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HEREDITARY, ADDITIVE AND DIVISIBLE CLASSES IN

EPIREFLECTIVE SUBCATEGORIES OF Top

MARTIN SLEZIAK

Abstract. Hereditary coreflective subcategories of an epireflective subcate-
gory A of Top such that I2 /∈ A (here I2 is the 2-point indiscrete space)
were studied in [4]. It was shown that a coreflective subcategory B of A is
hereditary (closed under the formation of subspaces) if and only if it is closed
under the formation of prime factors. The main problem studied in this paper
is the question whether this claim remains true if we study the (more general)
subcategories of A which are closed under topological sums and quotients in
A instead of the coreflective subcategories of A.

We show that this is true if A ⊆ Haus or under some reasonable conditions
on B. E.g., this holds ifB contains either a prime space, or a space which is not
locally connected, or a totally disconnected space or a non-discrete Hausdorff
space.

We touch also other questions related to such subclasses of A. We introduce
a method extending the results from the case of non-bireflective subcategories
(which was studied in [4]) to arbitrary epireflective subcategories of Top. We
also prove some new facts about the lattice of coreflective subcategories of Top

and ZD.
Keywords: epireflective subcategory, coreflective subcategory, hereditary sub-
category, prime factor, prime space, bireflective subcategory, zero-dimensional
spaces, T0-spaces.
MSC2000 Primary: 54B30 and Secondary: 18B30.

1. Introduction

Motivated by [11, Problem 7] J. Činčura studied in [3] hereditary coreflective
subcategories of the category Top of all topological spaces and continuous maps.
He proved a nice characterization of hereditary coreflective subcategories using
prime factors of topological spaces. However, it would be interesting to study the
hereditary coreflective subcategories also in other categories of topological spaces,
as Haus or, more generally, any epireflective subcategory of Top. In this case
the situation becomes more complicated than in Top. For instance, in Top we
obtain the hereditary coreflective hull of a coreflective subcategory C simply by
taking the subcategory SC consisting of all subspaces of spaces from C. This is
not true in the case of coreflective subcategories of Haus anymore, as the example
of T2-subsequential spaces (see [7] or [4]) shows. The hereditary coreflective hull
of Hausdorff sequential spaces in Haus are precisely the Hausdorff subsequential
spaces. But not every Hausdorff subsequential space is a subspace of a Hausdorff
sequential space. So the description of the hereditary coreflective hull mentioned
above does not work in Haus.

Although we see that this new situation leads to some complications, in [4] it
is proved that the same characterization holds if we study the same problem in an
epireflective subcategory A of Top, which is not bireflective. Namely, it is shown
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2 MARTIN SLEZIAK

that a coreflective subcategory of A is hereditary if and only if it is closed under the
formation of prime factors. This paper is an attempt to study a similar situation
and to add a few new results in this area of research.

We study here mainly the subcategories which are additive and divisible (i.e.,
closed under sums and quotient spaces) in A. We call them briefly AD-classes. The
AD-classes include coreflective subcategories as a special case. If A is a quotient-
reflective subcategory of Top (in particular if A = Top), then there is no difference
between these two notions. We show that in many cases an AD-class B in A is
hereditary if and only if it is closed under the formation of prime factors. E.g., this
holds if A ⊆ Haus or B contains at least one prime space.

We also present a method how to extend our results to bireflective subcategories
of Top. (Maybe it is more precise to say that the restriction to non-bireflective
subcategories is in fact not so restrictive.) For this purpose we use the correspon-
dence between bireflective subcategories of Top and epireflective subcategories of
Top consisting only of T0-spaces. This correspondence was introduced in [19] (see
also [21]).

2. Preliminaries

Topological terminology follows [6] with a few exceptions. We do not assume the
T1 separation axiom for zero-dimensional spaces. A neighborhood of x is any set V
such that there exists an open subset U with x ∈ U ⊆ V . (So the neighborhoods
in the sense of [6] are open neighborhoods in our terminology.) Compact spaces
are not necessarily Hausdorff. For the notions and results from category theory we
refer to [1], in particular for reflective and coreflective subcategories of the category
Top of topological spaces and continuous maps to [9].

All subcategories are assumed to be full and isomorphism-closed. To avoid some
trivial cases we assume that every subcategory of Top contains at least one space
with at least two points.

By X ≺ Y we mean that the spaces X and Y have the same underlying set and
X has a finer topology than Y . By initial map we mean an initial morphism in
the category Top. I.e., f : X → Y is said to be initial if X has the initial topology
w.r.t. f .

Any ordinal is the set of its predecessors ordered by ∈. Cardinal numbers are
the initial ordinals. The class of all cardinals will be denoted by Cn.

2.1. Epireflective and coreflective subcategories. Perhaps the most impor-
tant notions from category theory, which we will use in this paper, are those of
reflective and coreflective subcategory. We review here some basic facts, more can
be found in [1], [9] or [12].

A subcategory A of a category B is reflective if for any B-object there exists
an A-reflection. The A-reflection of X ∈ B is an object RX ∈ A together with
a morphism r : X → RX (called the A-reflection arrow) which has the following
universal property: For any morphism f : X → A with A ∈ A there exists a unique
morphism f : RX → A such that the following diagram commutes.

X
r

//

f
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D

D

D

D

D
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RX
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The A-reflection is determined uniquely up to homeomorphism.
The functor R : B → A which assigns to each B-object its A-reflection (and acts

on morphisms in the natural way) is called a reflector. This functor is coadjoint to
the embedding functor A →֒ B.

We say that A is epireflective (bireflective) in B if all A-reflection arrows are
epimorphisms (bimorphisms) in B. If B = Top and all A-reflections are quotient
maps, we speak about a quotient-reflective subcategory.

A subcategory A of Top is epireflective in Top if and only if it is closed under
the formation of topological products and subspaces.

By EH(A) we denote the epireflective hull of a subcategory A. A topological
space X belongs to EH(A) if and only if it is a subspace of a product of spaces from
A. An equivalent condition is that there exist an initial monosource with domain
X and codomain in A. (See e.g. [19, Theorem 2] or [1, Theorem 16.8].) A similar
characterization holds for bireflective hulls. A topological space X belongs to the
bireflective hull BH(A) of A if and only if there is an initial source from X to A

([15, Corollary 2] or [1, Theorem 16.8]).
By I2 we will denote the two-point indiscrete space. An epireflective subcategory

A of Top is bireflective if and only if I2 ∈ A. Therefore BH(A) = EH(A ∪ {I2}).
Mostly we will work in an epireflective subcategory A of Top which does not

contain I2. (We will show in Section 5 how to get rid of this assumption.) The
same assumption on A was used in [4]. It is motivated by the fact that only these
epireflective subcategories of Top are closed under the formation of prime factors.
Under this assumption A is closed under topological sums, too. (Recall that we
made an agreement that each subcategory contains a space with at least 2 points.
Hence, A contains all discrete spaces whenever I2 /∈ A.)

The largest such subcategory of Top is the category Top0 of T0-spaces. The
largest subcategory with these properties such that moreover A ( Top0 is the
category Top1 of T1-spaces.

The smallest such subcategory ofTop is the subcategoryZD0 of zero-dimensional
T0-spaces. (Note that for a zero-dimensional spaces the conditions T0 and T2 are
equivalent.) The subcategory ZD0 is the epireflective hull of the 2-point discrete
space D2.

An epireflective subcategory of Top is quotient-reflective if and only if it is
closed under the formation of spaces with finer topologies. In a quotient-reflective
subcategory ofTop regular (extremal) epimorphisms are exactly the quotient maps.

Let A be an epireflective subcategory of Top and A 6= Ind (the subcategory
of all indiscrete spaces). A subcategory B ⊆ A is coreflective in A if and only if
it is closed under topological sums and A-extremal quotients. In particular B is
coreflective in Top if it is closed under sums and quotients. For each subcategory
B of A there exists the smallest coreflective subcategory of A containing B. It
is called the coreflective hull of B in A and denoted by CHA(B). If B = {B}
consists of a single space we use the notation CHA(B). If A is an epireflective
subcategory of Top and A 6= Ind, then the members of CHA(B) are exactly the
A-extremal quotients of topological sums of spaces from B. If A = Top, then the
notation CH(B) (resp. CH(B)) is used and CH(B) is called the coreflective hull of
B. CH(B) is formed by quotients of topological sums of spaces from B.

The class FG of all finitely generated spaces is the coreflective hull of all finite
spaces in Top. A space is finitely generated if and only if any intersection of its open
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sets is again open. The subcategory FG is the smallest coreflective subcategory
of Top containing a space, which is not a sum of indiscrete spaces, and it is the
coreflective hull of the Sierpiński space S. The Sierpiński space S is the two-point
space in which only one point is isolated.

A subcategory B of Top is said to be hereditary, if it is closed under subspaces,
and additive, if it is closed under topological sums. We say that B is divisible in A

if for every quotient map q : X → Y with X ∈ B and Y ∈ A we have Y ∈ B.
A class B which is additive and divisible in A will be called briefly an AD-class

in A. If B is moreover hereditary, we say that it is an HAD-class in A.
We define the AD-hull (HAD-hull) of B ⊆ A as the smallest (hereditary) AD-

class in A containing B. It will be denoted by ADA(B), resp. HADA(B). It is clear
that ADA(B) consists precisely of all spaces from A, which are quotient spaces of
topological sums of spaces from B.

If A = Top or A is quotient-reflective in Top, then the notion of AD-class
(HAD-class) coincides with the notion of (hereditary) coreflective subcategory.

Whenever C is coreflective in Top, the subcategory SC consisting of all sub-
spaces of spaces from C is known to be coreflective as well (see e.g. [16, Remark
2.4.4(5)] or [3, Proposition 3.1]). Clearly the category S(CH(B)) is the heredi-

tary coreflective hull of B. It will be denoted also by HCH(B). The hereditary
coreflective hull of a single space A in Top is denoted by HCH(A).

For the future reference we state some obvious relations between AD-hulls in A

and coreflective hulls in Top in the following lemma.

Lemma 2.1. Let A be an epireflective subcategory of Top with I2 /∈ A. Then

ADA(B) = CH(B) ∩A and S(ADA(B)) ⊆ HADA(B) ⊆ HCH(B) ∩A.

2.2. Prime spaces and prime factors. We say that a space P is a prime space,
if it has precisely one accumulation point a. All prime spaces are T0. It is easy to
see that all prime T2-spaces are zero-dimensional.

If the point a is not isolated in a subspace P ′ of a prime space P , i.e., if P ′ is
itself a prime space, we say briefly that P ′ is a prime subspace of P .

Lemma 2.2. Let P be a prime space with the accumulation point a and P ′ be a

prime subspace of P . Then the map f : P → P ′, such that f(x) = x if x ∈ P ′ and

f(x) = a otherwise is a retraction.

The fact that the discrete spaces form the smallest coreflective subcategory Disc

of Top together with Lemma 2.2 imply that for any prime space P all its subspaces
are contained in CH(P ). (They are moreover contained in CHA(P ) for any epire-
flective subcategory A of Top with I2 /∈ A.)

For any space X and any point a ∈ X we define the prime factor of X at a as the
topological space on the same set in which all points different from a are isolated
and the neighborhoods of a are the same as in the original topology. Clearly, Xa is
a discrete or prime space.

Note that a prime space is T2 if and only if it is T1. Thus a prime factor of a
T1-space is either a prime T2-space or a discrete space.

Each topological space X is a quotient of the sum of all its prime factors. The
quotient map is obtained simply by mapping a point x in a summand Xa to the
same point x of the space X .
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3. Heredity and prime factors

Hereditary coreflective subcategories of Top were studied in [3]. In this paper
we are interested in a slightly more general situation - we use an epireflective sub-
category A (with I2 /∈ A) instead of Top. There are two natural generalizations
of coreflective subcategories - we can study coreflective subcategories of A or AD-
classes in A. (Both of them were already studied in [4], AD-classes only in two
special cases A = ZD0 and A = Tych.)

Clearly, every coreflective subcategoryB ofA is an AD-class inA. (The opposite
implication does not hold. The counterexample is the subcategory of k-spaces in
Tych. It is the AD-hull of compact spaces in Tych, but the coreflective hull of
compact spaces in Tych is the larger subcategory of kR-spaces. For more details
see Example 3.18 at the end of this section.)

It was shown in [3] that a coreflective subcategory ofTop different from CH(Ind)
(the coreflective hull of indiscrete spaces) is hereditary if and only if it is closed under
the formation of prime factors. The same result was shown in [4] for coreflective
subcategories of A (A being an epireflective subcategory of Top with I2 /∈ A)
and for AD-classes in ZD0 and Tych. We would like to generalize this result for
AD-classes in more epireflective subcategories.

The main results of this section are Theorem 3.10 and its consequences. They say
that an AD-class is hereditary if and only if it is closed under prime factors whenever
this AD-class contains a prime space (or a space with “good” properties). Using
this fact we can show in Theorem 3.14 another interesting result: If A ⊆ Haus,
then an AD-class in A is hereditary if and only if it is closed under prime factors.
So if we work only with Hausdorff spaces, the desired equivalence between heredity
and closedness under prime factors is true. In section 6 we try to find some other
cases when this statement holds.

3.1. When heredity implies closedness under prime factors? It is easy to
show that for an AD-class closedness under prime factors implies heredity. The
proof follows the proof of [4, Theorem 2, Theorem 7].

Lemma 3.1. Let B be additive and divisible in A, A being an epireflective subcat-

egory of Top with I2 /∈ A. If B is closed under prime factors, then it is hereditary.

Proof. Let X ∈ B and Y be a nonempty subspace of X . We want to show that
Y ∈ B. Let a ∈ Y . The prime factor Ya is a subspace of the corresponding prime
factor Xa of X . Since B is closed under prime factors, Xa ∈ B and, by Lemma
2.2, Ya ∈ B as well. Since Y ∈ A and it is a quotient space of all its prime factors,
Y ∈ B. � �

This paper is mostly devoted to the effort to show that the opposite implication
holds too (under some assumptions on A or B).

We first need to define the space X △b Y which was used in a similar context in
[4].

Definition 3.2. If X and Y are topological spaces, b ∈ Y and {b} is closed in
Y , then we denote by X △b Y the topological space on the set X × Y which has
the final topology w.r.t the family of maps {f, ga; a ∈ X}, where f : X → X × Y ,
f(x) = (x, b) and ga : Y → X × Y , ga(y) = (a, y).
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In other words, X△bY is the quotient of X⊔ (
∐

a∈X Y ) with respect to the map
obtained as the combination of the maps f and ga, a ∈ X . Since the space X△b Y
is constructed from X and Y using only topological sums and quotient maps, any
coreflective subcategory of Top containing X and Y contains X △b Y , too.

A local base for the topology of X △b Y at a point (a, y), y 6= b, is {{a} × V ;V
is an open neighborhood of y in Y }. A local base at (a, b) consists of all sets of the
form

⋃
x∈U{x} × Vx where U is an open neighborhood of a in X and each Vx is an

open neighborhood of b in Y .
Figure 1 depicts the spaceX△bY by showing typical sets from the neighborhood

basis.

b

Y

X
a

(a, b)

y

UVx

Figure 1. The space X △b Y

Let Xa
(Y,b) be the subspace of X△bY on the subset {(a, b)}∪(X \{a})×(Y \{b})

and Xa be the prime factor of X at a. It was shown in [4] that, for any space Y
in which the subset {b} is closed but not open, the map q : Xa

(Y,b) → Xa given by

q(x, y) = x is quotient. This yields the following proposition:

Proposition 3.3. Let B be an HAD-class in an epireflective subcategory A of Top

with I2 /∈ A. Let for any X ∈ B there exist Y ∈ B and a non-isolated point b ∈ Y
with {b} being closed in Y such that X△b Y belongs to A. Then B is closed under

the formation of prime factors.

Proof. Let X ∈ B and a ∈ X . We want to show that Xa ∈ B. By the assumption
there exists Y ∈ A and b ∈ Y such that {b} is closed but not open and X△bY ∈ A.

Since X △b Y is constructed using quotients and sums, we get X △b Y ∈ B, as
well. Therefore also its subspace Xa

(Y,b) belongs to B and Xa is a quotient of this

space. � �

Definition 3.4. We say that a subcategoryA of Top is closed under △ if X△bY ∈
A whenever X,Y ∈ A and b ∈ Y .

Proposition 3.5. Let A be an epireflective subcategory of Top with I2 /∈ A. If A

is closed under △ and B is hereditary, additive and divisible in A, then B is closed

under prime factors.

Proof. It suffices to choose any space Y ∈ B and b ∈ Y such that {b} is closed
and not open. (We can w.l.o.g. assume that B contains a non-discrete space, since
discrete spaces are closed under prime factors trivially. If A = Top0, then the
Sierpiński space S belongs to B and we can take for Y the space S. If A 6= Top0,
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then A ⊆ Top1 and in this case it suffices to take any non-discrete space for Y .)
By Proposition 3.3 then Xa ∈ B whenever a ∈ X ∈ B. � �

By [4, Proposition 1] every quotient-reflective subcategory of Top (in particular
Top0, Top1, Haus) is closed under the operation △. It is also relatively easy to
show that the subcategories Reg, Tych, ZD0 are closed under △.

In Example 3.17 we will show that the epireflective subcategories of Top need
not be closed under △ in general. Therefore it could be interesting to show the
above result under some less restrictive conditions on A.

Proposition 3.3 suggests that it would be useful to have some conditions on spaces
X , Y which imply X △b Y ∈ A. Such a condition will be obtained in Theorem
3.10. We first introduce the operation X ▽b Y , which was defined in [4].

Definition 3.6. Let X , Y be topological spaces and b ∈ Y with the set {b} closed
in Y . The space X ▽b Y is the topological space on the set X × Y which has the
initial topology w.r.t. the family ha : X × Y → X × Y , ha(x, y) = (x, b) for x 6= a
and ha(a, y) = (a, y).

A subbase for this topology is formed by the sets h−1
a (U × V ) = ({a} × V ) ∪

(U \ {a}) × Y , where a ∈ X , V is an open neighborhood of b in Y and U is a
neighborhood of a in X , and by the sets of the form {a} × V , where V is an open
set in Y not containing b.

The space is illustrated by Figure 2.

b

Y

X
a

(a, b)

V U

Figure 2. The space X ▽b Y

Observe that X △b Y ≺ X ▽b Y .
Since we have the initial monosource (ha : X▽bY → X×Y ), it follows that X▽b

Y ∈ EH(X,Y ). In other words, every epireflective subcategory of Top containing
X and Y must contain X ▽b Y too. (For the basic properties of X ▽b Y see [4,
Proposition 1]).)

Now we introduce a (sufficient) condition on a space Y , under which X△bY ∈ A

for each X ∈ A.

Definition 3.7. Let Y , Z be topological spaces and b ∈ Y be a point such that the
set {b} is closed in Y . We say that P (b, Y, Z) holds if there exists an open local base
B at b in Y , a point a ∈ Z and an open neighborhood U0 of a in Z such that for
any V ∈ B there exists a continuous map f : Y → Z with f(b) = a, f−1(U0) = V .
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We first present some simple examples of spaces with this property. Let I =
〈0, 1〉. We claim that P (b, I, I) holds for any b ∈ I. We take B = {〈0, ε)} if b = 0,
symmetrically B = {(1 − ε, 1〉} if b = 1, otherwise B = {(b − ε, b+ ε) ∩ I}. (For a
and U0 we can take e.g. 0 and 〈0, 12 ), 1 and (12 , 1〉, b and ( b2 ,

1+b
2 ) respectively.)

Another example: Let Y be any zero-dimensional space, D2 be the 2-point
discrete space. Any point has a clopen local base, therefore P (b, Y,D2) holds for
any b ∈ Y .

Example 3.8. Let X be any infinite space with the cofinite topology and b ∈ X .
Then P (b,X,X).

To show this, we take all neighborhoods of b for B. Let a = b, u 6= b and
U0 = X \ {u}. Then U0 is an open neighborhood of a.

Any V ∈ B has the form V = X\F , where F is a finite set and b /∈ F . Then there
exists a bijection h : V → U0 such that h(b) = b. We can define a map f : X → X
by f |V = h and f [F ] = {u}. Clearly, f is a continuous map.

Lemma 3.9. Let A be an epireflective subcategory of Top. Let X,Y, Z ∈ A,

b ∈ Y be a non-isolated point such that {b} is closed and P (b, Y, Z) holds. Then

X △b Y ∈ A.

Proof. Using the base B from the definition of P (b, Y, Z), we can obtain a local
base at (a, b) ∈ X△b Y consisting of sets of the form

⋃
x∈U Vx, where U is an open

neighborhood of a in X and Vx ∈ B for each x ∈ U . Let S = {fi : i ∈ I} be the
set of all maps fi : X → B. For any basic neighborhood

⋃
x∈U Vx there is an i ∈ I

with fi(x) = Vx for every x ∈ U . Let us denote the topology of X △b Y by T△.
Now we define the following maps: p : X△bY → X is the projection p(x, y) = x,

q : X △b Y → X ▽b Y is the identity map q(x, y) = (x, y), and for i ∈ I we define
a map hi : X △b Y → Z as follows: For the open neighborhood fi(x) ∈ B there
exists a continuous map gx,i : Y → Z with g−1

x,i(U0) = fi(x) and gx,i(b) = a. We

put hi(x, y) = gx,i(y). Note that the maps p, q, hi are continuous.
We claim that T△ is the initial topology with respect to the family of maps

{p, q, hi; i ∈ I}. Let us denote this initial topology by T . Let us recall that an
open subbase for the initial topology is formed by sets p−1(U), q−1(U), h−1

i (U) =
⋃

x∈X g−1
x,i (U), where U is any open set in the codomain of the respective map.

T△ ≺ T We first compare open neighborhoods of points (a, b) with a ∈ X . Any

such neighborhood contains a basic neighborhood
⋃

x∈U Vx with Vx ∈ B for each

x ∈ U . This set can be expressed as p−1(U) ∩ h−1
i (U0) for the i ∈ I satisfying

fi(x) = Vx for every x ∈ U .
As for neighborhoods of (a, y), y 6= b, it suffices to note that they have the same

neighborhood bases in X △b Y and X ▽b Y .

T ≺ T△ It suffices to notice that the subbasic sets p−1(U), q−1(U), h−1
i (U)

belong to T△.
This family of maps forms a monosource, since it contains the identity map. So

we have found an initial monosource from X △b Y with a codomain in A and this
implies X △b Y ∈ A. � �

Theorem 3.10. Let A be an epireflective subcategory of Top with I2 /∈ A and B

be an HAD-class in A. If B contains a space Y with P (b, Y, Z) for some Z ∈ A

and a non-isolated point b ∈ Y such that the set {b} is closed, then B is closed

under prime factors.
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Proof. Follows easily from Proposition 3.3 and Lemma 3.9. � �

Corollary 3.11. Let A be an epireflective subcategory of Top with I2 /∈ A and B

be an HAD-class in A. If B contains an infinite space with the cofinite topology or

it contains a non-discrete zero-dimensional space (in particular a prime T2-space),
then B is closed under prime factors.

Corollary 3.12. Let A be an epireflective subcategory of Top with I2 /∈ A and B

be an HAD-class in A. If B contains a prime space, then B is closed under prime

factors.

Proof. If A contains a prime T2-space, then the claim follows from Corollary 3.11.
Now assume that A contains a non-Hausdorff prime space P . To resolve this

case we provide an argument which will be used several more times in this paper.
Since P is not T2, there exists a point b which cannot be separated from the

non-isolated point a of P . The subspace on the set {a, b} is homeomorphic to the
Sierpiński space S. Thus we get S ∈ A, A = Top0, and the result now follows
from Proposition 3.5. (Note that Top0 is closed under △.) � �

We have seen that the prime T2-spaces are more convenient in this context,
because they belong to ZD0 and thus they are automatically contained in any
epireflective non-bireflective subcategory. Let us note that in most cases it suffices
to consider the prime T2-spaces only.

Indeed, the only epireflective subcategory A of Top with I2 /∈ A, which contains
non-T2 prime spaces, is Top0. Moreover, even for A = Top0, the non-T2 prime
spaces are needed only for AD-classes with B ⊆ FG.

Using the Corollary 3.11 we can show that if A ⊆ Haus then every HAD-class
B 6= Disc in A contains a prime space and, consequently, it is closed under the
formation of prime factors.

Proposition 3.13. Let X be Hausdorff and not discrete. Then X contains a

subspace Y , such that there exists a prime T2-space P which is a quotient space of

Y .

Proof. Let a be any non-isolated point in X . We would like to get a subspace Y in
which a is again non-isolated and which contains enough disjoint open subsets.

By transfinite induction we construct a system Uβ, β < α, of non-empty open
subsets of X such that for each β, γ < α the following holds:
(1) If β 6= γ then Uβ ∩ Uγ = ∅;

(2) a ∈ Vβ = X \
⋃

η≤β

Uη = Int(X \
⋃

η≤β

Uη);

(3) if γ < β then Uβ ⊆ Vγ ;

(4) a ∈
⋃

η<α

Uη.

β = 0: Since a is non-isolated, there exists b 6= a in X . By Hausdorffness we
have non-empty open sets U , V with U ∩ V = ∅, a ∈ V , b ∈ U . We put U0 := U .
Since a ∈ V ⊆ X \U and V is open, the condition a ∈ V0 = Int(X \U0) is fulfilled.
The conditions (1) and (3) are vacuously true in this step of induction.

Now suppose that Uγ for γ < β have already been defined. There are two

possibilities. Either a ∈
⋃

η<β

Uη and we can stop the process (putting α := β) or

a /∈
⋃

η<β

Uη.
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In the latter case the set W := X \
⋃

η<β

Uη is an open neighborhood of a such

that W ∩ (
⋃

η<β

Uη) = ∅. Since a is not isolated, there exists b ∈ W , b 6= a. Again,

by T2-axiom, there exist open sets U , V such that U ∩ V = ∅, a ∈ V , b ∈ U . We
put Uβ := U ∩W .

Since Uβ ⊆ W and W ∩ (
⋃

η<β

Uη) = ∅, we do not violate (1).

The point a belongs to the open set V ∩ W and (V ∩ W ) ∩ Uγ = ∅ for every
γ ≤ β, thus we get a ∈ Int(X \

⋃

η≤β

Uη), so (2) is fulfilled as well.

For γ < β we have W ⊆ Vγ = X \
⋃

η≤γ

Uη, thus Uβ ⊆ Vγ and (3) holds.

The condition (4) does make sense only at the end of induction, when we have
finished the process and said, what α is. Note, that this procedure must stop at
some ordinal α, otherwise we would obtain a proper class of open subsets of X .

Now we put Y := {a} ∪ (
⋃

β<α

Uβ). The prime space P will be obtained as the

space on the set α ∪ {α} which is quotient with respect to q : Y → P defined by
q(a) = α and q[Uβ ] = {β} for any β < α. By (1) and (2) the map q is well-defined.

Since q−1({β}) = Uβ, each β < α is isolated. By (4) and q−1(α) = {a}, the
point α is not isolated. Hence P is a prime space.

Since the set q−1({γ ∈ α∪{α}; γ > β}) = Vβ∩Y is open in Y for each β < α, the
prime space P is T2 (every isolated point can be separated from the accumulation
point). � �

From Proposition 3.13 and Corollary 3.11 we get

Theorem 3.14. If A is an epireflective subcategory of Top such that A ⊆ Haus

and B is an HAD-class in A, then B is closed under prime factors.

Corollary 3.15. Let A be an epireflective subcategory of Top such that A ⊆ Haus.

For every HAD-class B in A there exists a class S of prime spaces such that B =
ADA(S).

3.2. Two related examples. In the rest of this section we present two examples
which are connected with HAD-classes and hereditary coreflective subcategories.
In the first one we will deal with closedness of epireflective subcategories under △.
The second one is an example of an AD-class in Tych which is not coreflective in
Tych.

We have observed in Proposition 3.5 that if A is closed under △ then every
HAD-class in A is closed under prime factors. We also noticed that this condition
is fulfilled for many familiar epireflective subcategories of Top. Now we provide an
example showing that it does not hold in general.

We first recall the notion of a strongly rigid space. A topological space X is
called strongly rigid if any continuous map f : X → X is either constant or idX .
(See [17], it should be noted that such spaces are called rigid by some authors.) We
will show in Example 3.17 that for a strongly rigid space which is not “too trivial”
X △b X ∈ EH(X) does not hold.

Lemma 3.16. Let X be a topological space and b ∈ X. If X is a strongly rigid space

and X △b X ∈ EH(X), then for x 6= b the set {U × V ;U is an open neighborhood

of x and V is an open neighborhood of b} is a local base for the topology of X△bX
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at (x, b), i.e., this topology has the same local base at the point (x, b) as the product

topology.

Proof. Recall, that the underlying set of X △b X is X × X (see Definition 3.2).
Clearly, X △b X ≺ X ×X . So it remains to show that any neighborhood of (x, b)
in X △b X contains a neighborhood of the form U × V with U and V as above.
Since we assume that X△bX ∈ EH(X), the space X△bX has the initial topology
w.r.t. the family C(X △b X,X); i.e., the subbase for the topology of this space
consists of sets f−1(U) where f ∈ C(X △b X,X) and U is open subset of X . (By
C(Y, Z) we mean the family of all continuous mapping between spaces Y and Z.)

The subspaces of X △b X on the sets {a} × X for any a ∈ X and X × {b}
are homeomorphic to X . To be more precise, the homeomorphisms are given by
ha(a, x) = x (between the subspace {a} ×X and X) and h(x, b) = x (between the
subspace X×{b} and X). Thus for any f ∈ C(X△bX,X) the restrictions to these
subspaces are either constant or coincidental with ha resp. h. We next investigate
in detail all maps f in C(X △b X,X).

First, assume that f |X×{b} is not constant. Then f(x, b) = x for any x ∈ X .
Thus for a 6= b we get f(a, b) = a 6= b = ha(a, b). Therefore the restriction of f to
the subspace {a} × X , a 6= b, is the constant map f(a, x) = a. For the subspace
{b}×X we have two possibilities: hb or a constant map. In this case we obtain two
continuous maps: f1 such that f1(x, y) = x and f2 given by f2(x, y) = x for x 6= b
and f2(b, y) = y.

The second possibility remains: f(x, b) = a0 for any x ∈ X . If a0 6= b then for
any a ∈ X we have f(a, b) = a0 6= b = ha(a, b) and f is a constant map. Thus
the only interesting case is a0 = b. In this case some restrictions are equal to ha’s
and some are constant. I.e., every such map corresponds to a subset A of X in the
following way: fA(x, y) = y if x ∈ A and fA(x, y) = b otherwise.

We showed that the family C(X△bX,X) consists precisely of all constant maps,
the maps f1, f2 and the maps of the form fA, A ⊆ X . The set U × V can
be obtained as f−1

X (V ) ∩ f−1
1 (U). Moreover, every subbasic set f−1(U), where

f ∈ C(X △b X,X), contains a subset of the form U × V . Thus such sets from a
local base. � �

Example 3.17. If X is a strongly rigid space and
⋂

x∈X Ux is an intersection of
open neighborhoods of a point b in X which fails to be a neighborhood, then the
set

⋃
x∈X{x}×Ux is open in X△bX , but it does not contains any subset from the

local basis described in Lemma 3.16. Therefore in such case X △b X /∈ EH(X).
This means that to obtain a counterexample, it suffices to have a strongly rigid

space with a non-isolated point b such that at the same time {b} is an intersection
of a family Ui, i ∈ I, of open sets, with card I ≤ cardX . Any of the examples of
strongly rigid T2-spaces constructed in [5], [8] or [17] satisfies this condition.

We next include an example of an AD-class which is not coreflective. We will
work in the epireflective subcategory A = Tych of all completely regular (Ty-
chonoff) spaces.

A topological space X is called kR-space if it is completely regular and if every
map f : X → R, whose restriction to every compact subset K ⊆ X is continuous,
is continuous on X . For more information about kR-spaces see e.g. [13] or [18].

A topological space X is a k-space if a subset U ⊆ X is open whenever U ∩
K is open for every compact subset K ⊆ X . The class of all k-spaces is the
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coreflective hull of compact spaces in Top. In the next example we will denote
the corresponding coreflector by C. It is known that X and CX have precisely
the same compact subsets and the relative topology on every compact subset is the
same.

Example 3.18. E. Michael constructed in [20, Lemma 3.8] a normal kR-space X
such that CX is not regular. This means that X is not a k-space. We will show
that RCX = X , where R denotes the Tych-reflection. This implies that X is in
the coreflective hull of compact spaces in Tych, since there exists a quotient map
q from the sum of all compact subspaces of X to CX and consequently the map
Rq with the codomain RCX = X is a Tych-extremal epimorphism. (Since every
reflector is coadjoint functor, it preserves regular epimorphisms.) But X is not in
the AD-hull of compact spaces in Tych, since CX 6= X . Therefore the AD-hull
of compact spaces in Tych (which consists precisely of Hausdorff k-spaces) is an
example of an AD-class in Tych which is not a coreflective subcategory of Tych.

To show that X is the Tych-reflection of CX it suffices to show that the contin-
uous maps from both spaces to R are the same. A map f : CX → R is continuous
if and only if all restrictions f |K with K compact are continuous. Since compact
subsets of X and CX are the same and moreover the corresponding subspaces are
homeomorphic, this implies that f is continuous as the map from X to R. (Since
X is a kR-space and we have shown that the restrictions on compact subsets are
continuous.)

4. The space Aω and HAD-classes

In [23] the space Aω was constructed for any prime space A and it was shown
that the prime factor (Aω)a is a generator of the hereditary coreflective hull of
the space A in Top. The goal of this section is to show some useful properties of
the space Aω. Namely we will prove that this space is zero-dimensional for any
prime T2-space A. This implies that, if A is a prime T2-space, then Aω is contained
in every epireflective subcategory A with I2 /∈ A. Using this property of Aω we
can show that if B is an HAD-class in A which contains a prime space then the
coreflective hull CH(B) of B in Top is hereditary.

We first introduce some notions which are necessary to define the space Aω . This
space is very similar to the space Sω defined in [2], the difference lies in using an
arbitrary prime space A instead of the space C(ω) (see Definition 6.1) and A-sums
instead of sequential sums. Let us note that the space Sω is also a special case of
the space T ~F defined in [24].

We first recall the definition of A-sums from [23]. Apart from the sequential
sums of [2] this construction is also similar to the brush of [16].

Definition 4.1. Let A be a prime space with the accumulation point a. Let us
denote B := A \ {a}. Suppose that for each b ∈ B we are given a topological space
Xb and a point xb ∈ Xb. Then the A-sum

∑

A

〈Xb, xb〉 is the topological space on

the set F = A ∪ (
⋃

b∈B

{b} × (Xb \ {xb})) which is quotient with respect to the map

ϕ : A ⊔ (
∐

b∈B

Xb) → F , ϕ(x) = x for x ∈ A, ϕ(x) = (b, x) for x ∈ Xb \ {xb} and

ϕ(xb) = b for every b ∈ B.

This means that the A-sum is defined simply by identifying each xb ∈ Xb with
the corresponding point b ∈ A.
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For the sake of convenience, we adopt some terminology from [16]. The map ϕ
is called the defining map of the A-sum. The subspace of

∑
〈Xb, xb〉 on the subset

ϕ[Xb] = {b} ∪ ({b} × {Xb \ {xb}}) is called the bristle.
The following easy lemma states that the bristles are homeomorphic to the spaces

from which the A-sum is constructed.

Lemma 4.2. The space Xb is homeomorphic to the subspace of the space
∑

〈Xb, xb〉
on the subset ϕ[Xb] = {b} ∪ ({b}× {Xb \ {xb}}). (The homeomorphism is given by

the restriction of ϕ to the summand Xb.)

Now we are ready to define the space Aω using the A-sum. We first define
inductively the spaces An for n ∈ N. We put A1 = A and An+1 =

∑
〈An, a〉.

Note that An is a subspace of An+1 for each n. Figure 3 depicts the space A3 for
A = C(ω).

0

(0,2)

(0,1)

(0,0)

ω

(1,0,2)

Figure 3. The space A3 for A = C(ω)

Another possibility how to obtain An+1 is to attach the space A (by its accumu-
lation point) to each isolated point of An. Clearly, the underlying set is the same.
It can be shown by induction that the topologies are the same too.

For n = 1 this is clear from the definition of A2. If n > 1 then each stem of
the space An+1 is homeomorphic to An. By the induction hypothesis it can be
obtained by gluing the space A to each isolated point of An−1. The isolated points
in An =

∑
An−1 are precisely the isolated points of the bristles. Hence by attaching

the space A to isolated points we get An from each bristle and the resulting space
will be An+1 =

∑
An.

Definition 4.3. Let A be a prime space with the accumulation point a. Then Aω

is the space on the set
⋃

n∈N
An where U ⊆

⋃
n∈N

An is open if and only if U ∩An

is open for every n ∈ N.

We see that Aω is a quotient space of
∐

n∈N
An, so Aω ∈ CH(A). (Let us note

that Aω is the inductive limit of spaces An and each An is embedded into Aω.)
Observe that the underlying set of the space Aω is {a} ∪

⋃

n∈N

(A \ {a})n. The

space An is homeomorphic to the subspace on the subset {a} ∪
n⋃

k=1

(A \ {a})k and

the bristles of An are the subspaces on sets {b}∪ {(b, x2, x3, . . . , xn);xi ∈ A \ {a}}.
We introduce some terminology analogous to [2]. We say that a point x ∈ Aω

is a point of k-th level if it belongs to (A \ {a})k. Point a is the only point of 0-th
level.

It was proved in [23, Proposition 5.1] that Aω homeomorphic to the A-sum of
several copies of itself: Aω

∼=
∑

A

〈Aω , a〉.
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From this property and Lemma 4.2 we can see that the bristles are homeomorphic
to Aω.

Lemma 4.4. For b ∈ A \ {a} denote by X the subspace of Aω on the set X :=
{b} ∪ ({b} ×

⋃
n∈N

(A \ {a})n). Then X is homeomorphic to Aω. Moreover, if A is

T2, then X is a clopen subset of Aω.

Using this lemma repeatedly we can find for any point of Aω a (clopen, if A is T2)
neighborhood homeomorphic to Aω (by induction on the level of points). Namely,
if x = (x1, . . . , xk) then Ux = {(x1, . . . , xk)} ∪ {(x1, . . . , xk)}× (

⋃
n∈N

(A \ {a})n) is
a neighborhood of x homeomorphic to Aω.

We now proceed to defining a clopen local base at a ∈ Aω.
We will show that B = {U ⊆ Aω; a ∈ U ;U is open in Aω and (1) holds} is a base

for Aω at the point a.

(1) (x1, x2, . . . , xn, xn+1, . . . , xn+k) ∈ U ⇒ (x1, x2, . . . , xn) ∈ U

Lemma 4.5. B is a base for Aω at the point a.

Proof. Let V be an open neighborhood of a. We want to find U ∈ B such that
U ⊆ V . Let us put

U1 := V ∩A1

U2 := V ∩A2 ∩ [U1 ∪ (U1 × (A \ {a}))]

Un+1 := V ∩An+1 ∩ [Un ∪ (Un × (A \ {a}))]

and U :=
⋃

n∈N
Un.

Observe that a ∈ U ⊆ V and, for each n ∈ N, Un ⊆ Un+1, Un is open in An and
U ∩ An = Un. Hence U is open in Aω.

If (x1, . . . , xn+1) ∈ Un+1 then (x1, . . . , xn+1) ∈ Un× (A\{a}) and (x1, . . . , xn) ∈
Un. By induction we get that (1) holds for U . � �

Lemma 4.6. All sets in B are clopen.

Proof. Let U be any set from B. If x = (x1, . . . , xk) /∈ U , then no point of the form
(x1, . . . , xk, yk+1, . . . , yk+l) belongs to U , i.e., Ux∩U = ∅ holds for the neighborhood
Ux = {(x1, . . . , xk)}∪{(x1, . . . , xk)}×(

⋃
n∈N

(A\{a})n) of x. Hence x ∈ Int(Aω\U),
Aω \ U is open, U is closed. � �

If A is T2 then by Lemma 4.4 we obtain from the clopen base B at a a clopen
base at each point of Aω. Thus we get finally

Proposition 4.7. The space Aω is zero-dimensional and T2 for any prime T2-space

A.

As Aω is a zero-dimensional T2-space, it is contained in any epireflective sub-
category of Top with I2 /∈ A. In the following proposition we summarize some
properties of Aω which were proved in [23].

Proposition 4.8. If A is a prime space, then HCH(A) = CH((Aω)a) = HCH(Aω).
If A is infinite then Aω ∈ CH(A) and card(Aω)a = cardA.

Using Lemma 2.1 we obtain from Proposition 4.8 the following corollary.

Corollary 4.9. Let A be an epireflective subcategory of Top with I2 /∈ A. If A ∈ A

is a prime space, then HADA(A) = ADA((Aω)a) = HCH(A) ∩A. Moreover, if A
is infinite, then card(Aω)a = cardA.
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Proof. We first observe that A contains Aω. If A is T2 then this is true by Propo-
sition 4.7. If A is not T2, then A = Top0 and Aω is clearly a T0-space.

By Lemma 2.1 and Proposition 4.8 HADA(A) ⊆ HCH(A) ∩A = CH((Aω)a) ∩
A = ADA((Aω)a) holds.

On the other hand, Aω ∈ A implies Aω ∈ HADA(A). The HAD-class HADA(A)
contains the prime space A. So by Corollary 3.12 it is closed under prime factors
and (Aω)a ∈ HADA(A), which proves the opposite inclusion. � �

In the rest of this section we show that coreflective hull CH(B) in Top of an
HAD-class B in A is hereditary whenever B contains at least one prime space.

Lemma 4.10. Let A be an epireflective subcategory of Top such that I2 /∈ A. If

B = HADA(D), where D ⊆ A is a set of spaces and B contains at least one prime

space, then there exists a prime space B ∈ A such that B = HADA(B) = ADA(B).
Moreover, CH(B) = HCH(B) is hereditary.

Proof. Let us denote by D′ the set of all non-discrete prime factors of spaces from
D. By joining the accumulation points of all prime spaces in D′ into one point we
get a prime space A. We consider 2 cases. If A = Top0 then clearly A ∈ A. If
A ⊆ Top1 then all spaces in D′ are T2 and A is T2 as well. Therefore in both cases
A ∈ A and HADA(A) = HADA(D′).

Any space from D can be obtained as a quotient of the sum of its prime
factors and consequently ADA(D′) = CH(D′) ∩ A contains the whole D and
B = HADA(D) = HADA(D′) = HADA(A).

Using Corollary 4.9 we obtain that the claim of the lemma holds for B = (Aω)a.
� �

With the help of Lemma 4.10 we can prove, using very similar methods as in [4,
Proposition 4], the following theorem.

Theorem 4.11. Let A be an epireflective subcategory of Top such that I2 /∈ A.

If B is an HAD-class in A and B contains at least one prime space, then the

coreflective hull CH(B) of B in Top is hereditary.

Proof. We first represent B as a union of an ascending chain of HAD-classes Bα in
A, such that each of them is generated by a single space (as an AD-class).

Let us denote by Bα the HAD-hull of all spaces from B with cardinality at most
α. Clearly, B =

⋃
α∈Cn Bα and the system Bα, α ∈ Cn, is nondecreasing.

Since B contains a prime space, there exists the smallest α0 such that Bα0

contains a prime space. Then B =
⋃

α≥α0
Bα and for each α ≥ α0 the class Bα is

a HAD-hull of a set of spaces and it contains a prime space. So we can use Lemma
4.10 and we get that for any cardinal number α ≥ α0 there exists a prime space
Bα ∈ A such that Bα = HADA(Bα) = ADA(Bα) ⊆ CH(Bα).

It is easy to see that CH(B) consists of quotients of spaces from B. Thus if
Y ∈ CH(B), then Y is quotient of some space X ∈ B and there exists α ≥ α0 such
that X ∈ Bα. Consequently we get Y ∈ CH(Bα).

Any subspace of Y belongs to HCH(Bα) = CH(Bα) ⊆ CH(B). Thus CH(B) is
closed under the formation of subspaces. � �

Using the above theorem we can prove the result corresponding to [4, Corollary
1].
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Corollary 4.12. Let A be an epireflective subcategory of Top such that I2 /∈ A. Let

B ⊆ A and B contain at least one prime space. Then HADA(B) = HCH(B)∩A =
S(CH(B)) ∩A.

Proof. By Lemma 2.1 we have HADA(B) ⊆ HCH(B) ∩A.
To obtain the opposite inclusion, we use Theorem 4.11 for the HAD-class HADA(B).

We get CH(HADA(B)) = HCH(HADA(B)). This implies HADA(B) ⊇ CH(HADA(B))∩
A = HCH(HADA(B)) ∩A ⊇ HCH(B) ∩A. � �

In particular, Theorem 3.14 implies that Theorem 4.11 and Corollary 4.12 are
valid for any HAD-class in A ⊆ Haus.

Corollary 4.13. For any epireflective subcategory A of Top such that A ⊆ Haus

the assignment given by C 7→ C ∩A yields a bijection between the hereditary core-

flective subcategories of Top with C ⊇ FG and HAD-classes in A.

Proof. If C is a hereditary coreflective subcategory of Top then the class C∩A is
an intersection of two hereditary classes, thus it is hereditary as well. It is clearly
an AD-class in A.

Let us denote by F the assignment defined in the claim. We will show that G
given by G(Disc) = FG and G(B) = CH(B) for B 6= Disc is inverse to F .

First, observe that if B 6= Disc is an HAD-class in A then by Proposition 3.13
it contains a prime space and from Theorem 4.11 we get that CH(B) is hereditary.

Let C ) FG be a hereditary coreflective subcategory of Top. Then G(F (C)) =
CH(C ∩A). Since C∩A contains all prime T2-spaces from C, we get CH(C ∩A) =
C (see [4, Lemma 1]). The equality G(F (FG)) = FG is also clear.

On the other hand, if B is an HAD-class in A and B 6= Disc, then F (G(B)) =
CH(B) ∩A = ADA(B) = B. � �

Remark 4.14. Obviously, if A is an epireflective subcategory of Top with A ⊆
Haus (e.g. A = Tych,Reg2,ZD0), then C 7→ C∩A yields a bijection between the
hereditary coreflective subcategories (i.e., HAD-classes) in Haus and HAD-classes
in A.

For any epireflective subcategory of Top with I2 /∈ A the above assignment is a
bijection between hereditary coreflective subcategories of Top such that C ) FG

and the HAD-classes in A containing at least one prime space.

5. Extension of the results to bireflective subcategories

Until now we have only dealt with the epireflective subcategories A of Top

such that I2 /∈ A, i.e., with A not bireflective. In this section we would like to
find a method how to extend our results also to bireflective subcategories of Top.
For this, we can use the one-to-one correspondence between bireflective and non-
bireflective epireflective subcategories ofTop given by the assignmentsA 7→ BH(A)
and B 7→ B ∩Top0 = {R0B;B ∈ B} (see [19], [21]). For sake of simplicity we will
ignore the trivial case A = Ind. (The bireflective subcategory Ind corresponds in
this assignment to the subcategory containing only one-point spaces and the empty
space.)

Recall that the categoryTop0 of all T0-spaces is a quotient-reflective subcategory
of Top. We will denote the T0-reflector by R0.

The T0-reflection of a space X is the quotient space given by the following equiv-

alence relation: x ∼ y if and only if {x} = {y} (see e.g. [9, Beispiel 8.3(2)]). The
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T0-reflection arrow is the quotient map corresponding to this equivalence relation.
It is moreover an initial map and a retraction, i.e., the T0-reflection R0X is homeo-
morphic to a subspace of X obtained by choosing one point from each equivalence
class.

Using the results of the foregoing section we obtain a simple characterization of
hereditary AD-classes in a bireflective subcategory A in Theorem 5.4.

The following lemma says that in the collection of all AD-classes in A with
I2 ∈ A all AD-classes except Disc contain I2.

Lemma 5.1. Let C be an AD-class in an epireflective subcategory A with I2 ∈ A

and A 6= Ind. If C contains a non-discrete space then I2 ∈ C.

Proof. Let C ∈ C be a non-discrete space and c ∈ C be non-isolated. Let us define
f, g : C → I2 by f(c) = 0, f [C \ {c}] = {1} and g(c) = 1, g[C \ {c}] = {0}. We see
at once that the map h : C ⊔C → I2, obtained as the combination of f and g, is a
quotient map. � �

Lemma 5.2. Let C be an AD-class in an epireflective subcategory A, A 6= Ind,

I2 ∈ C and A ∈ A. Then A ∈ C if and only if R0A ∈ C.

Proof. Let A ∈ C. Since R0A is a subspace of A, we have R0A ∈ A. The T0-
reflection arrow A → R0A is a quotient map, therefore R0A ∈ C.

Now let R0A ∈ C. Since the T0-reflection arrow rA : A → R0A is an initial map
and bireflective subcategories of Top are known to be closed under initial sources,
we get A ∈ BH(R0A) = EH({R0A, I2}) ⊆ A.

Since the equivalence classes of ∼ are indiscrete subspaces of A, the space A
can be obtained as a quotient of the topological sum of R0A and indiscrete spaces
corresponding to these equivalence classes. (We identify each point of R0A with
some point from the indiscrete space representing its equivalence class.) Hence
A ∈ CH(R0A, I2). Consequently, A ∈ C. � �

Lemma 5.3. If C is an AD-class in an epireflective subcategory A 6= Ind, then

C ∩Top0 = R0C = {R0C;C ∈ C}.

Proof. W.l.o.g. let C contains a non-discrete space.
If X ∈ C ∩Top0, then X = R0X ∈ R0C. Hence C ∩Top0 ⊆ R0C.
On the other hand, let X = R0C for C ∈ C. By Lemma 5.2 X ∈ C, hence

X ∈ C ∩Top0. So the opposite inclusion is true as well. � �

Theorem 5.4. Let C be an AD-class in an epireflective subcategory A 6= Ind with

I2 ∈ A. Then C is hereditary if and only if R0C = C ∩Top0 is hereditary.

Proof. We can assume I2 ∈ C, since otherwise C ⊆ Disc and the claim is trivial.
IfC is hereditary, thenC∩Top0 is hereditary as an intersection of two hereditary

classes.
Now assume that R0C is hereditary. Let B ∈ C and e : A →֒ B be an embedding.

Then the map R0e : R0A →֒ R0B is an embedding as well. (Recall that R0B is the
subspace of B obtained by choosing one point from each equivalence class and note
that the equivalence relation ∼A is the restriction of the relation ∼B.) Therefore
R0A ∈ C ∩Top0. Then Lemma 5.2 implies A ∈ C. � �

We have shown that to answer the question whether an AD-class in A is hered-
itary it suffices to study the corresponding AD-class in A ∩ Top0. Since for a
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bireflective subcategory A 6= Top we have I2 /∈ A ∩ Top0, this is precisely the
situation examined in the preceding parts of this paper.

Lemma 5.5. If f : X → Y is a surjective initial map, b ∈ Y and f−1(b) = {a},
then Xa ∈ CH(Yb).

Proof. Let g : Yb → Xa be any map such that f(g(x)) = x for any x ∈ Xa (in
particular, g(b) = a). We first show that g is continuous.

If a ∈ U and U is open in Xa, then there exists an open set U ′ ⊆ Y with
a ∈ f−1(U ′) ⊆ U . Then g−1(U) ⊇ g−1(f−1(U ′)) = U ′ ∋ b, hence g−1(U) is open
in Yb.

We have continuous maps f , g such that f ◦ g = idXa
. So f is a retraction, thus

it is a quotient map and Xa ∈ CH(Yb). � �

Corollary 5.6. Let X be a topological space, a ∈ X be a point such that Xa is

T2 and r : X → RX0 be the T0-reflection of X. Then Xa ∈ CH((R0X)b), where
b = r(a).

Proof. Since {a} = {a}, the equivalence class of the point a consists of this single
point. Therefore r−1(b) = {a} holds for the Top0-reflection r of X . The claim
follows now from Lemma 5.5. � �

Note that, if A is none of the categories Top, Top0, then all prime factors
belonging to A are Hausdorff. So we see from the above corollary that, if B is an
AD-class in an epireflective subcategory A 6= Top,Top0 and R0B is closed under
the formation of prime factors, thenB is closed under the formation of prime factors
too.

So our results for arbitrary epireflective subcategories can be subsumed as fol-
lows:

Proposition 5.7. Let A 6= Ind be an epireflective subcategory of Top and B

be an AD-class in A. If A ∩ Top0 ⊆ Haus or the subcategories A ∩ Top0 and

B∩Top0 fulfill the assumptions of Theorem 3.10 or those of Corollary 6.8, then B

is hereditary if and only if it is closed under the formation of prime factors which

belong to A.

In particular we get that B is closed under the formation of prime factors which
are Hausdorff.

6. AD-classes and HAD-classes containing a prime space

We have shown in Corollary 3.11 that if an HAD-class contains a prime space
then it is closed under the formation of prime factors. In connection with this
result it seems useful to give some conditions on an HAD-class B which imply that
B contains at least one prime space.

Unfortunately we were able neither to find a counterexample to the claim that
every HAD-class (in an epireflective subcategory A of Top with I2 /∈ A) contains
a prime space nor to prove this in general.

We have already shown that if an HAD-class B contains a Hausdorff non-discrete
space then it contains a prime space (Proposition 3.13). In this section we provide
further sufficient conditions. The main results we obtain are the following: If B
contains a space which is not locally connected, then it contains a prime space
(Corollary 6.8). The same holds for non-discrete totally disconnected spaces.
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We also show that an AD-class contains a prime space if and only if it contains
the space C(α) for some regular cardinal α. At the end of this section we provide
some consequences of our results for the lattices of all coreflective subcategories of
Top and of some epireflective subcategories of Top.

6.1. AD-classes containing C(α).

Definition 6.1. For any infinite cardinal α we denote by C(α) the space on the
set α∪{α} such that each β ∈ α is isolated and the sets Bβ = {ξ ∈ α∪{α}; ξ ≥ β}
for β < α form a local base at α.

The most important case is the case when α is regular, since for any α ∈ Cn
there exists a regular cardinal β with CH(C(α)) = CH(C(β)). (Namely, β is the
cofinality of α.)

If α is regular we have a simpler description of the topology of C(α): A subset
V of C(α) is open if either α /∈ V or card(C(α) \ V ) < α. Note that this implies
that every injective map f : C(α) → C(α) such that f(α) = α is continuous.

In this part we show that an AD-class contains a prime space if and only if it
contains some space C(α). We first state two lemmas needed in the proof.

Lemma 6.2. Let α be an infinite regular cardinal. If Y ≺ C(α) is a prime space

(with the accumulation point α), then C(α) ∈ CH(Y ).

Proof. Let fi, i ∈ I, be the family of all injective mappings fi : α ∪ {α} → α ∪ {α}
such that fi(α) = α. Let us denote by X the topological space on α∪{α} with the
final topology with respect to the family fi : Y → X . We claim that X = C(α).
One of the maps fi is the identity, hence Y ≺ X and α is non-isolated in X .
Since Y ≺ C(α) and all fi’s considered as maps from C(α) to C(α) are continuous,
we get X ≺ C(α).

To verify that C(α) ≺ X we show that any set which is not closed in C(α) is
not closed in X .

From X ≺ C(α) follows that X is a prime space, therefore it suffices to compare
the sets not containing its accumulation point α. So let V be a subset of α with
cardinality α and α /∈ V . Then there exists an i ∈ I such that fi maps bijectively
the set α to V . Since the subset α is not closed in Y (the point α is not isolated),
we get that V is not closed in X . � �

Lemma 6.3. Let α be any infinite cardinal. If Y ≺ C(α) is a prime space (with the

accumulation point α), then there exists a regular cardinal β with C(β) ∈ CH(Y ).

Proof. Let β be the cofinality of α. There exists a quotient map q : C(α) → C(β)
which maps only the point α to β. Let Y ′ be the quotient of Y with respect to the
same map q. Then Y ′ is a prime space, since q−1(β) = {α} and α is not isolated in
Y . Moreover, Y ′ ≺ C(β) and β is a regular cardinal, thus C(β) ∈ CH(Y ′) ⊆ CH(Y )
by Lemma 6.2. �

Proposition 6.4. If an AD-class B in an epireflective subcategory A 6= Ind con-

tains a prime T2-space then it contains C(α) for some regular cardinal number

α.

Proof. Let P be a prime space with the accumulation point a. Denote by α the
smallest cardinality of a non-closed subset of P \ {a}. Let C be some such subset.
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If V is any subset of C with cardinality smaller than α then it is closed (since α
was chosen as the smallest cardinality of a non-closed set). Therefore C ∪ {a} is a
prime subspace of P and it is finer than C(α). (In the case that α is regular it is
even homeomorphic, but in either case complements of all basic neighborhoods Bβ

of α are closed.)
The claim follows now from Lemma 6.3. � �

Since every prime T2-space is zero-dimensional, Proposition 6.4 could be also de-
duced from Proposition 6.11. But the proof presented here is more straightforward.

6.2. How to obtain a prime space. We now turn our attention to some condi-
tions which are sufficient to enforce that an HAD-class contains a prime space.

Let us denote by Con the class of all connected spaces. By [9, Satz 21.2.6]
its coreflective hull CH(Con) consists precisely of sums of connected spaces. An
equivalent characterization is that X ∈ CH(Con) if and only if each point of X has
an open connected neighborhood.

Proposition 6.5. If X is not a sum of connected spaces then there exists a quotient

map f : X → P , where P is a prime T2-space and P ≺ C(α).

Proof. Since X does not belong to CH(Con), there exists a ∈ X such that no open
neighborhood of a is connected. This means that for any open neighborhood U of
a there exist disjoint open proper subsets V , W of U such that V ∪W = U . By
transfinite induction we construct a decreasing family Uα of open neighborhoods
of a. We put U0 = X . For any β the neighborhood Uβ can be divided into two
disjoint open non-empty sets. Denote by Uβ+1 that one which contains a. Now
suppose that β is a limit ordinal and Uγ is already defined for each γ < β. We put
Uβ :=

⋂
γ<β Uγ if this set is open. If not, we stop the process and put α := β. (We

must stop at some ordinal β, otherwise there would be a proper class of open sets
in X .)

Thus we get a system (Uβ)β<α of open neighborhoods of a with the following
properties: Uβ $ Uγ whenever β > γ. For any limit ordinal β < α the equality
Uβ =

⋂
γ<β Uγ holds. The set Uβ \ Uβ+1 is open for any β < α, but

⋂
β<αUβ is

not open.
Now we define f : X → α ∪ {α} by

f(x) = sup{β ∈ α : x ∈ Uβ}.

Recall (Definition 6.1) that a neighborhood base for C(α) at α consists of the sets
Bβ = {ξ ∈ α∪{α}; ξ ≥ β} for β < α. We have f−1(Bβ) = Uβ, f

−1(β) = Uβ \Uβ+1

for any β < α and f−1(α) =
⋂

β<α Uβ. Thus the quotient space w.r.t. the map

f is finer than C(α) and the point α is non-isolated in it. Hence it is a prime
T2-space. � �

Propositions 6.5 and 3.13 imply that, if there exist an epireflective subcategory
A of Top, A 6= Ind, and an HAD-class B in A not containing a prime space, then
B ⊆ CH(Con) and B contains no non-discrete T2-space.

A topological spaceX is totally disconnected if all components ofX are singletons
([6, Notes after section 6.2], [25, Definition 29.1]). The class of totally disconnected
spaces forms a quotient-reflective subcategoryTD of Top. If a totally disconnected
space X is a sum of connected spaces, then X is clearly discrete.



HEREDITARY, ADDITIVE AND DIVISIBLE CLASSES 21

Corollary 6.6. If X is non-discrete and totally disconnected then there exists a

quotient map from X to a prime T2-space.

All zero-dimensional spaces T0-spaces are totally-disconnected, thus the above
corollary applies to the class ZD0 as well. We will see in Proposition 6.11 that in
the case of zero-dimensional spaces this result can be slightly improved, which leads
to the description of atoms above Disc in the lattice of coreflective subcategories
of the category ZD0.

We say that a space X is locally connected if for any open neighborhood U of
x there is an open neighborhood V ⊆ U of x, which is connected (see [6, Problem
6.3.3] or [25, Definition 27.7]). The class of locally connected spaces is a coreflective
subcategory of Top.

Lemma 6.7. Let X be a topological space. If X is not locally connected then there

exists an open subspace V of X such that V is not a sum of connected spaces.

Proof. IfX is not locally connected then there exist a point x and an open neighbor-
hood V of x such that no open neighborhood U of x with U ⊆ V is connected. So x
has no open connected neighborhood in the subspace V and V /∈ CH(Con). � �

Corollary 6.8. Let A be an epireflective subcategory of Top with I2 /∈ A. If B is

an HAD-class in A and B contains at least one space which is not locally-connected,

then B is closed under prime factors.

6.3. Lattices of coreflective subcategories. The rest of this section is devoted
to showing some new facts concerning the (large) lattice of all coreflective subcat-
egories of Top and of ZD, which follow from the results above or can be shown
using similar methods.

Definition 6.9. Let α be a regular cardinal. Then B(α) is the topological space
on the set α∪{α} whose open sets are precisely the sets Bβ = {ξ ∈ α∪{α}; ξ ≥ β}
for β < α. We will denote the coreflective hull of B(α) in Top by Bα.

Many interesting facts about the lattice of all coreflective subcategories of Top
can be found in [9, §22] and [10]. It is shown that the atoms of this lattice above
FG are precisely the subcategories Bα. It is also shown that Bα ⊆ CH(C(α)) and
CH(C(α)) ∩ CH(C(β)) = FG for any regular cardinals α 6= β.

Next we show that the minimal elements of the lattice of all coreflective subcat-
egories of Top such that C 6⊆ CH(Con) are precisely the subcategories CH(C(α)).
(Note that the spaces B(α) are connected whereas C(α) /∈ CH(Con).)

Proposition 6.10. If C is a subcategory of Top with C 6⊆ CH(Con), then there

exists a regular cardinal α such that CH(C(α)) ⊆ C.

Proof. If we have X ∈ C, where C is coreflective and X /∈ CH(Con), then by
Proposition 6.5 and Lemma 6.3 we get C(α) ∈ C for some cardinal α. � �

The subcategoryBα = CH(B(α)) is the smallest coreflective subcategory of Top
such that in each space X ∈ Bα any intersection of less than α open sets is open,
and there exists a space Y ∈ Bα and a system of α open sets in Y with a non-open
intersection.

We show that if we have a zero-dimensional space with similar properties then
we can obtain a prime T2-space from it. Thus the atoms in the lattice of coreflective
subcategories of ZD above the class FG∩ZD have a similar description. The proof
of the following proposition is similar to the proof of [22, Proposition 4.4].
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Proposition 6.11. Let X be a zero-dimensional space and α be the smallest car-

dinal number such that there exists a system Uβ, β < α, of open subsets of X with

non-open intersection
⋂

β<α Uβ, but every intersection of less than α open subsets

of X is open. Then there exists a prime space Y ≺ C(α) and a quotient map

q : X → Y .

Proof. Denote by {Uβ;β < α} the system of α open sets in X whose intersection
is not open. We can assume w.l.o.g. that this system is strictly decreasing and all
sets Uβ are clopen. (From an arbitrary decreasing system of open sets we obtain
a system of clopen sets by choosing any point a ∈

⋂
γ<α Uγ \ Int(

⋂
γ<αUγ) and

choosing a basic neighborhood U ′
β with a ∈ U ′

β ⊆ Uβ for each β < α.) If necessary,

we can modify this system in such a way that U0 = X and Uβ =
⋂

γ<β Uγ for any
limit ordinal β < α.

Define f : X → α ∪ {α} by

f(x) = sup{β ∈ α : x ∈ Uβ}.

Let Y be the quotient space with respect to f .
The equality f−1(Bβ) = Uβ holds for any β < α. Since each Uβ is clopen, we

see that Bβ and its complement are open in the quotient topology.
The set f−1(α) =

⋂
β<α Uβ is not open, therefore {α} is not open. Since the

sets Uβ are clopen, all sets {β} = f−1(Uβ \Uβ+1) are open in Y . Thus Y is indeed
a prime space and Y ≺ C(α). � �

Theorem 6.12. Let A = ZD or A = ZD0. Let C be a coreflective subcategory

(an AD-class) in A such that C 6⊆ FG ∩ A and α be the smallest cardinal such

that there exists a space X ∈ C and a system Uβ, β < α, of open sets in X whose

intersection
⋂

β<α Uβ is not open. Then there exists a regular cardinal α such that

CHA(C(α)) ⊆ C (resp. ADA(C(α)) ⊆ C).

7. Further applications

In this section we study some other questions which are related to HAD-classes.

7.1. HAD-hulls and hereditary coreflective hulls. The aim of this part is to
show that if the coreflective hull of D in A is hereditary, it is at the same time the
HAD-hull of D in A.

Recall that the coreflective hull CHA(D) of D in A can be formed by taking all
A-extremal quotients of topological sums of spaces from D.

Lemma 7.1. Let A be an epireflective subcategory of Top with I2 /∈ A and D ⊆ A.

Then the prime T2-spaces contained in CHA(D) and the prime T2-spaces contained

in CH(D) are the same. I.e., {P ∈ CHA(D), P is a prime T2-space} = {P ∈
CH(D), P is a prime T2-space}.

In the case A = Top0 we moreover get {P ∈ CHA(D), P is prime} = {P ∈
CH(D), P is prime}.

Proof. Let P be a prime T2-space belonging to CHA(D). There is an A-extremal
epimorphism e : A → P , where A is a sum of spaces fromD, which can be factorized
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as m ◦ q with q a quotient map and m an injective continuous map.
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��
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Since m : X → P is an injective map, X is either discrete or a prime T2-space.
Thus X ∈ ZD0 ⊆ A, and m is an A-monomorphism. Since e is A-extremal
epimorphism, we obtain that m is an isomorphism and P ∈ CH(D).

Any prime space is T0. Therefore the second part is clear from the equality
CHA(D) = CH(D) ∩A, which holds for A = Top0. � �

Theorem 7.2. Let A be an epireflective subcategory of Top with I2 /∈ A and

D ⊆ A. If CHA(D) is hereditary then CHA(D) = CH(D) ∩A.

Proof. The inclusion CH(D) ∩A ⊆ CHA(D) holds for any D ⊆ A. We show the
opposite inclusion.

If CHA(D) is a hereditary coreflective subcategory of A, then it is closed under
the formation of prime factors (see [4, Theorem 1]). Let Y ∈ CHA(D). IfA ⊆ Top1

then any prime factor Ya of Y is T2. All of them belong to CHA(D). According
to Lemma 7.1 prime T2-spaces in CHA(D) and CH(D) are the same. As Y is a
quotient of spaces Ya belonging to CH(D), we get Y ∈ CH(D).

In the case A = Top0 the equality CHA(D) = CH(D) ∩A holds for any D ⊆
A. � �

Corollary 7.3. Let A be an epireflective subcategory of Top with I2 /∈ A and

D ⊆ A. If CHA(D) is hereditary then CHA(D) = ADA(D) = HADA(D).

This corollary implies that the results we proved about HAD-hulls in A can be
applied in the case of hereditary coreflective hulls in A as well.

E.g., if D ⊆ A is a set of spaces and B = CHA(D) is hereditary, then by
Corollary 7.3 it fulfills the assumptions of Lemma 4.10 and we get existence of a
space B with B = CHA(B) in this case.

7.2. Coreflective hull of a map invariant hereditary class need not be

hereditary. Finally, we turn our attention to another question. Relatively little
is known about conditions on a class of spaces which ensure the heredity of the
coreflective hull (AD-hull) of this class. V. Kannan has a result saying that if B
is a hereditary family closed under the formation of spaces with finer topologies
then the coreflective hull CH(B) of B in Top is hereditary as well ([16, Remark
2.4.4(6)]). Our Theorem 4.11 yields a kind of such condition, too. We next present
a well-known example of classes B such that CH(B) is hereditary.

Example 7.4. Let α be an infinite cardinal and Gα be the class of all spaces
with cardinality at most α. These classes are hereditary, map invariant (i.e., closed
under continuous images) and closed under the formation of prime factors. The
coreflective hull of Gα is hereditary for each α. Spaces from the coreflective hull of
Gα are called α-generated and the subcategory of all α-generated spaces is denoted
Gen(α).

On the other hand, let B be a class of topological spaces which is map invariant
and closed under prime factors. It is easy to show that if B contains an infinite
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space, then either B = Top or B = Gα for some cardinal α. If B consists of finite
spaces only, then CH(B) is either FG or Disc.

It is natural to ask whether we can somehow weaken the above mentioned prop-
erties of the classes Gα in such a way, that for every class B with these properties
the coreflective hull CH(B) of B in Top is hereditary.

One possible weakening is replacing the condition that B is map invariant by
divisibility. We can construct easily an example showing that for such a class CH(B)
need not be hereditary in general.

Example 7.5. Let B consist of all quotients of the space C(ω) and of all discrete
(at most) countable spaces. This class is clearly divisible. Every space in B is prime
or discrete, hence B is closed under the formation of prime factors. A subspace of
a prime space P is either a discrete space or a quotient of P , thus B is hereditary.

The coreflective hull CH(B) = CH(C(ω)) = Seq is not hereditary.

Another possible weakening is omitting the closedness under prime factors. We
show in the rest of this section that there exists a class B which is hereditary and
map invariant but CH(B) is not hereditary.

We start with two easy examples.

Example 7.6. Let B be the class of all continuous images of the space B(ω). The
class B is hereditary and map invariant, but CH(B) = CH(B(ω)) is not hereditary.
(This follows from the fact that the prime factor (B(ω))ω is C(ω) and C(ω) /∈
CH(B(ω)).)

It is known, that if A is a map invariant class of topological spaces then CH(A)
coincides with the classAgen ofA-generated spaces (see [9, §21] or [10]). A topolog-
ical space X is said to be A-generated if U ⊆ X is closed whenever U ∩ V is closed
in V for every subspace V of X which belongs to A. The subcategory Gen(α) and
the class of k-spaces used in Example 3.18 are examples of such categories.

We denote the cardinality of the topology of a space X by o(X) (in accordance
with [14]). For any cardinal α let us denote by Aα the class of all topological spaces
such that o(X) < 2α. This class is hereditary and map invariant. Its coreflective
hull (i.e., the class of all Aα-generated spaces) will be denoted by Cα.

Note that o(B(ω)) = ω, thus CH(B) ⊆ Cω holds for the category B from
Example 7.6.

Example 7.7. We show thatAω0
is not closed under the formation of prime factors

and consequently it is not hereditary.
Let X be a countable topological space with the cofinite topology. Clearly,

o(X) = ω0, thus X ∈ Aω0
. But the prime factor Xa of X is homeomorphic to

C(ω). Only the finite subspaces of C(ω) belong to Aω0
. Thus the point ω is

isolated in each subspace belonging to Aω0
and C(ω) /∈ Cω0

.
Note that by Proposition 3.13 in every non-discrete Hausdorff space X we have

infinitely many disjoint open subsets in the subspace Y constructed in the proof
of this proposition. Therefore o(X) ≥ c. This implies Aω0

∩ Haus ⊆ Disc and,
consequently, Cω0

∩Haus = Disc.

Note that, since the space constructed in the above example is T1, we also obtain
that CHA(Aα ∩A) is not hereditary for A = Top0,1.

It is quite natural to look for a Hausdorff example after we have constructed a
T1-space with the required properties. We have already seen that such an example
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cannot be found in the subcategory Cω0
. We were able to construct a Hausdorff

example only under the assumption 2ω1 = 2c (which is valid under CH).

Example 7.8 (2ω1 = 2c). Suppose 2ω1 = 2c. Let X be the topological space on
the set R with the topology T = {U \A;U is open in R and cardA ≤ ω0}. Clearly,
o(X) = o(R). card{A ⊆ R;A is countable} = c.cω0 = c. Thus X ∈ Ac.

We claim that, for any a ∈ X , the prime factorXa does not belong toCc. Indeed,
if a ∈ V and V is a subspace of Xa such that V ∈ Ac, then cardV = ω0 (otherwise
V contains a discrete subspace V \ {a} of cardinality ω1 and o(V ) = 2ω1 = 2c). At

the same time a /∈ V \ {a} (since {a} ∪ (R \ V ) is a neighborhood of a). We see
that a is isolated in all subspaces of Xa belonging to Ac, but a is not isolated in
Xa, thus Xa /∈ Cc.

Example 7.9. After we have shown that Cα is not hereditary for some α, we can
be interested in finding a concrete example of a space from Cα and its subspace
which is not in Cα. Such an example can be found with the help of the operation
△.

Suppose that X ∈ Cα is such a space that Xa /∈ Cα. Let Y := X△aX . Clearly,
Y ∈ Cα. Recall that X

a
(X,a) is the subspace on the set {(a, a)}∪(X\{a})×(X\{a}).

SinceXa /∈ Cα andXa is a quotient ofX
a
(X,a), we get that the subspaceX

a
(X,a) /∈ Cα

as well.
Note that, since the subcategories Top1, Haus are closed under △, if we start

with the space X from Example 7.7 (or Example 7.8), the resulting space Y will
be T1 (resp. Hausdorff) as well.
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