Sq f

r
k (e)x̃k illustrated

in Figure 3. For p ∈ [Pr], slice the region between the horizontal axis and horizontal line
at height hq,p,r with 1

ε
+ 1 horizontal lines, with inter-distance εhq,p,r. The intersections of

the optimal profile with these lines define a monotone function gq,r, as pictured in Figure 3,
with gq,r(e) ∈ {lεhp,r : l ∈ {0, 1 . . . , 1/ε}, p ∈ [Pr]}, for all e ∈ E. We adopt a greedy
procedure, explained in Algorithm 3 below, to remove a set of demands from Sq in each
interval Erp such that the remaining set of demands fractionally fits below gq,r (see lines 2-9).
The algorithm proceeds by removing the “left-most” set of demands that minimally ensures
that the remaining ones in Sq can be packed under capacity gq,r. This defines an intermediate
fractional vector ¯̄x for separable d-USFP-R[Sq , gq ], where gq = (gq,r)r∈[d], which can be
converted to a basic feasible solution (BFS) with the same or better objective value. Lastly,
the fractional components of ¯̄x are rounded down yielding an integral solution x̂.

We first show that condition (i) holds when x̂ is replaced by x̄. For r ∈ [d], let J r(ei) be
the set of demands k ∈ Sq for which x̄k was set to 0 in step 7 when considering edge ei ∈ E.
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Algorithm 3 Modify

Require: q ∈ Q; a restricted profile RPε(h;w; g); a set of users Sq ⊆ Iq ; a fractional vector

(x̃k)k∈Sq ∈ [0, 1]S
q

Ensure: A integral vector (x̂k)k∈Sq ∈ {0, 1}S
q

satisfying conditions (i) and (ii) of lemma 2
1: x̄← x̃; t← 0
2: for r = 1 to d do
3: for p = 1, . . . , Pr do
4: i← i(p, r)
5: while t < εhq,p,r do
6: if ∃k ∈ Sq such that x̃kf

r
k (ei) > 0 then

7: x̄k = 0
8: t← t+ x̃kf

r
k (ei)

9: else i← i+ 1

10: Convert x̄ to a BFS ¯̄x for d-USFP-R[S, gq ] with
∑
k∈S uk ¯̄xk ≥

∑
k∈S ukx̄k

11: (x̂k)k∈Sq ←
(
b¯̄xkc

)
k∈Sq

12: return x̂

Fig. 3 A profile and its (h, ε)-restriction.

Consider an edge e ∈ Erp such that
∑
k∈Sq f

r
k (e)x̄k > 0. Note that 0 ≤

∑
k∈Sq f

r
k (e)x̃k −

gq,r(e) ≤ εhq,p,r by (12) and the definition of gq,r. By the monotonicity of frk (·) and the
condition of the while-loop in step 5 we have∑

k∈Sq
frk (e)x̄k =

∑
k∈Sq

frk (e)x̃k −
∑

i: ei≤e

∑
k∈J r(ei)

frk (e)x̃k

≤
∑
k∈Sq

frk (e)x̃k −
∑

i: ei≤e

∑
k∈J r(ei)

frk (ei)x̃k

≤
∑
k∈Sq

frk (e)x̃k − εhq,p,r

≤ gq,r(e).

Since x̄ is feasible for d-USFP-R[Sq , gq ], one can obtain a BFS ¯̄x for the same linear program
with

∑
k∈Sq uk ¯̄xk ≥

∑
k∈S ukx̄k as in step 10 of procedure Modify. Then, round down the

fractional components in ¯̄x to obtain an integral solution x̂. Note that, for all e ∈ E,∑
k∈Sq

frk (e)x̂k ≤
∑
k∈Sq

frk (e)¯̄xk ≤ gq,r(e) ≤
∑
k∈Sq

frk (e)x̃k,
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and hence (i) holds.

Note that the total fractional utility of demands removed by Algorithm 3 in steps 2-9 is

∑
r∈[d], e∈E

∑
k∈J r(e)

ukx̃k =
∑

r∈[d]: HPr,r>0

Pr∑
p=1

∑
e∈Erp

∑
k∈J r(e)

ukx̃k

≤
∑
r∈Hq

Pr∑
p=1

∑
e∈Erp

∑
k∈J r(e)

1

Hq,p,r

Tr∑
t=1

ar,tk br,t(ei(p,r))x̃k

=
∑
r∈Hq

Pr∑
p=1

1

Hq,p,r

∑
e∈Erp

∑
k∈J r(e)

frk (ei(p,r))x̃k

≤
∑
r∈Hq

Pr∑
p=1

Cr

Hq,p,r

∑
e∈Erp

∑
k∈J r(e)

frk (e)x̃k


≤

∑
r∈Hq0

Pr∑
p=1

Cr

Hq,p,r
(εhq,p,r +Bq,p,r),

where we use the fact that k ∈ Iq in the first inequality, property (4) in the second inequality,
and fp,r

k
≤ Bq,p,r and the condition of the while-loop in step 5 in the last inequality. (Note that

we sum above over r ∈ [d] such that in Hq,Pr,r > 0 since k ∈ J r(e) implies that frk (e) > 0,

which in turn implies by (11) that Hq,Pr,r > 0.)

It follows that∑
k∈Sq

ukx̄k ≥
∑
k∈Sq

ukx̃k −
∑
r,e

∑
k∈J r(e)

ukx̃k

≥
∑
k∈Sq

ukx̃k −
∑
r∈Hq

Pr∑
p=1

Cr

Hq,p,r
(εhq,p,r +Bq,p,r). (58)

By the monotonicity of the functions frk (·), d-USFP-R[S, gq ] has only 1
ε

∑d
r=1 Pr non-

redundant packing inequalities of the form (1). It follows that the BFS ¯̄x computed in step 10

has at most 1
ε

∑d
r=1 Pr fractional components ¯̄x ∈ (0, 1). Thus,

∑
k∈Sq

ukx̂k =
∑
k∈Sq

uk ¯̄xk −
∑

k∈Sq : ¯̄xk∈(0,1)

uk ¯̄xk

≥
∑
k∈Sq

ukx̄k −
1

ε

d∑
r=1

Pr ·max
k

uk ¯̄xk

≥
∑
k∈Sq

ukx̄k −
1

ε

∑d
r=1 Pr∑
r∈Hq Pr

∑
r∈Hq

PrBq,Pr,r

Hq,Pr,r
, (59)

where we use in the last inequality that ¯̄xk ≤ 1 and

uk ≤
∑
r∈Hq Pr

∑Pr
t=1 a

r,t
k br,t(en)/Hq,Pr,r∑

r∈Hq Pr
=

∑
r∈Hq Prf

r
k (en)/Hq,Pr,r∑

r∈Hq Pr

≤
∑
r∈Hq PrB

q,Pr,r/Hq,Pr,r∑
r∈Hq Pr

,

for k ∈ Sq . Condition (ii) follows from (58) and (59). �
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Algorithm 4 Forward-Backward-Sweep

Require: A feasible solution F ′ = (s′0, x
′, v′, `′, S′) to cOPF′[x′] such that `′h,t >

|S′h,t|
2

v′
h

for

some (h, t) ∈ E
Ensure: A feasible solution F̃ = (s̃0, x̃, ṽ, ˜̀, S̃) to cOPF′[x′] such that x̃ = x′ and

∑
e∈E

˜̀
e <∑

e∈E `
′
e

1: x̃← x′; ṽ0 ← v0

2: Number nodes V = {0, 1, . . . ,m} in a breadth-first search order
3: for j = m,m− 1, . . . , 1 do /* Forward sweep */
4: Let i be s.t. (i, j) ∈ E

5: ˜̀
i,j ←

|S′i,j |
2

v′i
6: S̃i,j ←

∑
k∈Nj skx̃k +

∑
t:(j,t)∈E S̃j,t + zi,j ˜̀

i,j

7: s̃0 ← −S̃0,1

8: for j = 1, 2, . . . ,m do /* Backward sweep */
9: Let i be s.t. (i, j) ∈ E

10: ṽj ← ṽi + |zi,j |2 ˜̀
i,j − 2Re(z∗i,j S̃i,j)

11: return F̃

B Proof of Lemma 4

Proof: The analysis follows the same lines as in (Gan et al., 2015; Low, 2014b; Huang et al.,
2017) and is sketched here for completeness. Let F ′′ = (s′′0 , x

′, v′′, `′′, S′′) be an optimal solution
of cOPF[x′], which can be found (to within any desired accuracy) in polynomial time, by
solving a convex program. Consider the following problem.

(cOPF′[x′]) min
s0,x,v,`,S

∑
e∈E

`e,

s.t. (29)− (34), (36), (37)

x = x′ (60)

fOPF(s0, x) ≥ fOPF(s′′0 , x
′). (61)

Clearly, cOPF′[x′] is feasible as F ′′ satisfies all its constraints. Hence, it has an optimal solution
F ′ = (s′0, x

′, v′, `′, S′), which we claim satisfies the statement of the lemma. Suppose, for the

sake of contradiction, that there exists an edge (h, t) such that `′h,t >
|S′h,t|

2

v′
h

. In the sequel, we

construct a feasible solution F̃ = (s̃0, x′, ṽ, ˜̀, S̃) for cOPF′[x′] such that
∑
e∈E

˜̀
e <

∑
e∈E `

′
e,

leading to a contradiction.
Apply the forward-backward sweep algorithm, illustrated in Alg. 4, on the solution F ′ to

obtain a feasible solution F̃ .
We show the feasibility of the solution F̃ . By Steps 6, 7 and 10 of Alg. 4, all equality

constraints of cOPF′[x′] are satisfied. By Step 5 and the feasibility of F ′, we also have

˜̀
e ≤ `′e ≤ `e for all e ∈ E. (62)

Next, by rewriting S̃i,j , recursively substituting from the leaves, we get

S̃i,j =
∑
k∈Nj

skx̃k +
∑

e∈Ej∪{(i,j)}
ze ˜̀

e. (63)

Write ∆`e , ˜̀
e − `′e ≤ 0, ∆Se , S̃e − S′e, and ∆|Se|2 , |S̃e|2 − |S′e|2, for e ∈ E. Let

Ŝj ,
∑
k∈Nj skx

′
k, L̃i,j ,

∑
e∈Ej∪{(i,j)} ze

˜̀
e, and L′i,j ,

∑
e∈Ej∪{(i,j)} ze`

′
e. Note by (63)

that S̃i,j = Ŝj + L̃i,j and, similarly, Si,j = Ŝj + L′i,j . It follows that, for all (i, j) ∈ E,

∆Si,j = L̃i,j − L′i,j =
∑

e∈Ej∪{(i,j)}
ze∆`e ≤ 0, (64)
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where the inequality follows by assumption A1. In particular, for (i, j) = (0, 1), we obtain

s̃R0 = −S̃R
0,1 ≥ −S′R0,1 = s′R0 , (65)

implying by A0 that f0(s̃R0 ) ≥ f0(s′R0 ) and hence (61) is satisfied.
Furthermore,

∆|Si,j |2 = |S̃i,j |2 − |S′i,j |2 (66)

= (S̃R
i,j)

2 − (S′Ri,j)
2 + (S̃I

i,j)
2 − (S′Ii,j)

2 (67)

= ∆SR
i,j(S̃

R
i,j + S′Ri,j) +∆SI

i,j(S̃
I
i,j + S′Ii,j) (68)

=
∑

e∈Ej∪{(i,j)}
zR
e ∆`e

(
2ŜR
j + L̃R

i,j + L′Ri,j
)

+
∑

e∈Ej∪{(i,j)}
zI
e∆`e

(
2ŜI
j + L̃I

i,j + L′Ii,j
)

(69)

=
∑

e∈Ej∪{(i,j)}
2∆`eRe(z∗e Ŝj) +

∑
e∈Ej∪{(i,j)}

∆`eRe(z∗e L̃i,j)

+
∑

e∈Ej∪{(i,j)}
∆`eRe(z∗eL

′
i,j) ≤ 0, (70)

where Eqn. (70) follows by A1, A3 (or A4′) and ∆`e ≤ 0. Therefore, by the feasibility of Se,

|S̃e| ≤ |S′e| ≤ Se for all e ∈ E. (71)

Note that, by A1, the inequalities in (71) also imply that the reverse power constraint in (33)

is satisfied for S̃.
Rewrite Cons. (31) by recursively substituting ṽj , for j moving away from the root, and

then substituting for S̃h,t using (63):

ṽj = v0 − 2
∑

(h,t)∈Pj

Re(z∗h,tS̃h,t) +
∑

(h,t)∈Pj

|zh,t|2 ˜̀
h,t

= v0 − 2
∑

(h,t)∈Pj

Re
(
z∗h,t

( ∑
k∈Nt

skx̃k +
∑

e∈Et∪{(h,t)}
ze ˜̀

e
))

+
∑

(h,t)∈Pj

|zh,t|2 ˜̀
h,t,

= v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x̃k − 2

∑
(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze ˜̀
e

)
− 2

∑
(h,t)∈Pj

|zh,t|2 ˜̀
h,t +

∑
(h,t)∈Pj

|zh,t|2 ˜̀
h,t, (72)

where the last statement follows from exchanging the summation operators, and z∗eze = |ze|2.
Thus,

ṽj = v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x̃k

−
(

2
∑

(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze ˜̀
e
)

+
∑

(h,t)∈Pj

|zh,t|2 ˜̀
h,t

)
≤ v0 < vj , (73)

where the first inequality follows by A1 and A3, and the last inequality follows by A2. Since
˜̀
e ≤ `′e and x̃ = x′, we get by A1 and the feasibility of F ′,

ṽj ≥ v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x′k

−
(

2
∑

(h,t)∈Pj

Re
(
zh,t

∑
e∈Et

ze`e
)

+
∑

(h,t)∈Pj

|zh,t|2`h,t
)

= v′j ≥ vj . (74)
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By Ineqs. (71) and (74), ˜̀
i,j =

|S′i,j |
2

v′i
≥ |S̃i,j |

2

ṽi
, hence, F̃ is feasible.

Finally, by the first inequality in (62) and the fact that `′h,t >
|Sh,t|2

vh
= ˜̀

h,t, we have∑
e∈E

˜̀
e <

∑
e∈E `

′
e, contradicting the optimality of F ′ for cOPF′[x′]. �

C Proof of Lemma 5

Proof: The argument is similar to that in Lemma 4. We apply a slightly modified version of
Alg. 4 on the solution F ′ to obtain a feasible solution F̃ . Replace steps 1 and 5 in Alg. 4,
respectively, by:

1: x̃← x̄; ṽ0 ← v0, and 5: ˜̀
i,j ← `′i,j . (75)

By Steps 6, 7 and 10 of the (modified) algorithm, all equality constraints of (rcOPF[x̄]) are
satisfied. By (modified) Step 5 and the feasibility of F ′, we also have

˜̀
e = `′e ≤ `e for all e ∈ E. (76)

Write ∆Se , S̃e − S′e, and ∆|Se|2 , |S̃e|2 − |S′e|2, for e ∈ E. Let S′j ,
∑
k∈Nj skx

′
k, S̃j ,∑

k∈Nj skx̃k, and L̃i,j ,
∑
e∈Ej∪{(i,j)} ze

˜̀
e. Note by (63) that S̃i,j = S̃j + L̃i,j and, S′i,j =

S′j + L̃i,j . It follows that, for all (i, j) ∈ E,

∆Si,j = S̃j − S′j =
∑
k∈Nj

skx̄k −
∑
k∈Nj

skx
′
k ≤ 0, (77)

where the inequality follows from (40) and (41). In particular, for (i, j) = (0, 1), we obtain

s̃R0 = −S̃R
0,1 ≥ −S′R0,1 = s′R0 , (78)

implying by A0′ that f0(s̃R0 cosφ+ s̃I0 sinφ) ≥ f0(s′R0 cosφ+s′I0 sinφ)) and hence fOPF(s̃0, x̃) ≥
(1− ε)fOPF(s′0, x

′) follows from (38) and (42).
Furthermore,

∆|Si,j |2 = |S̃i,j |2 − |S′i,j |2

= (S̃R
i,j)

2 − (S′Ri,j)
2 + (S̃I

i,j)
2 − (S′Ii,j)

2

= ∆SR
i,j(S̃

R
i,j + S′Ri,j) +∆SI

i,j(S̃
I
i,j + S′Ii,j)

= ∆SR
i,j(S̃

R
j + S′Rj + 2L̃R

i,j) +∆SI
i,j(S̃

I
j + S′Ij + 2L̃I

i,j) ≤ 0,

where the last inequality follows by A1, A4′ and (77). Therefore,

|S̃i,j | ≤ |S′i,j | ≤ Si,j . (79)

Next, we show vj ≤ ṽj ≤ vj . As in (72), rewrite Cons. (31) by recursively substituting v′j ,

for j moving away from the root, and then substituting for S̃h,t using (63):

v′j = v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x′k

−
(

2
∑

(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze`
′
e

)
+

∑
(h,t)∈Pj

|zh,t|2`′h,t
)

(80)
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A similar equation can be derived for ṽj , where x′ and `′ in (80) are replaced by x̃ and ˜̀,
respectively. By assumptions A2 and A3, we have

ṽj = v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x̃k

−
(

2
∑

(h,t)∈Pj

Re
(
z∗h,t

∑
e∈Et

ze ˜̀
e
)

+
∑

(h,t)∈Pj

|zh,t|2 ˜̀
h,t

)
≤ v0 < vj .

Moreover, since ˜̀
e = `′e and x̃ = x̄ satisfies (39), we get by A1 and the feasibility of F ′,

ṽj ≥ v0 − 2
∑
k∈N

Re
( ∑

(h,t)∈Pk∩Pj

z∗h,tsk

)
x′k

−
(

2
∑

(h,t)∈Pj

Re
(
zh,t

∑
e∈Et

ze`
′
e

)
+

∑
(h,t)∈Pj

|zh,t|2`′h,t
)

= v′j ≥ vj . (81)

Finally, by inequalities (79) and (81), ˜̀
i,j = `′i,j =

|S′i,j |
2

v′i
≥ |S̃i,j |

2

ṽi
, hence ˜̀

i,j satisfies

Cons. (37). �
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