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Abstract
Optimization models typically seek to maximize overall benefit or minimize total cost. Yet
fairness is an important element of many practical decisions, and it is much less obvious
how to express it mathematically. We provide a critical survey of various schemes that have
been proposed for formulating ethics-related criteria, including those that integrate efficiency
and fairness concerns. The survey covers inequality measures, Rawlsian maximin and lexi-
max criteria, convex combinations of fairness and efficiency, alpha fairness and proportional
fairness (also known as the Nash bargaining solution), Kalai–Smorodinsky bargaining, and
recently proposed utility-threshold and fairness-threshold schemes for combining utilitarian
with maximin or leximax criteria. The paper also examines group parity metrics that are
popular in machine learning. We present what appears to be the best practical approach to
formulating each criterion in a linear, nonlinear, or mixed integer programming model. We
also survey axiomatic and bargaining derivations of fairness criteria from the social choice
literature while taking into account interpersonal comparability of utilities. Finally, we cite
relevant philosophical and ethical literature where appropriate.

Keywords Fairness · Distributive justice

1 Introduction

There is growing interest in incorporating fairness-related criteria into optimization mod-
els. Practical applications in health care, disaster management, telecommunications, facility
location, and other areas increasingly raise issues related to the fair allocation of resources.
Yet it is far from obvious how to formulate such ethical concerns mathematically. While
it is normally straightforward to formulate an objective function that reflects efficiency or
cost, fairness can be understood in multiple ways, with no generally accepted method for
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representing any of them in a mathematical idiom. While methods for formulating fairness
concerns frequently appear in research papers, they are often discussed and selected in an
ad hoc manner.

We therefore undertake to provide a survey and assessment of a broad range of fairness
criteria that can be incorporated into an optimization model. We focus on a representative
selection of what appear to be the most interesting, best known, or most useful mathematical
formulations of fairness in the literature, with particular emphasis on those that incorporate
efficiency as well as fairness. We do not attempt to impose a single definition of fairness
because different definitions are appropriate for different contexts. Our aim, rather, is to
elucidate the fairness concepts implicit inmathematical formulations that havebeenproposed.
We present these fairness formulations in clusters, each characterizing a different type of
fairness concept, to guide systematic comparisons among them and assist the selection of a
fitting formulation in practice. In addition, we indicate how to convert each formulation to a
linear, nonlinear, or mixed integer programming model.

Specifically, we cover several inequality metrics, some of the more popular group parity
measures used in machine learning, Rawlsian maximin and leximax criteria, various convex
combinations of these with efficiency criteria, alpha fairness and proportional fairness (the
latter also known as the Nash bargaining solution), the Kalai–Smorodinsky bargaining solu-
tion, and recently proposed fairness-threshold and fairness-threshold criteria for combining
utilitarianism with maximin and leximax criteria.

In the interest of brevity, we omit some fairness criteria that are designed for particular
domains or difficult to optimize. These include several of the fairness measures developed
specifically for telecommunications networks (cited in Sect. 4.1).We also omit entropy-based
metrics from the economics literature due to the computational challenge they pose, such as
theTheil index (Theil, 1967;Cowell&Kuga, 1981) and the relatedAtkinson index (Atkinson,
1975). Finally, we cover only the best known of the many statistical bias based metrics that
have been proposed for machine learning, as described in Sect. 5.

To our knowledge, there is no existing survey of this kind. Karsu and Morton (2015)
discuss several models in their excellent survey of inequality-averse optimization, along
with applications and some underlying mathematical theory. A recent survey by De-Arteaga
et al. (2022) summarizes popular fairness measures applicable to detecting and mitigating
algorithmic bias, with an emphasis on practical applications in business analytics. Ogryczak
et al. (2014) survey fairness criteria that have been used in communication networks and
location models, with a discussion of their properties and relationship with leximax criteria.
Our contributiondiffers from these in that it aims for broad coverageof fairness conceptswhile
providing a practical guide for the analyst whowishes to incorporate fairness concerns into an
optimizationmodel of a given application. It accordingly includes a focus on how to formulate
the various criteria for computationally tractable solution by mathematical programming
software. It also covers fairness formulations developed since the earlier surveys, as well as
fairness measures from machine learning.

While we make no attempt to resolve underlying philosophical issues, we provide
references to relevant philosophical and ethical literature as specific fairness criteria are
considered. General philosophical surveys of fairness concepts can be found in Bartneck et
al. (2021), Binns (2018), Coeckelbergh (2022), Hellman (2011), Lamont and Favor (2017),
and Roemer (1996). In addition, Schminke et al. (2015) and Colquitt and Rodell (2015)
discuss fairness concepts from an empirical and organizational perspective.

We begin below by stating a generic optimization problem that provides a framework for
the discussion to follow. In particular, we suppose that each fairness criterion we consider
is encapsulated in a social welfare function (SWF) that serves as the objective function or a
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Table 1 Summary of fairness criteria, part 1

Criterion Nonlin? Integer? Comments

Inequality measures

Relative range (Sect. 4.1) No No The spread between min and max
utilities, normalized by the mean

Relative mean deviation (Sect. 4.1) No No The normalized average deviation
from the mean. Takes in account all
utilities, rather than only the two
extremes as in relative range

Coefficient of variation (Sect. 4.1) Yes No The normalized standard deviation

Jain’s index (Sect. 4.1) Yes No A well-known metric developed for
telecommunication networks. It is a
strictly monotone function of the
coefficient of variation

Gini coefficient (Sect. 4.2) No No Perhaps the best known measure of
inequality. Proportional to the area
between the Lorenz curve and a
diagonal line representing perfect
equality. Lies in the interval [0,1],
with 0 indicating perfect equality

Hoover index (Sect. 4.2) No No The fraction of total utility that must
be redistributed to achieve perfect
equality. Also related to the Lorenz
curve, and proportional to the
relative mean deviation

Group parity measures

Demographic parity (Sect. 5.1) No No The parity of selection rates for a
benefit across two groups

Equalized odds (Sect. 5.2) No No The parity of selection rates among
qualified (or unqualified)
individuals across two groups

Accuracy parity (Sect. 5.3) No No The parity of accuracy rates (fraction
of individuals correctly selected or
rejected) across two groups

Predictive rate parity (Sect. 5.4) Yes Yes The parity of qualification rates
among selected across two groups

The second and third columns indicate whether the fairness model introduces nonlinearity or integer variables

constraint of the optimizationmodel.We next briefly review results from social choice theory
that derive certain SWFs from axioms of rational choice, taking into account the degree of
interpersonal comparability of utilities. We also note bargaining procedures that can be seen
as justifying certain SWFs. The fairness criteria we study in subsequent sections (aside from
the convex combinations in Sect. 7) are summarized in Tables 1, 2and 3, which indicate the
section of the paper that deals with each. The two concluding sections of the paper draw on
the foregoing discussion to suggest some general guidelines for selecting a fairness criterion
for a given application. The “Appendix” presents optimization models for all of the SWFs
listed in the tables.
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Table 2 Summary of fairness criteria, part 2

Criterion Nonlin? Integer? Comments

Fairness for the disadvantaged

Maximin (Sect. 6.1) No No Maximizes the minimum utility.
Based on the Rawlsian principle
that inequality is justified only to
the extent that it improves the
welfare of the worst off. Once
maximin is obtained, does not
consider the welfare of other
disadvantaged individuals

Leximax (Sect. 6.1) No No Maximizes the welfare of the worst
off, then the second worst off, and
so forth. Considers the welfare of
all disadvantaged individuals but
requires solving a sequence of
optimization problems

McLoone index (Sect. 6.2) No Yes Compares total utility of those below
the median to what they would
enjoy if brought up to the median.
Concerned only with the welfare of
the lower half

Combining efficiency and fairness—Classical methods

Alpha fairness (Sect. 8.1) Yes No Parameter α regulates fairness vs
efficiency, with α = 0
corresponding to a pure utilitarian
and α = ∞ to a pure maximin
criterion

Proportional fairness (Sect. 8.1) Yes No Special case of alpha fairness with
α = 1, also known as the Nash
bargaining solution, and used in
engineering applications. Has been
justified with axiomatic and
bargaining arguments

Kalai–Smorodinsky bargaining
(Sect. 8.2)

No No Maximizes minimum relative
concession by maximizing equal
fraction of each party’s potential
gain. Has been defended as
outcome of a bargaining procedure
and tends to favor those with
greater opportunity

2 Generic optimization problem

Optimization has long been used to support decisionmaking, andmany practical optimization
problems involve the allocation of resources. For example, policymakers must allocate health
resources in the Covid-19 pandemic, and airline crew schedulers allocate flight tasks. In
these applications, optimization offers the useful flexibility of including constraints, such
as resource capacity, to restrict feasible decisions. In recent years, optimization also has
been extensively studied in artificial intelligence, especially in machine learning, where
optimization models are often core components.

123



Annals of Operations Research (2023) 326:581–619 585

Table 3 Summary of fairness criteria, part 3

Criterion Nonlin? Integer? Comments

Combining efficiency and maximin fairness—Threshold methods

Efficiency threshold (Sect. 9.1) No Yes Uses a maximin criterion until
fairness cost of fairness becomes
too great, and then switches some
parties to a utilitarian criterion. The
break point is controlled by
parameter �, selected so that
parties within � of the lowest
utility are seen as sufficiently
disadvantaged to receive greater
priority

fairness threshold (Sect. 9.2) No No Uses a utilitarian criterion until
unfairness becomes too great, and
then switches some parties to a
maximin criterion. The parameter
� is selected so that parties already
more than � above the lowest
utility are not seen as deserving
greater utility if the other utilities
remain unchanged

Combining efficiency and leximax fairness—Threshold methods

Efficiency threshold, predefined
priorities (Sect. 10.1)

No Yes Maximizes an efficiency threshold
function that combines utilitarian
and maximin criteria, then applies a
leximax criterion to optimal
solutions if one or more have a
utility spread of � or less. Assumes
that priorities of the parties can be
fixed in advance

Efficiency threshold, no predefined
priorities (Sect. 10.2)

No Yes Solves a sequence of optimization
problems in which the kth problem
determines the kth smallest utility
in the socially optimal solution.
Each problem assumes the smallest
k − 1 utilities have been fixed and
maximizes a SWF that combines
utilitarian and maximin criteria
while giving the kth worst-off party
priority that is regulated by �

Conventional optimization models typically strive for efficiency by maximizing total ben-
efit or minimizing total cost in some sense. Benefit can be measured in many different ways,
such as profit, revenue, output, or health outcomes obtained, and cost can be measured by
labor,materials, and resources invested or undesirable outputs generated. The common thread
in these models is that the benefits and/or costs are dispersed across stakeholders. However,
by pursuing an efficiency goal, a conventional optimization model may lead to an unfair
distribution of benefits and costs among the stakeholders. Some may receive less than they
should, and some more then they should, relative to the others. The task before us is to
incorporate fairness into a given optimization model by reformulating the objective function
and/or adding constraints.
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We begin by supposing that the given optimization model has the form maxx{ f (x) |
x ∈ Sx }, where Sx is the feasible set and f (x) measures the efficiency of the solution x
in a desired sense. We also assume that the solution x results in a distribution of utilities
u = (u1, . . . , un) to stakeholders 1, . . . , n, respectively, and we are concerned about the
fairness of the distribution. These stakeholders could be individuals, groups, organizations,
geographic regions, or other entities. Their utilities are determined by a vector-valued utility
function u = U(x) = (U1(x), . . . ,Un(x)) whose value depends on x. These utilities could
be measured in terms of profit, negative cost, health outcomes, or some other benefit the
stakeholders receive.

In the discussion to follow, various fairness criteria are represented by social welfare
functions W (u). Formally, a social welfare function (SWF) aggregates a utility vector u into
a scalar value representing the desirability of the distribution u. A wide variety of fairness
concepts can be formulated by selecting suitable SWFs. In particular, SWFs can be designed
to balance fairness with efficiency.

One canuse aSWF to introduce fairness into a problemby formulating awelfare optimizing
model or a welfare constraining model. A welfare maximizing model replaces the original
objective function f (x) with W (u) and therefore maximizes social welfare, while a welfare
constraining model maximizes the original objective function f (x) subject to a lower bound
on W (u). A welfare maximizing model has the generic form

max
u,x

{
W (u)

∣∣ u = U (x), x ∈ Sx
}

(1)

and a welfare constraining model has the form

max
u,x

{
f (x)

∣∣ W (u) ≥ LB, u = U(x), x ∈ Sx
}

(2)

where LB is a lower bound on social welfare, representing the minimum acceptable level of
fairness.

We use a simple medical triage problem to exemplify both models, starting with a welfare
maximizing model. There are n patients who require treatment, but subject to a limited
budget B. Patient i receives treatment when binary variable xi = 1, and the cost of treatment
is ci . The resulting utility ui experienced by patient i , measured in quality-adjusted life years
(QALYs), is ai without treatment and ai +bi with treatment. Thus the utility function is given
byUi (x) = ai +bi xi for i = 1, . . . , n. If the original objective function f (x)measures total
QALYs that result from the treatment decisions, maximizing f (x) may divert all resources
away from patients who are the most expensive to treat. Physicians may wish to avoid this by
replacing f (x)with a SWF that takes into account the distribution of utilities across patients.
This leads to the welfare maximizing model

max
u,x

⎧
⎨

⎩
W (u)

∣∣∣∣

∑

i

ci xi ≤ B

ui = ai + bi xi , xi ∈ {0, 1}, all i

⎫
⎬

⎭

The choice of social welfare function W (u) should reflect how fairness and efficiency are to
be understood and balanced in this context.

A welfare constraining model is appropriate when f (x)measures a type of benefit or cost
different from that distributed to stakeholders. In the above example, the original objective
f (x) may represent the negation of total cost rather than total QALYs generated. A clinic
may wish to minimize cost subject to a lower bound on the social welfare that results from the
distribution of health benefits to patients. The clinic’s problem is formulated in the welfare
constraining model
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max
u,x

⎧
⎨

⎩
−

∑

i

ci xi

∣∣∣∣

∑

i

ci xi ≤ B,W (u) ≥ LB

ui = ai + bi xi , xi ∈ {0, 1}, all i

⎫
⎬

⎭

Another example might arise when a bank uses machine learning to estimate credit risk
when processing mortgage loan applications. The bank may wish to minimize risk while
seeking a fair distribution of loans to applicants. Let xi denote the approved loan amount
to applicant i (possibly zero), where xi is at most the requested loan amount ai . Since the
approved loan is the primary benefit of interest to an applicant, we can define his/her expected
utility as ui = Ui (xi ) = pi xi , with pi denoting the likelihood of loan approval. We suppose
the bank is able to determine pi all for applicants, perhaps with a separate estimation model.
For an approved loan of amount xi , the bank is subject to risk Ri (xi ), where Ri is a risk
function based on applicant i’s profile. The bank’s objective is to grant loans within the
available budget B, so that the overall risk is minimized and the utility distribution among
applicants is reasonably fair. The resulting welfare constraining model is

min
u,x

⎧
⎨

⎩

∑

i

Ri (xi )

∣∣∣∣

∑

i

xi ≤ B, W (u) ≥ LB

ui = pi xi , xi ∈ [0, ai ], all i

⎫
⎬

⎭

where the social welfare function W (u) reflects how fairness should be interpreted in this
context. The lower bound LB should be the minimum acceptable level of fairness. Alterna-
tively, when the bank aims to grant loans to achieve the fairest utility distribution to applicants
while restricting the risks to a reasonable level, a welfare maximizingmodel subject to budget
and risk constraints is appropriate.

Welfare maximizing models have the advantage that they allow one to regulate the trade-
off between efficiency and fairness by using a SWF that is designed for this purpose. On the
other hand, welfare constraining models may be preferable when there is no suitable SWF
that incorporates the original objective as well as fairness, or when one wishes to impose a
minimum acceptable level of fairness.

To simplify notation, we will suppose henceforth that the constraint u = U (x) is encoded
in constraints represented by (u, x) ∈ S, so that problems (1) and (2) respectively become

max
u,x

{
W (u)

∣∣ (u, x) ∈ S
}

(3)

max
u,x

{
f (x)

∣∣ W (u) ≥ LB, (u, x) ∈ S
}

(4)

Thus (u, x) ∈ S if and only if u = U (x) and x ∈ Sx .
A major element of this paper is showing (in the “Appendix”) how to write the opti-

mization problem (3) or (4) in a form suitable for one of the highly advanced mathematical
programming solvers now available. Naturally, the difficulty of (3) and (4) depends to a great
degree on the nature of the constraints that describe the feasible set S. We focus here on any
computational difficulties introduced by incorporating fairness. In particular, we indicate for
each SWF in Tables 1, 2 and 3 whether formulating it adds nonlinearities or integer variables
to an optimization model. Thus, for example, if the constraints (x, u) ∈ S are linear, the
resulting model is a linear programming (LP) problem if the SWF adds no nonlinearities or
integer variables, and it is a mixed integer/linear programming (MILP) if the SWF adds only
integer variables. Powerful solvers exist for LP and MILP models, as well as for some types
of nonlinear models. Specifics are discussed in the “Appendix”.

123



588 Annals of Operations Research (2023) 326:581–619

3 Axiomatic and bargaining derivations

Certain social welfare functions discussed below have interesting axiomatic or bargaining
derivations. These derivations, however, rely on assumptions thatmay limit their applicability
to practical modeling situations. In particular, the classical axiomatic results assume that
utilities can be meaningfully compared across individuals only to a limited degree.

The use of a social welfare function presupposes a certain amount of interpersonal compa-
rability, and different SWFs presuppose different types of comparability. In fact, by adopting
certain additional axioms, one can show that assuming a given type of interpersonal com-
parability necessarily results in a SWF of a particular form, such as utilitarian, maximin, or
proportional fairness (Roberts, 1980; Gaertner, 2009).

Interpersonal comparability is characterized by defining an invariance transformation
φ(u) = (φ1(u1), . . . , φn(un)). This is a transformation of utility vectors that does not alter
the social ranking of the vectors. Thus u is preferable to u′ if and only if it remains prefer-
able after applying an invariance transformation; that is, W (u) > W (u′) if and only if
W (φ(u)) > W (φ(u′)). For example, unit comparability corresponds to an invariance trans-
formation φ(u) of the form φi (ui ) = βui + γi , where β > 0 is independent of i . Thus
gains and losses of utility can be compared across individuals, but the relative level of util-
ities cannot. Level comparability corresponds to an invariance transformation of the form
φ(u) = (φ0(u1), . . . , φ0(un)), where φ0 is strictly increasing. This allows the relative utility
levels of different individuals to be compared. That is, one can say meaningfully that one
individual enjoys more utility than another.

Given two additional axioms, unit comparability implies that the SWFmust be utilitarian,
which means that that it is simply the total utility

∑
i ui . One axiom is anonymity, which

says that interchanging individuals has no effect on the ranking of utility vectors. Thus
W (u) > W (u′) if and only if W (uπ ) > W (u′

π ), where uπ is a permutation of the utilities
in u. The second is a strict Pareto axiom, which requires that W (u) ≥ W (u′) if u ≥ u′, and
W (u) > W (u′) if in addition ui > u′

i for some i .
Given these same two axioms, level comparability implies that the social welfare criterion

must be eithermaximin orminimax, meaning thatW (u) is either mini {ui } or−maxi {ui }. We
obtain the maximin criterion in particular (famously defended by John Rawls and discussed
below in Sect. 6.1) if we adopt an additional axiom that a maximin outcome is preferable to
a minimax outcome.1

It is important to note that the unit comparability assumption implies not only that utilities
across persons have unit comparability, but that they have no greater degree of comparability,
and similarly for level comparability (Hooker, 2013). Thus, the utilitarian principle is derived
from the rather strict premise that the relative level of utility across individuals cannot be
meaningfully compared. This already rules out a Rawlsian criterion, which requires iden-
tifying the smallest individual utility. Similarly, the maximin principle is derived from the
premise that gains and losses in individual utilities cannot be meaningfully quantified, which
rules out a utilitarian criterion.

Interpersonal comparability is also restricted in the classical proof of the Nash bargaining
solution (Nash, 1950), also known as proportional fairness (Sect. 8.1). Here the assumption is
scale invariance, which corresponds to an invariance transformation φ of the form φi (ui ) =
βi ui , where each βi > 0. This already rules out both utilitarian and Rawlsian criteria. The

1 We assume, with no significant loss of generality for present purposes, that social welfare is a function solely
of the utility vector u. If we formulate social welfare as a function of x and the utility functions Ui (x), then
we need an independence axiom to derive the utilitarian result. An additional separability axiom is required
to prove the maximin/minimax result.
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Nash bargaining solution can be derived if we also assume anonymity and Pareto axioms,
along with the independence of irrelevant alternatives. The last essentially says that if u∗
is the Nash bargaining solution for a given feasible set of utilities, it remains the solution
if the set is reduced without excluding u∗. If we replace this independence axiom with a
monotonicity property (discussed in Sect. 8.2), while retaining scale invariance, we obtain
the Kalai–Smorodinsky bargaining solution (Kalai & Smorodinsky, 1975).

Full interpersonal comparability tends to be assumed in practical optimization models,
since utility is often identified with profit, negative cost, or other forms of benefit that are
routinely compared across individuals. The classical axiomatic results surveyed here are
therefore not directly applicable in such cases. Nonetheless, one must bear in mind that
utilitarian andRawlsian criteria presuppose at least unit and level comparability, respectively,
and other SWFs may presuppose greater degrees of interpersonal comparability.

A more recent axiomatic result of Lan and Chiang (2011) does not explicitly rely on an
interpersonal noncomparability assumption. It states that a SWF satisfying certain axioms
must belong to a certain broad family of functions, where specific members of this family
include alpha fairness (of which proportional fairness is a special case) as well as maximin
and minimax criteria. As we note in Sect. 8.1, an axiom of partition is key to the result and is
rather difficult to assess in a practical context. In such cases, it may be more natural to judge
the plausibility of an SWF itself than the set of axioms that lead to it.

Bargaining justifications have also been given for certain SWFs. For example, Harsanyi
(1977), Rubinstein (1982), and Binmore et al. (1986) show that the Nash solution is the
(asymptotic) outcome of certain rational bargaining procedures. Similar arguments can be
advanced for the Kalai–Smorodinsky bargaining solution. Sections8.1 and 8.2 describe the
bargaining procedures in greater detail. They typically assume that there is a default position
at which bargaining starts, and to which the parties revert if negotiation fails. The default
position has an influence on the outcome of bargaining even when it succeeds, and a unfair
starting point may lead to an outcome that parties consider unfair. Aside from this, it is
a fundamental philosophical question as to whether procedural justice (which one might
claim is achieved by a fair negotiation process) can be relied upon to produce substantive
justice (a fair outcome) (Nozick, 1974; Rawls, 1971; Scanlon, 2003; Cropanzana et al., 2007).
These considerations must be taken into account when assessing a bargaining argument for
a particular SWF.

4 Inequality measures

Equality is not the same concept (or cluster of concepts) as fairness, but there are contexts in
which one may wish to achieve fairness by reducing the level of inequality. No philosophical
consensus exists on the relationship between equality and fairness. Views range from the
assertion that fairness imposes an irreducible obligation to promote equality for its own sake,
even at the cost of reducing total utility, to the claim that fairness requires equality only when
greater equality would lead to greater total utility (Frankfurt, 2015; Parfit, 1997; Scanlon,
2003). In any event, an inequality metric can be appropriate in a context where a specifically
egalitarian distribution is the primary goal, or where it is believed that greater fairness can
be achieved by reducing inequality.

Inequality measures have been used for fairness-related optimization in a broad range of
applications. Examples of these papers are summarized in Karsu and Morton (2015). More
recently, inequality measures are also considered in the growing area of algorithmic fairness.
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For instance, Leonhardt et al. (2018) study Gini coefficient type measures for estimating the
disparity in user satisfaction and recommendation quality of recommender systems. Speicher
et al. (2018) and Sühr et al. (2019) respectively adopt a generalized entropy index to evaluate
the degree of unfairness in predictors trained by machine learning and in two-sided matching
platforms.

Several statistics have been proposed for measuring inequality (Cowell, 2000; Jenkins &
Van Kerm, 2011), and we discuss some of the best-known ones: the relative range, relative
mean deviation, coefficient of variation, Jain’s index, the Gini coefficient, and the Hoover
index. Linearized optimization models are presented in the “Appendix”. TheMcLoone index
can also be regarded as a measure of inequality, but we consider it in the next section as
measuring fairness for the disadvantaged.

Since greater inequality is viewed as less fair, thus less desirable, SWFs in this section are
written as the negation of the inequality measure. All of the inequality measures we consider
are normalized by the mean utility and are therefore unchanged after multiplying the utilities
by a common positive scalar. Thus, increasing everyone’s utility (by the same factor) has no
effect on social welfare as measured by the criteria in this section. This is a distinction from
the SWFs we review in Sects. 6–10, which consider overall absolute welfare levels.

4.1 Measures of relative dispersion

The relative range of utilities is an inequality metric that, when negated, yields the SWF

W (u) = −(1/ū)
(
umax − umin

)

where umax = maxi {ui }, umin = mini {ui }, and ū = (1/n)
∑

i ui . Although the SWF
is nonlinear, it is a ratio of affine functions and can therefore be linearized using the
change of variable employed in linear-fractional programming (Charnes & Cooper, 1962).
The “Appendix” shows how this and the other inequality metrics considered here can be
reformulated using a similar change of variable.

Another dispersion metric is the relative mean deviation, which measures inequality more
comprehensively by considering all utilities rather than only the minimum and maximum.
The SWF is

W (u) = −(1/ū)
∑

i

|ui − ū|

and can be linearized.
The coefficient of variation is the normalized standard deviation. It may be appropriate

when large deviations from themean are disproportionately significant, but it has the possible
drawback of introducing an irreducibly nonlinear objective function. The SWF is

W (u) = − 1

ū

[1
n

∑

i

(ui − ū)2
] 1
2

Although the numerator is nonaffine, the change of variablementioned earlier yields a convex
objective function (as noted in the “Appendix”).

Jain’s index (Jain et al., 1984) is perhaps the best-known of the several fairness measures
that have been developed specifically for telecommunications. It is given by the SWF

W (u) = ū2
(1
n

∑

i

u2i

)−1 = 1

1 + c2v
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where cv is the coefficient of variation. Larger values of the index indicate greater equality,
with 1 corresponding to perfect equality and 1/n to perfect inequality. Since the index is
a strictly decreasing function of cv , it can be maximized by maximizing the SWF given
above for the coefficient of variation. Other metrics developed specifically for networks and
telecommunications include QoE fairness (Georgopoulos et al., 2013; Hoßfeld et al., 2018),
TCP fairness (Pokhrel et al., 2016), G’s fairness index, and Bossaert’s fairness index (Mehta,
2020).

4.2 Gini coefficient and Hoover index

The Gini coefficient is by far the best known measure of inequality, as it is routinely used
to measure income and wealth inequality (Gini, 1912; Yitzhaki & Schechtman, 2013). It is
proportional to the area between the Lorenz curve and a diagonal line representing perfect
equality and therefore vanishes under perfect equality. The Lorenz curve plots the cumulative
proportion ofwealth or benefits in the bottom q%of the population, thus indicating the degree
of inequality via its deviation from the perfect equality line. Different utility distributions
can, of course, have the same Gini coefficient. The SWF is W (u) = −G(u), where

G(u) = 1

2ūn2
∑

i, j

|ui − u j |

Again due to linear-fractional programming, the Gini criterion can be linearized.
TheHoover index is also related to the Lorenz curve, as it is proportional to the maximum

vertical distance between the Lorenz curve and a diagonal line representing perfect equality
(Hoover, 1936). It is also proportional to the relative mean deviation and can be interpreted
as the fraction of total utility that would have to be redistributed to achieve perfect equality.
The SWF is

W (u) = − 1

2nū

∑

i

|ui − ū|

The Hoover index can be minimized by solving the same model as for the relative mean
deviation.

5 Group parity measures

The mathematical formulation of fairness has become a major issue in the field of machine
learning, because machine learning algorithms are employed to make high-stake decisions
and require precisely coded criteria for assessing whether those decisions are fair. The focus
of fair machine learning has been primarily on mitigating biases against historically disad-
vantaged groups and ensuring that certain minority groups, often defined by law, receive fair
treatment (Angwin et al., 2016; Dieterich et al., 2016; Chouldechova, 2017). The AI com-
munity has seized upon traditional statistical measures of classification errors to evaluate
inequality in classification performance among groups. These measures are often referred to
as group parity measures, even though they actually measure the degree of disparity rather
than parity. Like the previous inequality measures, group parity measures focus on equality
as a proxy of fairness, but a key difference between the two is that group parity measures
compare equality between two specified groups instead of among individuals generally.
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In a typical scenario, a machine is trained to make yes-no decisions as to who receives a
certain benefit, such as a mortgage loan, a job interview, parole, and so forth. A large training
set is used to train the machine to select appropriate individuals as reliably as possible,
based on various features they possess. The aim is to predict who will pay their mortgage,
become a valued employee, or avoid future crimes. These tasks conventionally use supervised
learning methods to train predictive models from labelled data with a standard efficiency-
driven objective to maximize prediction accuracy. In particular, majority of the literature on
fair machine learning studies fairness in classification, and we focus on this setup as well.

A fairness test compares decisions for a minority or protected group with those for the
remainder of the population. Four statistics are defined for the two groups:

TP (true positives): the number of individuals correctly selected for a benefit.
FP (false positives): the number of individuals incorrectly selected.
TN (true negatives): the number of individuals correctly rejected.
FN (false negatives): the number of individuals incorrectly rejected.

Various metrics involving these four statistics are compared between the minority group and
the rest of the population, each yielding a measure of parity between the groups.

We will set ai = 1 when individual i should be selected, and ai = 0 otherwise. We let N
be an index set for individuals in the protected group, and N ′ for those in the remainder of
the population. Rather than a vector u of utilities distributed across individuals, we have a
vector δ = (δ1, . . . , δn) of individual 0–1 decisions, where δi = 1 indicates that individual
i is selected. We can view social welfare as a function W (δ) of these decisions rather than
a function W (u) of utilities. Of course, one could view δ as a simplified representation of
utilities in which each individual receives utility 0 or 1. A typical fair machine learningmodel
applies W (δ) to seek fairness by bounding W (δ) rather than maximizing W (δ). Therefore,
the model is trained using an optimization problem (4) that maximizes some other objective,
e.g. an efficiency objective based on the classification accuracy, subject to these bounds.

Unfortunately, it is unclear how the group parity implications of a decision vector δ should
be measured. There are a wide variety of classification error metrics, some of which are
pairwise incompatible, with no consensus on which is most suitable for any given application
(e.g. Kleinberg et al., 2016; Friedler et al., 2016). In addition, the focus on classification error
affords a rather narrow perspective on the fairness problem, because the underlying concern is
generally fairness in a broader sense with respect to utilities. More explicitly, discrimination
against a protected group is often undesirable because the resulting classification disparity
between groups leads to an unfair distribution of utilities. Finally, there is no obvious criterion
for which groups should be designated as protected, unless one is content to recognize only
those sanctioned by law.

The AI community might well consider the option of training machines to maximize
a more comprehensive measure of social welfare, such as one of those discussed in later
sections, to better align fairness concepts with social well-being. We are already beginning
to see some movement in this direction (Heidari et al., 2018; Corbett-Davies & Goel, 2018;
Heidari et al., 2019; Hu & Chen, 2020). The classification vector δ can be viewed as a set of
decision variables on which utilities depend, perhaps as given by a utility function u = U(δ).
Then social welfare is assessed by a function W (u) as in model (3). In the simplest case,
one could set Ui (δi ) = ciδi + di , where ci + di is the utility experienced by individual i if
selected, and di if not selected. Of course, legal requirements may dictate that bounds are
placed directly on one of the parity measures.

In any event, the discussion below is restricted to fairness metricsW (δ) defined directly in
terms of the classification decision vector δ. We consider four of the best known group parity

123



Annals of Operations Research (2023) 326:581–619 593

metrics: demographic parity, equalized odds, accuracy parity, and predictive rate parity. For
brevity, we refer to individuals in the protected group as minority individuals, and those in
the remainder of the population as majority individuals. As in Sect. 4, we view the SWF as
the negation of disparity so as to pose the problem as one of maximizing social welfare.

These fourmeasures are among a large number of fairnessmetrics that have been proposed
for machine learning. Verma and Rubin (2018) provide a comprehensive survey of fairness
metrics in classification, many of which are similar to those discussed here. Beyond these,
the Matthews correlation coefficient (Matthews, 1975; Chicco & Jurman, 2020) is often
regarded as the most comprehensive measure of classification accuracy, but it corresponds
to a complicated, nonconvex SWF that could be quite difficult to optimize. Counterfactual
fairness (Kusner et al., 2017; Russell et al., 2017) is another useful scheme that aims to avoid
undesirable confounding factors for evaluating fairness in classification, and it is unclear at
this point how to incorporate this scheme into an optimization model. Beyond fairness in
classification, recent research has also seenprogress on fairness in unsupervised learning (e.g.,
Abraham et al., 2019, Deepak & Abraham, 2020) and reinforcement learning (e.g., Weng,
2019, Siddique et al., 2020). We do not discuss these machine learning frameworks, as they
are difficult to interpret as optimization models even without any fairness consideration.

5.1 Demographic parity

The simplest group parity metric is based on demographic parity, also known as propor-
tional/statistical parity. It is achieved when the fraction of minority individuals selected is
the same as the fraction of majority individuals selected. It is defined by comparing the ratio

(TP + FP)/(TP + FP + TN + FN)

across the two groups. The social welfare function is W (δ) = 1 − |B(δ)|, where

B(δ) = 1

|N |
∑

i∈N
δi − 1

|N ′|
∑

i∈N ′
δi (5)

Thus 0 ≤ W (δ) ≤ 1, and complete parity is obtained when W (δ) = 1.
Since Dwork et al. (2012) proposed the use of demographic parity for fairness in classifi-

cation, it has been widely studied and applied. Despite its popularity, critics of demographic
parity view the measure as unsuitable for most practical purposes because it requires strict
equality of outcomes. For example, it would discriminate against a minority group that hap-
pens to be more qualified for loans than the majority on the average, since it requires that a
minority individual receive a loan with no greater probability than a majority individual.

5.2 Equalized odds

The equalized oddsmetric is based on two related but distinct criteria. One is that the fraction
of qualifiedminority persons selected is the same as the fraction of qualifiedmajority persons
selected (Hardt et al., 2016). The other is that the fraction of unqualified minority persons
selected is the same as the fraction of unqualified majority persons selected (Zafar et al.,
2017). The former is also known as equality of opportunity and is defined by comparing the
ratio TP/(TP + FN). It has the SWF W (δ) = 1 − |B(δ)| across the two groups, where

B(δ) =
∑

i∈N aiδi∑
i∈N ai

−
∑

i∈N ′ aiδi∑
i∈N ′ ai

(6)
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The latter criterion is based on the ratio FP/(FP + TN) and again has the SWF W (δ) =
1 − |B(δ)|, but with

B(δ) =
∑

i∈N (1 − ai )δi∑
i∈N (1 − ai )

−
∑

i∈N ′(1 − ai )δi∑
i∈N ′(1 − ai )

(7)

5.3 Accuracy parity

The two-sided evaluation in equalized odds can be obviated simply bymeasuring the fraction
of predictions that are accurate, which is the ratio

(TP + TN)/(TP + TN + FP + FN)

The SWF is W (u) = 1 − |B(δ)|, where

B(δ) = 1

|N |
∑

i∈N

(
aiδi + (1 − ai )(1 − δi )

) − 1

|N ′|
∑

i∈N ′

(
aiδi + (1 − ai )(1 − δi )

)
(8)

Accuracy parity is less studied than the previous two measures, perhaps because it does not
distinguish between true positives and true negatives. It is less often used in the design of
fair classifiers than as a tool to evaluate existing classifiers. For example, Berk et al. (2018)
list accuracy parity as one of the meaningful fairness definitions in criminal justice risk
assessment.

5.4 Predictive rate parity

When one wishes to compare what fraction of individuals selected from each group should
have been selected, the relevant measure is predictive rate parity, defined as TP/(TP + FP).
The SWF is W (δ) = |1 − B(δ)|, with

B(δ) =
∑

i∈N aiδi∑
ı∈N δi

−
∑

i∈N ′ aiδi∑
ı∈N ′ δi

(9)

This disparity measure results in a difficult optimization problem, as explained in the
“Appendix”. Predictive parity is primarily considered in risk assessment contexts, such as
recidivism prediction (Dieterich et al., 2016; Chouldechova, 2017) and child maltreatment
screening (Chouldechova et al., 2018).

6 Fairness for the disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize the disadvantaged.
Far and away the most famous of such measures is the difference principle of Rawls (1999), a
maximin criterion that is based on careful philosophical argument and debated in a vast liter-
ature (surveyed in Freeman, 2003, Richardson &Weithman, 1999). The difference principle
can be plausibly extended to a lexicographic maximum principle. There is also the McLoone
index, which is a statistical measure that emphasizes the lot of the less advantaged.
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6.1 Maximin and leximax criteria

The Rawlsian difference principle states that inequality should exist only to the extent that it
is necessary to improve the lot of the worst-off. It is defended with a social contract argument
that, in its simplest form, maintains that the structure of society must be negotiated in an
“original position” in which people do not yet know their station in society. Rawls argues
that one can rationally assent to the possibility of ending up on the bottom only if one would
have been even worse off in any other social structure, whence an imperative to maximize the
lot of the worst-off. The principle is intended to apply only to the design of social institutions,
and only to the distribution of “primary goods,” which are goods that any rational person
would want. Yet it can be adopted as a general criterion for distributing utility, namely a
maximin criterion that maximizes the simple SWF W (u) = mini {ui }. This objective is
readily linearized.

The maximin criterion has been a popular fairness measure in the technical as well as the
philosophical literature. Earlyworks on fair resource allocation, such as bandwidth allocation,
often choose the maximin criterion to seek the best possible performance for the worst-off
service among services competing for bandwidth (Luss, 1999; Ogryczak & Śliwiński, 2002;
Ogryczak et al., 2008). Recent research has applied the criterion to more diverse problem
contexts. For example, Stelmakh et al. (2018) design an algorithm for making paper-reviewer
assignment that maximizes the review quality of the most disadvantaged paper, and Nanda
et al. (2020) formalize a maximin fairness measure for ridesharing. Samorini et al. (2021)
use the maximin criterion in medical appointment scheduling to ensure that disadvantaged
groups are not subjected to excessive waiting times. Here the criterion is applied to groups
rather than individuals. This is consonant with Rawls’ original theory, which applies it to
social classes. The objective function minimizes a linear combination of the worst group
waiting time and other cost measures, as discussed in Sect. 7. In addition, the Rawlsian
view of fairness is gaining recognition in machine learning as an alternative to the dominant
statistical bias based group parity metrics (Hashimoto et al., 2018; Heidari et al., 2019; Shah
et al., 2021).

Themaximin criterion can force equality evenwhen doing so is very costly in terms of total
utility. Suppose, for example that S is defined only by a budget constraint

∑
i xi ≤ B (with

x ≥ 0) and utility functions ui = ai xi . Then the maximin solution equalizes the utilities,
with each individual experiencing utility u0 = B/

∑
i (1/ai ). If individual k’s welfare is

very expensive to provide, perhaps due to an incurable disease, then ak is very small, and
individual k consumes almost all the resources, u0/ak . The utility of everyone else is reduced
to the same low level u0 that can be achieved for individual k. One might impose an upper
bound dk on individual k’s resource consumption, but then the maximin criterion is satisfied
by reducing everyone’s utility even more, namely to individual k’s utility akdk . This leaves
unused resources B − dkak

∑
i (1/ai ), but the maximin criterion provides no incentive to

distribute them.
Themaximin criterion can be plausibly extended to lexicographicmaximization (leximax),

which can remove the problem of leftover resources in the previous example. Leximax is
achieved by first maximizing the smallest utility subject to resrouce constraints, then the
second smallest, and so forth. While this can avoid leftover resources, it does not avoid the
possibly high cost of equality in the absence of constraints that prevent it. As noted in the
“Appendix”, a leximax solution can be computed by solving a sequence of optimization
problems.
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6.2 McLoone index

The McLoone index compares the total utility of individuals at or below the median utility
to the utility they would enjoy if all were brought up to the median utility. The index is 1 if
nobody’s utility is strictly below the median, and it approaches 0 if the utility distribution has
a very long lower tail (on the assumption that all utilities are positive.) The McLoone index
benefits the disadvantaged by rewarding equality in the lower half of the distribution, but it
is unconcerned by the existence of very rich individuals in the upper half. The SWF is

W (u) = 1

|I (u)|ũ
∑

i∈I (u)

ui

where ũ is the median of utilities in u and I (u) is the set of indices of utilities at or below
the median, so that I (u) = {i | ui ≤ ũ}.

The McLoone criterion can be formulated with 0–1 variables and a fractional objective
function. This objective function can, in turn, be linearized by a change of variable, resulting
in an MILP model if the feasible set S is a polyhedron.

7 Convex combinations

We now move to schemes that combine efficiency and fairness. The most obvious approach
is to maximize a convex combination of the two:

W (u) = (1 − λ)
∑

i

ui + λ
(u)

where 
(u) is a fairness measure and the utilitarian sum measures efficiency. A perennial
problem with convex combinations is that it is difficult to interpret λ, particularly when
(u)

is measured in units other than utility. For example, if we use the Gini coefficient G(u)

as a measure of unfairness, then we must combine utility with a dimensionless quantity

(u) = 1 − G(u). Larger values of λ give greater weight to equality, but in a practical
situation it is unclear how to attribute any meaning to a chosen value of λ.

Eisenhandler and Tzur (2019) use a product rather than a convex combination of total
utility and 1 − G(u), which nicely reduces to an SWF that is easily linearized:

W (u) =
∑

i

ui − 1

n

∑

i< j

|u j − ui |

Yet we again have a convex combination of total utility and an equality metric (one that is
proportional to the negativemean absolute difference); in particular, it is a convex combination
in which λ = 1/2. This may be reasonable for the intended application, but one may ask
why this particular value of λ is suitable, and whether other values should be used in other
contexts. Aside from this are the general issues raised by using equality as a surrogate for
fairness.

Mostajabdaveh et al. (2019) use a linear combination that is equivalent to
∑

i ui + μ(1−
G(u))

∑
i ui , whereμ ∈ [0, 1]. This at least combines quantities measured in the same units.

Yet we again have the problem of justifying a weightμ. In fact, this combination is equivalent
to the convex combination implied by the Eisenhandler and Tzur criterion, except that λ is
μ/(1 + μ) rather than 1

2 .
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One can combine utility with the Rawlsian maximin criterion by using the convex
combination

W (u) = (1 − λ)
∑

i

ui + λmin
i

{ui } (10)

This, like the proposal of Mostajabdaveh et al, combines quantities that are measured in the
same units. Yet it is again unclear how to select a suitable value of λ. Note that if we index
utilities so that u1 ≤ · · · ≤ un , (10) is simply a weighted sum u1 + (1 − λ)

∑
i>1 ui that

gives somewhat more weight to the lowest utility. Yet how much more is appropriate?
One can refine criterion (10) by giving gradually decreasingweightsw1 > w2 > · · · > wn

to the utilities in an SWF of the form

W (u) =
∑

i

wi ui (11)

where, again, u1 ≤ · · · ≤ un . This obviously requires that many weights be assigned rather
than one. In addition, since we do not know how to index the utilities by size in advance,
we have the difficult modeling challenge of ensuring that weight wi is assigned to the i th
smallest utility. There is a long line ofwork studying this formulation as the objective function
for multi-criteria decision making (e.g., Yager, 1997; Ogryczak & Śliwiński, 2003). Hu and
Chen (2020) provide a novel perspective on this SWF in machine learning: they view (11)
as the objective function in a classifier training model and establish its correspondence with
the commonly studied fairness constrained loss-minimization training models.

In some contexts, it may be possible to obtain weights for optimization purposes by
eliciting preferences from relevant stakeholders. Various methods are described in Gralla et
al. (2014); Carland et al. (2018); Yılmaz and Kabak (2020), and Hasnain et al. (2021). An
alternate approach, proposed by Argyris et al. (2022), does not rely on a single set of weights
given in advance. Rather, it requires that the resulting distribution of benefits be at least as
fair as a “reference” distribution, perhaps representing a floor on the degree of acceptable
fairness. Since stakeholders have different views on fairness, the reference distribution must
be at least as fair as what is required by any of their fairness concepts. These concepts are
expressed as weighted ordered averages of utilities, which allow a continuum of fairness
criteria ranging from pure utilitarian to pure maximin. Since the full range rarely allows
direct comparison with the reference distribution, the stakeholders must agree on a narrower
range. The resulting dominance constraints are formulated in an MILP model.

It may occasionally be useful to combine equality with a second fairness criterion, rather
than with efficiency. This possibility is explored by Rea et al. (2021). They define both
fairness criteria in terms of the deviations between the amount of resources that stakeholders
request and the amount they actually receive. The equality criterion measures the extent to
which these deviations are equal. The second criterion is similar but gives greater weight to
deviations corresponding to stakeholders who are seen as entitled to a closer match between
request and allocation. This approach requires two types of weights, one that defines the
convex combination of the two fairness criteria, and a set of weights that indicate the relative
entitlement of the stakeholders.

8 Alpha fairness and Kalai–Smorodinksy bargaining

Alpha fairness and Kalai–Smorodinksy bargaining provide alternative and perhaps more
satisfactory means of combining fairness and efficiency than convex combinations. Alpha
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fairness regulates the combination with a continuous parameter α, where larger values of α

signify a greater emphasis on fairness. A famous special case is the Nash bargaining solution,
which corresponds to α = 1. Kalai–Smordinsky bargaining, proposed as an alternative to
Nash bargaining, allots the parties the largest possible fraction of their potential utility while
observing fairness by equalizing that fraction across parties.

8.1 Alpha fairness and Nash bargaining

Alpha fairness (Mo & Walrand, 2000; Verloop et al., 2010) is represented by a family of
SWFs having the form

Wα(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1

1 − α

∑

i

u1−α
i for α ≥ 0, α �= 1

∑

i

log(ui ) for α = 1

These SWFs form a continuum that stretches from a utilitarian criterion (α = 0) to amaximin
criterion as α → ∞. Bertsimas et al. (2012) study worst-case fairness/efficiency trade-offs
implied by this criterion.

The parameterα can be interpreted as quantifying the fairness/efficiency trade-off, because
utility u j must be reduced by (u j/ui )α units to compensate for a unit increase in ui (< u j )
while maintaining constant social welfare. This gives priority to less-advantaged parties, as
we desire, with α indicating how much priority. Yet it is not obvious what kind of trade-off,
and therefore what value of α, is appropriate for a given application. There is no apparent
interpretation of α independent of its role in the SWF.

Asnoted inSect. 3, axiomsgivenbyLanandChiang (2011) imply that anSWFmust belong
to a family of functions of which alpha fairness is a member (see also Lan et al., 2010). The
functions in this family have logarithmic or power law form and include unnormalized Theil
and Atkinson indices (which are logarithmically based) as well as the maximin criterion and
alpha fairness. These functional forms are primarily determined by an axiom of partition that
may be stated as follows. There exists a mean function (Kolmogorov, 1930) h such that for
any partition (u1, u2) of u and any two distributions u and u′,

W (tu)

W (tu′)
= h

(W (u1)
W (u′

1)
,
W (u2)
W (u′

2)

)
(12)

where t > 0 is an arbitrary scalar. Lan and Chiang show that, in this context, h(y1, y2)
must be the geometric or a power mean of y1 and y2, from which their main result follows.
Condition (12) can be seen as related to ratio scale comparability (Roberts, 1980), which
differs from unit comparability in that the invariance transformation is φi (ui ) = βui rather
than φi (ui ) = βui +γi . It is unclear how one might assess whether the rather abstract axiom
of partition is appropriate for a particular practical application.

Proportional fairness results from setting α = 1 and is often measured by the product
�i ui rather than its logarithm. Maximizing proportional fairness yields the Nash bargaining
solution (Nash, 1950), which should not be confused with the Nash equilibrium of game
theory. It corresponds to selecting a point u in the feasible set that maximizes the volume of
the hyperrectangle with opposite corners at u and the origin. This is illustrated in Fig. 1a,
where each point on the plot represents the utility outcomes for two parties that result from
some distribution of resources. The set of feasible utility vectors is the area under the curve.
The Nash bargaining solution is the black dot, which is the feasible point that maximizes the
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umax

(a) (b)

u1

u2

u1

u2

Fig. 1 a Nash bargaining solution for two parties. b Kalai–Smorodinsky bargaining solution for two parties.
In both cases, the default position is the origin

area of the shaded rectangle. Proportional fairness is frequently used in engineering, such as
for bandwidth allocation in telecommunication networks and traffic signal timing (Mazumdar
et al., 1991; Kelly et al., 1998).

As remarked in Sect. 3, there are axiomatic and bargaining justifications for proportional
fairness. Nash’s (1950) axiomatic proof relies on an assumption of scale invariance that may
be unrealistic for practical applications. Harsanyi (1977), Rubinstein (1982), and Binmore
et al. (1986) show that proportional fairness is the (asymptotic) outcome of certain rational
bargaining procedures. The procedures assume that the parties begin with a default utility
allocation d = (d1, . . . , dn) on which they fall back if bargaining fails, in which case the
SWF is

∏
i (ui − di ). An unfair starting point d could lead to an unfair outcome even under a

bargaining procedure that is considered fair. This is, of course, not an issue if nothing more
than a fair procedure is desired.

The most straightforward result is Harsanyi’s, which is based on a bargaining procedure
proposed by Zeuthen (1930). In the current round of a two-party negotiation, let ui be the
utility party 1 would receive under party i’s last offer, and let p2 be party 1’s estimate of the
probability that party 2 will stick with its last offer rather than accept party 1’s last offer. It is
assumed that party 1 will stick with its last offer only if the expected utility (1− p2)u1+ p2d1
of doing so is at least the utility u2 party 1 would receive from party 2’s last offer. Party 2’s
decision is analogous. If there is a minimum distance between offers, the utilities converge to
the Nash bargaining solution. The suitability of this bargaining procedure must be assessed
for a particular application.

A potential issue with proportional fairness, and alpha fairness in general, is that it can
assign equality the same social welfare as arbitrarily extreme inequality. In a 2-player situ-
ation, for example, the distribution u = (1, 1) has the same social welfare value as (t, T ),
where

t =
{
1/T , if α = 1
(
2 − T 1−α

)1/(1−α)
, if α > 1 andT 1−α < 2
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Thus for α = 1, we have t → 0 has T → ∞, and for α > 1, t → 21/(1−α) as T → ∞, even
when social welfare is held fixed. Alpha fairness therefore judges an egalitarian solution to
be no better than a solution in which one party has infinitely more wealth than the other. This
anomaly does not arise when 0 ≤ α < 1.

8.2 Kalai–Smorodinsky bargaining

The Kalai–Smorodinsky (K–S) bargaining solution provides parties the largest possible frac-
tion of their “ideal” utility, subject to the condition that the fraction is the same for all parties
(Kalai & Smorodinsky, 1975). A party’s ideal utility is the maximum feasible utility that
party could receive if the utilities of the other parties were ignored. Increases in utility are
measured with respect to the default utility allocation.

One motivation for the K–S criterion is that it maximizes total utility while maintaining
fairness for all parties, where fairness takes into account the fact that allocating utility to some
parties is more costly than to others. This perspective can be suitable in bargaining contexts,
as when labor and management negotiate wages (Alexander, 1992). They may see a solution
as fair when the two parties make the same relative concession. A technical motivation for
the criterion is that it has a monotonicity property that the Nash solution lacks: when the
feasible set is enlarged, the negotiated utilities of the parties never decrease. This property
is not necessarily desirable, as when enlargement allows one player to enjoy much greater
utility at a small cost to other parties. In any event, the K–S bargaining solution is defended
by Thompson (1994) and is arguably consistent with the contractarian ethical philosophy
developed by Gauthier (1983).

Mathematically, the objective is to find the largest scalarβ such that u = (1−β)d+βumax

is a feasible utility vector, where each umax
i is the maximum of ui over all feasible utility

vectors u. The bargaining solution is the vector u that maximizes β. Figure 1b illustrates the
idea for two parties when the default position d is the origin. The K–S solution (black dot)
is the highest point at which the diagonal line intersects the feasible set. Formally, the SWF
for K–S bargaining might be defined

W (u) =
{∑

i ui , if u = (1 − β)d + βumax for someβ with0 ≤ β ≤ 1
0, otherwise

where umax
i = maxx,u{ui

∣∣ (u, x) ∈ S} for each i .
Kalai and Smorodinsky show that their solution can be derived from the same axioms as

proportional fairness if the independence of irrelevant alternatives is replaced by the mono-
tonicity property mentioned above. The proof again relies on scale invariance. A bargaining
justification might be given by arguing that it is rational for each player to minimize rela-
tive concession, and repeated rounds of bargaining will lead under suitable conditions to an
equilibrium in which their relative concessions are equal and minimized.

On the other hand, the K–S scheme may allocate far more utility to an individual whose
welfare is easily improved than to one who is less fortunate. For example, it may allocate
treatment resources to persons suffering from the common cold to provide them the same
fraction of their maximum health potential as patients with chronic kidney failure. The K–S
model offers no means to prevent this kind of outcome by adjusting the trade-off between
fairness and efficiency, as is possible with alpha fairness.

More generally, one can ask why the potential utility that fortune or fate has granted to
some individuals should necessarily be relevant to a fair allocation. Perhaps fairness some-
times demands a contrasting approach: rather than rewarding fortunate individuals strictly in
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proportion to their potential, we should give greater emphasis to improving the lot of those
in less fortunate circumstances (Dworkin, 1981a, 1981b, 2000; Barry, 1988).

9 Threshold criteria withmaximin fairness

Williams and Cookson (2000) suggest two ways to combine utilitarian and maximin objec-
tives using threshold criteria. One, based on a efficiency-driven threshold on utilities, begins
with a maximin criterion but switches to a utilitarian criterion when the cost of fairness
becomes too great. The other, based on a fairness-driven threshold on utilities, begins with
utilitarianism and switches to a maximin criterion when unfairness becomes too great.

We consider these criteria and their extensions in some detail because they provide a
contrasting alternative to classical criteria. They also introduce a fairness/efficiency trade-off
parameter � than may be easier to interpret in practice than α in alpha fairness, as well as a
natural way to assess fairness across groups of different sizes. On the other hand, there is no
known axiomatic or bargaining justification for these criteria. They also inherit limitations
of the maximin criterion for assessing fairness, a matter addressed in the next section.

The threshold criteria were originally defined only for two persons, and it is not obvious
how to extend them to multiple parties. Hooker and Williams (2012) provide an n-person
extension of the efficiency-threshold criterion, formulate it as a mixed integer programming
problem, study its polyhedral properties, and apply it to a healthcare provision problem. Elçi
et al. (2022) suggest an n-person extension of the fairness-threshold criterion. It is more
straightforward to formulate and can, in fact, yield a linear programming model.

The trade-off parameter � is interpreted differently for an efficiency threshold than for
a fairness threshold. When an efficiency threshold is used, parties with utility within �

of the worst-off are regarded as disadvantaged and deserving of special priority. When a
fairness threshold is used, parties whose utility is already more than � above the lowest are
not regarded as deserving greater utility if the other utilities remain unchanged. Thus, the
parameter � can be connected to a practical situation in a way that α in the alpha fairness
criterion cannot: it allows the user to specify how deprived an individual must be, relative to
the worst-off individual, to warrant special consideration. Naturally, stakeholders must still
arrive at a consensus as to what value of � would be reasonable.

9.1 Efficiency-threshold criterion

The 2-person efficiency-threshold model of Williams and Cookson uses a maximin criterion
when the two utilities are sufficiently close to each other, specifically |u1 − u2| ≤ �, and
otherwise it uses a utilitarian criterion. This is illustrated in Fig. 2, where the feasible set is the
area under the curve. The maximin solution (open circle) requires a substantial sacrifice from
person 2. As a result, the utilitarian solution (black dot) earns slightly more social welfare
and is the preferred choice. The SWF can be written

W (u1, u2) =
{
u1 + u2, if |u1 − u2| ≥ �

2min{u1, u2} + �, otherwise

Themaximin criterion ismodified from the standard formulamin{u1, u2} to ensure continuity
of the SWF as one shifts between the utilitarian and the maximin objective.

Hooker and Williams (2012) generalize the SWF to n parties as follows. The utility ui of
party i belongs to the fair region if ui − umin ≤ � and otherwise to the utilitarian region,
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Fig. 2 Contours for the
fairness-threshold SWF
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where umin = mini {ui }. A party whose utility is in the fair region is considered sufficiently
disadvantaged to deserve priority. The generalized SWF W (u) counts all utilities in the fair
region as equal to umin, so that they are treated in solidarity with the worst-off, and all other
utilities as themselves. Copies of � are added to the SWF to ensure continuity of W (u).

W (u) = (n − 1)� +
n∑

i=1

max
{
ui − �, umin

}
(13)

The parameter � regulates the fairness/efficiency trade-off, with � = 0 corresponding to a
purely utilitarian objective and � = ∞ to a purely maximin objective.

Hooker and Williams extend the threshold function (13) to problems in which utility is
distributed to groups of different sizes, using a simple modification that is not available for
SWFs hitherto considered. The resulting SWF assesses fairness by comparing the average
utility of individuals in each group, while assessing efficiency by considering the total utility
allotted to each group (which depends on the group size). This is useful when allocating
resources to geographic regions, demographic groups, organizations, and so forth. Let si and
ui respectively denote the number of individuals in group i and the utility of each individual
in the group. The function Wg(u) considers a group i to be in the fair region when its per
capita ui is within � of umin .

Wg(u) =
(∑

i

si − 1
)
� +

∑

i

si max
{
ui − �, umin

}
(14)

Hooker and Williams also formulate mixed integer programming models for maximizing
W (u) andWg(u). The practicality of the models is verified with experiments on a healthcare
resource allocation instance of realistic size.

Gerdessen et al. (2018) make several observations regarding properties of the SWF (13).
In particular, the solutions obtained by varying� need not all lie on the Pareto frontier defined
by the convex combination (10) of utilitarian and maximin objectives. This is in fact to be
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Fig. 3 Contours for the
fairness-threshold SWF
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expected, because the convex combination balances total utility with only the welfare of the
worst-off party, while (13) takes into account how many parties are disadvantaged (i.e, in the
fair region).

The efficiency-threshold criterion also escapes an anomaly that, as noted earlier, charac-
terizes alpha fairness. It cannot assign equality the same social value as arbitrarily extreme
inequality. In a 2-person context, for example, an egalitarian distribution u = (1, 1) can have
the same social value as a distribution in which one party has no utility and the other � + 2,
but the gap can be no greater than this.

A weakness of the efficiency-threshold criteria (13) and (14) is that the actual utility levels
of the disadvantaged parties, other than the very worst-off, have no effect on the value of
the SWF. As a result, many solutions that deliver the same social welfare differ greatly with
respect to fairness. This problem is addressed in Sect. 10 by combining a utilitarian with a
leximax criterion.

9.2 Fairness-threshold criterion

Williams and Cookson define the 2-person fairness-threshold SWF to be utilitarian when
|u1 − u2| ≤ � and otherwise maximin. In Fig. 3, the utilitarian solution (open dot) is unfair
to person 1, and the welfare-maximizing solution is more egalitarian (black dot).

W (u1, u2) =
{
2min{u1, u2} + �, if |u1 − u2| ≥ �

u1 + u2, otherwise

Elçi et al. (2022) generalize this SWF to n parties in a manner similar to the Hooker–
Williams approach. The main difference is that utility ui belongs to the fair region if ui −
umin ≥ �, otherwise it is in the utilitarian region. Yet we continue to count utilities in the
fair region as equal to umin and those in the utilitarian region utilities as themselves. This
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yields the SWFs

W (u) = n� +
n∑

i=1

min{ui − �, umin} (15)

Wg(u) =
( n∑

i=1

si
)
� +

n∑

i=1

si min{ui − �, umin} (16)

As before, Wg(u) is designed for distribution over groups.
These SWFs have twomain effects. One is that a utilitarian criterion is applied to everyone

whose utility is within � of the lowest. The other is that increasing a utility that is already
more than� greater than the lowest adds nothing to social welfare if the other utilities remain
unchanged. Like the efficiency-threshold criterion, the fairness-threshold criterion can equate
solutions that have very different fairness characteristics.

10 Threshold criteria with leximax fairness

As pointed out in the previous section, threshold-based combinations that rely on maximin
fairness are sensitive to the utility level of only the very worst-off party. The resulting SWFs
equate distributions that can differ substantially in their fairness characteristics. This tends to
become a problem in practice when the constraint set severely restricts the maximum utility
of some individual. The solution will almost certainly assign this person themaximum utility,
regardless of what the rest of the problem is like. The fairness situation of other disadvantaged
parties become irrelevant, so long as their utilities are within � of the lowest. As a result,
fairness plays almost no role in the solution. This situation can be addressed to some degree
by replacingmaximin fairness with leximax fairness.We consider two proposals for doing so,
both extensions of the efficiency-threshold based approach in Hooker and Williams (2012).
One assumes that utility recipients can be ranked by priority in advance. The other makes
no such assumption and obtains a socially optimal distribution by maximizing a sequence of
SWFs, each of which combines utility and a maximin criterion.

10.1 Predetermined preference order

McElfresh and Dickerson (2018) propose a method for combining utilitarian and leximax
criteria in the context of kidney exchange. It relies on the assumption that the parties can be
given a preference ordering in advance. It first maximizes a SWF that combines utilitarian
and maximin criteria in a way that treats the most-preferred party as the worst-off. If all
optimal solutions of this problem lie in the utilitarian region, a utilitarian criterion is used to
select one of the optimal solutions. (Here, a utility vector u is said to be in the fair region
if maxi {ui } − mini {ui } ≤ �, and otherwise in the utilitarian region.) Otherwise a leximax
criterion is used for all of the optimal solutions, subject to the preference ordering (i.e.,
maximize u1 first, then u2 etc.). If we index the parties in order of decreasing preference, the
SWF is

W (u) =
⎧
⎨

⎩

nu1, if |ui − u j | ≤ � for all i, j∑

i

ui + sgn(u1 − ui )�, otherwise (17)
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McElfresh and Dickerson state that W (u) has continuous contours, but this is true only
for n = 2. For a counterexample with n = 3, we note that W (0, 0,� + ε) = ε and
W (0, ε,� + ε) = 2ε − � for arbitrarily small ε > 0. Thus a slight change in the utility
distribution could bring about a large and unexpected change in the measurement of social
welfare.

Two additional issues should be considered. One is the need for preassigned priorities.
While it is possible to specify in advance a preference ranking of parties in some applications,
such as the kidney exchange problem, this is not possible in many applications. Also the
leximax criterion is not used until optimal solutions of the SWF are already obtained, and
then applied only to the optimal solutions. It may be preferable to use a leximax criterion
when considering all feasible distributions, rather than those that are already optimal in some
sense.

10.2 A sequence of social welfare functions

Chen and Hooker (2020, 2022) avoid assuming a pre-determined preference ordering of
recipients by maximizing a sequence of social welfare functions W1(u), . . . ,Wn(u). The
SWFs successively give priority to the worst-off recipient, the second worst-off, and so forth,
while in each case considering the impact on total utility bymeans of a threshold criterion. The
first function W1(u) is identical to the Hooker–Williams function in (15), and the remainder
are defined as follows:

Wk(u) =
k−1∑

i=1

(n − i + 1)u〈i〉 + (n − k + 1)min
{
u〈1〉 + �, u〈k〉

}

+
n∑

i=k

(
u〈i〉 − u〈1〉 − �

)+
, k = 2, . . . , n

where γ + = max{0, γ }, and where u〈1〉, . . . , u〈n〉 are u1, . . . , un in nondecreasing order.
The parameter � again regulates the efficiency/fairness trade-off by giving preference

to individuals whose utility is within � of the lowest, with greater weight to the more
disadvantaged. Specifically, the weight assigned an individual in the fair region is equal to
the number of individuals in that region with the same or greater utility, while individuals
in the utilitarian region receive unit weight. One may question how this particular weighting
can be justified, as well as why it should depend only on the ranking of utilities ui in the
fair region by magnitude rather than on their actual values (except for the very smallest ui ,
which determines the fair region). Chen and Hooker answer the latter question by observing
that this value independence is necessary to ensure continuity of the SWF. They provide a
similar SWF for groups of individuals having different sizes.

A socially optimal distribution (u∗〈1〉, . . . , u∗〈n〉) is obtained by letting u∗〈i〉 be the value of
u〈i〉 in an optimal solution that maximizesWi (u), for i = 1, . . . , n. The models and solution
procedure are presented in the “Appendix”, which also gives valid inequalities for themodels.
The procedure is used to solve healthcare resource and earthquake shelter location problems
of realistic size in a matter of seconds for a given value �.
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11 General guidelines

There is no one best approach to formulating fairness in an optimization model. Fairness is
a collection of concepts, many of them rather vague, that can be found in popular culture,
academic literature, and legal settings. Nonetheless, the various formulations surveyed here
have characteristics that may be more or less suitable for the type of fairness one wishes to
achieve in a given context. We conclude with an overview of these characteristics to assist
one in exploring the fairness landscape. We encourage the reader to consult the more detailed
discussion provided earlier, and perhaps cited literature, before settling on a choice of model
for a particular application.

Inequality metrics (Sect. 4) are of limited applicability because they take no account of
absolute welfare levels. Even if relative welfare is all that matters, there may be an ethical
difference between a distribution with extremes at the bottom end and one with extremes
at the top end, and inequality measures do not distinguish these. Nonetheless, inequality
measures can be appropriate if they truly represent the only criterion of interest. The relative
range suits applications in which one simply wants to avoid extreme outliers. The relative
mean deviation measures dispersion across the entire distribution. It is proportional to the
Hoover index, which is the fraction of total utility that must be redistributed to achieve perfect
equality. The coefficient of variation and Gini coefficient have the advantage that they are
widely used, and there is a general appreciation of what they say about a distribution. Jain’s
index yields the same utility distribution as the coefficient of variation. All of these measures
but the coefficient of variation and Jain’s index have simple linear models.

In machine learning, fairness is widely defined based on the inequality in classification
outcomes across groups. These group parity measures (Sect. 5) judge whether a protected
subpopulation, such as a minority group, receives a fair distribution of yes and no decisions,
as for example in the granting of mortgage loans, job interviews, school admissions, or
parole. These measures do not attempt to take account of overall welfare and assess fairness
in a rather restricted sense. Some of the group parity metrics are pairwise incompatible,
and there is no consensus as to which are appropriate for a given application. To take some
examples, demographic parity compares the fraction of individuals accepted in the two
groups. It is often too strict because it fails to recognize group differences in qualifications.
Equalized odds compares the fraction of qualified (or unqualified) individuals accepted.
Accuracy parity compares the fraction of individuals correctly classified (by acceptance
or rejection). Predictive rate parity compares the fraction of selected individuals who are
correctly selected. The computational tractability of minimizing bias varies widely. The first
three SWFs mentioned here have easy linear models. The fourth poses an extremely difficult
mixed integer/nonlinear programming problem.

Fairness criteria can reflect concern for the disadvantaged as well as inequality (Sect. 6).
A famous example is the Rawlsian difference principle, which gives rise to the maximin cri-
terion. It is backed by a highly developed social contract argument that can have considerable
intuitive appeal. However, the principle is intended only for the design of social institutions
and can have surprising implications when applied to welfare distribution in general. For
example, if improving the welfare of certain individuals is very expensive, perhaps due to
incurable disease, the maximin principle can require a massive resource transfer that reduces
everyone else to the same level of suffering. Limiting the transfer does not help, because it
reduces utility even further and, worse, can allow some resources to go unused. The latter
difficulty can be remedied by extending the maximin to a leximax principle. A very different
option is to use the McLoone index, a statistical criterion that measures the extent to which
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those in the lower half of the utility distribution are deprived. It appears in discussions of
educational equality and other public policy matters.

Pure fairnessmeasures can be appropriatewhen there is no need to balance fairness against
the overall welfare of the population. However, practical situations frequently call for both
fairness and efficiency to be explicitly considered. One way to strive for both is simply to
maximize a convex combination of the two (Sect. 7). Yet it is unclear how to adjust their
relative weights, particularly when they are measured in different units.

Alpha fairness and Kalai–Smorodinsky bargaining offer more principled solutions to the
fairness-efficiency trade-off (Sect. 8). The parameter α in alpha fairness regulates the trade-
off on a scale that ranges from a purely utilitarian to a purely maximin criterion. Axiomatic
justifications have been offered for this SWF, as well as bargaining justifications when α = 1
(proportional fairness, or the Nash bargaining solution). However, these justifications are
perhaps less relevant to practice than the mere fact that one can continuously adjust the
trade-off to suit the occasion. Alpha fairness has, in fact, seen fairly wide employment in
engineering, despite the nonlinearity of the SWF. Yet while α can be interpreted in terms of
welfare-preserving utility transfers, it is still unobvious how to justify any particular choice
for its value. Also, alpha fairness can assign the same social welfare to equality as to extreme
inequality (when α ≥ 1), although this becomes a practical issue only for certain types of
problem constraints.

The Kalai–Smorodinsky solution avoids this last issue entirely but poses another. It is
suitable for bargaining situations when the parties concerned see equal relative concessions
to be fair, as when buyer and seller negotiate a price, or labor and management negotiate
wages. However, it may be unsuitable when some individuals have less utility potential due
to physical impairment or some other factor beyond their control. In such cases, fairness may
require special consideration for those who suffer misfortune, as in several other schemes
considered here. Also K–S bargaining offers no parameter to adjust the fairness-efficiency
trade-off.

Threshold SWFs (Sect. 9) combine utilitarian and maximin criteria using a parameter
� that may be easier to interpret in practice than the α of alpha fairness. They can assess
fairness across groups of different sizes, and they avoid the alpha fairness model’s anomaly
of sometimes regarding equality as ethically equivalent to extreme inequality. An efficiency-
thresholdmodel is suitablewhen fairness is the initial concern, but onedoes notwish to pay too
high a cost for fairness. This may occur, for example, in health-related or politically sensitive
contexts. The parameter � is chosen so that disadvantaged parties whose utility is within
� of the lowest are seen as deserving special priority. The SWF has a mixed integer model
that is readily solved in practice. A fairness-thresholdmodel is better suited for situations in
which efficiency is the initial concern, but one does not want to create excessive inequality.
This may be the situation in traffic management, telecommunications, or disaster recovery.
In this context, the parameter� has a somewhat different meaning: it is chosen in such a way
that one wishes to recognize no social benefit in improving the lot of well-off individuals
whose utility is already more than � greater than the lowest, if the other utilities remain
unchanged. The SWF has a linear model.

Threshold models that combine efficiency with the maximin criterion inherit the tendency
of the latter to ignore the actual utility levels of the disadvantaged other than the very worst-
off. This may result in less sensitivity to fairness than desired, particularly when the utility
of some individuals is severely limited a priori by the constraint set. Two fairness-threshold
models address this issue by combining efficiency with a leximax instead of a maximin
criterion (Sect. 10). One assumes a predefined preference ordering for the parties, which may
be suitable for some situations, such as organ transplants. However, the SWF is discontinuous,
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so that arbitrarily small changes in the utilities can result in large changes in social welfare.
Another model makes no assumptions regarding preference, but it maximizes a sequence of
SWFs to balance efficiency and leximax fairness. It uses the same parameter � as maximin-
based utility-threshold model. The sequential SWFs are continuous and have mixed integer
models that are readily solved in practice. However, the complexity of both of these threshold
modelsmay impede acceptance by stakeholders.At thiswriting, no fairness-thresholdmodels
have been developed to combine efficiency with leximax fairness, although it appears that
this could be done along similar lines.

12 In summary

Optimization models that incorporate social welfare functions provide a framework for pur-
suing a fair utility distribution. A fairness-capturing SWF can serve as the objective to be
optimized, or it can be used to constrain the feasible solutions. Decision makers must, how-
ever, select a utility function and SWF that reflect the desired fairness perspective. The goal
of this survey has been to help structure this selection process by arranging SWFs into cate-
gories and subcategories, interpreting each of these, and providing formulations of the SWFs
that are suitable for an optimization model.

When the fairness goal is to distribute utilities as equally as possible, one can select an
inequality metric (Sect. 4) or, in machine learning, a group parity metric (Sect. 5). When the
fairness goal is to avoid unacceptably low utilities, one can select a SWF that reflects concern
for the disadvantaged (Sect. 6). When both fairness and efficiency goals are important, one
can consider SWFs that combine these (Sects. 7–10) and select one that encodes an acceptable
principle for balancing them.

The selection andmodeling of fairness criteria comprise a relatively new research direction
for the optimization community, one that requires not only new mathematical formulations
but interaction with additional fields of study. While traditional optimization modeling relies
on concepts from economics, engineering, and management, fairness modeling brings ethics
and philosophy into the picture. This new collaboration may also be mutually beneficial, as
previous collaborations have been. The formulation, solution, and structural analysis of opti-
mization models may help clarify fairness concepts, even as these activities receive guidance
from the work of ethicists and philosophers.

Declaration

Conflict of interest Both authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

Appendix: Optimizationmodels

We present here what appear to be the most practical available optimization models of the
social welfare functions discussed in the foregoing text. We focus on welfare maximizing
models, but we indicate how a welfare constraining model would differ in cases where the
SWF does not incorporate efficiency.
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Inequality measures

Relative rangeWe assume with little loss of generality that the constraint set implies ū > 0.
Then since the SWF is a ratio of affine functions, the formulation of W (u) in a welfare
maximizing model can be linearized using the same change of variable as in linear-fractional
programming (Charnes & Cooper, 1962). Thus we introduce a scalar variable t and write
u = u′/t and x = x′/t , which yields the optimization model

min
x′,u′,t

u′
min,u

′
max

{
u′
max − u′

min

∣∣∣∣
u′
min ≤ u′

i ≤ u′
max, all i

ū′ = 1, t ≥ 0, (u′, x′) ∈ S′
}

where u′
min, u

′
max are regarded as variables along with x′, u′, and t . If (x̂′

, û′
, û′

min, û
′
max, t̂)

solves this problem, then u = û′
/t̂ is a distribution that minimizes the relative range. The

tractability of this model depends on whether the constraints defining S become harder after
the change of variable. The easiest case arises when the constraints are linear, as in linear-
fractional programming. If the original constraints are Au + Bx ≤ b, they become another
linear system Au′ + Bx′ ≤ tb after the variable change. More generally, if the original
constraints have the form g(u, x) ≤ b for homogeneous g, they retain essentially the same
form g(u′, x′) ≤ tb after the variable change.

A welfare constraining model is simpler, because the SWF can be linearized without a
change of variable:

max
x,u

umin,umax

{
f (x)

∣∣∣∣
umin ≤ ui ≤ umax, all i

umax − umin ≤ UB · ū, (u, x) ∈ S

}

Here, UB is the desired upper bound on the relative range. The the model is linear if f (x) is
linear and S is polyhedral.

Relative mean deviation This SWF can be linearized in a welfare maximizing model by using
the same change of variables as above:

min
x′,u′,v,t

{
∑

i

vi

∣∣∣∣
−vi ≤ u′

i − ū′ ≤ vi , all i
ū′ = 1, t ≥ 0, (u′, x′) ∈ S′

}

(18)

where v1, . . . , vn are new variables. The welfare constraining model is

max
x,u,v

⎧
⎨

⎩
f (x)

∣∣∣∣

−vi ≤ ui − ū ≤ vi , all i∑

i

vi ≤ UB · ū, (u, x) ∈ S′

⎫
⎬

⎭
(19)

where UB is the desired upper bound on the relative mean deviation.

Coefficient of variation Although the numerator of the SWF is nonlinear, we can use the
same change of variable to formulate the welfare maximizing model as

min
x′,u′,t

{[1
n

∑

i

(u′
i − ū′)2

] 1
2

∣∣∣∣
ū′ = 1, t ≥ 0
(u′, x′) ∈ S′

}

(20)

We can obtain an optimal solution by solving the problem without the exponent 1
2 . If the

feasible set S′ is convex, this yields a convex nonlinear programming problem in which all
local optima are global optima. If S is defined by linear constraints, it can be solved by
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particularly efficient quadratic programming algorithms that are available in many state-of-
the-art optimization packages.

The welfare constraining model is

max
x,u

⎧
⎨

⎩
f (x)

∣∣∣∣

1

n

∑

i

(ui − ū)2 ≤ (UB · ū)2

(u, x) ∈ S

⎫
⎬

⎭
(21)

where UB is the desired upper bound on the coefficient of variation. Since the feasible set is
not, in general, convex (even if S is convex and u ≥ 0), this nonlinear optimization problem
may be difficult to solve.

Jain’s index Because Jain’s index is a strictly decreasing function of the coefficient of vari-
ation, it can be maximized by solving the same model (20) as for the latter. The welfare
constraining model is (21) with UB set equal to (LB−1 − 1)1/2, where LB is the desired
lower bound on Jain’s index. Note that UB is a real number because we can suppose LB ≤ 1,
due to the fact that Jain’s index is at most 1.

Gini coefficient Again applying the change of variable from linear-fractional programming,
the Gini criterion can be linearized in a welfare maximizing model as follows:

min
x′,u′,V ,t

⎧
⎨

⎩
1

2n2
∑

i, j

vi j

∣∣∣∣
−vi j ≤ u′

i − u′
j ≤ vi j , all i, j

ū′ = 1, t ≥ 0, (u′, x′) ∈ S′

⎫
⎬

⎭

where vi j is a new variable for all i, j . The welfare constraining model is

max
x,u,V

⎧
⎨

⎩
f (x)

∣∣∣∣

−vi ≤ ui − u j ≤ vi , all i, j
1

n

∑

i

vi ≤ UB · 2ūn2, (u, x) ∈ S

⎫
⎬

⎭

where UB is the desired upper bound on the Gini coefficient.

Hoover index The Hoover index can be minimized by solving the same model (18) as for
the relative mean deviation. The welfare constraining model is (19) with UB is set to 2nUB′,
where UB′ is the desired upper bound on the Hoover index.

Group parity metrics

The welfare maximizing problem for group parity metrics has the form

min
δ,x

{
|B(δ)|

∣∣∣ (δ, x) ∈ S, δ ∈ {0, 1}n
}

where |B(δ)| is the desired measure of disparity. This is easily linearized:

min
δ,x,v

{
v

∣∣∣ − v ≤ B(δ) ≤ v, (δ, x) ∈ S, δ ∈ {0, 1}n
}

(22)

The welfare constraining model has the form

max
δ,x

{
f (x)

∣∣∣ |B(δ)| ≤ UB, (δ, x) ∈ S, δ ∈ {0, 1}n
}

which is linearized:

min
δ,x

{
f (x)

∣∣∣ − UB ≤ B(δ) ≤ UB, (δ, x) ∈ S, δ ∈ {0, 1}n
}

(23)
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where UB is the desired upper bound on disparity.

Demographic parity This metric is incorporated into (22) and (23) by replacing B(δ)with the
disparitymeasure (5). Since B(δ) is linear, this results inMILP problems if the objective f (x)

and constraints (δ, x) ∈ S are linear. Existing classification algorithms in machine learning
rarely use 0–1 variables δi due to the computational burden they impose. One alternative
strategy is to use continuous relaxations of the boundson B(δ). For instance,Zafar et al. (2017)
define a convex proxy for demographic parity by replacing the discrete variables δ with the
continuous decision boundaries of the trained model, and Olfat and Aswani (2018) substitute
the decision boundaries with covariance matrices to formulate a stronger but non-convex
proxy of demographic parity. Another strategy is to treat a given classification algorithm
as a black box and design separate pre-processing or post-processing schemes to attain
fairness guarantees. As an example, Agarwal et al. (2018) develop a systematic approach
that reduces fair classification to a sequence of cost-sensitive classifications. They derive
theoretical guarantees on the generated classifier for a variety of fairness measures including
demographic parity, equalized odds and accuracy parity.

Equalized odds This criterion replaces B(δ) in (22) and (23) with the expression in (6) or (7),
both of which are linear. As in the case of demographic parity, these exact formulations are
rarely used to train classification models. Hardt et al. (2016) design post-processing schemes
to adjust the outcomes of unfair classifiers to attain equalized odds guarantees. Zafar et al.
(2017) study an in-processing perspective and propose tractable proxies for (6) and (7) by
replacing δ with continuous approximations.

Accuracy parity Here, B(δ) is given by (8), which is again a linear expression. Continuous
approximations of δ can be used if desired.

Predictive rate parity In this case, the expression (9) for B(δ) poses a difficult optimization
problem because variables occur in the denominator. A change of variables similar to that
in linear–fractional programming is unhelpful in the welfare maximization model (22) for
two reasons. One is that the two ratios in B(δ) give rise to two scaling factors t, t ′ that
create a nonconvex bilinear term t t ′ even in a linear constraint set. The other is that rescaling
destroys the integrality of the 0–1 variables δi . Furthermore, the welfare constraining model
(23) cannot be linearized because the common denominator of the two ratios is nonlinear. We
therefore appear to have two irreducibly difficult problems in nonlinear integer programming.

Fairness for the disadvantaged

Minimax criterion The welfare maximizing model is simply

max
x,u,w

{
w

∣∣ w ≤ ui , all i; (u, x) ∈ S
}

The welfare constraining model is

max
x,u

{
f (x)

∣∣ ui ≥ LB, all i; (u, x) ∈ S
}

where LB is the smallest acceptable individual utility.

Leximax criterion A leximax solution for the welfare maximizing problem can computed by
solving a sequence of optimization problems

max
x,u,w

{
w

∣∣∣∣
w ≤ ui , ui ≥ ûik−1 , i ∈ Ik

(u, x) ∈ S

}
(24)
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for k = 1, . . . , n, where (x̂, û) is an optimal solution of problem k, ûi0 = −∞, and ik is
defined so that

ûik = min
i∈Ik

{ûi }, with Ik = {1, . . . , n} \ {i1, . . . , ik−1}

If there are two or more utilities ûi that achieve the minimum mini∈Ik {ûi }, it is necessary to
enumerate all solutions that result from breaking the tie to be assured of finding a leximax
soution. Ogryczak and Śliwiński (2006) showed how to obtain a leximax solution with a
single optimization model, but it is impractical for most purposes due to the very large
coefficients required in the objective function.

We can suppose that the welfare constraining problem requires the r th smallest utility to
be at least LBr . To contruct one possible model of the problem, we let binary variable yi j = 1
when ui ≤ u j and binary variable zir = 1 when ui is the r th smallest utility. In the model
below, all the indices i, j, r range over {1, . . . , n}.

max
x,u, y,z

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ui ≤ u j + M(1 − yi j ), all i, j
yii = 1, all i; yi j + y ji = 1, all i, j with i �= j∑

r

zir = 1,
∑

r

r zir =
∑

j

y ji , all i

ui ≥
∑

r

LBr zir , all i; (u, x) ∈ S

yi j , zir ∈ {0, 1}, all i, j, r

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

where M is an upper bound on the possible difference between any two utilities ui , u j .

McLoone index We can formulate the McLoone index by means of a mixed integer pro-
gramming (MIP) problem with a fractional objective function, by using standard “big-M”
modeling techniques from integer programming. The model uses 0–1 variables δi , where
δi = 1 when i ∈ I (u). The constant M is a large number chosen so that ui < M for all i .
The model is

max
x,u,m
y,z,δ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i yi∑
i zi

∣∣∣∣∣∣∣∣∣∣

m − Mδi ≤ ui ≤ m + M(1 − δi ), all i
yi ≤ ui , yi ≤ Mδi , δi ∈ {0, 1}, all i
zi ≥ 0, zi ≥ m − M(1 − δi ), all i∑

i

δi ≤ 1
2n, (u, x) ∈ S

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where the new variable m represents the median, variable yi is ui if δi = 1 and 0 otherwise,
and variable zi is m if δi = 1 and 0 otherwise in the optimal solution. The objective function
can be linearized by using the same change of variable as in linear-fractional programming:

max
x′,u′,m′
y′,z′,t,δ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

i

y′
i

∣∣∣∣∣∣∣∣∣∣∣∣

u′
i ≥ m′ − Mδi , all i

u′
i ≤ m′ + M(1 − δi ), all i

y′
i ≤ u′

i , y′
i ≤ Mδi , δi ∈ {0, 1}, all i

z′i ≥ 0, z′i ≥ m′ − M(1 − δi ), all i∑

i

z′i = 1, t ≥ 0,
∑

i

δi ≤ 1
2n, (u′, x′) ∈ S′

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The model is an MILP problem when the constraints defining S are linear.
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Thewelfare constrainingmodel canbe linearizedwithout a changeof variables, as follows:

max
x,u,m
y,z,δ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (x)

∣∣∣∣∣∣∣∣∣∣

m − Mδi ≤ ui ≤ m + M(1 − δi ), all i
yi ≤ ui , yi ≤ Mδi , δi ∈ {0, 1}, all i
zi ≥ 0, zi ≥ m − M(1 − δi ), all i∑

i

yi ≥ LB ·
∑

i

zi ,
∑

i

δi ≤ 1
2n, (u, x) ∈ S

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Here LB is the desired lower bound on the McLoone index.

Alpha fairness and Kalai–Smorodinsky bargaining

Alpha fairness and proportional fairness The problem of maximizing the alpha fairness SWF
is

max
x,u

{
1

1 − α

∑

i

u1−α
i

∣∣ (u, x) ∈ S

}

Whenα = 1 (representing proportional fairness), the objective function becomes
∑

i log(ui ).
The model is irreducibly nonlinear, but it is concave for all α ≥ 0. Thus any local optimum
is a global optimum if the feasible set is convex. The problem can be solved to optimality
by such efficient algorithms as the reduced gradient method, which is a generalization of the
simplex method for LP. The fact that the objective function has a simple closed-form gradient
simplifies solution.Maximizing alpha fairnessmay therefore be tractable for reasonably large
instances, particularly if the constraints defining S are linear.

Kalai–Smorodinsky bargaining The optimization problem for the K–S criterion is

max
β,x,u

{
β

∣∣ u = (1 − β)d + βumax, (u, x) ∈ S, β ≤ 1
}

Threshold criteria withmaximin fairness

Efficiency-threshold criterion Hooker and Williams (2012) formulate a mixed integer (MIP)
model for this criterion and prove its validity (a nontrivial result). They introduce innocuous
auxiliary constraints ui − u j ≤ M for all i, j , where M is a large number, to ensure MIP
representability. The model for maximizing the group-oriented SWF Wg is

max
x,u,δ,v,w,z

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( ∑

i

si
)
� +

∑

i

sivi

∣∣∣∣

ui − � ≤ vi ≤ ui − �δi , all i
w ≤ vi ≤ w + (M − �)δi , all i

ui − ui ≤ M, all i, j
ui ≥ 0, δi ∈ {0, 1}, all i

(u, x) ∈ S

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(25)

The model for individuals is obtained by setting si = 1 for all i . This is an MILP problem
when the constraints (u, x) ∈ S are linear. Hooker andWilliams prove that this representation
of Wg(u) is sharp (i.e., its continuous relation describes the convex hull of the feasible set)
and is therefore the tightest possible linear model. Sharpness may, of course, be lost when the
constraints (u, x) ∈ S are added. The practicality of the model was verified with experiments
on a healthcare resource allocation instance of realistic size.
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Fairness-threshold criterion Elçi et al. (2022) provide a model for the fairness-threshold
SWF and prove its validity. The model is linear if the feasible set S is a polyhedron.

max
x,u,v,w,z

⎧
⎪⎪⎨

⎪⎪⎩
n� +

∑

i

vi

∣∣∣∣∣∣∣∣

vi ≤ w ≤ ui , all i
vi ≤ ui − �, all i

w ≥ 0
(u, x) ∈ S

⎫
⎪⎪⎬

⎪⎪⎭

The formulation for the group SWFWg(u) is the same, except that the objective function is
(∑

i

si
)
� +

∑

i

sivi

Threshold criteria with leximax fairness

Predetermined preference orderWhile McElfresh and Dickerson (2018) compute a solution
of their model using an algorithm that is specialized to kidney exchange, a general mixed
integer model of the problem can be stated as follows:

max
u,x

w1,w2
y,φ,δ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w1 + w2

∣∣∣∣∣∣∣∣∣∣∣∣

w1 ≤ nu1, w1 ≤ Mφ

w2 ≤
∑

i

(ui + yi ), w2 ≤ M(1 − φ)

ui − u j − � ≤ M(1 − φ), all i, j
yi ≤ �, yi ≤ −� + Mδi , ui − u1 ≤ M(1 − δi ), all i
(u, x) ∈ S; φ, δi ∈ {0, 1}, all i

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where M is a large number.

A sequence of social welfare functions Chen and Hooker (2022) obtain a socially optimal
distribution for their criterion by first solving a problem P1 given by

max
u,x

{
W1(u, x)

∣∣∣ |ui − u j | ≤ M, all i, j; (u, x) ∈ S
}

(26)

and then solving problems Pk for k ≥ 2 given by

max
u,x

⎧
⎨

⎩
Wk(u, x)

∣∣∣∣∣∣

ui j = ūi j , j = 1, . . . , k − 1
ui ≥ ūik−1 , ui − ūi1 ≤ M, i ∈ Ik

(u, x) ∈ S

⎫
⎬

⎭
(27)

The indices i j are defined so that ui j is the utility determined by solving Pj . In particular,
ui j is the utility with the smallest value among the unfixed utilities in an optimal solution
obtained by solving Pj . Thus

i j = argmini∈I j
{
u[ j]
i

}

where u[ j] is an optimal solution of Pj and I j = {1, . . . , n} \ {i1, . . . , i j−1}. We denote

by ūi j = u[ j]
i j

the solution value obtained for ui j in Pj . We need only solve Pk for k =
1, . . . , K + 1, where K is the largest k for which ūik ≤ ūi1 + �. The solution of the social
welfare problem is then

ui =
{
ūi for i = i1, . . . , iK−1

u[K ]
i for i ∈ IK
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The mixed integer model for solving P1 with groups is (25). Using notation similar to that
in (24), the model for solving Pk with groups, k ≥ 2, is

max
x,u,δ,ε
v,w,τ,z

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z ≤ ( ∑
i∈Ik si − 1

)
τ + ∑

i∈Ik sivi
0 ≤ vi ≤ Mδi , i ∈ Ik

vi ≤ ui − ûi1 − � + M(1 − δi ), i ∈ Ik
τ ≤ ûi1 + �, τ ≤ w, w ≥ ûi1

w ≤ ui ≤ w + M(1 − εi ), i ∈ Ik
ui − ûi1 ≤ M, i ∈ Ik∑

i∈Ik εi = 1; δi , εi ∈ {0, 1}, i ∈ Ik
(u, x) ∈ S

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

While this is not a sharp model in general for k ≥ 2, Chen and Hooker identify valid
inequalities that can strengthen the linear relaxation of Pk :

zk ≤
∑

i∈Ik
si ui (29)

zk ≤
( ∑

j∈Ik
si

)
u j + β

∑

j∈Ik\{i}
s j (u j − ūik−1), i ∈ Ik (30)

where

β = M − �

M − (ūik−1 − ūi1)
=

(
1 − �

M

)(
1 − ūik−1 − ūi1

M

)−1
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