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Abstract We construct a smash product operation on secondary homotopy groups
yielding the structure of a lax symmetric monoidal functor. Applications on cup-one
products, Toda brackets and Whitehead products are considered.
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1 Introduction

The classical homotopy groups 7, X, n > 0, of a pointed space X give rise to a graded
abelian group I1,X obtained by additivization in low dimensions. In particular
M,X =n,X forn>2, 1) X = (m; X), is the abelianized fundamental group, and
[Ty X = Z[mpX] is the free abelian group on the pointed set of path components of
X. The smash product on homotopy groups induces a natural homomorphism of
graded abelian groups
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552 H.-J. Baues, F. Muro

which carries f ® g, with f: §" — Xandg: " — Y,to f A g: "™ — X A Y. This
shows that II, is a lax symmetric monoidal functor from pointed spaces to graded
abelian groups.

The smash product (1) can be used for example to define the Whitehead product
on homotopy groups, compare Section 3.4.

The purpose of this paper is to generalize these properties of primary homotopy
groups on the level of secondary homotopy theory.

Secondary homotopy operations like Toda brackets [22] or cup-one products
[6, 18] are defined by pasting tracks, where tracks are homotopy classes of ho-
motopies. Since secondary homotopy operations play a crucial role in homotopy
theory it is of importance to develop the algebraic theory of tracks. We do this by
introducing secondary homotopy groups of a pointed space X

M, X = (n,,,IX A n,wX)

which have the structure of a quadratic pair module, see Sections 2.1 and 3.1. Here 9
is a group homomorphism with cokernel IT, X for n > 0 and kernel I, X for n > 3.
We define I1, . X for n > 2 directly in terms of maps S” — X and tracks from
such maps to the trivial map. For n > 0 the functor I1,, , is an additive version of the
functor 7, . studied in [9].
We introduce and study the smash product morphism for additive secondary
homotopy groups

M. X OM,.Y 25 M. (XAY). )

Here one needs the symmetric monoidal structure © of the category of quadratic
pair modules qpm, which is based on the symmetric monoidal structure on the
category of square groups constructed in [7]. The smash product morphism (2) is
compatible with the associativity isomorphisms, but it is not directly compatible with
the commutativity isomorphisms.

In order to deal with commutativity we need the action of the symmetric track
group Symp(n) on I, . X in [10]. We show that A in Eq. 2 is equivariant with respect
to this action, and is commutative up to the action of a shuffle permutation. This
leads to the definition of the symmetric monoidal category qpm;’™” with objects
given by symmetric sequences of quadratic pair modules with extra structure. Then
the morphism (2) induces a morphism in qpmgymD for which the associativity and
commutativity isomorphisms are compatible with the symmetric monoidal structure
of qpm(s)ym‘j. Therefore I, . considered as a functor to the category qpmgym‘:'
fact, a lax symmetric monoidal functor.

The smash product (2) is used to define the Whitehead product on secondary
homotopy groups, compare Section 3.4.

As an illustrating application of the results in this paper we prove a formula
of Barratt-Jones—Mahowald on unstable cup-one products, see Section 3.5. This
formula was stated in [6], but a proof did not appear in the literature. A further
application yields a formula for a triple Toda bracket which generalizes a well-known
formula in [22], see Section 3.6.

In a sequel of this paper we generalize the theory of secondary homotopy groups
to symmetric spectra [8]. There we show that the smash product operation defined
in this paper endows the secondary homotopy groups m, . R of a fibrant connective

is, In
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ring spectrum R with a graded algebra structure in the category of quadratic pair
modules. The graded algebra =, . R determines all Toda brackets in 7, R, which can
be regarded as Massey products in m, ., R. Moreover, r, , R determines the universal
matrix Toda bracket in the category of finitely generated free R-modules. If R is in
addition an E.-ring spectrum then x, , R is a commutative algebra up to coherent
homotopies in qpm(s)ymD which encodes not only Toda brackets, but also cup-one
products in a purely algebraic way.

The paper consists of three parts. The first part is concerned with the algebra
needed for the statements of the main theorems. In Section 3 we present our main
results and we give applications. Section 4 contains the construction of the smash
product operation for additive secondary homotopy groups. There we prove all the
properties which imply our main results.

2 Quadratic Pair Modules and Their Tensor Product

In this part we describe the algebraic concepts needed for the structure of secondary
homotopy groups. We introduce the category of quadratic pair modules and we
show that this category is symmetric monoidal. The tensor product of quadratic pair
modules is related to the exterior cup-products in the category Top*.

2.1 Square Groups and Quadratic Pair Modules
We first recall the notion of square group, see [13] and [7].

Definition 2.1.1 A square group X is a diagram

P
X= (XL, = X)
H

where X, is a group with an additively written group law, X, is an abelian group, P
is a homomorphism, H is a quadratic map, i.e. a function such that the cross effect

(alb)y = H(a+b) — H(D) — H(a)
is linear in a, b € X,, and the following relations are satisfied, x, y € X,

(1) (Px|b)y =0, (a|Py) = 0,
(2) P(alb)y = la, b],
(3) PHP(x) = P(x) + P(x).

Here [a, b] = —a — b + a + b is the commutator bracket. The cross effect induces a
homomorphism

(—|—)n: ® Coker P —> X, (3)

Here ®*A = A® A is the tensor square of an abelian group A. If Eq. 3 is an
isomorphism we will say that the square group X is good. The function

T=HP—1: Xee — Xee
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is an involution, i.e. a homomorphism with 72 = 1. Moreover,
A Xy — Xee: x> (X|X)g — Hx) + TH(x)
is a homomorphism which satisfies TA = —A.
A morphism of square groups f: X — Y is given by homomorphisms f,: X, —

Ye, fee: Xee = Yoo, commuting with P and H.
As an example of square group we can consider

P
Lit = (Z = Z)
H

with P=0 and H(n) = (}) = “*-". This is the unit object of the symmetric

monoidal structure defined in the next section.

We refer the reader to [7] where the quadratic algebra of square groups is
developed. We need square groups for the definition of quadratic pair modules as
follows.

Definition 2.1.2 A quadratic pair module C is a morphism d: C, — C(y between
square groups

Py

Co = (Co = Cee) ,
H
P

C(]) = <C1 = Cee) s
H,

such that 9, =1: C,. = C, is the identity homomorphism. In particular C is
completely determined by the diagram

Cee
N
C 1 CO

0 (4)

where 0 = 0., H) = H9 and Py = 0P.

Morphisms of quadratic pair modules f: C — D are therefore given by group
homomorphisms fy: Cy — Dy, fi: Ci = Dy, fee: Coe = D, commuting with H, P
and 9 in Eq. 4. They form a category denoted by qpm.

The homology of a quadratic pair module C is given by the abelian groups

hoC = Co/9(Cy),
hC = Ker[d: C; — Cy]. (5)

A morphism in qpm is a weak equivalence if it induces isomorphisms in homology.
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Smash products for secondary homotopy groups 555

A quadratic pair module C is 0-good if the square group C is good. The full
subcategory of 0-good quadratic pair modules will be denoted by qpm, C qpm.

Remark 2.1.3 The category squad of stable quadratic modules is described in
[2, IV.C] and [9]. Quadratic modules in general are discussed in [2] and [17], they
are special 2-crossed modules in the sense of [15]. There is a faithful forgetful functor
gpm — squad sending C to the stable quadratic module

P(—|- 9
(\)HC1 Co.

®2(C0)ab
Here G, denotes the abelianization of a group G. Such a stable quadratic module
gives rise to a crossed module d: C; — Cy where Cj acts on the right of C; by the
formula, x € Cy, y € Cy,

' =x+ POy n,

so that we also get a forgetful functor qpm — cross to the track category of crossed
modules. Tracks in gpm (i.e. invertible 2-morphisms) will be considered in Section 2.5
below by using this forgetful functor.

2.2 The Tensor Product of Square Groups

We now recall the notion of tensor product of square groups which is essential for
this paper. This tensor product, first defined in [7], originates from properties of the
exterior cup-products in the next section and in Section 4.

Definition 2.2.1 The tensor product X ® Y of square groups X, Y is defined as
follows. The group (X © Y), is generated by the symbols x@y, x ® y, a®b for x € X,,
yeY,ae X, and b € Y,,, subject to the following relations.

(1) The symbol a®b is bilinear and central,

(2) The symbol x®@y is right linear, x@(y + y2) = x@y; + x@y>,
(3) The symbol x ® y is left linear, (x; + X)) @ y=x; 0 y+ x, @ y,
4) P@ey= a®A(y_),

(5) x@ P(b) = A(x)QD,

6) T@RT(b)=—a®b,

(7) x©@y—x©y=HX)QTH(y).

The abelian group (X © Y).. is defined as the tensor product X, ® Y,. The
homomorphism

P: (XOY)ee_)(XGY)C
is P@a®b) = a®b, and

H: (X@Y)e—> (X@Y)ee
@ Springer
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is the unique quadratic map satisfying
H(x@y) = (x|)u @ H(y) + H(x) ® A(y),
Hx@y) =AX) @ H(y) + HX) ® (yIY)n.
H@®b)=a®b — T(a) ® T(b),
(@®b|—-)y = (—la®b)y = 0,

(a@blc@d)y = (a@blc @ d)y
=(@@blc@d)n
=@Oblcod)y
= (alo)y @ (bld)n.

Relation (7) above shows that (X © Y), is actually generated just by x@y and
a®b. A complete list of relations for these generators is given by (1), (2), (4) and (6)
above together with

(B) (X1 +x2)@y = x1Qy + 020y + (x2|x)) H H (),
9) x@P®) = (x|x)y®b.

Similarly (X © Y). is also generated by just x ©® y and a®b with relations (1), (3),
(5) and (6) above together with

(10) x©@ (1 +y2) =x©@y1+x© y2+ HO®(y2ly)n,
(1) P@) @y =a@(yly)n.

As proved in [7] the tensor product of square groups is a symmetric monoidal
structure on the category of square groups with unit Z,; in Definition 2.1.1. The
associativity isomorphism

XoY)oZ=Xo0o(X 02

is given by (x@y)®z - x@(y©z), (a®b)®z — a®(b ® A(z)) and (a ® b)®c
a®(b ® c) at the e-level and by the associativity isomorphism

(Xee ® Yee) ® Zee g Xee ® (Yee ® Zee)
for the tensor product of abelian groups at the ee-level. The symmetry isomorphism
0: XOYZEYOX

is defined on e-groups by x@y+> y®x, x® y > y©x, and a®b +> b®a, and on
ee-groups by the standard symmetry isomorphism

Te: Xee ® Yee = Yee ® Xee
for the tensor product of abelian groups. The unit isomorphism
ZgO X=X

is defined on e-groups by the formulas n ® x — n - x and n®a — n - P(a).
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2.3 Exterior Cup-products

We will work with the track category Top* of compactly generated pointed spaces.
A track category is a category enriched in groupoids, i.e. a 2-category where all
2-morphisms are vertically invertible. See [12] for a reference on 2-categories. A
2-morphism in a track category is also termed a track, and a 2-functor between
track categories is called a frack functor. Tracks in Top* are homotopy classes of
homotopies between pointed maps. The identity track on a pointed map f: X — Y,
also called the trivial track, will be denoted by 0?. We use the symbol [ for the

vertical composition, and F= denotes the vertical inverse of a track F. Horizontal
composition is denoted by juxtaposition.
The smash product of pointed spaces X, Y in Top* is the quotient space

XANY=XxY/XVY (6)

where the coproduct X Vv Y in Top* admits the canonical inclusion X VY C X x Y
to the product. If ¢ is a permutation of {1, ..., n} the map

o Xi AN AKXy — Xomiy Ao A X1y (7)

induced by the permutation of coordinates according to o, is also denoted by o. For
the sake of simplicity we will occasionally omit the permutation o in the diagrams and
equations where it is understood. Given a subset {ij, ..., ik} C {1,...,n} we denote
by o = (i) ... ix) the permutation defined by o (i;) = i51; if | <s < k, o (ix) =i, and
o (m) = m otherwise.

The smash product is a track functor

A: Top* x Top* —> Top*.

It is defined as usually at the level of pointed spaces and pointed maps. The pointed
space I is the disjoint union of the interval I = [0, 1] with an outer base point . Let
F: f = gbeatrack between maps f, g: A — B represented by a homotopy F: I, A
A — B,andlet h: X — Y be another map. Then the track FAh: fAh = gAhis
represented by a homotopy FAh: LANAANX - BAYandhAF:hAN f=hAg
is represented by the composite

LAXAAZXALAAYS Y AB
If G: h = kis another track then
FAG=GAGUF A =(FARDOfAG): fAh=gAk.

The smash product defines a symmetric monoidal structure in the category Top*.
The unit object is the O-sphere S°.

Definition 2.3.1 Given maps f: ¥A — X B and g: ¥ X — XY the left exterior
cup-product f#g is the composite

S AAAX S S ABAXEBAS AX S BAS' AY =S ABAY.
@ Springer
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Similarly the right exterior cup-product f#g is the composite

SAAAXZAAS AX S AAS AY S AAAY L S ABAY.
The equality
fHg=023)(g#f)23) ®

is always satisfied.

These constructions give rise to homotopy operations called exterior cup-products
##: [ZA TBI X [ZX,2Y] — [EAAX,ZBAY]
see [1, I1.1.14]. The operation # is left-linear and # is right-linear,
(fi + L#g = fittg + fotg,
T#(g1 + &) = fH#g + fH#g.
Given a pointed discrete set E we denote VgS” = £" E. Then
71 (VES') = (E)
is the free group with basis £ — %, and
7a (VES") = ZIE]
is the free abelian group with basis E — x for n > 2. We write
(E)m'l
for the free group of nilpotency class 2 (nil-group for short) with basis E — %, which
is obtained from (E) by dividing out triple commutators.
If A= X =S%and B = E,Y = E are pointed sets then the exterior cup-products
are functions
#,#: (E) x (E) — (E A E).

These functions factor in a unique way through the natural projection onto the
nilization in the following way

(E)ait X (EVit —>= (E A E)ng 9)
@ Springer
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A free nil-group (E),; on a pointed set E gives rise to a square group
P
Znil E] = ((E)niI:®2Z[E]> (10)
H

defined by Pla® b) =[b,a], H(e) =0 for any e€ E and (s|t)y =t® s so that
Znit[S°] = Z,;; in Definition 2.1.1. These square groups are the main examples of
good square groups in the sense of Definition 2.1.1. For Eq. 10 the involution T is
up to sign the interchange of factors in the tensor square T(a® b) = —b ® a and A
is defined by A(e) = e ® e for e € E. Recall that we denote

T9: A BEBQ® A,

the symmetry isomorphism for the tensor product of abelian groups, which should
not be confused with T'= —1g in this case.

The next proposition is essentially [7, 34]. It shows the connection between the
tensor product of square groups and the exterior cup-products.

Proposition 2.3.2 Given two pointed sets E and E there is a square group
isomorphism

Zitl E1 © Zitl E] —> Zypil E A E)

defined on the e-groups by x®y — xi#y, x © y — xi#y, and on the ee-groups by

1819 ®1: ZIEI®ZIEI® ZIEl® ZIE] = ZIE]® ZIE] ® ZI E] ® Z[ E],
aRbRccRAd— aRcRb ®d.

This is the quadratic analogue of the well-known fact that free abelian groups have
the tensor product

ZIE\® ZIE) = ZIE A E).
2.4 The Symmetric Monoidal Category of Quadratic Pair Modules

A pair in a category C is a morphism f: X — Y in C. Let Pair(C) be the category of
such pairs. Morphisms («, 8): f — f’ in Pair(C) are given by morphismso: X — X’
and 8: Y — Y'in Csatisfying f = f'«. A quadratic pair module is a special pair in
the category SG of square groups and the category qpm of quadratic pair modules
is a full reflective subcategory of Pair(SG). The left adjoint to the inclusion gpm C
Pair(SG), i.e. the reflection functor, is denoted by

®: Pair(SG) — qpm.

Given a pair f: D — C in SG we have ®(f) = C, so that ®(f)y=C, and
D(f)ee = Cpe. Moreover, ®( f); is the quotient group

O(f)1 = De x Cee/ ~,
(0, fee(d)) ~ (P(d),0), de& D,

(0, HP(c)) ~ (0,2c), c e Ce.
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The operators P and H for ®(f)(;) and the homomorphism d: ®(f); — ®(f)o =
C, are defined by the formulas, ¢ € Ce., d € D,,
P(c) = (0,0),
H(d.c) = feeH(d)+ HP(c),
dd.c) = fe(d) + P(o).

The unit of this adjunction is a natural morphism in Pair(SG)

f

D ——>C

|
O(fHay —= D(f) (11)

and is given by v.(d) = (d, 0) for d € D, and ve(d') = fe.(d') for d’ € D,... We use
the functor & for the following definition of the tensor product in gpm.

The category qpm is a symmetric monoidal category. This structure is inherited
from the tensor product in SG described above. More precisely, the tensor product
C© D of two quadratic pair modules d: Cy — C), d: Dy — Do is given as
follows. Consider the push-out diagram

100
Cay© Day —— Cqy © D)

301 J/ push l ¢ 301

Coy© Dy — COD

AN X
\ C(O) o) D(O)

—

109 B

(12)

in the category SG. Here 9 is a pair in SG for which we derive the tensor product in
gpm by the functor ® above, that is,

C@ D= d)(g C@D —> C(O) (O} D(O)),
is particular (C ® D)) = C() © Dy and (C ® D), = Cee ® D,. Moreover, notice

that v¢ and v& are both the identity on ee-groups. The unit element for this tensor
product is the quadratic pair module Z,; = ®(0 — Z,;) given by

72— = 7, (13)

where H(n) = (}).
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2.5 The Track Category of Quadratic Pair Modules
Given a quadratic pair module C the group Cj acts on C; by the formula, x € Cy,
y € Co,

X' =x+ POy u,
see Remark 2.1.3. We define tracks in qpm as follows.
Definition 2.5.1 A track «: f = gbetween two morphisms f,g: C - Dinqpmisa
function

a: Cy — Dy

satisfying the equations, x, y € Cy, z € Cy,

(1) a(x + y) = a(x)ﬂ)(y) + a(y)’
(2) gx) = fo(x)+ da(x),
3) gi(@) = fi(x) +2d(2).

These tracks are pulled back from the track category of crossed modules along
the forgetful functor in Remark 2.1.3. The track structure for crossed modules is
described in [9, 7]. In particular we obtain the following result.

Proposition 2.5.2 The category is a qpm track category.

The vertical composition of tracks «, g is defined by addition («lJB)(x) = B(x) +
a(x). The horizontal composition of a track o and a map f, g is defined as ( fo)(x) =
fia(x) and (ag)(x) =ago(x). A trivial track 0? : f= fis always defined as 0? (x)=0.

One can use the interval quadratic pair module I to characterize tracks in qpm in
some cases. This quadratic pair module [ is defined as follows.

®Zlio, i1]

N

Z1&® Z/2P(iplio)p ® ZP(iplin) ; ({05 11 )it

The quadratic map H is defined as in Eq. 10. The structure homomorphisms P and
d are completely determined by the laws of a quadratic pair module and the equality
3(1) = —ip + i;. There are two obvious inclusions iy, i;: Zu; — I and a projection
p: 1 — Z,y defined by p(ip) = p(i;) = 1 and p(7) = 0.

Lemma 2.5.3 Let f, g: C — D be morphisms in qpm. Assume that C is 0-good. Then
tracks o : f = gare in bijection with morphisms a@: 1 © C — D with f = &ipand g =
aiy. The equivalence is given by the formula a(c) = av.L.(1 © c) for ¢ € Cy. Here we
use the square group morphisms v and ¢ in Egs. 11 and 12.

This lemma can be derived from the definition of the tensor product of square
groups.
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Proposition 2.5.4 The tensor product functor
O: qpm x gpm —> qpm

is a track functor.

Proof Given tracks a: f=g: C— D and 8: h = k: X — Y in qpm, the track
aOf: fOh=g0k:COX — DOY inqpm with

aOp: (COX)=(Cop O Xqp)e — (DOY);
is defined as follows. Given ¢ € Cy and x € X
(0 © B)(c@x) = Ve (fo(©)@B(X)) + Vele(at(c) @ko(x))
+ (= fo + 8ol fo(©)) H® Hko(x)
@ Uele(a(€)@ho (X)) + veke(80(c) @B (X))
+ (= fo(©) + g0 (O] fo(©) H® Hho(x),
and givena € C,, and b € C,,
(@ © B)a®b) = — fro(@@hee(b) + gee(@)Dkee(b).

Here we use the square group morphisms v, ¢, and & in Eqgs. 11 and 12. For (a)
we use

Vele(0a(€) @B (X)) = Vebe(at(c) @B (X)).

This equality follows from the fact that the square in Eq. 12 commutes. We leave the
reader to check that « ©® g is indeed a track f ©® h = g © k and that the axioms of a
track functor are satisfied. O

The following commutativity property for the tensor product of tracks holds.

Lemma 2.5.5 Given tracks «, B in qpm the equation 1o (o © ) = (8 © @)t holds.

The proof is a straightforward but somewhat lengthy computation. One can also
use the track functor © in Proposition 2.5.4 to show that qpm is indeed a symmetric
monoidal 2-category, compare [11] and [16].

3 Secondary Homotopy Groups as a Lax Symmetric Monoidal Functor

In this part we introduce the additive secondary homotopy group as a quadratic
pair module. We formulate our main results on the smash product for additive
secondary homotopy groups leading to a lax symmetric monoidal functor. We
also give applications to unstable cup-one products, Toda brackets, and secondary
Whitehead products.
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3.1 Homotopy Groups and Secondary Homotopy Groups

Let Ab be the category of abelian groups. Using classical homotopy groups 7, X we
obtain for n > 0 the functor

[1,: Top* — Ab

with
7T, X, n>2,
I,X=1 (mX)w, n=1, (14)
Z[]T()X], n=20

termed additive homotopy group.
One readily checks that the smash product fAg: §" — X AY of maps
{f: "> X}en,X and {g: §"" — Y}emn, Y induces a well-defined homomorphism

AL XQI,Y — [ (X AY). (15)

This homomorphism is symmetric in the sense that the symmetry isomorphism
7,: X A Y — Y A X yields the equation in I1,,4,, (Y A X)

T)(fArg=(=D"gA f (16)

The sign (—1)"" is given by the degree of the symmetry isomorphism

Tam =Ta: ST =§"AS" — " A S = S, (17)

Here
Tom € Sym(n + m) (18)
is the shuffle permutation of n 4+ m elements which exchanges the blocks {1, ..., n}
and {n+1,...,n+ m}. For this we recall that the symmetric group of k letters

Sym(k) acts on the k-sphere
Sk=S'A LS

by permutation of coordinates according to Eq. 7.
The main purpose of this paper is the generalization of the smash product operator
(15) for additive secondary homotopy groups.

Definition 3.1.1 Let n > 2. For a pointed space X we define the additive secondary
homotopy group T1, . X which is the quadratic pair module given by the diagram

M, e X = ®2Z QX
M, X

Here Q" X is the discrete pointed set of maps $” — X in Top* and H is defined as in
Eq. 10.

o X = (Q"X) i
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We describe the group IT,, ; X and the homomorphisms P and 9 as follows. The
group I, ; X is given by the set of equivalence classes [ f, F] represented by a map
f: 8" = vaixS! and a track

0

TN

s Sk X.

yr-l f ev

Here the pointed space

S =VaxS'=32"Q"X
is the n-fold suspension of the discrete pointed set Q" X, i.e. 8% is the coproduct
of n-spheres indexed by the set of non-trivial maps $" — X. The map ev: §% — X
is the obvious evaluation map. Given a map f: S' — VauxS! we will denote f,, =

ev(X"! f), so that F in the previous diagram is a track F: f,, = 0.
The equivalence relation [ f, F] = [g, G] holds provided there is a track

N: Erhl]c:> anlg

with Hopf(N) = 0, in the sense of Eq. 21 below, such that the composite track in the
following diagram is the trivial track.

0 (19)
That is F = GU(ev N). The map 9 is defined by the formula
LS, F1 = (1 (1),

where 1 € m; S! = Z.
The Hopf invariant Hopf(N) of a track N: £"~! f = %"~lg between maps as
above is defined in [9, 3.3] by the homomorphism

. &ZIQ"X], n = 3,

H, (18", 8" v 8" '—" H, ("' %, vanxS') = (20)
ZIQ"X], n=2.

which carries the generator 1€ Z = H,(IS', S' v S") to Hopf(N). Here the iso-

morphism is induced by the Pontrjagin product and ad(N), is the homomorphism
induced in homology by the adjoint of

n—1 l(LZ) n N
STANLLAS = L AS > S
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The reduced tensor square &’ in Eq. 20 is given by

T a®b+b®a~0’

and5: ®> A — & A is the natural projection, with 5(a ® b) = a®b. We define

Hopf, forn >3,
o Hopf, forn = 2.

We refer the reader to [9, 3] for the elementary properties of Hopf which will be
used in this paper.

This completes the definition of I1,; X, n > 2, as a set. The group structure of
I1,,.; X is induced by the comultiplication u: S' — S' v S', compare [9, 4.4].

We now define the homomorphism P. Consider the diagram

o
T\
M o— 5 Snvsn,
=B

where g: S§' — S' v S'is given such that (7, 8),i(1) = [a, b] € {a, b), is the commu-
tator of the generators. The track B is any track with Hopf(B) = —a®b € &’Zla, b].
Given x ® y € ®2Z[Q"X] let %, : S' — VauxS' be maps with (m,%). (1) = x and
(1¥)ap (1) = y. Then the diagram

SN

S Vv Y S’ X (22)
E/x—lﬂ 2/1—1(5;12) ev

represents an element

Px®y) =1, 0B, (Jev, Xer) B] € I 1 X.
This completes the definition of the quadratic pair module IT, ,.X for n > 2. For
n = 0, 1 we define the additive secondary homotopy groups I1, . X by Remark 3.1.3
below. In this way we get for n > 0 a functor

1, .: Top* — qpm

which is actually a track functor.
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There homology of the additive secondary homotopy groups is given by
holly s X Em, X, n>2,
I, X Em X, n>3,
hTh X = m X/ [m X, 1 X], (23)

where [—, —] denotes here the Whitehead product. For this we use [9, 5.1], and also
[9, 6.11] for the case n = 2. Furthermore, the following property is crucial.

Proposition 3.1.2 The homomorphism
holl, ., X — W11, . X: x+— Px|x)y

coincides via Eq. 23 with the homomorphism n*: 1,X ® Z/2 — n,11 X if n > 3 and
N mX QZ/)2 — m3 X/[m X, m X1 if n = 2. Here n* is induced by precomposition
with "2y, where n: S° — S? is the Hopf map.

This follows from [9, 8.2].

Remark 3.1.3 Considering maps f: " — X together with tracks of such maps to
the trivial map, we introduced in [9] the secondary homotopy group 7, . X, which
is a groupoid for n =0, a crossed module for n = 1, a reduced quadratic module
for n = 2, and a stable quadratic module for n > 3. The categories formed by these
algebraic objects are related by forgetful functors

stable reduced crossed
quadratic N quadratic N N (groupoids) .
modules

modules modules

Then using the left adjoint functors Ad,, of the forgetful functors ¢, as discussed in
[9, 6] we get the additive secondary homotopy group track functor

1, .: Top* — squad
given by

T X, forn > 3,
Ad37T2,*X, forn = 2,
Ad3Ad27Z’1,*X, forn = 1,
Ad3Ad2Ad17‘[o,*X, forn =0.

I,.X =

This is the secondary analogue of Eq. 14.

The category squad of stable quadratic modules is not appropriate to study the
smash product of secondary homotopy groups since we do not have a symmetric
monoidal structure in squad. Therefore we introduced above the category qpm of
quadratic pair modules and we observe that IT, . X in squad yields a functor to the
category qpm in the following way. As a stable quadratic module IT,, . X looks as
follows

RZIQ"X] = @2 (Mo X)ap | =" Ty X~ M0 X = (" X

In the quadratic pair module IT, ., X the quadratic map H is defined as in Eq. 10
and the homomorphism (—|—)g: ®2 (I, 0X)u = [, X is the identity. A map
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f+ X — Y in Top* induces a homomorphism I, o f: I1,0X — I1,0Y between free
nil-groups. This homomorphism carries generators in I, ¢ X to generators in I, oY
and therefore IT,, . f is compatible with H. This shows that there is a canonical lift

qpm

My s \L

Top* —— squad
Iy

with I, ) X = Z,[Q" X] for all n > 0. In particular I, ,X is always a 0-good
quadratic pair module. Compare [10, 1.15].

The definition of I, , X given above coincides with the lifting of Ad;m; , X to qpm
by the claim (*) in the proof of [9, 4.9].

Generalizing Eq. 23 we have for all n > 0 a natural isomorphism

holl, . X =11, X, (24)
see [9, 6.10].
In this paper we are concerned with the properties of the track functor IT,, .

mapping to the category qpm. In order to simplify notation given amap f: X - Y
in Top* we will just denote

fi=M,f: 0,; X — I,;Y, forie{0,1,ee}andn > 0.
Moreover, given a track «: f = g between maps f, g: X — Y we denote by
a, =1, ,a: 0 X — I1,,Y, n>0,

the induced track a,: f, = g in qpm.

3.2 Smash Product for Secondary Homotopy Groups

In this section we describe our main results connecting the tensor product of
quadratic pair modules and the smash product of pointed spaces. The smash product
operator in the next theorem is the canonical analogue of the smash product for
classical homotopy groups in Eq. 15 above.

Theorem 3.2.1 The functor of additive secondary homotopy groups I, .: Top* —
qpm admits a well-defined smash product operator

AN T X Oy Y — Hypm (X AY),

which is a morphism in qpm, inducing the smash product of classical homotopy groups
in Eq. 15 on hg. This operator is natural in X and Y with respect to maps and tracks.

This smash product operator is given in the (0)-level by the following morphism
of square groups

L[ X1 © L[ Q"Y1 = Zg[Q" X A QY] 2 7,177 (X A V).
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Here

A(Q"X)A(QTY) — QX AY), n,m=>0,
is the map between discrete pointed sets defined by
(f: 8" > XN (@ S" > Y (fAg: S - XAY).

On the (1)-level the definition of the smash product operator in Theorem 3.2.1 is
more elaborate, see Definition 4.3.3 below.

Proof of Theorem 3.2.1 The first part of Theorem 3.2.1 follows from Lemmas 4.7.1,
4.7.2,4.7.3 and 4.8.1 in Section 3. For the naturality we use Lemma 4.8.2 in Section 4
and Theorems 3.2.2 and 3.2.3. O

We will use the following notation for the image of generators in the tensor
product by the smash product morphism in Theorem 3.2.1. Given x € I1,,; X and
yell, Yior0<i ji+ j<1wedenote by

XA Y € Mppmir (X ANY),

the image by A of the element x ©® y € I, 4 o(X AY) ifi=j=0, of v,5.(x@ y) €
Mypm1(XAY)ifi=1and j=0, and of v.§(x© y) € 1,4 1 (X AY) if i =0 and
j = 1. Here we use the square group morphisms v, ¢ and £ in Egs. 11 and 12. Similarly
for x@y and xAy. Moreover, givena € I, ., X and b € I1,,..Y we denote by

an b € HrHrWL,ee(X A Y),
the image of a® b € (I1,, , X © I, . Y)ee BY A.

Theorem 3.2.2 The smash product operator endows 11, , with the structure of a lax
monoidal functor from Top* to the category of graded 0-good quadratic pair modules.
That is, the following diagram commutes

Hn,*X © (Hm,*Y © HI*Z) ;> (Hn,*X © Hm*Y) © Hl.*Z

l o1

1OA Hyms(XAY)OI; . Z

l .
A
Hn,*X O] Hm+l,*(Y NZ) ——— ym«(XAY AN Z)
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and for the unit S° of the symmetric monoidal category (Top*, A) and the unit Z,; of

(qpm, ©) there is an isomorphism u: Ly = Ho,*SO such that the following diagrams
commute.

A
HO,*SO @ Hn,*X —_— Hn,*(SO A X)

Znil © Hn,*X > Hn,*X

A
M. X O TS —— I, (XA S

Hn,*XQZm'Z % n”s*X

The isomorphism u: Donit = I, S° is the unique one sending 1 € Z = (Zm'z)o to
u(l) = 130: SO — SO in Ho,oso.

Proof of Theorem 3.2.2 In dimensions > 1 the associativity property in Theorem
3.2.2 follows from Lemma 4.7.4 in Section 4. In case dimension 0 is involved we
use the more algebraic Lemma 4.8.1. The commutativity of the squares with the
isomorphism u is easy to check. This is left to the reader. O

The graded commutativity Eq. 26 for the smash product for classical homotopy
groups has a secondary analogue as follows.

Theorem 3.2.3 The following diagram commutes in qpm.

[, X © M Y ;> (X AY)

= \L (Tx,v )«

1-[n+m,>k(Y A X)

~ *
= T Tnm

Hm*YQ Hn.*X L> Hmjx_n,*(Y/\ X)

I3

Here 1, is the symmetry isomorphism of the tensor product © in qpm, and z;, is
given by the right action of the shuffle permutation t, ,, € Sym(n + m) in Eq. 18 on
10 (Y A X), see the next section.

This follows from Lemma 4.7.5 in Section 4.
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3.3 The Symmetric Action on Smash Products

Secondary homotopy groups, regarded as a functor from pointed spaces to graded
0-good quadratic pair modules

M,.: Top* — qpmy’,

is a lax monoidal functor, see Theorem 3.2.2. The monoidal structure in gpm}\ is the
usual graded extension of the tensor product © of quadratic pair modules, see the
appendix, and Top* has the monoidal structure given by the smash product A. Both
monoidal structures are symmetric, however Theorem 3.2.3 shows that IT, , is not
lax symmetric monoidal since the action of the shuffle permutation t,,, in Eq. 18
is involved. This inconvenience is solved by enriching the structure of secondary
homotopy groups with the sign action of the symmetric track groups constructed
in [10].

Definition 3.3.1 Let {£1} be the multiplicative group of order 2. A sign group G is
a diagram of group homomorphisms

[£1) < GO > G =5 (1)

where the first two morphisms : and § form an extension. Here all groups have a
multiplicative group law and the composite &4 is also denoted by ¢: Go — {£1}.

A morphism fg: Ggo — Kp of sign groups is a commutative diagram of group
homomorphisms

(1) & Go G (1)
j= |
(1) > Ko K (1)

This defines the category Gr. of sign groups. The initial object 1 in this category
given by G = {1} will be termed the trivial sign group.

Remark 3.3.2 Recall from [10, 3.6] that a sign group G gives rise to a crossed
module

So=(g,8): Go — {£1} x G,

where {£1} x G acts on G by the formula
g = i (o))

Here g € Go, x € {£1}, h € G, and he Gp is any element with 8(h) = h. This is a
well-defined crossed module since G is a central extension of G by {£1}.

The main examples of sign groups are the symmetric track groups
8 sign
{1} = Symy(n) — Sym(n) —> {£1},
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defined as follows. The symmetric group Sym(n) acts on the left of the n-sphere

St =S'A T ASY
see Eq. 7. The elements of the symmetric track group Symg(n) for n > 2 are tracks
a: o = ()N between maps o, ()32 : 5" — §", with o € Sym(n) and (-);="7 =

anl(_)sign(a')’ where
O S'— Sz K keZ,

is given by the (multiplicative) topological abelian group structure of S'. The group
law in Symp(n) is given by the horizontal composition of tracks. For n =0, 1, let
Symp(n) be the trivial sign group. Compare [10, 5 and 6.

The smash product §”* A — induces a sign group morphism

S"™ A —: Symp(n) — Symp(m + n), (25)

sending a track a: o = (-)3¢"“) as above to $™ A @. This morphism is given on
symmetric groups by the usual inclusion Sym(n) C Sym(m + n), obtained by regard-
ing Sym(n) as the subgroup of permutations of m + n elements fixing the first m
elements.

One can not directly define a sign group morphism

— A 8" Symy(m) — Symp(m + n)

in a geometric way as above since ()%, A §" # ()X ,,,. With the help of the crossed

module structure for sign groups, described in Remark 3.3.2, and the shuffle permu-
tation 1, ,, in Eq. 18, we define — A S as the following composite

A (Ltnm)

— A 8" Sympy(m) plli Symp(n + m) AN Symp(m + n). (26)

This morphism is given on symmetric groups by the inclusion Sym(m) C Sym(@m + n),
obtained by identifying Sym(m) with the group of permutations of m + n elements
which only permute the first m ones.

Definition 3.3.3 A twisted bilinear morphism of sign groups

(fo.g0): Go x Lg — Kp

is given by a pair of sign group morphisms fo: Go — Kg, go: Lo — Ko, such that
the following equations hodl. Given a € G and b € L the equality

fa)g) = gb) f(a)
holds in K, and therefore the group homomorphism
(f,e):GxL— K:(a,b)+— f(a)gb)
is defined. Moreover, given x € G, y € L the following equality is satisfied in K
fat)gom) = o fae (D).
The twisted product Gox L of sign groups G, L is a sign group

(£1} <5 GoxLo — G x L -5 {£1}
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together with a universal twisted bilinear morphism
(icg.irg): Go x Lg — GoxLp. (27)

The group Gox L is generated by the symbols 5, 7 and w, for t € G and s € L,
with the following relations:

(1) wis central,

(2) 1(—=1) =wforbothi: {£1} — Gmandi: {*1} — Lq,

(3) 7ir; =71 -r; when ry, r; lie both in the group G or both in L,
4) 5= 5tw() () fort € Gryands € Lo,

The homomorphism §: Gox Lo — G x L is defined by §() = (5(), 1) for t € G,
8(5) = (1,48(s)) fors € L, and §(w) = 1. The universal bilinear morphism is given by
iGo(H) =tand iy (s) = 5. The twisted product is a non-symmetric monoidal structure
in the category Gr.. of sign groups where the unit is the trivial sign group 1.

Proposition 3.3.4 The morphisms in Eqs. 25 and 26 induce a morphism of sign groups

Symp(m) x Symp(n) —> Symp(m + n).

This proposition can be easily derived from the presentation of the symmetric
track groups given in [10, 6.11].

We now introduce the action of a sign group on a quadratic pair module. In [10]
we show that the sign group Sym(n) acts in this sense on IT,, . X.

Definition 3.3.5 A sign group G acts on the right of a quadratic pair module C if G
acts on the right of C by morphisms g*: C — C, g € G, in qpm, and there is a bracket

<_’ _> = <_! _>G: C() X GD - C‘1
satisfying the following properties, x, y € Cy, z € Cy, s, t € G.
1) (x+y.0)=(x 0+ (y.0) + P(=80)*(x) + @O 08O (¥) s
(2) e () =81 (x) + d{x, 1),
(3) e*(2) =8)*(2) + (3(2), 1),

4) (x,s-1) = (8()"(x), 1) + (e()*(x), 5),
(5) For the element w = 1(—1) € G we have the w-formula:

(x,w) = P(x|x)g.

Notice that the w-formula corresponds to the homomorphism in
Proposition 3.2.

Here we use the notation

- (D' =—-x+9PH(),

- (D@ =-y+ HPi(y),

— 1* = identity,

introduced in [10]. Notice that (—1)*(—1)* = 1*. The trivial sign group acts on any
quadratic pair module in a unique way.
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This definition of a sign group action, as given in [10], can be reinterpreted in terms
of the tensor product © of quadratic pair modules. For this we use the following
“group ring” construction for sign groups.

Definition 3.3.6 A quadratic pair algebra R is a monoid in the category qpm of
quadratic pair modules. The image of a right-linear generator r@s in the tensor
product by the monoid structure morphism R © R — R will be denoted by r - 5. This
notation will also be used below (in the proof of Lemma 3.3.8) for right modules over
a quadratic pair algebra. Given a sign group G the quadratic pair algebra A(Gp)
has generators

— [g] for any g € G on the O-level,
— [t for any t € G on the 1-level,
— No generators on the ee-level,

and relations

- Hlgl=0forge G,

— [1] = 1 the unit element,

- [ghl=1gl-[hlforg he G,

- tl=-[O]+e@®,

— s =181 [+ ® - [s]+ () (Y) P11 s for s, ¢ € G,
- [w] = P(1]1)y, where w = 1(—1).

In these equations —1 can appear as a value of the homomorphism ¢. This —1 denotes
the additive opposite of the unit element 1 € Ay(Go), except when it appears as
part of a cominatorial number, where it is regarded just as an integer. The relations
above show that A« (Go) = Zu[G+] where G, is the group G together with an
outer base point, so A(Gp) is 0-good. A more explicit description of the groups and
the structure homomorphisms of A(GQ) as a quadratic pair module can be found in
[10, Remark 5.5]. The homology of A(Gp) is given by

hoA(Gp) = Z, with natural projection (G ),y — Z: [g] — &(g),
hiA(Gpo) £ Z/2, generated by [w] = P(1|1)p.

The “group ring” of a sign group defines a functor onto the category gpa of
quadratic pair algebras

A: Gry — gpa.
Proposition 3.3.7 The functor A is strict monoidal.

Proof Given two sign groups Gp, L, if we use the notation (igo, i) in Eq. 27
for the universal twisted bilinear morphism then the isomorphism A(Gox L) =
A(Gp) © A(Lp) is defined on generators as

[(g.D]— [glo] = [glolll, geG,leL,
licgn®] = [s]1@1 = [slel, se G,
irpM] =10 = 10, te Lp,

[w] = P(|1)y — PA®1|1® 1)y, sincel> 1@ 1.
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It is straightforward to check that these formulas are compatible with the relations
defining A(Gpx L), therefore they yield a quadratic pair algebra morphism. At the
(0)-level this morphism is

Ll (G x L) 4] = ZyitlGy AN Ly ] = ZpilG 1] © Zat[ Ly ],

the inverse of the isomorphism in Proposition 2.3.2. Using the computation of the
homology of the “group-ring” of a sign group one can easily check that this quadratic
pair algebra morphism is a weak equivalence, hence by the “five lemma” it is not only
an isomorphism at the (0)-level, but also at the 1-level. O

The following lemma gives a reinterpretation of sign group actions in terms of
algebras and modules in the monoidal category qpm.

Lemma 3.3.8 Let G be a sign group and let C be a 0-good quadratic pair module. A
sign action of G on C in the sense of Definition 3.3.5 corresponds to a right A(Gp)-
module structure on C.

Proof With the notation in Definitions 3.3.5 and 3.3.6 the correspondence is given
by the formulas, g € G, t € G,

gx=x-[gl
t
(1) = x- [+ (’?) PH(x).
The technical details of this proof are left to the reader. O

In [10] we define a sign group action of Symn(n) on I, . X, hence combining
Proposition 3.3.7 and Lemma 3.3.8 we readily obtain the following result.

Theorem 3.3.9 The sign group Symg(n) xSymp(m) acts on T, , X © T, Y.

We will now consider the compatibility of the smash product operation in
Theorem 3.2.1 with the sign group actions.

Theorem 3.3.10 The smash product morphism
Al nn,*X © Hm,*Y I Hn+m,*(X/\ Y)

in Theorem 3.2.1 is equivariant with respect to the action of Symg(n) xSymg(m) on
I, . X © I, .Y defined by Theorem 3.3.9 and the sign group morphism

Symp(n) xSymp (m) —> Symp(n + n)

in Proposition 3.3.4.

This theorem follows from Lemma 4.7.6 in Section 4.

Since the secondary homotopy groups IT, . X have a canonical action of the sign
group Sym(n) we are led to consider the following category of symmetric sequences
in gpm (this is similar to the treatment of symmetric spectra in [19]).
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Definition 3.3.11 An object X in the category qpmgymD of symmetric sequences is a
sequence of 0-good quadratic pair modules X,, endowed with a sign group action of
the symmetric track group Symg(n), n > 0. A morphism f: X — Y in qpm(s)ymD is
a sequence of SymH(n)-equivariant morphisms f,: X,, — Y, in qpm,. The results in
[10] show that secondary homotopy groups yield a functor

I, ,: Top* — qpmgymu.

The category qpm(s)ym‘:' has a symmetric monoidal structure denoted by Osymg,. The
tensor product X Osymy Y of two symmetric sequences X, Y of 0-good quadratic
pair modules is characterized by the following universal property: for any symmetric
sequence Z of quadratic pair modules there is a natural bijection

Homqpmjy“’m (X Osymy V. Z) = H Homgym 1 (p)xsymp () (X, O Yy, Zpiy) -
p.geN

Here Homgym () xsymp () denotes the set of morphisms in gpm which are equivariant
with respect to the sign group morphism in Proposition 3.3.4. The explicit construc-
tion of X Osymy Y is indicated in the appendix. The symmetry isomorphism

X Osym, Y=Yy Osym X
is induced by the morphisms in qpm

*
Tpq

X,0Y,=Y,0X, — (Y Osymg X) — (Y Osymp, X)

q+p p+q -’

Here the first morphism is the symmetry isomorphism for ®, the second one is
induced by the universal property of Y Osym, X, and in the third morphism we use
the sign group action of Symp(p+¢) and the shuffle permutation 7, , € Sym(p+q)
in Eq. 18. The associativity isomorphism is defined by using the universal property
of the 3-fold tensor product, which is analogous to the 2-fold case above. The unit
element is Z,; concentrated in degree 0.

Now Theorems 3.2.1, 3.3.10, 3.2.2 and 3.2.3 can be restated as follows.
Theorem 3.3.12 The smash product operator induces a natural morphism in the
category qpmgym[J
At T w X Osymp MY —> T (X AY)

which is compatible with the associativity, commutativity and unit isomorphisms for

the symmetric monoidal structures A and Qsym, in Top* and qpm(s)ymm, respectively.
Equivalently the functor

I, ,: Top* — qpm(s)ymD

given by secondary homotopy groups is lax symmetric monoidal.
3.4 Secondary Whitehead Products

The smash product may be used for the definition of Whitehead products in ordinary
homotopy groups. In fact, any path connected space X is homotopy equivalent to
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the classifying space of a topological group G so that 7, G = 7,41 X. We consider the
additive homotopy groups I1, G, which satisfy

I1,G = n,G forn > 1.

Using the smash product operator A in Eq. 15 for the functor IT, and the commutator
mapc: GA G — G withc(aAb) =a"'b~'ab we obtain the composite

[— —]: TLG®M,G -5 M,(G A G) 55 1,6,

which corresponds to the Whitehead product in m,X. It is well known that
(I, G, [—, —]) has the structure of a graded Lie algebra if X is simply connected.

In a similar way we now define the secondary Whitehead product for the additive
secondary homotopy groups I, .G by the composite

[—.—1: L,G®,.G > I, (G A G) =5 II,.,G.

Marcum defines in [20] the partial Whitehead product of a map « and a track F as
in the following diagram

0

/10N

YA X B B.
o ﬁ e

Marcum’s partial Whitehead product lives in the group of homotopy classes [X A A
B, X]. It can be obtained from the secondary Whitehead product for additive
secondary homotopy groups in case A and B are spheres.

We will explore this connection in a sequel of this paper where we shall discuss the
algebraic properties of the structure (Il .G, [—, —]), which leads to the notion of a
secondary Lie algebra. This should be compared with the notion of secondary Hopf
algebra discussed in [3].

3.5 Cup-one Products

Letn > m > 1 be even integers. The cup-one product operation
T 8™ — M1 8P > a — a = Sq ()

is defined in the following way, compare [18, 2.2.1]. Let k be any positive integer and
let 7, € Sym(2k) be the permutation exchanging the first and the second block of k
elementsin {1, ..., 2k}. If k is even then sign 7,z = 1. We choose for any even integer
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k > latrack 7x: tx = lgx in Sym(2k). Consider the following diagram in the track
category Top* of pointed spaces where a: §" — S represents «.

ana
SZn - > SZm

i i
Lg2n = T Tm = Lom
ana

s —— o (28)
By pasting this diagram we obtain a self-track of a A a
(fm(a/\a))D((a/\a)an): ana=aAa. (29)

The set of self-tracks a A a = a A a is the automorphism group of the map a A a in
the track category Top*. The element o —; « € 7,1 5" is given by the track (29)
via the well-known Barcus-Barratt—Rutter isomorphism

Aut(a A a) = o401 577,

see [4], [21] and also [2, VI.3.12] and [5] for further details.
The following proposition yields a description of the cup-one product in terms of
the structure of additive secondary homotopy groups.

Proposition 3.5.1 Let n and m be even positive integers. For a € 11,5 we choose
a € I1,,0S™ representing o and we define in Iy, S2"

Sqi(a) = —(a na, t,) + (Tn)s(ana) — P(H(a) A TH(a)).

Then 3Sq, (o) =0s0 thatSq; (&) € h Ty, 1 S =12, 5¥". Moreover, Sq,(a) =a — a.

Proof The track 7,,: t,, = 1 induces a track (%))« ()« = 1 in qpm satisfying
(T« (ana) = —(tn)«(ana) + ara.
By the symmetric action we have the element (a A a, T,,) € Ty, ; S*" satisfying
—dana,t,)=—ara+T1,(ana).
Hence we get
38q1(@) = —ana+ (ty)*(ana) — (tm)(ana) + arna — 3 P(H(a) A T H(a))

where (7,)*(a A a) = (t,)«(ana) and arna —a Aa = 9 P(H(a) A TH(a)). This shows
3S5q, () = 0. Using the definition of secondary homotopy groups as track functors
in [9] and the symmetric actions in [10] we see that Sq;(«) coincides with the track
definition of @ — «. O

Theorem 3.5.2 Let n and m be even positive integers and o, B € w,8™. Then
n—m 2n-3
Sq1(@|B) = Sqi(a + B) — Sqi(a) — Sq:1(B) = T+1 (A BT ).

This result is stated in [6], but a proof did not appear in the literature.
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Proof of Theorem 3.5.2 We choose representatives a, b € I, (S™ of «, B with
H(a)=0= H().
Then we have
anb =anb
and we get
(@+b)yr(@a+b)y=an(a+b)+bn(a+b)
=ana+arAb+bAra+bAb
=x+u+ty,
(@a+b)A(a+b)=(a+b)ra+ (a+Db)Ab
=ana+bra+anb+bAab
=x+v+)y.
Herewesetx =aAa,y=b Ab and
u=aAb-+bna,
v=bAa+anb,
so that
u=v+aoPlanblb na)y.
Now the formula for Sq;(«) yields:
Sqi(e) = —(ana, Ty) + (Tn)s(a A a),
Sq1(B) = —(b A b, Ty) + ()« (b AD).
Moreover for y = o + B represented by ¢ = a + b we have
Sq1(y) = —{c A ¢, Tu) + (Tm)«(cAc) — P(H(c) A TH(c)).
The summands of Sq; (y) satisfy the formulas:
(cne, Ty =x4+u+y,1,)
= (0 )Y, 8) T (s Ba),
(Tm)x(cAC) = (Tp)s(x + v + y)
— (fm)*(x)(tm)*(vﬂ)
+ (@) (@) ™Y 4 (T ().
Here we have
() (@A b) = (tn)(bra)
= (tm)«(b N a),

(T) " (W) = (Tn)« (V).
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Hence we get

Sqi(y) = —(y, ) — (u, T,) 7
+ (_<x» fn) + (fm)*(x))
+ (fm)*(v)(rm)*(y) + (fm)*(y) — P(H(c) A TH(c)).

(Tm)« (V)

Since the action on Ker 9 is trivial and since the image of P and Ker d are both central
we thus get

Sqi(y) — Sqi(B) = —(u, )" + 8q1 () + (Fp) () ™+
— P(H(c) A TH(c)).

Therefore we have

Sqi(@|B) = —(u, 2)" Y + (E)(0) ™Y — P(H(c) A TH(c))
= (=, 2) + G) )™ + Planblb Aay

since 3(—(u, T,) + (T)«(v)) is a commutator, and hence in the image of d P. Here
we have

(U, t) =(anb, )+ rna, 1)+ P(—1,(@anb)+aAb|t, (b Aa)),
(fm)*(v) = (fm)*(b A a) + (fm)*(a A b)
+ P(—=(t)«(b Aa) + D Aal(zm)s(@Ab))g.

Hence we obtain

Sq1(a|b) =—(bAa,t,)—(@arb, )+ @Tn)(b Aa)+ Tn)l@anb) + (C),
(c)=Pb ra—anb|Ey)«(a@anb))+ Planblb ra)y.

Now we consider the following formulas with 9(a) = 0 = d(b).

(a) = (@ A b, Tty
= (1;@AD). %) + (@A b, %),
(b) = (TnTm)(@a A b)
= (Tn)«((Tm) (@ A D)) + (Tm)s(@ A D).

For (b) we use that IT,, , is a track functor and

fmfm = fmlzl(rmfm)
= 2, 0GnTn).
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Now we have the following equations.

(anb,t,)+ (b nrna,t,) =(@)—(tj(anb), t,)+ (b Aa,T,)
=(a) + (=(@)«(b Aa) +b na,T,) — (d)
= (a) + (3(@n)«(b Aa), Ty) — (d)
=(a) = 7, (T)x(b A @) + (Tn)(b Aa) — (d)
=(a) = (T Ty (b A @) + (T) (b Aa) — (d)
= (a) — @)« (tm)« @A D) + (T)s(b Aa) — (d).

Here (d) is given by the following formula.

(d) = =P(r,; ()« (b A @) = (Tn)+ (b A @) |7, (Ti) (b A @)
+ P(t,; (tm)+ (b A @) — (Tw) (b A )T, (b Na)
=—Planb —(t,)«(b Aa)lanb)y
+Planb —(tn).(b Aa)t;(b Aa)p
=—Panblanb)y+ P((t)«(b Na)lanb)y
+ P@nb|(mn)«(b ANa)u — P((tn) (b A @) () (@ AD)) g

On the other hand we get

(fm)*(b Aa) + (fm)*(a N b) = (fm)*(b A a)
- (fm)*((‘[m)*(a A b)) + (b)

Now we get

Sq1(@|B) = —(a) = (d) = (E)«(b Aa) + (Tn)«((Tm)«(@ A b))
+ (T)«(d A a) — (T« ((Tm)« (@A b)) + (b) + (C)
=—(a)+(d)+(e)+(b)+(c)

where (e) is the commutator:

(e) = P((Tm)«(b A a)| — (Tn)«((Tm)«(a A b)) g
= P(—(ty)«(b Aa) + b Aal(TnTn)«(a A D)
—(@m)@nb)n
= —P((t;)«(b ANa)lanb)y + P(b Aalanb)y
+ P((tm)«(b A d)|(Tm)<(a A b))

— P(b A al(tm)«(anb))p.
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(d)+(e)+(c)=—Planblarnb)y+ P(tn)«(b Aa)lanb)y
+ P@nbl(mm)(anb)u
= P((tn)+ (b A@)|(Tm) (@ A D)) 1
— P((ty)«(b ANa)lanb)y + P(b nalanb)y
+ P((tm)« (b A @) |(tm) (@ A b)) 1
— P(b ~al(tm)«(@nb))n
+ P(b Aal(tm)«@A b))y — Pl@anbl(Tm)(anb)u
+ Planblb na)y
=—Planblanb)y.

Hence we get
Sq1(@|B) = —(a)+ (b) — Planblanb)y,

and this implies the result by use of Proposition 3.1.2. O

3.6 Toda Brackets
For a pointed space X we use the suspension ¥ X = S! A X and the E-suspension

EX =X AS!. Here £ and E are isomorphic endofunctors of Top*. The E-
suspension is for example used by Toda in his book [22].

Definition 3.6.1 Letn > k > 0 and consider morphisms in Top*/ >~
zEpyZPpx yLx Lk
with «(E*B) = 0 and 8y = 0. Then the Toda bracket
{o, E*B, EXy}, C mun Z

is the subset of all elements in 7, ; Z obtained by pasting tracks as in the diagram

Z EFY EFX S

where a, b, c represent a, 8,y and B: bc = 0 and A: 0 = a(E*D).
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Let 1 € m(S¥) be the element represented by the identity of S¥, k > 0. More-
over, let

1o € QESE C Ty (8% = (Q455)
be given by the identity of S*. This element yields a quadratic pair module morphism
ot Znyg —> Mg, SE.
We define the morphisms EX in qpm, n > k,

- —  1®u
Ek: Hn—k,*X = Hn—k,*XG Zm'l _I;{O Hn—k,*XG Hk,*Sk _A> Hn,*(EkX)' (30)

Let «, B, y be given as in Definition 3.6.1 with «(E*B) =0 and By =0. We
choose maps a, b representing «, 8 and we choose a track A: 0 = a(E*b) as in
Definition 3.6.1. Moreover, let

cell,_roX
be an element representing y € m,_x X withn — k > 2 and let

Be 11 Y (31)
be an element with B = b, (¢) € I1,_4oY. Then EXB e I, | EXY satisfies

AE*B =0(B Atro) = (0B) Ao = by (@) Ago = (E¥D)(C A 1io).
Moreover, the track A induces a track in qpm which is given by a map
Ay o EXX — 1, Z
with 9 A, (x) = (a(E¥D)).(x). Therefore the element
t=a,(E*B) — A (C Aigp) €1, Z

satisfies d(f) = 0 and hence ¢ is an element in 411, . Z. Recall from Eq. 23 that
hi11,, . Z is naturally isomorphic to 7, Z for n >3 and to n3Z /[n,Z, 7, Z] for
n =2, where [—, —] is the Whitehead product.

Lemma 3.6.2 For n>3, a,EX(B) — A,(C Au) € {o, E*B, E*y},.
elements in L{cx, E*g, Eky}k can be obtained in this way. The same equality holds
forn =2 mod [m,Z, 7, Z], the image of the Whitehead product.

Moreover, all

Proposition 3.6.3 Let Y be a pointed space and letr € Z and B € 7, Y with r = 0.
In the group of homotopy classes [EY, EY] let r1gy be the r-fold sum of the identity
1gy. Then the Toda bracket {r1gy, EB, ri,}, C 71 EY is defined and forn > 3

0, if ris odd,
{rlgy, EB, ru,}y 3
%(Eﬂ)(E"_Zn) if r is even.

Here n: S — S? is the Hopf map. For n = 2 the same formula holds in the quotient
w3 EY /[m EY, m, EY] where [—, —] is the Whitehead product.

In [22,3.7] Toda proves this result in case Y is a sphere. Toda’s proof uses different
methods relying on the assumption that Y is a sphere.
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Proof of Proposition 3.6.3 Let (-)": S' — S' be the degree r map z — 7z so that
rlgy is represented by a =Y A (-)". Let b be a map representing 8. We choose
c¢e H,,_l,oS"‘l representing ri, by ¢ = ri,_; o and we choose

B (S] Hn,]’]y
with 8B = b, (¢) = rb,(1y-1,0). Then we get as in Eq. 31
IE(B) = (Eb).(¢ A1)

where ¢ A1y, =r(1y—1,0 A11,9) = Fiy0. Now we choose A: 0 = a(ED) in such a way
that the induced track A, satisfies

Autno) = E(B).
In fact, the boundary of A, (1) is
3 As(1n0) = (a(ED))i(1n0) = I E(B)

where a(Eb)=(Y A ())(b A SH=b A () =(Eb)(E"'()) and (2" ()).(tn0) =
10,0 = Fln- since H(ino) = 0.
Now we can compute the element in Lemma 3.6.2

t=a,E(B) — A, (¢ A1) € {rlpy, EB, 11}, .
Here A is a track fy = go with fy = 0 so that
A(C A1) = Aulrino)
=r Ay(tn.0)
=rEB.
On the other hand we get
a(EB) = (Y A ())(B A1)
= BA(()x(t10)
= B A (i)
=BA (rt1.0)
=r(BA 110)+1¢
=rE(B) +t
where

") P(HO(B) A Groln0) )

N

2
P((Dy(n-1,01D4@n-1,0) 1 A @1,0l21,0) 17)

~

[\

2

r
P, (ty-1,0) A1,0lb5(th=1,0) Al1,0)H-

2

Il
AAC\A

r) PCH(r b (tn-1.0)) A (t10l11.0) 1)
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Therefore ¢ represents (;)Z(E,B)(E”‘zn). If r is odd we see that t = 0 since 8 has odd
order and Xn has even order. O

4 The Construction of the Smash Product for Secondary Homotopy Groups

In this part we define the smash product operator for secondary homotopy groups
and we prove the results described in Section 3. A crucial step for this definition will
be the construction of canonical tracks

(140 5 AL sire),

termed the exterior tracks, connecting the exterior cup-products and the smash
product of two maps. Then we use H* and H¥ for the definition of the smash product
operator on the (1)-level. Some of the algebraic properties of the smash product are
then derived from formulas concerning the Hopf invariant of the track (H#)SOH¥,
and of some other tracks between suspensions which are built out of the exterior
tracks.

4.1 Exterior Cup-products for Higher Suspensions and Tracks

We begin this section by stating the basic properties of the exterior cup-product
operations.

Lemma 4.1.1 We have the following formulas for suspensions

(1) f#Eg) = frg = fH#ZEg),

(2) EMHHg=AD(f" A(12) = (E2f)Hg,
coproducts

() (fi, L#g = (fi#tg, fr#g),

(4)  (fi, g = (fiftg, fr#tg),

(5)  [fH#(g1, &) = (fHg, fH#g),
(6) f#(g1. &) = (fH#g. fH#g),

and compositions

(7)) (Hif#g1(2g)) = (fikg)(L#(Zg))),
8) ((Zf) HH#(g1g) = (BfHH#g)(frtg),
) (LEH)HH(EiI8) = (Hittg) (ZH)#g),
10)  (fi #(Zg)g2) = (it (X)) (ftg).

The exterior cup-products are associative

(1) fH#(g#h) = (f#g)#h,
(12)  f#(g#h) = (fH#g)#h.

The proof of this lemma is straightforward.
In order to define the exterior cup-products

fH#Hg, #o: X" 1A/\Y—>E” lB/\Y,
8 JH8
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of maps between higher suspensions f: £"A — ¥"B, g: ¥ X — XY we take the
first spherical coordinates to the end of the smash product

FiSAAAS T =S ASIAA L T AS ABZS' ABAS,

TS AXAST g I AS AX S ST AS AY S AY A ST
Then we perform the usual exterior cup product on these maps, and we recollect

the permuted spherical coordinates at the beginning of the smash product in an or-
dered way,

fhg: STIASTTIASIAAAX Z S'AAASTIAX A ST
8 w1 n—1 m—1
— SSABAST AYAS
= §STIASTIAS'ABAY.

The same for #. These exterior cup-products generalize the classical ones in the
following sense. If f=X""!f and g=%""!g' for f: SA—XBand g: T X— XY
then

(Zn—lf/)#(zm—lg/) — E'H'm_l(f/#g/),

(anl f/)ﬁ(szlg/) — Enerfl(f/ﬁg/).
The properties of the classical exterior cup-products in Lemma 4.1.1 can be ac-
cordingly restated for the exterior cup-product of maps between higher suspensions.

Let F: f=g, G: h=k be now tracks between maps f,g: ¥"A — X"B,
h,k: ¥" X — ¥™Y. The exterior products of a track with a map

F#h: f#h = ghh,
F#h: f#h = ghh,
fH#G: f#h = f#k,
F#G: fih = fik,

are defined by exchanging the interval 7, with the spherical coordinates and using
the exterior cup-products of maps between higher suspensions as defined above. For
example the track F#h is represented by the homotopy
LAST A AAXZ S IANL AAAX DL gl A BAY,
where
FiS"'ALLAAZLAS™ I AA LS 1A B

is defined from a homotopy F representing the corresponding track. Now one can
define the exterior products of two tracks as the vertical composition

F#G = (ghG)O(F#h) = (F#k)D( f4G),
F#G = (g#G)O(F#h) = (F#l)O(f#G).

The reader may notice in these equations the same interchange behaviour as in the
definition of the smash product of tracks, see Section 2.3. This will often be relevant
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for computations. It follows from the fact that the operation f#g is continuous in
both f and g, so given two continuous families of maps (paths in mapping spaces)
{fshsero.11> 181} 0.1y there is essentially a single way of reindexing { fi#g:}; cjo.17 to
obtain a path { f,#gu},c[0.17, and the same for #.

One can also derive from Lemma 4.1.1 analogous properties for the exterior cup-
products of tracks.

4.2 The Exterior Tracks

For any two maps f: ¥A — X B and g: ¥ X — XY the suspended exterior cup-
products X ( f#g) and X ( f#g) are naturally homotopic to the composite

1 1 @3 1 rg a1 1 23 1
SASAAANX ZE SAAASAX =SS ABAS AY = SAS ABAY.

In order to construct homotopies we only need to choose a track from the transposi-
tionmap (12): S'AS! — S' A S'tov A S, where v: S' — S!is the co-H-inversion
defined by v(z) = z~'. Here we use the topological group structure of S'. The set
of all tracks (12) = v A S' and 15 = 1 is a group under horizontal composition.
This group is an extension of Z/2 by Z with the non-trivial action of Z/2, compare
[10, 6.12]. Up to isomorphism there is only one extension of this kind, the trivial
extension, given by the infinite dihedral group Z/2 x Z/2, hence this group of tracks
is generated by two order 2 tracks (12) = v A S'. One of these two generating
tracks H: (1 2) = v A S! can be constructed as follows. Since v A S! is a homotopy
equivalence it is enough to indicate which track is HE (v A §1): 1 = (12)(v A S1).
The 2-sphere §? = S' A S' is a quotient of the square [—1, 1]* by the map [—1, 1]*> —
SUA S (x, y) > (expmi(l + x), expmi(1 + y)). The map (1 2)(v A S') is induced by
the 90° twist (counterclockwise) in the square, so we obtain HE (v A S') by using the
homeomorphism from the square to the radius /2 circle projecting from the origin

and twisting continuously the circle 90° counterclockwise.

Definition 4.2.1 The exterior tracks

HY - S(f#g) = 23)(f A2 3),
HY,: S(f#g) = 23)(f A2 3),

are given by the following diagram in Top*, where the 2-cells without a track
arrow = are strictly commutative.
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i.e. the tracks H‘j{ g and Hﬁﬁ ¢ are the following composite tracks.

=Q2HS'ABAYCHMEPTWASNHABAX)NS' A FAX)((0ASHHE) A A A X)
=@23)S'ABAQCIHHE ABAX)S'A FAX)HE A AAX),
Hﬁﬁg = (HEPWOASHABAYYS'A FAVIWASHHP)AAAY)23)(S'AAAQE23)

=MHPABAY)S' A FAVIHEHE AAAY)23)(S'AAALQ3).

In the next proposition we show elementary properties of the exterior tracks
that are relevant for the definition of the smash product operation on secondary
homotopy groups. They are analogous to the properties of exterior cup-products in
Lemma 4.1.1.

Lemma 4.2.2 The exterior tracks satisfy the following formulas for suspensions

# N — HE
@) Hzf’ g OE((I 2)(f'Ag)(12)) — H#;fﬁg’

) Hipy=HSBABAYYS'AfAZIHEAAAX) =H 5,
coproducts
) <f1 f-g

( fis g’ )
(4) (f1 ). ( g g)’
(5) f(g] ) ( fev fgzg

(6) H?(gl 8) ( fgr fgz

and composition of maps

# _ TIT# #
(7) Hfl fr.81(2gh) — Hflvngfz,Eg'z’

# _ # #
(8) H;Ef{)fz,glg? H)jfl ngfz 8’
©) H?I(Ef;) 818 H}l ng;:fz g’
(10) H}I fr. (Egl)gz fl,Eg', g

They satisfy the following associativity rules.

1) (H*;g A h) (EHf#g h) (f AH ) (EH*;g#h) : T2 (fHghh) = FAgAR,
(12) (W5, An) (SHE,,,) = (f A ]HI# 2) (B ) 1 B2 (feth) = fAg AR

These properties follow easily from the definition of exterior tracks above and
from the fact that HH = OEZ is the trivial track. In the right hand side of the equalities

(11) and (12) there are some permutations involved that we have omitted.
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For suspended maps ="' f: ©"A — X"B, X" lg: ™ X — XY we define the

tracks H , . H%’ fmg from EL( i) T fike), respectively, to
S'TAS"AAANXZES"ANAANS"AX BT S'ABAST"AY ZS8"AS"ABAY

(32)
as

STIASIAST"IASIAAAX
~(23)

STIASTIASIASIAAAX
EVHWHZH’;»E
srm=l( fig) < B > =22 3)(fAR)(2 3))

STIASTIASIASIABAY
~(23)

STIASIAST" I ASIABAY

and similarly for #. Notice that the last spherical coordinate in these smash products

is always the same one. This is relevant in connection with Lemma 4.4.2 below. The
tracks Hﬁ’ Fmg> H% .o Satisfy properties analogous to Lemma 4.2.2 that we do not
restate. They also satisfy the following further properties.

Lemma 4.2.3 Giventracks F: 2" fi = " ! fy and G: £ 'g| = " lg) between
maps "1 fi: Z"A — T"Band 2" g ¥ A — Y B,i = 1,2, the following equal-
ities are satisfied

(1) (FAGUOH: = =H, — O(S(F¥G): T (fitig) = =" 2(f, A g),

n, fi,m,g n, fo,m,gs
Q) (FAGOH, , . =H OS(F#G): 2" (fistg) = X" 2(fo A g).

Here the track F A G in (1) and (2) needs to be altered by permutations according
to Eq. 32. Moreover X (F#G) and X (F#G) need also to be altered by permutations
as follows. The track X (F#G) should actually be

STIASIASTIASIAAAX
~12)
SIANSTIASTIASIAAAX

X(F#G)
sntm—1 (fi#g1) _> wrtm=1 (fo#tg)

SIANSTIAST™ I ASIABAY
~(12)

STIASIASTIASIABAY

and similarly X (F#G). Notice that the last spherical coordinate remains always in the
same place in this diagram. This is again relevant in connection with Lemma 4.4.2
below.
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4.3 The Construction of the Smash Product Operation

In this section we define the smash product morphism in gqpm which appears in the
statement of Theorem 3.2.1. In the last two sections we establish the properties which
show that the definition given here is indeed consistent with the definition of the
tensor product of quadratic pair modules.

The secondary homotopy groups n, . X, n > 0, of a pointed space X were intro-
duced in [9].

For n =0, 7y . X is the fundamental pointed groupoid of X. We denote by o X
the pointed set of objects, which can be regarded as the set of pointed maps $° — X,
and by 71 X to the set of morphisms. Such a morphismo: x — yisatracko: x = y
between pointed maps x, y: S* — Y.

Forn =1, 7 . X is a crossed module

d: 7T1,1X — 7T1,0X = (QX)

In particular 7y o X acts on the right on 7; ; X.
Forn > 2, m, . X is a reduced quadratic module in the sense of [2]

®2(7Tn,0X)ab —w> ”n,lX _3> ”n,OX = (QnX>m'l7 (33)

which is stable for n > 3.
For all n > 1 the elements of 7, | X are equivalence classes [ f, F] represented by
a map

f: Sl —> \/ansl

and a track
0

TN

St —— VQHXS" — X
2”71f ev

where ev is the obvious evaluation map. Recall from Section 3.1 the notation S =
VanxS". Two elements [ f, F], [g, G] € 7,1 X coincide provided there is a diagram
like Eq. 19 parting to the trivial track with Hopf(N) = 0 for n > 2 and no conditions
on N for n = 1. We refer the reader to [9] for further details on the construction of
the algebraic structure of 7, . X.

According to the definition of additive secondary homotopy groups of a pointed
space given in Remark 3.1.3 the quadratic pair module IT, . X looks as follows.

[, X = @Z[Q" X]

P H
M. X = / \ (34)
kil

1_[n,lA/ l_In,O)( = <QnX>nil

Here H is always defined as in Eq. 10.
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Forn=>3,11,, X =m,,; X and P = wtg and 9 in Eq. 34 are given by the homo-
morphisms in Eq. 33.
For n = 2 the group I, ; X is the quotient of 7, ; X by the relations

Pa®b+b®a)=0; a,b e (moX)uw;

and P and 9 in Eq. 34 are induced by wtg and 9 in Eq. 33 respectively.
For n = 1, IT; ; X is the quotient of the group

T X X (®2 (ﬂl,OX)ab)
by the relations
(=Lf. F1+[f. F1*,0) = (0, x®3[ f. FD): [f. Fle m X, x € mi0X:

Pa®b) = (0,a®b) for a,b € (m19X)awp; and d(f, Fl, x®y) =3[ f, Fl -y — x +
y+xin (QX),; for [f, Fle m;; X and x, y € w10 X.
Finally for n = 0 the group I X is the quotient of

(70,1 X it X <®2Z[7T0,0X])
by the relations
([, @1, 0) = (0, (—=x' + Y)®(~x + y)
for all morphisms «: x — yando': X' — y' in mp . X,
(@B,0) = (B +a,0),

for all composable morphisms e Lel e in o, X, P@®b) = (0,a®b) for a,b €
70,0X;and d(a, a®b) = —x + y+ [b,al fora,b € mpoX and a: x — yinm X.
We denote by I, ) X and I, ;) X the square groups

H
1-[n,(()))( = <Hn,0X<:> Hn,eeX) s
aP

Hd
1_[n,(l))( = <nn1X§ nn,eeX) s
defining the quadratic pair module IT,, . X.

Definition 4.3.1 The smash product operation for the additive secondary homotopy
groups of two pointed spaces X, Y is given by morphisms in qpm, n, m > 0,

My X O MY =25 Mg (X A Y). (35)
These morphisms are induced by square group morphisms, n, m>0, 0<i, j, i+ j<1,
M,y X ©I,,;Y - My, i) (X A Y). (36)

defined as follows:
For i = j = 0 morphism Eq. 36 is the composition

Lt X1 © Zyi[ Q"Y1 = o [(2"X) A ("Y)] 28] Z,,0[Q (X A V)]
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of the isomorphism in Proposition 2.3.2 and the morphism induced by the map
between discrete pointed sets

A QX)) A QYY) — QUT(X AY), nom >0, (37)
defined by
(f:S" = X)A(@:S"=> V)= (fAg: " - X AY).

All morphisms in Eq. 36 coincide in the ee-term.
Suppose now that n, m > 1.
Fori=0and j=1, an element g© [ f, F] with g € [1,,0X and [ f, F] € 1, Y is
sent by Eq. 36 to the element g A [ f, F] € T1,,4n.1(X A Y) represented by the map
Sl if) \/(QnX)A(me)Sl E) \/QVH»m(XAY)Sl,
where g: ' — VaixS' is any map with (7,8),.;(1) = g and the second arrow is the
suspension of A in Eq. 37, and by the track

0

En—]g/\zm—l f

AN Ho g, s
Sn+m —— VQ"XAQ”’YSn+m —— Sr)l:;\rr{, — X AY
zn—m—l(g#f) watma ev

i.e.
gALL F1=[(EMG@HS). (B A £)D(0(S A, )]

Here, and in the following three cases, the smash products of maps and tracks need
to be altered by permutations according to Eq. 32.

In a similar way the element go[ f, F]issentby Eq.36to gA[ f, F1€ 1,41 (XAY),
given by the map

1 &tf 1 ZA 1
§' = Vi@ S —> Varnxar)S

and by the track

Zn—]g,/\zm—l f

il
A Ergm s
n+m
g > Vouxaqny ST ———————— § > X AY
2""’"‘(§ﬁf) wrtma ev

ie.

gALE F1=[(SA)G@ES). Bew A FYD(e0(Z™ A . 0.
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Fori=1and j= 0the generator [ f, F]© gwith [f, F]€ 1, ;X and g € T1,,,0Y is
sent by Eq. 36 to the element [ f, FIAg € IT,1m.1(X A Y) represented by the map

| fHe 1 ZA 1
S' = Viarxa@ny)ST —> Varm(xay)S,

where g: S' — Vgny S! is any map with (,2),.;(1) = g, and the track

0

pokatl fAEm_Ig

'ﬂ‘ E[fx.jlm.ﬁ

n+m
SN > Vauyagmy S"T" —————— ST — XAY

yrtm=1 (f#é) nrtma

ie.

Lf. FIAg = [(EA)(f#2). (F A ge)O(ev (" MHE |/, 1.

The element [f, F]@g is sent by Eq. 36 to [f, FIAg € I1,;4m1(X AY) given by
the map

f#g A
Sl —_— \/(an),\(gmy)Sl —_—> \/Qn+m(XAY)Sl

and the track

En—] f/\zm—lg,

#
N I_:[n.f.nLg
+ n—+m
M > Vouyany ST ——————— S > X AY
yrtm—1 (fﬁg) Tatma ev

ie.

Lf. Flng = [(m)(fﬁg), (F A ge)D(ev(E" AYHE f,m,,;,)].

Suppose now that n = 0 and m > 0.

Fori=0and j= 1, an element g® f with g: $° — X and f € I1,, Y is sent by
Eq.36t0g A f = (Mui(g A Y)(f) € Mui(X A Y).

For i=1 and j=0, an element F®g with F: f= f a track between
maps f, f’: $°— X and geIl,,oY is sent by Eq. 36 to FAg= (I,.(FA
V)T 1 (X A Y).

Suppose now that n > 0 and m = 0.

For i=0 and j=1, an element goF with g € I1,0X and F: f= f" a track
between maps f, f': S°— Y is sent by Eq. 36 to gAF =TT, (X A f)(@TL, 1 (XAY).

Fori=1and j=0, an element f©g with f € I1,; X and g: S° — Y is sent by
Eq.36t0 fAg = (M1 (X A @)L (X AY).
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4.4 The Hopf Invariant for Tracks and Smash Products

In this section we prove two lemmas on the Hopf invariant for tracks defined in
[9, 3.3] which will be useful to check the properties of the smash product operation
on secondary homotopy groups.

The first lemma computes the Hopf invariant of a track smashed with a dis-
crete set.

Lemmad4.4.1 Let f,g: S'A A — S' A B be maps between suspensions of discrete
pointed sets A, B; let F: S' A f = S' A g be a track; and let X be another discrete
pointed set. Then the following equations hold

(1) Hopf(F A X)=(1® 1 ® 1)(Hopf(F) ® A),

(2) Hopf(X A f)=(1Q19®1)(A®Hopf(F)).

In particular the smash product of a track with trivial Hopf invariant and a discrete
pointed set has always a trivial Hopf invariant.

This lemma follows easily from the elementary properties of the Hopf invariant
for tracks in [9, 3].

The second lemma computes the effect of conjugation by an automorphism of a
sphere on certain tracks.

Lemmad.4.2 Let f,g: S'A A — S' A B be maps between suspensions of discrete
pointed sets A, B; let F: "' A f = "' Ag be a track; and let o: §"' = §"~!
be a homeomorphism. Then (a A S' A B)F(a™' AS' A A) is a track with trivial
Hopf invariant if and only if F has trivial Hopf invariant. Moreover, if a has degree 1
orn > 3 then

F=@AS'ABFa'AS' A A).

Proof Let us denote also by F: I, AS"'AS'AA— S 'AS'AB to a map
representing the track F. The adjoint map of pairs

ad((a AS'ABYF(I. A~ AS' A A)):
U AS'AA (S'AAV(S'AA)) — (IS IAS'AB),S'AB)

used to define the Hopf invariant coincides with the composite
U AS'"AA, (S'AA)V(S'A A))
i ad(F)
Q1S " AS'AB),S'AB)
l map, (@~ ,anS'AB)
(Q1(S" " AS'A B), S' A B)

The map map,(e~',a A S' A B) is a homeomorphism, hence the first part of the
lemma follows from the very definition of the Hopf invariant for tracks.
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The homeomorphism map, (¢~!, & A S' A B) restricts to the identity on S' A B.
Moreover, if a has degree 1 or n > 3 then this homeomorphism is compatible with
the H-multiplication of the (n — 1)-fold loop space up to homotopy, and therefore
with the Pontrjagin product. In particular by the definition and elementary properties
of the Hopf invariant for tracks

Hopf(F) = Hopf((a A S' A BYF(a™' A S' A A))
and hence

F=@AS' ABF@ 'AS" A A).

4.5 Hopf Invariant Computations Related to Exterior Tracks

In this section we perform two Hopf invariant computations for tracks. The first com-
putation is connected with axiom (7) in the definition of the tensor product of square
groups, see Definition 2.2.1. The second one is connected with the commutativity
rule for the smash product operation on additive secondary homotopy groups, see
Theorem 3.2.3. Both computations are crucial steps towards the proof of the main
results of this paper stated in Section 3.2. They show that the algebraic structures
described in Sections 2 and 3 are the right algebraic structures to describe the smash
product operation.
First of all we define a concept which will be useful for computations.

Definition 4.5.1 Let nil be the category of free groups of nilpotency class 2 and
let ®: Ab — Ab be a functor. The G-group of @ is the class G(®) of all func-
tions x sending two morphisms f: (A)nir — (B, &: (X)nit = (Y )i in nil to a
homomorphism

x(f.8): ZIA] @ ZI X] — ®(Z[B] ® Z[Y])

in such a way thatif f, f;, g, g; are morphismsinnil and f', f, g, g; are maps between
pointed sets i = 1, 2 then

™) x{f -8 =0,

(@) x(fi(g)ni) =0,

3) x((fi. .8 = x(f1.8: x(f2. 8),

@) x(f (g1.8) = x(fign, x(f. g2,

) x Al it 81(&ni) = x (fi, gL 51 ® ZIg5)),
©6) xUSDnit o, (8)nig2) = ZIF1Q ZIg D x (f2, 82)-

A natural transformation ¢: ® = W between functors &, ¥: Ab — Ab induces a
function G(¢): G(®) — G(¥) in the obvious way.

If G(®) is a set then it is an abelian group by addition of abelian group homomor-
phisms. If G(W¥) is also a set then G(¢) is an abelian group homomorphism.

Many functors have a G-group which is a set, see for example Lemma 4.5.6 below.
Alternatively one can define G-groups by using a small subcategory of nil to obtain
always sets. We therefore do not care about set theoretic subtleties in what follows.
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The following lemma shows examples of non-trivial elements in the G-group of
the reduced tensor square.

Lemma 4.5.2 There are elements, n, m > 0,
5%a®%®nm®THL—ach>H@eG@5
which evaluated at f: (A)pi — (B)nit, 81 (X)nit = (Y)ni Send an element a @ x €
ZIAl Q@ Z[ X witha e Aand x € X to
01e(1 ® 179 @ N(H(f(a)) ® TH(g(x))),

—1)m
s (( ) )H(f(a)ﬁg(x)),

in @ (ZIB] ® ZIY)) respectively.

Properties (1)—(6) in Definition 4.5.1 are easy to check in these cases.
The following lemma is left as an exercise for the reader.

Lemma 4.5.3 Given three functors ®, ¥, T': Ab — Ab and a natural exact sequence
o5 w ST
the sequence

G@) ¥ 6E) 8 6

is exact.

This lemma can be applied to the natural exact sequence
AQZR S &AL A2A,

where A2 A is the exterior square of A, T(a) =6(@®a) andgo(a®b) =aAb.
Now we define elements in the G-group of the reduced tensor square by using the
exterior tracks and the Hopf invariant for tracks.
In the rest of this section A, B, X, Y will always be pointed discrete sets. Given
maps f: XA — ¥B, g: ¥X — 2Y, we define the following abelian group homo-
morphism as a Hopf invariant for tracks

K(f.8) = 6 Hopf (i )POHY, ): ZIA] @ ZIX] — & (ZIBI® ZIY]).  (38)
Proposition 4.5.4 The homomorphism K(f, g) defined above only depends on
(1 f)nir and (7w18)ni. Moreover, K € G(®2). Furthermore,

G(@)(K)=G(@o1e(1 ® 19 ® 1)(H ® TH)).

Proof By [9,3.6 (5)] and Lemma 4.4.2
K(f.§) = Hopf((H, ;,, )"OH} ;) (a)

n, fm.g n, f,m,g
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forn,m > 1 withn+m > 2. If (7w f ) = (m f),,ﬂ and (718) i = (718)ni then there
are tracks F: 2" ' f= ¥ f G: " g = ¥ g with trivial Hopf invariant.
Moreover, the tracks

S(FHG): S (fitg) = S (FHg),

Z(FﬁG) E"H”*l(fﬁg) = EH+M71(fﬁg),

have trivial Hopf invariant by Lemmas 4.4.1 and 4.4.2, and [9, 3.6].
By Lemma 4.2.3 we have that

z(F#G)ED(Hf f,m’g)E'DHi’ i mDE(FHG) = HE . POF A GF

fmg

O(F A GOHE .,

E #
(H# fmg DHﬂ fimg:

Hence the first part of the statement follows from the elementary properties of the
Hopf invariant for tracks in [9, 3].
The equation for the images by ¢ follows from [9, 3.6], Eq. a, and the equality

(1 (f#)nit(a A x) = (1 (f#8))nir(a A x)
+01e(1 ® 7o ® D(H ((1 [ni(@) @ TH((718)nit(%)))-
This last equality is a consequence of Definition 2.2.1 (7) and Proposition 2.3.2.

Finally (1)-(6) in Definition 4.5.1 follow from Lemma 4.2.2 (1)-(10) and the
elementary properties of the Hopf invariant for tracks in [9, 3.6]. O

Let Tym: Thm = (-)f;l,z,m be a track between maps

(- )( D . grtm o gntm

n+m > Tnm:

This is a lift of the shuffie permutation in Eq. 18 to the symmetric track group
Symg(n + m). Given maps f: XA — B, g: ¥X — XY, we define the following
Hopf invariants

Lii(f. &) = 6 Hopf (S t)(H, B2 )OGS A B A YY),

Lym(f. &) = Hopf(Z"™"t,)(Hy, ,, )F20m) OGS, A B A Y)H] . (39)

n. fim.g))

Heren,m >1landn > lorm > l,and t,: Y A B — B A Y is the symmetry map for
the smash product. Notice that L, ,,,( f, g) is a homomorphism, n, m > 1,

Lam(f.g): ZIA]® ZIX] — & (ZIB] @ Z[Y]).

Proposition 4.5.5 Foranyn, m > 1the homomorphism L, ,,( f, g) defined above does
not depend on the choice of 1, ,,. Moreover, it only depends on (r\ f ),y and (718)nir-

Furthermore, L, , € G(®2). In addition,
—1)nm
G(@(Lnm) = G(q) (—5 (( 2) )H(E)) .

The proof of this proposition is analogous to Proposition 4.5.4.
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We would like to omit G(g) in the equations of Propositions 4.5.4 and 4.5.5. For
this we prove the following two lemmas.

Lemma 4.5.6 If ©: Ab — Ab is an additive functor which preserves arbitrary filtered
colimits then there is an isomorphism

G(®) = 0 (2).

Proof We claim that the isomorphism sends yx to x(—1, —1) € ®(Z), where —1 is the
homomorphism —1: Z — Z. This will be a consequence of the following formula,
that we claim to hold. We first notice that

QZIBI®ZIY]) = ®(Z)  ZB] @ Z[Y].

Given f: (A)uis = (Bit, 8 (X)yit = (Y, a € A and x € X, if fop (@) =Y ;m;b;,
8ap (X) = ijjyj are the linear expansions with b; € B, y; € Y, n;, m; € Z, then

X(L9@®x) =Y e, m) mmj| x(—=1,-1) ®@b; ® yj. (a)

iJ
Here e(n;, mj) = 1 provided n;, m; < 0 and it is zero otherwise. Conversely any x
defined by formula (a) with x(—1, —1) arbitrarily chosen out of ®(Z) defines an

element in G(®). We will just prove the first part of the claim, the converse is easy.
By (3), (4), (5) and (6) in Definition 4.5.1 we have

x(f9@a®x)=Y x(n.m)eb;®y;. (b)
ij
for n;,mj: Z — 7Z. For any n e Z we consider the homomorphism pu,: Z —

(ci1y..., C\n\)m’l defined by un(H)y=cy+---+ Cln| ifn>0 u, (1) =—cy—---— Cln| if
n < 0,and u,(1) =0if n = 0. By Eq. b given n, m € Z we have that

Inl |m|

X(tns ) = DY X (€(m), €(m) @ ¢; ® ;. (c)

i=1 j=1

Here € sends a positive integer to 1, a negative integer to —1, and zero to itself. Now,
again by Definition 4.5.1 (6), we have that y(n, m) is the sum of all coefficients in
Eq.c,ie.

x(n,m) = |nm| x(e(n), e(m)) € ®(Z).

But by Definition 4.5.1 (1) and (2) the element x (e(n), €(m)) € ®(Z) is zero unless
n, m < 0, hence we are done. O

Lemma 4.5.7 There is a commutative diagram
G(-®Z/2) — G&)

7.2
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Proof Both vertical homomorphisms send an element x in the corresponding
G-group to

x(=1,-1) e Z@Z/2 =& 7 =7)2.

The isomorphism is proved in the previous lemma. O

The following theorem is a key step towards the proof of Theorem 3.2.1. It is
connected to relation (7) in the definition of the tensor product for square groups,
see Definition 2.2.1.

Theorem 4.5.8 K = 675(1 ® 75 ® N(H® TH) € G(&).

Proof By Proposition 4.5.4 and Lemma 4.5.7 we only have to check that
01s(1® 19 @ N(H(—1)® TH(—1)) = K(v, v)

for v: ' — S': z+> z7! the complex inversion. It is easy to see from the very
definition of H that

61(1® 1 ® DN(H(-1) @ TH(-1)) =1 € Z/2,

hence this theorem follows from Lemma 4.6.2 below. O

The next theorem is the main step in the proof of the commutativity rule for the
smash product operation in Theorem 3.2.3.

Theorem 4.5.9 L, ,, = —5 (V") H@® € G@&”), n,m > 1.

Proof By Proposition 4.5.5 and Lemma 4.5.7 we only have to check that

5 ((—12)"m> H((—D#(—1)) = L(v, v)

for v: S' — S': z+> z7! the complex inversion. But (—1)#(—1) =1 and H(1) =

(1) = 0, hence this theorem follows from Lemma 4.6.3 below. O

4.6 Hopf Invariants of Tracks between Orthogonal Transformations

In this section we are concerned with the computation of Hopf invariants for tracks
between self maps of spheres S”, n > 2. More concretely, we are interested in tracks
between maps A: §" — S§” which are induced by the left action of the orthogonal
group O(n) on S, i.e. A € O(n). The pull-back of this action along the inclusion
Sym(n) C O(n), induced by permutation of coordinates in R”, yields the action of
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$" already considered in Section 3.1. Let det: O(n) — {£1} be the determinant
homomorphism. We consider the group {£1} embedded in O(n) as

0

O +1

In [9, 6] we compute the group 5(n) of tracks A = det A, A € O(n), with multipli-
cation given by horizontal composition. Notice that tracks A = B between maps
A,B: 8" — §" with A, B € O(n) coincide with homotopy classes of paths from
A to B in the Lie group O(n), since the J-homomorphism 7, O(n) = 7,11 8" is an
isomorphism for n > 2. We can identify the group O(2) with the semidirect product
{1} x R. Here R is the additive group of real numbers and {#1} is the multiplicative
group of order 2 acting on R by multiplication. See [10, 6.12].

In order to describe O(n) for n > 3 we need to recall the definition of the positive
Clifford algebra.

Definition 4.6.1 The positive Clifford algebra C (n) is the unital R-algebra generated
by e;, 1 <i < n, with relations

(1) e&=1forl<i<n,

P =

(2) eej = —eje; for 1 < i< ]f n.

Clifford algebras are defined for arbitrary quadratic forms on finite-dimensional
vector spaces, see for instance [14, 6.1]. The Clifford algebra defined above cor-
responds to the quadratic form of the standard positive-definite scalar product in
R”. We identify the sphere $”~! with the vectors of Euclidean norm 1 in the vector
subspace R"” C C.(n) spanned by the generators e;. The vectors in §"~! are units in
C.(n). Indeed for any v € S"~! the square v> = 1 is the unit element in C, (1), so
that v=! = v. The group O(n) can be identified with the subgroup of units in C, (n)
generated by $"~!. This group is also known as the positive pin group.

The group O(n) is a covering Lie group of O(n) with simply connected compo-
nents, and with kernel Z C Rifn = 2 and {1} if n > 3. The covering homomorphism

q: O(n) — O(n),
is defined for n = 2 as

[ cos2wy —sin2my
9%, y) = <xsin2ny X cos2my ) '
For n > 3 the homomorphism ¢ sends an element v € §"~' C 5(11) c C,(n) to the
matrix of the reflexion along the plane orthogonal to the unit vector v. An element
x € O(n) is identified with the track g(x) = det g(x) determined by the push-forward
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(del zzj(x))

along g of the unique track in O(n) from the point x to the point e, ifn>3,or
from x to (detg(x), 0) if n = 2. With the track approach the covering map ¢ sends a
track to the source map. Moreover, atrack o: 15« = 1¢ in the kernel of g is identified
with (1, —Hopf(a)) for n = 2, compare [9, 3.4], and with Hopf(«a) € Z/2 = {£1} for
n>3.
The suspension of tracks defines group inclusions
T: O(n) — O+ 1).

For n > 3 this is induced by the algebra inclusion Cy(n) — Cy(n + 1) defined by
ejr ej1,1 < j<n. Forn=2itis given by

(x,y) — egle)((sin Ty)es + (cosmy)es). (40)

For K in Eq.38 and v: S' — S': z > z~! we have the following result.

Lemma 4.6.2 K(v,v) = 1.

Proof We are going to prove the following stronger equality:
Hopf (H )0H ) = 1. (a)

From the very definition of [H we obtain the following identity in 0(2).

no (11
H(UAS)—(],4).

Since (v A SHH is the inverse of H(v A S!) then

wASHH = (1, —&) )

Obviously the identity track 05 : v = v is (—1,0) in 0(2). By using these
equalities we obtain

M )P = 08, H (v A §)05, (v A SHH)

=(—-10 11 LOo(1 !
= 1o (1y) 1o (1)
=(=1,=)(=-1,-=

4 4
_ Di—1 1 1
= ((— M1 — Z)
L-5).

2
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(HE )E = (H A $Y)05, (v A SHEDOT,

1 1
:<1,Z>(—1,O)<1,—Z>(—1,0)
(-3) ()
S [ [ Y -
4 4
(i Lo
—(( )( )’Z+Z)

()

Let B: 12 = 1 be a track with Hopf(B) = 1, so that g = (1, —1) in 5(2). Equa-
tion a is equivalent to the following equation in O(2),

HE)F = @ )EB.

which follows from the equalities above. O
For L, ,, in Eq. 39 we have the following result.

Lemma4.63 L, ,,(v,v) =0,n,m> 1.

Proof We showed in the proof of Lemma 4.6.2 that in 5(2)

w8 _(, 1
(HP )= = (1, 2),
¢ 3 _ (1
(HE B = (1, 2).

Forn =m =1 we can take ;; = (—1, —1). Then in o)

This shows that L (v, v) = 0.
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Suppose now that n > 1 or m > 1. By using formula Eq. 40 one can easily check
that for any k > 1

SHAE )P = eriex,
SHHE B = exeri,

in O(k +2).
For any k > 1 the shuffle permutation 7; —; can be decomposed as
Tl k—1 = (kk— 1) cee (2 1),
hence for fixed p, ¢ >0 with p+k+¢g>2 we can lift S A1) 41 AS? to 5(p+k+q) by

Ti ol = F(ep+k —eprk—1) - (€pr2 —€pr1),
2

and its inverse in 5(17 +k+q)is
. 1
Thk—1,1 = 2kj(ep+2 —epy1) - (€prk —€pyik—1)-
2

By using these equalities we obtain

DB = (" AT ASHE™ 2 HE )E)S"T At A S

70,0,
A B = A
= T, 1 (BT ) T) T

1
F(erwl —ey) - (entm—1 — nym—2)entm—1€nim
'(en+m—1 - en+m—2) e (erH—l - en)y

(HE DB = (" VA ASHE 2 )E)(S™ T At A S

m,v,n,v
A =2 m# B\ 2
= Ty (2" (L)) T 01

1

= F(&nﬂ —em)  (Entm—1 — €nym—2)€ntmEntm—1

“(Cntm—1 = €nem—2) "+ (€my1 — €m).

For j > i we have the following useful identities.

ejlej —e) = —(ej—epe, (a)
ei(ej —e) = —(ej —eej, (b)
(ej—e)* =2. (c)
By using Eqgs. a, b, ¢ and the formulas above one can easily check that
HE ) = ennim.

(]HIﬁ )E = €n+m€m-

m,v,n,v

The identity t,,, = T, m_1 holds, therefore we can also take Tom = f]”ﬁ el
With this choice it is not difficult to compute that
fns’"(Hﬁ,v.m,v)E = (H%L.v,n,u)E,fﬂ,m
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in O(n +m). For this one uses Egs. a and b. This last equation is equivalent to
Lym(w,v)=0. O

4.7 Properties of the Smash Product in Dimensions > 1

Restricting to dimensions > 1, in this section we show a series of properties of the
smash product operation for secondary homotopy groups in Definition 4.3.1 which
imply Theorems 3.2.1, 3.2.2, 3.2.3 and 3.3.10 within this range. The case of dimension
0 is a consequence of the fact that secondary homotopy groups are track functors and
of the first technical lemma in the next section.

In this section we will work with the track category Top*. This track category has
a strict zero object 0 so that the zero morphism 0: X — Y is always defined for a pair
of pointed spaces. In this situation the golden rule says that

The composition of a trivial map 0 with any track F is always a
trivial track 0F = 0", FO = 05, (GR)

This is an obvious but crucial property that will be very useful for computations.
Letn,m>1and0 <4 ji+j<1.
We need to show that the square group morphisms Eq. 36 are well defined. There
is nothing to check in case i = j = 0. For i + j = 1 we define operations

A AT X X )Y — T (X AY) (41)

as in Definition 4.3.1. For this we need to choose g more carefully in certain cases.
For example, in order to define g A [ f, Fland gA[ f, F]whenn = 1 andi = 0 we need
to take g in such a way that (7,8)(1) = g € (2 X).

It is not completely immediate that the operations A and A do not depend
on choices. We check here for instance that g A [f, F] does not depend on the
choice of g, f and F. Let g/, f' and F’' be another choice. Then there are tracks
N;: 27lg = v 1g and N,: £ ! f/ = £7~! f with trivial Hopf invariant such
that F/ = FU(ev N;). One can now use Lemmas 4.4.1, 4.2.3, and 4.4.2 together with
the golden rule to show that, up to a permutation in the spherical coordinates,
the track T(N#N,): "= l(g#f) = X"~ I(g#f) is a track with trivial Hopf
invariant which determines the desired equality.

In the next lemma we establish the fundamental properties of Eq. 41.

Lemma 4.7.1
(1) The operation A is left linear
X+ ALLFT=xALf F1+y AL FL
(f,F1+1g. GDAx=[f. FlAnx+[g Gl Ax.
(2) The operation A is right linear
Lf.FIA(x+y) =[] Flax+[f. Flay,

xA(LS F1+ 18 G = xalf. F1+xAlg. Gl.
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(3) For m=>2,i=0 and j=1, given a € ®Z[Q"Y] the equality x A P(a) =
P(@*ZIND(1 ® 19 ® 1)(A(x) ® a) holds.

(4) Form=>2i=1and j=0, givena € @ Z[Q"Y] the equality [ f, F]1 A 3 P(a) =
P(@ZIA)(1 @ 16 ® D)(ADLf, F] ® a) holds.

(5) For n>2, i=1 and j=0, given a € @®Z[Q"X] the equality P(a)Ax =
PR*ZIAD(1 ® 15 ® 1)(a ® A(x)) holds.

(6) Forn>2i=0and j=1, given a € @Z[Q" X] the following equality holds

IP@Alf. F1 = P@ZIAND(1 ® 15 ® 1)(a ® AJ[ f, F).
(7) Ifm=1,i=0and j=1, the following equality holds
A (=[f. F1+[f. FI") = P ZIAD(1 ® 15 ® 1)(A(g) ® {x} ® {3[ . F1}).
(8) Forn=1,i=1and j=0, the following equality holds
(=[f, F14+ [f. FTYAg = P ZIAD(1 ® 15 ® D({x} ® {3[ f, F1} ® A(g)).

(9) The equality gAlf. Fl-gAlLf. Fl=P@ZIN)(1®te®1)(H(g)® T Hd[ f, F])
holds.
(10) The equality [ f, FIng—Lf. FIng=P(®ZIAD(1®To@ )(HLf. F1® TH(g))
holds.
(11) The equalities ([ f, F1) A [g. G1=[f. F1A (3[g. G]) and (3[f, F)Alg, G] =
[f. FIA@d[g, G)) hold.

Proof Let us check the first equation in (1).

XALFI+YyALLF1=1EANGHS, y# ),
(T A FHD(e0(Z™AHE ¢ ).
(Fev A LD (Z" " AHY 5, i
(T A FHD(e0(E™AHE ¢ ),
(e A £HYD(e0(E"NHE 5, NHH
41.1(7) = [(EANWx, H#S),
((Xew A F. Yoo A FIE 1A S™)O
(ev(Z"A) (Hi.i,m.f’ Hz,y,m, f)Hﬁ,ufszl )]
422 (3)and (7) = [(ZA) (X, P# ),
((F D) wew A HHDO(E" " AHE 5 )]
= (x+y) ALf F).

#
n,p,m, g ]

The second equation in (1) and the equations in (2) are analogous.
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In order to check equation (3) we notice that x A P(a) is represented by the
following diagram

s lga (S F)

Enfli/\zlnfl 4
/ ’ﬂ‘H# \l
n,T,m,f

+
gntm Van x aqmy 5™ ™ o T OXAY T P XAY

_—
@)

where F: Xf = 0 is any track with Hopf(F) = —1g(a). Here we use claim (*) in
the proof of [9, 4.9]. By Lemmas 4.2.3 (1), 4.2.2 (2) and the golden rule this diagram
coincides with

2(():"*'&)‘1*(2”’*%))

SrH—m —_— \/QnXAmeS"_Hn —_— Sn+m — X AY
polaxi (X'#f) wntm ev

Now one can use Lemmas 4.4.1 (2) and 4.4.2 to check that
Hopf(S((Z""'D#(E"F))) = —015(1 ® 19 ® D(AX) ® ),

hence (3) follows form claim (*) in the proof of [9, 4.9]. Equation (5) is analogous.
Equations (7) and (8) are unstable versions of (3) and (5). We leave them to the
reader.

Both sides of the first equation in (11) are represented by

Sn-lganm=ls

#

ng,m. S
+ n+m n—+m
Srtm T Vanxpomy 8" e Sy~ XAY

In order to check this fact one only needs to use the golden rule. Similarly for the
second equation in (11). Now (4) and (6) follow from (3), (5) and (11).

Finally (9) and (10) follow from Theorem 4.5.8, Lemma 4.4.2, and claim (*) in the
proof of [9, 4.9]. ]

The equalities in Lemma 4.7.1 can be used to check the following properties of the
operations in Eq. 41.
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Lemma 4.7.2

(1) Forn=1 and i =0 the elements g A f, F] and gA[ f, F] only depend on g €
Hl,()X.

(2) For m =1 and j=0 the elements [ f, F]1 A g and [ f, FIAg only depend on g €
HL()Y.

(3) For m=2 and j=1 the elements g A[f, F] and gAlf, F] only depend on
[f, F] € H2.1X.

(4) Forn=2andi=1theelements[f, F1 A gand[f, FIng only depend on [ f, F] €
szlX.

Lemma 4.7.2 allows us to define the following operations whenm = j=1orn =
i=1

AT T X x (1Y x @'ZIQYD) — Ty (X A Y),

AA (mlx x (®2Z[QX])) X Mo — M1 (X AY), (42)
by the formulas
gA(f Fl,a) = gALf. F14+ P@ZIAND( ® 15 ® D(A(Q) ® a),
gA(Lf. Fl.a) = gAlf. F1+ P ZIN(1 ® 76 ® ({8} ® {8} ® a),
((f.Fl.a)Ag=[f FIAg+ P ZINN(1 ® 15 ® )(a® {g} ® {g)),
(Lf. Fl.a)Ag = [ f, FIAg + P(@ZIAD(1 ® 1o ® 1)(a ® A(g)).

By using Lemma 4.7.1 one can check the following one.

Lemma 4.7.3

(1) For m= j=1 the elements g A ([f, Fl,a) and gn([ [, F],a) only depend on
([f. Fl,a) e 11 1Y

(2) For n=i=1 the elements ([f, Fl,a) Ag and ([f. F],a)Ag only depend on
([f. Fl.a) e T 1 X.

Moreover, one can extend all properties (1)—(6) and (9)-(11) in Lemma 4.7.1 to
the operations in Eq. 42. The explicit statement is left to the reader.

In order to prove the following Lemma one uses Lemma 4.2.2 (11) and (12). We
leave the details as an exercise.

Lemma 4.7.4 The following associativity rules for the operations (41) hold.

(1) gn @ ALLFD) = (ghg) ALf. Fl,
2) en(f.FIng)=@AIf.FDAE,
B) [fLFINH) =L FIN® NE,
(4) gA@GALS FD) = (g#g)ALS, Fl,

(5) gA(f. F1rg) = (gAlf. F)Ag,

(6) [f. Fla(g#g) = (Lf, F1n®)Ag.

One can accordingly obtain associativity properties involving also the operations
in Eq. 42.
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Recall that T, tm = (-)f;]mw € Symn(n + m) is a track from the shuffle per-

mutation in Eq. 18 to its sign, and 7, is the symmetry isomorphism for the smash
product of pointed spaces. In the following lemma we establish the commutativity
rule for the operations in Eq. 41. One can similarly state the commutativity rules for
Eq. 42.

Lemma 4.7.5 Given two pointed spaces X, Y, [f, F] € I1,1 X, and g € 11, oY we have
the equalities

(1) (AL F1. Tum) = —(t)«(Lf. FIA ) + (=D)"")*(GALf. F1),
(2) (AL FL Tum) = () (LS. FIAZ) + (=D)")* (g A LS. FD.

Moreoverifge o X and [ f, F] € I1,,,Y

(3) LS FIAG. Tam) = —(tA)«(@ A LS FD 4+ (=D")*(Lf. F1A8),
@) QLS FIAG Tam) = =) @ALL FD 4+ (=D")*(Lf. F1 A g).

Proof Here we prove (1). The other equations are analogous.
The following diagram of pointed sets is commutative.

QX AQ"Y QX AY)

ntm
TA \LQ* Tn
o

nm

AN
QY AQPX — QM"Y AX) —— Q"(Y A X)

Therefore using the definition of induced morphisms for secondary homotopy groups
in [9, 4.2] we have

@)L f. F1A Q) = [(ZQ"™1,)(SA)(f#2),
T2 ((F A Zoo)D(ev(Z MHE [, )]
= (T}, (BA)(BT)(f#2).
(TA(F A ge))D(zaev(Z " ANHE (1, )]
Eq.8 = [(Z1;,)(ZA)(@#]).
(TA(F A 8e))(ev(Z™ A) (Tun A TOHE 1)) )]
= (a).

On the other hand using claim (*) in the proof of [9, 4.9], if

O: (Z™ Ao ATE L f#2) = (E A E G H N O

is a track with

—1)mm
Hopf(Q)z—c'rr@(( ) )H(gﬁa[f, F)
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then

(=D"*@ALL. F) = [(OTY" A Q"™ (Y A X)(EA)@HS),

(@ev A YOt
Dev (B Ay, 2 (s )D(ev Q)]

(GR) = [((T"" A Q™Y A X)) (ZA)(EHS).
(Gev A )Tm)
Oev(=" " NH, ., 25, 0(ev 0)]

(Theorem 4.5.9) = [(()™V™ A Q™Y A X)) (EA)(GHS),
(TA(F A Ze))Dev(Z" AV (G, A TOHE [, )]
= (b).

Finally given amap ¢: S' — S' v S! with (),4(1) = —a+ b € {a, b),; and a track
N: (1, )(2"m=lg) = 0 with Hopf(N) =0

ynm

—(@) +(b) = [(B7;, ) (EA)@HS). ()T AQTY A X)(EA) @ ))e,
(TA(F A Bevs F A 8e) (E"He))

Oev(Z" A) ((Tam A mHﬁ, fim.g®

Eon ATOHE 1, J(E" )]
= [((Z1;, ) (EA@ES) (O AQ™(Y A X)(SA)EHS)e,
(T (F A geu)(1, D(E""e))
D(ev(E"*'”/\)(fEm A rA)Hflyﬁm’g)(l, D(Z"e))
O(ev(E" ™ A ((Fam A T E" N (f#2)),
(O A TS fH#2)) (7))
Eq.8 = [(Z1;,)(EA@E#S). (O AQ™™(Y A X)(SA)@HS))e,
(TA(F A Zer))
O(ev(Z" " A) (Fimy A TOHE 1, (AL D))
O(ev(Z""A) ((Bam A Q™Y A QX)(Z ! (#)),
(O AQY A QX (S (gH f))(Z""e))]
(GR) = [(Z1,;, ) (SN @), (O A Q™Y A X)) (EA)(EHS))e,
((TA(F A Zer))
O(ev(Z" " A) (E, ATOHE 1, DIN)
O(ev(E" " A ((Fan A QY A QX)(E" 1 (g# 1)),
(O AQMY AQX)(E™! (g# ) (Z"e))]
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ynm

(GR), Eq. 8 = [((Z1,)(ZA)@E# ), (DT A Q™Y A X)) (ZA)@Hf))e,
(v (S AN SN (HEDT A QMY A Q1 X)
(Z"l(gh f))N)
O(ev(Z""A)((Ban A Q™Y AQX)(E (8 ),
(O AQY AQX)(E" (g# ) (Z" )]

= (8AALf. Fl. Tum)

Here we use the definition of the bracket operation (—, —) in [10, 4.5]. O

Finally we prove the compatibility of the smash product operation with the action
of the symmetric track group.

Lemma 4.7.6 Let f € I1,0X and g € I1,,,0Y. Given 6 € Symp(m) and y € Symq(n)
with §(6) = o and §(y) = y the following equalities hold.

(1) (ng,S"A&):f/\(g,&)
+P(@*ZIN)(1®Te @ DN(H(f) ® (—0*g + (signo)*glo*g) n).
@) (fAg Ty m(S™ AP) Ty m™) = (f. P)AG
+P(@ZIAD( ® 1o @ D((—y* [+ (signy)* fly* fu @ H(g)).

Proof Equation (2) follows from (1) and the laws of a sign group action, see [10,
Lemma 3.7 and Definition 3.4 (5)]. Let us prove (1). By Definition 4.2.2 (1), (2), (5),
(6), (8) and (9), given e: S' — S' v S! with (m18),y(1) = —a+b € (a,b)u

# _ n+m n *
Hn,f,m,(Ea*,()ﬁg""AQ'"Y)(gvg)s - (2' Q"X A%,
\signo n m #
, ()Tm A Q )i/\ Q Y)Hn,f,m,(gvg)g’
L — * o LA n+m-—1
nim@pe = Oy fmg Y By pm g 0

Now one can use Theorem 4.5.8, Lemma 4.4.2 and the elementary properties of the
Hopf invariant for tracks in [9, 3.6] to check that any track Q from

(EQIX A G), (O A QX AQTY)(ET! Fig) v (2 Frg) (5 e)
to
Zn+m—l(]?#((20*’ (,)signa AQMY)EV 2)e))

with

Hopf(Q) = —019(1 ® 79 @ D(H(f) ® (—07g + (signo)*glo ") n),
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satisfies

B 7 s (pmengnyy e D@ = (E"T(Q1XAGY),
i AQIX AQMY) (HF ; VHF . )zl
n, f,m,g n, f,m,g
Then given N: (1, 1)(Z"'¢) = 0 with Hopf(N) = 0, by using claim (*) in the proof
of [9, 4.9] and the definition of the bracket (—, —) in [10, 4.5], the right hand side of
equation (1) is

[(EA(Z(Q'X A0%), ()7 AQX A QUY)((f#2) v (f#2))e,
(foo A (0((3%"7 AQ™Y)(E"'2)N))
U(fev A (ev(6 A Q™Y OE):;gHUAQ”LY)((Em“é) v (ETI)(E" )
O(ev(S™MAY(STM(QX A 6*), (N5 A QX A QTY)
(Hi, Fmz Y Hﬁ, . g)(E"“"‘ls))]

= [(EAE@"X A ™), T AQX AQUY)((fHD) V (F#R))e,
EV(Z A ((Dnim AQX AQUY)(EL AL (ZTN))

n+m n A n m (]
Oev(Z"™A)N(S" A0 AQPX A QMY 0(->:ji",,,”Asznxmmy)

((Zn—l f_ A Zm—lg) v (En—l f_/\ Em—lg))(2n+m—18))
C(ev(S™7 A) (S QX A 6%), ()IE A QX A QY
(H# ~ Vi H# g)(2"+m718))]

n, f.m,g n, f.m,
= [(EA(Z(Q"X Ac¥), ()T A QX AQY)((f#D) V (f#2)e,
V(™A AQLXAQUY)NEf AEIZ)(Z"N))
O(ev(Z™mA)(S" A G A Q"X AQ"Y, 0 )

O A XAQmY
HY . VH* . (i) i
nFmg Y Confmg

= [(EA(Z(Q"X Ac™), ()T A QX AQUY)((f#D) V (f#3)e,
(U(E™ AN (O AQX AQUY)HE . (E"N))

Oev(S"ANS" A6 AQ'X A Q™Y 07,
Opim NQUXAQMY

(B f#g)) v (B f#2))) (B Le))]
= [(EA(EQ"X Ad®), ()7 AQ X AQ"Y)((f#R) V (f#2)e,
v (T A (i AQ'X A QUY)(EN(f#2) (2" N))

O(ev(Z"MANS" A6 A QX AQMY, 05, )
O AQ X AQMY

(=1 fHg)) v (BN () (ZM o))
= (fArg S"AG)

)

Here we essentially use the golden rule, concretely for the fourth equation. O

4.8 The Smash Product in Dimension 0

The first lemma in this section implies that the smash product operation in
Definition 4.3.1 is well defined when dimension 0 is involved and Theorems 3.2.1,
3.2.2,3.2.3, and 3.3.10 are satisfied also in this case.

Recall that qpm is a track category. Therefore the morphism set Homgpm (C, D)
in qpm is indeed a groupoid. This groupoid is pointed by the zero morphism. If G
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is a sign group acting on C and D we can consider the full pointed subgroupoid of
Gp-equivariant morphisms

Homg (C, D) C Homgpm (C, D).

If G is the trivial sign group then this inclusion is always an equality.

A pointed groupoid G gives rise to a stable quadratic module Ad;Ad,Ad;G,
compare Remark 3.1.3. The low-dimensional group of this stable quadratic module
is the free group of nilpotency class 2 on the pointed set of objects, therefore if we

define H as in Eq. 10 we obtain a quadratic pair module G which corresponds to
Ad;Ad,Ad,; G by the forgetful functor in Remark 2.1.3. Compare [10, 1.15].

Lemma 4.8.1 Let C, D be quadratic pair modules endowed with an action of the sign
group Gp, let G be a groupoid, and let
¢: G —> Homg(C, D)

be a pointed groupoid morphism. Suppose that C is 0-good. Then there is a well-
defined quadratic pair module morphism

¢ GoC— D
given by
Pi(g @ x) = ¢(g)(x),

where g is an objectin G and x € C; for somei € {0, 1}, or gis amorphismin G, x € Cy
and i = 1; and by

Gee (818N H ® (X|X) 1) = (P(Q) () @(g) (X)) 1,

for g, g objects in G and x, x' € Cy. This morphism is Go-equivariant.

The proof of the lemma is technical but straightforward. The reader can also check
that the construction is natural in G, G, C and D.

Finally we show how Lemma 2.5.3 can be used to obtain the tracks in gpm induced
by the additive secondary homotopy groups from the smash product operation. For
this we notice that there is a unique morphism in gpm from the interval quadratic
pair module I in Section 2.5 to Il , of the interval I,

v: [ — o1y,
sending i, € Iy, k=0, 1, to the map ir: S° — I, € Iyl corresponding to the
inclusion of k € I = [0, 1].
Lemma 4.8.2 Given a track F: f = g between maps f,g: X — Y represented by a
homotopy F: I, AN X — Y the composite

I © Hn*X U—®I> HO,*I+ ©} Hn*X —A> Hn,*(1+ A X) M Hn.*Y

corresponds by Lemma 2.5.3 to the track 11,, . F: T1,, .. f = I1, .g in qpm, n > 0.

This lemma follows easily from the definition of the smash product operation for
secondary homotopy groups.
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Appendix A: Monoidal Structures for Graded Quadratic Pair Modules
and Symmetric Sequences

Let M be any additive monoid. The tensor product of two M-graded quadratic pair
modules D, E is defined as usually by

(DO E),= \/ D,0E,.

ptq=n

where the symbol \/ denotes the coproduct. However, since the tensor product of
quadratic pair modules does not preserve coproducts, this does not define a monoidal
structure on gqpm™. For this we need to restrict to a subcategory of quadratic pair
modules where the tensor product preserves coproducts. Below we check that the full
subcategory of 0-good quadratic pair modules, already introduced in Definition 2.1.2,
is suitable.

The class of good square groups is closed under tensor products and coproducts,
see [7] Definition 2 and Section 5.6. The class of 0-good quadratic pair modules is
therefore closed under tensor products and coproducts as well. We show in Corollary
A.6 below that the tensor product of 0-good quadratic pair modules is well-behaved
with respect to coproducts. As a consequence we obtain the following result.

Proposition A.1 The category qpm})! of M-graded 0-good quadratic pair modules is
a monoidal category.

The tensor product of symmetric sequences X, Y in qpm(s)ym':’
defined by the formula

XoYn=\ (X,0Y) Ousymypzsyma@ ASymo®n).
prq=n

is similarly well

Here, as usually, if M and N are a right and a left module over a quadratic pair
algebra R, respectively, then M O N denotes the coequalizer of the two multiplica-
tions M ®© RO N = M ® N. The left A(Symg(p)xSymg(q))-module structure of
A(Symp(n)) is given by the sign group morphism in Proposition 3.3.4. Moreover, we
use the characterization of sign group actions given by Lemma 3.3.8 and the fact that
A is strict monoidal, see Proposition 3.3.7.

Now we state the technical results of this appendix. For any abelian group B we
define following [7] the square group B® as B® = B, B = B® B, P=(1,1) and

H= (}) Clearly (—)® defines a functor from abelian groups to square groups.

Lemma A.2 Given square groups L, M, N there is a natural push-out diagram

(Coker P; ® Coker Py @ Coker P;, ® Coker Py)® &——— (L O M)V (L ® N)

|

(Coker P; ® Coker P; ® Coker Py ® Coker Py)® (LGiy, LOiy)
(=) u®1x1 l push
(Lee ® Coker Py ® Coker Pn)® € LOMvVN)
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Proof The horizontal arrows are the monomorphisms in the exact sequences of
square groups in [7, Proposition 5 and 5.6]. The compatibility of both sequences
proves that the square of the statement is indeed a push-out. O

Corollary A3 If X is a good square group then the functor X © — preserves
coproducts.

Proof By Lemma A.2 the functor X © — preserves finite coproducts. Since the
tensor product ©® of square groups preserves always filtered colimits, see
[7, Proposition 4], then X ® — preserves indeed arbitrary coproducts. O

Lemma A4 Ifd: Cqy — C) is a quadratic pair module such that Cy © — preserves
coproducts then for any two quadratic pair module morphisms f;: M; — N;, i = 1,2,
the natural morphism

PO VOO ) — POO(fiV f))

in qpm is an epimorphism. Moreover it is an isomorphism provided f; are identity
morphismsi =1, 2.

Proof Since Cy, © — preserves coproducts the morphism is an isomorphism on the
(0)-level. The reflection functor ® from pairs of square groups to quadratic pair
modules is a left adjoint, so it preserves colimits. In particular by Lemma A.2 the
first part of this lemma holds provided the natural morphism

A = ®((Coker Pc ® Coker Pc ® Coker Py, ® Coker Py, )® — Cig) © (Ny v Ny))

\
B = o((C,. ® Coker PM1 ® Coker PM2)® — C(Q) O (N1 Vv Ny) (a)

induced by (—=|—)z: ®? Coker Pc — Ce is surjqctive on the 1-level. On this level A
and B are quotient groups, A; = A,/ ~, B = B,/ ~, of the abelian groups

;11 = Coker Pc ® Coker Pc ® Coker Py, ® Coker Py, @ D,
B; = C,. ® Coker Py, ® Coker Py, @ D.

and the morphism A — B is induced by (—|-)z: ®2 Coker Pc — C, and the
identity on D. Here D is the abelian group

D = Cee ® (N1)ee ® (N2)ee ® Coker Py, ® Coker Py, @ Coker Py, ® Coker Py;,).

The relations ~ in Section 2.4 and the definition of (—)® show that A, and B, are
generated by image of D, and hence (a) is surjective on the 1-level.

Now let fi=1: M;=N;, i=1,2. In order to check the second part of the
statement it is enough to show that the morphism

A = ®((Coker Pc ® Coker Pc ® Coker Py, ® Coker Py,)® — C) © (N1 V N2))

\:
P((Ciy © Np) Vv (Cay © Na) = Cy © (N V Ny)) (b)
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given by the upper vertical arrow in Lemma A.2 factors through (a). Both (a) and (b)
are the identity on the (0)-level, so it is enough to look at the (1)-level. The desired
factorization is induced by the unique square group morphism

(Cee ® Coker Py, ® Coker Py,)®

\:
D((Cy © Ni) V (Cio) © Np) = Cy © (N1 vV No))i

which coincides on the ee-level with the square group morphism
(Cee ® Coker Py, ® Coker Py,)® — Cq) © (N vV N),

given by the lower horizontal arrow in Lemma A.2. O

Lemma A.5 Let C be a quadratic pair module such that Cy © — preserves coprod-
ucts. Then C © — also preserves coproducts.

Proof Let us first check that C © — preserves the coproduct of two quadratic pair
modules D, E. The functor ® preserves colimits since it is a left adjoint. The tensor
product of quadratic pair modules is defined by ® and the push-out construction in
Eq. 12 in the category SG of square groups, which is also a push-out in the category
Pair(SG) of pairs of square groups. Therefore it is enough to check that the natural
morphism

P((Ci» © D)) v (Ci © Ej)) — Co) © (Do V E)))

J
®(Ciy © (D v E(j)) = Co) © (D V Eq))) (a)

is an isomorphism if i = 0 or j = 0, and an epimorphism if i = j = 1, and this follows
from the previous lemma.

Since the coproduct of two objects is preserved by C © — then all finite coproducts
are preserved. Moreover, by [7, Proposition 4] the tensor product of square groups
preserves filtered colimits. Since ® preserves colimits then the tensor product of
quadratic pair modules also preserves filtered colimits, hence C © — indeed preserves
arbitrary coproducts. o

Corollary A.6 If C is a 0-good quadratic pair module then C(© — preserves
coproducts.
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