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Abstract

By exploiting the description of topological spaces by either neighborhood systems or
filter convergence, we obtain a neighborhood-like presentation of categories of lax algebras.
A notable advantage of this approach is that it does not require the introduction of a lax
extension of the associated monad functor. As a byproduct, the different philosophies
underlying the construction of fuzzy topological spaces on one hand, and approach spaces
on the other, may be simply expressed in terms of lax algebras.

1 Introduction

In [6], Gähler gave a presentation of the category Top of topological spaces as a category,
denoted here by KlAlg(F), of structured objects in the Kleisli category of the filter monad F:

Top ∼= KlAlg(F) .

This result lead to a natural definition of fuzzy topological spaces by extending the previous
monad to a fuzzy filter monad. Lax algebras on the other hand (see [2], [5], [9] and [14]) provide
a setting for the presentation of topological spaces as structured objects in the category of
sets and relations:

Top ∼= Alg(F,2) .

The category Alg(F,2) of these structured objects depends on the filter monad F and the
two-element ordered chain 2. In this context, a notion of fuzziness may be introduced by
replacing the ordered chain 2 by a larger unital quantale V.

Although the previous descriptions of topological spaces are both based on the filter monad,
the first approach does not require the existence of a lax extension of the monad functor, an
extension which is crucial for the second. This remark is at the origin of the present work,
as it suggests that the information pertaining to the construction of a lax extension of an
arbitrary functor T may be extracted from the objects of the category KlAlg(T) associated
with a monad T = (T, e,m). Not only is this the case, but the resulting category Alg(T,2)
of lax algebras is isomorphic to KlAlg(T), thus generalizing the previous correspondence
obtained for the filter monad. By modifying Zhang’s tower extension construction [15] to
include unital quantales, we can moreover define a category KlAlg(T,V) such that

KlAlg(T,V) ∼= Alg(T,V) ,
∗Financial support by the Swiss National Science Foundation is gratefully acknowledged.
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and for which KlAlg(T) is the V = 2 instance: KlAlg(T,2) ∼= KlAlg(T).

The present paper is organized as follows. After establishing certain definitions in Section 2,
we present a preliminary result that puts forth conditions a lax extension should satisfy in
order to generalize the isomorphism between KlAlg(F) and Alg(F,2). These conditions lead
in Section 3 to the actual construction of a lax extension T

M
of T from quite a different

perspective than in [2], [4], [13] or [14]. Such a lax extension yields a category Alg(T,V)
of (T,V)-algebras, where V may be any unital quantale rather than just 2. In turn, this
leads in Section 4 to the definition of the category KlAlg(T,V) of Kleisli (T,V)-algebras,
which is a generalization of the category KlAlg(T). Our main result then conveniently
states that the two categories KlAlg(T,V) and Alg(T,V) are isomorphic, thus allowing for
an “extension-free” description of certain categories of lax algebras. In fact, if we refer to
the original example, the Kleisli construction defines lax algebras via their “neighborhood
systems”. This is illustrated in Section 5, in which the category Cls of closure spaces is
presented by way of such structures (this also provides a new description of Cls as a category
of lax algebras). Finally, Section 6 is a brief incursion into the realm of fuzzy topology, in which
fuzzy topological spaces (as defined for example in [10], or [6]) are shown to be particular
instances of lax algebras. This example is simply the original isomorphism KlAlg(F) ∼=
Alg(F,2) in which the filter monad is replaced by a fuzzy filter monad.

It seems relevant now to mention another example arising in the context of lax algebras.
Indeed, recall that the category App of approach spaces is isomorphic to Alg(F,R+), where
R+ is the extended real line. Although the categories of fuzzy topological and approach spaces
are both generalizations of Top ∼= Alg(F,2), the first is obtained by extending the filter
monad F, while the second by extending the underlying quantale 2. These examples clearly
illustrate the difference between the two perspectives mentioned in the opening paragraph.

2 Motivating result

Before stating our preliminary result, we present a number of definitions, and recall some
useful properties of the structures we will be using. For more details on lax algebras, we refer
to the articles mentioned in the Introduction.

2.1 Monads factoring through a category. Let C be a subcategory of the category
Ord of preordered sets. A Set-monad T = (T, e,m) factors through C if there is a functor
S : Set → C that composes with the forgetful functor to yield T , and such that mX :
T 2X → TX is the image of a morphism mX : STX → SX of C. To simplify notations,
we will not distinguish between SX and TX; for example, if T factors through the category
Sup of complete lattices and sup-preserving maps, Set-maps Tf : TX → TY , as well as
mX : T 2X → TX, will be considered as a sup-preserving maps between complete lattices.

The monad T factors coherently through C if for any f, g ∈ Set(X,TY ), we have

f ≤ g =⇒ mY · Tf ≤ mY · Tg , (∗)

where Set(X,TY ) is equipped with the preorder induced by TY :

f ≤ g ⇐⇒ for all x ∈ X, we have f(x) ≤ g(x) . (∗∗)

The notion of a monad factoring coherently though Sup is similar in spirit to the ordered
monads of [6].
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2.2 Kleisli T-algebras. Let T = (T, e,m) be a Set-monad factoring coherently through
Ord, and denote by Kl(T) the associated Kleisli category. Recall that the Kleisli composition
β ◦ α : X → TZ of α : X → TY and β : Y → TZ is given by mZ · Tβ · α, and the identity
morphism in Kl(T) is eX : X → TX. By composing with eY : Y → TY , a Set-map f : X →
Y becomes an element of Set(X,TY ) = Kl(T)(X,Y ), and we write f ♯ := eY · f . Remark
that the condition (∗) of 2.1 is equivalent to preservation of the preorder on Set(X,TY ) in
the first variable of the Kleisli composition, while preservation of this preorder in the second
variable simply follows from (∗∗).

The category KlAlg(T) of Kleisli T-algebras, has as objects pairs (X,α) with X a set and
α : X → TX a structure map that is extensive and idempotent :

(K1) eX ≤ α ,

(K2) α ◦ α ≤ α .

Of course, in presence of the extensivity condition, idempotency may be expressed as an
equality. Morphisms f : (X,α) → (Y, β) are Set-maps f : X → Y satisfying:

(K3) f ♯ ◦ α ≤ β ◦ f ♯ ,

and composing as in Set.

2.3 Complete distributivity. In this work, V will always denote a unital quantale with
two-sided unit k, and we will assume that V is non-trivial, that is, ⊥ 6= k. It will often be
useful to suppose that V is completely distributive, i.e. that any b ∈ V may be obtained as

b =
∨

{a ∈ V | a ≺ b} ,

where a ≺ b means that for any subset S ⊆ V with b ≤
∨

S, there exists s ∈ S satisfying
a ≤ s. The following properties follow from the definition of ≺:

i) a ≺ b implies a ≤ b ;

ii) a ≤ a′ ≺ b′ ≤ b implies a ≺ b ;

iii) a ≺
∨

S implies there exists s ∈ S with a ≺ s .

2.4 Lax extensions. Let V be a unital quantale, and denote by Mat(V) the category of V-
matrices (or V-relations). Recall that the objects of Mat(V) are sets, morphisms r : X 9 Y
are maps r : X × Y → V, and the transpose r◦ : Y 9 X of r : X 9 Y is defined by
r◦(y, x) = r(x, y) for all x ∈ X, y ∈ Y . Composition of r : X 9 Y and s : Y 9 Z is given by

s · r(x, z) =
∨

y∈Y

r(x, y)⊗ s(y, z) ,

and the identity 1X : X 9 X is defined by 1X(x, y) = k if x = y and 1X(x, y) = ⊥ otherwise.
There is also an order on the hom-sets of Mat(V) induced by the order on V. Finally, a
Set-map f : X → Y will be identified with the matrix f : X 9 Y given by f(x, y) = k
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if f(x) = y and f(x, y) = ⊥ otherwise. We point out that if f : X → Y , g : W → Z are
Set-maps, and s : Y 9 Z is a V-matrix, then

g◦ · s · f(x,w) = s(f(x), g(w)) ,

for all x ∈ X, w ∈ W .

A lax extension of a Set-functor T is a map

T
M

: Mat(V) → Mat(V) , (r : X 9 Y ) 7→ (T
M
r : TX 9 TY )

which preserves the order on the hom-sets and satisfies

(T1) Tf ≤ T
M
f and (Tf)◦ ≤ T

M
f◦ ,

(T2) T
M
s · T

M
r ≤ T

M
(s · r) ,

for all f : X → Y , r : X 9 Y and s : Y 9 Z. An important consequence of these conditions
is that if f : X 9 Y and g : Y 9 Z come from Set-maps, then

T
M
(s · f) = T

M
s · T

M
f = T

M
s · Tf and T

M
(g◦ · r) = T

M
g◦ · T

M
r = (Tg)◦ · T

M
r .

Finally, when TX is an ordered set, we say that T
M

is order-compatible if for all x, y ∈ TX,
we have

x ≤ y ⇐⇒ k ≤ T
M
1X(x, y) .

2.5 Lax algebras. Let T = (T, e,m) be a Set-monad equipped with a lax extension T
M

of
T . The category Alg(T,V) of (T,V)-algebras, also called lax algebras, has as objects pairs
(X, r), where X is a set, and r : TX 9 X a structure V-matrix satisfying the reflexivity and
transitivity laws:

(L1) 1X ≤ r · eX ,

(L2) r · T
M
r ≤ r ·mX .

Morphisms f : (X, r) → (Y, s) are Set-maps f : X → Y satisfying:

(L3) r ≤ f◦ · s · Tf ,

and composing as in Set. In the case where the lax extension T
M

is order-compatible, then
it follows that the structure matrix of a lax algebra (X, r) reverses the order on TX, i.e. for
x, y ∈ TX and z ∈ X, we have

x ≤ y =⇒ r(y, z) ≤ r(x, z) .

2.6 Remark. In [14], it was noted that a lax extension T
M

of T naturally defined an order on
TX. The order described therein was the opposite of the order given above in the definition
of order-compatibility, so the structure matrices of the associated lax algebras preserved that
order rather than reversing it. In both cases however, the order on TX is chosen as the
natural one (for instance if T is the filter monad F, then f ≤ g always means that the filter f
is finer than g).
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2.7 Continuous lax algebras. Let T = (T, e,m) be a Set-monad factoring through Sup,
provided with an order-compatible lax extension T

M
. The (T,V)-algebra (X, r) is said to be

continuous if for all y ∈ X and A ⊆ TX, we have
∧

x∈A

r(x, y) = r(
∨

A, y) .

The full subcategory of Alg(T,V) whose objects are the continuous lax algebras is denoted
by Algcont(T,V).

For example, if T
M

is the op-canonical extension of either the filter or the powerset monad,
then any lax algebra is continuous (this is a particular case of Proposition 3.3).

2.8 Kleisli T-algebras and (T,2)-algebras. The correspondence between Kleisli F-alge-
bras and (F,2)-algebras is given as a “functional description of lax algebras” in [9]. In fact,
the case where T is the filter monad provides an ideal setting in which the relation between
Kleisli T-algebras and (T,2)-algebras may be described. Indeed, recall that a topological
space may be defined by two conditions on its neighborhood filters (the Kleisli presentation),
or by two conditions on the “convergence” relation between filters and points (the lax algebra
presentation). Given the first, one can obtain the second by stating that every filter finer than
the neighborhood filter of a point converges to that point. Similarly, if the relation between
filters and point is given, one can obtain the neighborhood filter of a point by taking the
coarsest among all the filters that converge to that point. This correspondence is concretized
in the following result.

2.9 Proposition. Let T = (T, e,m) be a Set-monad factoring coherently through Sup pro-
vided with an order-compatible lax extension T

M
.

i) There is a concrete functor F : Algcont(T,2) → KlAlg(T) that associates to a structure
matrix r : TX 9 X the structure map αr : X → TX given by

αr(y) :=
∨

{x ∈ TX | r(x, y) = ⊤} .

ii) Suppose that the extension T
M

satisfies

T
M
r(X, y) = ⊤ =⇒ mX(X) ≤ mX · Tαr(y) ,

for all continuous structure matrices r : TX 9 X, and elements X ∈ T 2X, y ∈ TX.
Then the concrete functor G : KlAlg(T) → Algcont(T,2) that associates to a structure
map α : X → TX the structure matrix rα : TX 9 X given by

rα(x, y) = ⊤ ⇐⇒ x ≤ α(y)

is inverse to F .

Proof. The proof of this statement is almost identical to the proof of Theorem 4.3.

2.10 Remark. In order to obtain a better description of the lax extension T
M
, one might be

tempted to replace the previous condition “T
M
r(X, y) = ⊤ =⇒ mX(X) ≤ mX ·Tαr(y) ” by a

more restrictive one such as “T
M
r(X, y) = ⊤ ⇐⇒ X ≤ Tαr(y) ”. Although the result would

remain true, this last equivalence is unfortunately not satisfied by the usual lax extensions of
the powerset and filter monads.
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3 A lax extension of T

3.1 The Kleisli extension. Let T = (T, e,m) be a Set-monad factoring coherently through
Sup, and consider the powerset monad P = (P, d, n). The unique sup-preserving map ηX :
PX → TX extending eX : X → TX along dX : X → PX is given by

ηX(A) =
∨

{eX (x) |x ∈ A} ,

and defines a natural transformation η : P → T satisfying η · d = e. Moreover, since
Tη · eP = eT · η by naturality of e, we have for any A ∈ P 2X that

mX · TηX · ηPX(A) =
∨

A∈A

mX · TηX · ePX(A) =
∨

A∈A

ηX(A) = ηX · nX(A) .

Thus, η : P → T is in fact a monad morphism.

For a V-matrix r : X 9 Y , let ρr = (ρar : Y → PX)a∈V be the family of maps given by

ρar(y) := {x ∈ X | a ≤ r(x, y)} .

The Kleisli extension of T is T
M

: Mat(V) → Mat(V) defined by

T
M
r(x, y) :=

∨

{a ∈ V | x ≤ mX · T (ηX · ρar)(y)} ,

for all x ∈ TX, and y ∈ TY .

3.2 Proposition. The Kleisli extension T
M

of T is a lax extension of T .

Proof. Remark first that T
M

preserves the order on the hom-sets because T factors coherently
through Sup. For a map f : X → Y , a ∈ V, x ∈ X, and y ∈ Y , we have

ρaf (y) =







X if a = ⊥
f−1{y} if ⊥ 6= a ≤ k
∅ otherwise,

and ρaf◦(x) =







Y if a = ⊥
{f(x)} if ⊥ 6= a ≤ k
∅ otherwise.

On one hand, for all a ≤ k we have ηX · dX ≤ ηX · ρaf · f , so x = mX · T (ηX · dX)(x) ≤
mX · T (ηX · ρaf ) · Tf(x); therefore, k ≤ T

M
f(x, T f(x)), and Tf ≤ T

M
f . On the other hand, for

all a ≤ k we have ηX ·dX ·f ≤ ηX ·ρaf◦ , and we may proceed as before to get k ≤ T
M
f◦(Tf(x), x),

or (Tf)◦ ≤ T
M
f◦.

To prove that T
M

is a lax functor, let r : X 9 Y and s : Y 9 Z be two V-matrices,
x ∈ TX, y ∈ TY , and z ∈ TZ. Let a, b ∈ V be such that x ≤ mX · T (ηX · ρar)(y) and
y ≤ mY · T (ηY · ρbs)(z), so x ≤ mX · T (ηX · ρar) ·mY · T (ηY · ρbs)(z). Note furthermore that

mX · T (ηX · ρar) ·mY · T (ηY · ρbs) = mX ·mTX · T (T (ηX · ρar) · ηY · ρbs)

= mX · T (mX · ηTX · P (ηX · ρar) · ρ
b
s)

= mX · T (ηX · nX · Pρar · ρ
b
s) .

Since
nX · Pρar · ρ

b
s(z) = {x ∈ X | ∃y ∈ Y : a ≤ r(x, y), b ≤ s(y, z)} ⊆ ρa⊗b

s·r (z) ,

we obtain x ≤ mX · T (ηX · ρa⊗b
s·r )(z). Finally, suprema are preserved by ⊗ in each variable, so

that T
M
r(x, y)⊗ T

M
s(y, z) ≤ T

M
(s · r)(x, z), and T

M
is a lax extension of T as claimed.
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3.3 Proposition. If T
M

is the Kleisli extension of T , then the following assertions hold.

i) If V is non-trivial, then T
M

is order-compatible.

ii) For any set X and a ∈ V, (aTX ∧ 1TX) ≤ T
M
(aX ∧ 1X), where aX : X 9 X is the

V-matrix with constant value a ∈ V.

iii) Any (T,V)-algebra structure r : TX 9 X is continuous, so that

Algcont(T,V) = Alg(T,V) .

Proof. i) Consider the identity 1X : X → X. Then ρa1X is the unit dX of the powerset monad
whenever a ∈ V satisfies ⊥ 6= a ≤ k. Thus, on one hand x ≤ y implies k ≤ T

M
1X(x, y). On

the other hand, since V is non-trivial, k ≤ T
M
1X(x, y) implies there exists a ∈ V such that

⊥ 6= a ≤ k and x ≤ mX · (TηX · ρa1X )(y) = y.

ii) Let a ∈ V \ {⊥} and consider the relation r = aX ∧ 1X : X 9 X. Then ρbr = dX if in
particular b = a ∧ k, so that mX · (TηX · dX)(x) = x yields a ∧ k ≤ T

M
r(x, x) as required.

iii) Suppose now that r : TX 9 X is a (T,V)-algebra structure, and let A ⊆ TX. Then
X = ηTX(A) naturally satisfies mX(X) =

∨

A, so T
M
r(X, eX(z)) ≤ r(

∨

A, z). By using
naturality of e and the definition of η, we observe that

T
M
r(X, eX(z)) =

∨

{

a ∈ V
∣

∣

∨

{eTX(x) | x ∈ A} ≤
∨

{eTX(x) | x ∈ ρar(z)}
}

.

Thus, for any a such that A ⊆ ρar(z), we have a ≤ T
M
r(X, eX(z)). This is the case in

particular for a =
∧

x∈A r(x, z), so that
∧

x∈A r(x, z) ≤ r(
∨

A, z). We can conclude that this
last inequality is in fact an equality since r reverses the order in the first variable.

3.4 Example. If V is a completely distributive lattice, then the Kleisli extensions of the
powerset and the filter functors are given by

P
M
r(A,B) =

∧

x∈A

∨

y∈B

r(x, y) , and

F
M
r(f, g) =

∧

B∈g

∨

A∈f

∧

x∈A

∨

y∈B

r(x, y)

respectively, where r : X 9 Y is a V-matrix, A,B ∈ PX, and f, g ∈ FX. Note that these
are also the op-canonical extensions of the corresponding functors.

4 Towers of Kleisli algebras

In Proposition 2.9, it has been shown how Kleisli T-algebras may be related to (T,2)-algebras.
In order to extend this correspondence to other quantales than 2, we introduce the following
definition, which is based on Zhang’s tower extensions [15].

4.1 Kleisli (T,V)-algebras. Let T = (T, e,m) be a Set-monad factoring coherently through
Sup, V a unital quantale, and notice that 2 embeds into V via

⊥ 7→ ⊥ , ⊤ 7→ k .

7



The tower extension of Kl(T) along 2 → V is the category KlAlg(T,V) (also called the
category of Kleisli (T,V)-algebras) whose objects are pairs (X,α), with α a V-indexed family
of morphisms α = (αa : X → TX)a∈V satisfying the following conditions:

(K0) α
∨

A =
∧

a∈A αa ,

(K1) eX ≤ αk ,

(K2) αa ◦ αb ≤ αa⊗b ,

for all A ⊆ V, and a, b ∈ V. When the monad T is clearly determined by the context,
such a structure α will be called a V-tower on X. Morphisms f : (X,α) → (Y, β) are maps
f : X → Y such that

(K3) f ♯ ◦ αa ≤ βa ◦ f ♯ ,

for all a ∈ V, and composing as in Set. Since (K0) yields in particular that α⊥(x) = ⊤
for all x ∈ X, and tower α, the category KlAlg(T,2) is concretely isomorphic to KlAlg(T).
Moreover, if V is completely distributive, then (K0) is equivalent to

(K ′
0) αa =

∧

b≺a α
b ,

for all a ∈ V. Notice that a V-tower α is in fact a sup-preserving map α : V → Set(X,TX)op

that forms an op-lax functor with respect to the multiplicative structures. The previous
presentation via families of Kleisli endomorphisms appears however to be more practical for
our purpose.

4.2 Remark. The original definitions of tower extensions in [3] and [15] only considered
the indexing set V as a complete lattice, rather than a quantale. This explains in part why
approach spaces—which explicitly make use of the addition of R+ in their definition—were
not directly described as tower extensions of topological spaces.

4.3 Theorem. Let (T,V) be a Set-monad factoring coherently through Sup, and suppose
that V is completely distributive. If Alg(T,V) denotes the category of lax algebras associated
to the Kleisli extension T

M
, then Alg(T,V) and KlAlg(T,V) are concretely isomorphic.

More precisely, to a (T,V)-algebra structure r : TX 9 X can be associated a V-tower
αr = (αa

r : X → TX)a∈V defined by

αa
r(y) :=

∨

{x | a ≤ r(x, y)} ,

and to a V-tower α = (αa : X → TX)a∈V can be associated a (T,V)-algebra structure
rα : TX 9 X given by

rα(x, y) :=
∨

{a ∈ V | x ≤ αa(y)} .

This correspondence yields two concrete functors

F : Alg(T,V) → KlAlg(T,V) and G : KlAlg(T,V) → Alg(T,V)

that are inverses of each other.
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Proof. To prove that F is well-defined, consider a (T,V)-algebra structure r : TX 9 X. In
order to verify (K0) for αr, let y ∈ X, and recall that ρbr(y) = {x ∈ TX | b ≤ r(x, y)} (where
b ∈ V), so we have αb

r(y) =
∨

ρbr(y). If A ⊆ V, then by continuity of r, any c ∈ A satisfies

c ≤ r(
∨

ρcr(y), y) ≤ r(
∧

b∈A

∨

ρbr(y), y) ,

so that a =
∨

c∈A c ≤ r(
∧

b∈A αb
r(y), y), and

∧

b∈A αb
r(y) ≤ αa

r(y); equality follows, since a ≤ b
yields αb

r ≤ αa
r for all a, b ∈ V.

Reflexivity of r immediately implies (K1). To verify (K2) it suffices to show that a ⊗ b ≤
r(αa

r ◦α
b
r(y), y) for all a, b ∈ V. For this, remark first that r ·αb

r ≥ (bX ∧ 1X), so T
M
(r · αa

r) ≥
(aTX ∧ 1TX) by Proposition 3.3. Therefore,

r(mX · Tαa
r · α

b
r(y), y) ≥ T

M
r(Tαa

r · α
b
r(y), α

b
r(y))⊗ r(αb

r(y), y)

= T
M
(r · αa

r)(α
b
r(y), α

b
r(y))⊗ (r · αb

r)(y, y) ≥ a⊗ b

by transitivity of r. Finally, if f : (X, r) → (Y, s) is a morphism of lax algebras, then
r(x, y) ≤ s(Tf(x), f(y)) implies that Tf · αa

r(y) ≤ αa
s · f(y) for all a ∈ V.

Consider now a V-tower α = (αa : X → TX)a∈V. To verify that G is well-defined, we first
need to prove the equality αrα = α. For this, let a ∈ V, y ∈ X, and set A = {x ∈ TX | a ≤
∨

Bx}, where Bx = {b ∈ V | x ≤ αb(y)}, so that αa
rα
(y) =

∨

A. On one hand, x = αa(y) is in
A (since a is in Bx), so α ≤ αrα . On the other hand, if c ∈ V is such that c ≺ a, and x ∈ A,
then by complete distributivity of V there exists b ∈ Bx with c ≤ b. Therefore, for any x ∈ A
we have x ≤ αc(y), so x ≤

∧

c≺a α
c(y) = αa(y) by (K ′

0). This implies αrα ≤ α, as required.

Reflexivity of rα is an immediate consequence of (K1). For transitivity, note that if b ∈ V,
then

mX ·mTX · T (ηTX · ρarα) = mX · T (mX · ηTX · ρarα) = mX · Tαa
rα

,

so that T
M
rα(X, y) ≤

∨

{a ∈ V, |mX(X) ≤ mX · Tαa(y)} because αrα ≤ α. By definition of
rα(y, z), we have

T
M
rα(X, y) ⊗ rα(y, z) ≤

∨

{a⊗ b |mX(X) ≤ αa ◦ αb(z)} ≤ rα(mX(X), z)

by (K2). Now, let f : (X,α) → (Y, β) be a morphism, and suppose that Tf ·αa(y) ≤ βa ·f(y)
for all a ∈ V; this implies that {a ∈ V | x ≤ αa(y)} ⊆ {a ∈ V |Tf(x) ≤ βa · f(y)}, and
consequently rα(x, y) ≤ rβ(Tf(x), f(y)).

The proof that rαr = r is quite similar to that of αrα = α. Indeed, let x ∈ TX, and
y ∈ X. Consider A = {a ∈ V | x ≤

∨

Ba} where Ba = {y ∈ TX | a ≤ r(y, y)}, so that
rαr(x, y) =

∨

A. On one hand, we observe that a = r(x, y) is in A (since x is in Ba), so
r ≤ rαr . On the other hand, if a ∈ V is such that x ≤

∨

Ba, then by continuity of r we have
that a ≤ r(

∨

Ba, y) ≤ r(x, y), so rαr ≤ r. This shows that GF = Id. Since αrα = α implies
that FG = Id, we conclude that G is an isomorphism with inverse F .

4.4 Remark. The previous theorem yields another presentation of the category App ∼=
Alg(F,R+) of approach spaces [12], and suggests a new notion of “approach system of neigh-
borhoods”.
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5 V-valued closure spaces

In [14], it was shown that the category Cls of closure spaces could be seen as a category
of (P,2)-algebras. However, since Top ∼= Alg(F,2) is a full subcategory of Cls, it would
be useful to describe Cls as a lax algebra of the form Alg(D,2), with the filter monad F

appearing as a submonad of D. The aim of this Section is to provide such a description.

5.1 The up-set monad. An up-set x on X is a set of subsets of X such that for any
A,B ⊆ X, we have

A ⊆ B and A ∈ x =⇒ B ∈ x .

The set DX of up-sets on X is equipped with the order given by reverse inclusion:

x ≤ y ⇐⇒ x ⊇ y .

In fact, DX is a complete lattice, with supremum obtained via intersection, and infimum via
union. There is only one up-set containing the empty set, namely the set PX of subsets of
X, which is also the bottom element of DX. On the other hand, the empty set is the top
element of DX.

The up-set functor D assigns to a set X the set DX of up-sets on X, and sends a map
f : X → Y to Df : DX → DY defined by

B ∈ Df(x) ⇐⇒ f−1(B) ∈ x ,

where x ∈ DX. The up-set monad D is the triple (D, e,m), where e : Id → D andm : D2 → D
are the natural transformations whose components at X are given by

A ∈ eX(x) ⇐⇒ x ∈ A and A ∈ mX(X) ⇐⇒ A♯ ∈ X ,

where A♯ = {x ∈ DX |A ∈ x}, x ∈ X and X ∈ D2X. It follows immediately from this
definition that the filter monad is a submonad of D.

In view of Theorem 4.3, we point out that D factors coherently through Sup.

5.2 Remark. If V is completely distributive, then Theorem 4.3 allows us to describe the
category of (T,V)-algebras associated to the Kleisli extension T

M
of T , without having to

actually compute T
M
. However, it is not difficult to verify that in the present case the Kleisli

extension of D is given by

D
M
r(x, y) =

∧

B∈y

∨

A∈x

∧

x∈A

∨

y∈B

r(x, y),

for a V-matrix r : X 9 Y , and x, y ∈ DX.

5.3 V-valued closure operators. The objects of the category Cls(V) are pairs (X, c),
where X is a set and c : PX × X → V is a V-valued closure operator (called a closeness
operator in [14]), i.e. a map satisfying:

(C1) x ∈ A =⇒ k ≤ c(A, x) ,

(C2) A ⊆ B =⇒ c(A, x) ≤ c(B,x) ,
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(C3) a⊗ c(ca[A], x) ≤ c(A, x) ,

where x ∈ X, A,B ⊆ X, a ∈ V and ca[A] := {x ∈ X | a ≤ c(A, x)}. The pair (X, c) is
then a V-closure space. A morphism of V-closure spaces f : (X, c) → (Y, d) is a Set-map
f : X → Y satisfying c(A, x) ≤ d(f(A), f(x)). Recall that if V = 2, then a closure operator
γ : PX → PX may be defined via

x ∈ γ(A) ⇐⇒ c(A, x) = ⊤ ;

in fact, this equivalence yields a concrete isomorphism between Cls(2) and the category Cls

of closure spaces.

5.4 V-graded closure operators. Suppose that V is completely distributive. A V-graded
closure operator on X is a family γ = (γa : PX → PX)a∈V of operators satisfying:

(Γ1) A ⊆ γa(A) for all a ≤ k ,

(Γ2) A ⊆ B implies γa(A) ⊆ γa(B) ,

(Γ3) γb · γa(A) ⊆ γa⊗b(A) ,

(Γ4) γa(A) =
⋂

b≺a γ
b(A) ,

for all A,B ⊆ X, and a, b ∈ V. A morphism f : (X, (γa)a∈V) → (Y, (δa)a∈V) is a Set-
map f : X → Y satisfying f(γa(A)) ⊆ δa(f(A)) for all a ∈ V. For convenience, the pair
(X, (γa)a∈V) is also called a V-closure space, and the corresponding category denoted by
Cls(V) (this abuse is justified by the following proposition).

5.5 Proposition. If V is completely distributive, then the category of V-closure spaces given
by V-valued closure operators is concretely isomorphic to the category of V-closure spaces
given by V-graded closure operators.

Proof. Suppose first that (X, c) satisfies (C1) to (C3), and set γa(A) := ca[A] for A ∈ PX.
Then (C1) clearly implies (Γ1), (C2) implies (Γ2), and it is not hard to see that (C3) implies
(Γ3). For (Γ4), observe on one hand that b ≺ a implies γa(A) ⊆ γb(A), so γa(A) ⊆

⋂

b≺a γ
b(A).

On the other hand, if x ∈
⋂

b≺a γ
b(A), then b ≤ c(A, x) for all b ≺ a, so that a ≤ c(A, x), as

required. If f : (X, c) → (Y, d) satisfies c(A, x) ≤ d(f(A), f(x)) for all A ⊆ X, and x ∈ X,
then x ∈ γa(A) implies f(x) ∈ δa(f(A)), where δa(B) := da[B].

For a pair (X, (γa)a∈V) satisfying (Γ1) to (Γ4), set c(A, x) :=
∨

{a ∈ V |x ∈ γa(A)}. Then
(Γ1) immediately implies (C1), and (Γ2) implies (C2). Let a ∈ V, and remark that ca[A] =
γa(A) by using complete distributivity of V and (Γ4). Thus, a⊗ c(ca[A], x) =

∨

{a ⊗ b |x ∈
γb · γa(A)} ≤ c(A, x) by (Γ3). Finally, if f : (X, (γa)a∈V) → (Y, (δa)a∈V) satisfies f(γa(A)) ⊆
δa(f(A)) for all a ∈ V, then it follows that c(A, x) ≤ d(f(A), f(x)), where d is the V-valued
closure operator assigned to (δa)a∈V.

The fact that these correspondences are inverses of one another has been proved partially in
the previous paragraph, and the remaining part is clear.

5.6 Proposition. If V is completely distributive, then the category of Kleisli (D,V)-algebras
is concretely isomorphic to the category Cls(V) of V-closure spaces.
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More precisely, a V-tower α = (αa : X → DX)a∈V and a V-graded closure operator γ =
(γa : PX → PX)a∈V determine each other via

x ∈ γa(A) ⇐⇒ Ac /∈ αa(x) ,

where A ⊆ X, and Ac denotes the complement of A in X.

Proof. Let α = (αa : X → DX)a∈V be a V-tower, and define γα = (γaα : PX → PX)a∈V
by γaα(A) := {x ∈ X |Ac /∈ αa(x)}, where a ∈ V, and A ⊆ X. Since α satisfies (K0) and
(K1), we have that x ∈ A whenever A ∈ αa(x) and a ≤ k. Thus, if x ∈ A, then x /∈ Ac, so
Ac /∈ αa(x) if a ≤ k, which proves (Γ1). If A ⊆ B and a ∈ V, x ∈ X are such that Ac /∈ αa(x),
then Bc ⊆ Ac implies that Bc /∈ αa(x) because αa(x) is an up-set, so we have (Γ2). To prove
(Γ3), notice that for a, b ∈ V and x ∈ X,

A ∈ αa ◦ αb(x) ⇐⇒ A♯ ∈ Dαa · αb(x) ⇐⇒ (αa)−1(A♯) ∈ αb(x) .

Suppose now that (γaα(A))
c /∈ αb(x). Since (γaα(A))

c = {y ∈ X |Ac ∈ αa(y)} = (αa)−1((Ac)♯),
we have that Ac /∈ αa⊗b(x), as required. For (Γ4), we first note that if b ≺ a, then αa ≤ αb,
which implies that γaα(A) ⊆ γbα(A) for all A ⊆ X. Thus, on one hand, we have γaα(A) ⊆
⋂

b≺a γ
b
α(A). On the other hand, if x ∈

⋂

b≺a γ
b
α(A), then Ac /∈ αb(x) for all b ≺ a. By

(K ′
0), we have Ac /∈

∧

b≺a α
b(x) = αa(x), which proves (Γ4). If f : (X,α) → (Y, β) satisfies

Df ·αa ≤ βa · f for all a ∈ V, then x ∈ γaα(A) ⊆ γaα(f
−1(f(A))), implies that (f−1(f(A)))c =

f−1(f(A)c) /∈ αa(x), so f(A)c /∈ βa(f(x)), which shows that f is a morphism of V-closure
spaces.

Suppose now that γ = (γa : PX → PX)a∈V is a V-graded closure operator, and set αa
γ(x) :=

{A ∈ PX |x /∈ γa(Ac)}. To prove (K1), let a ∈ V be such that a ≤ k, and suppose that
A ∈ αa

γ(x). This implies that x /∈ γa(Ac), so x /∈ Ac, and eX(x) ≤ αa
γ(x). To verify (K2),

recall from the previous paragraph that for a, b ∈ V, we have A ∈ αa
γ ◦ αb

γ(x) if and only

if {y ∈ X |A ∈ αa
γ(y)} ∈ αb

γ(x). This last condition is equivalent to γa(Ac)c ∈ αb
γ(x),

or x /∈ γb · γa(Ac), which yields A ∈ αa⊗b
γ (x), as required. Let now f : (X, (γa)a∈V) →

(Y, (δa)a∈V) be a morphism of V-closure spaces. Then by using that f(γa(f−1(Ac))) ⊆
δa(f(f−1(Ac))) ⊆ δa(Ac), we observe that A ∈ αa

δ · f(x) implies f(x) /∈ δa(Ac), so x /∈
γa(f−1(Ac)) = γa(f−1(A)c), and f−1(A) ∈ (αγ)

a(x). Therefore, A ∈ αa
δ (f(x)) yields A ∈

Df(αγ)
a(x), and f is a morphism of Kleisli (T,V)-algebras.

To show that the previous correspondences yield an isomorphism, note that

γaαγ
(A) = {x ∈ X |x ∈ γa(A)} = γa(A) ,

for all a ∈ V, and A ⊆ X. Furthermore,

αa
γα(x) = {A ∈ PX |A ∈ αa(x)} = αa(x) ,

for all a ∈ V, and x ∈ X, so we are done.

5.7 Remark. In the case V = 2, the Kleisli algebras present closure spaces by way of
their “neighborhood systems”, where the neighborhood of a point x ∈ X with respect to a
closure operator γ : PX → PX is given by N (x) = {A ⊆ X |x ∈ γ(Ac)c}. Of course, this
immediately leads us to the definition of an interior operator on a set X, and it is well known
that the category of closure spaces may also be described by such operators.
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5.8 Corollary. If V is completely distributive, then

Alg(D,V) ∼= Cls(V) ,

where Alg(D,V) is the category of (D,V)-algebras associated to the Kleisli extension of D.

Proof. This is a direct consequence of the previous proposition and Theorem 4.3. Note that
the complete distributivity condition on V allows us to treat a number of isomorphisms in
one stroke, but it is not necessarily the most efficient hypothesis for each one. For example,
Schubert proved a similar result ([13], 4.4.2) by only assuming that k = ⊤.

5.9 Remark. In the case V = 2, the corollary suggests that up-sets might play the role of
filters in a convergence theory for closure spaces. However, other candidates appear in the
literature, such as the p-stacks of [11], or the rasters of [8]. Nonetheless, in the present context
all these concepts are very similar. In the case V = 2 for example, whenever α : X → DX
satisfies eX ≤ α, then the intersection of all elements of α(x) is non-empty, so that α(x) is
both a p-stack and a raster (as long as the empty set is also considered to be such a structure),
and the structures of the Kleisli D-algebras restrict accordingly.

6 Many-valued topologies

6.1 The L-valued filter monad. (See [10]) Let L be a complete lattice provided with a
binary operation ∗ that is monotone in both variables (in particular, any quantale V is such
a lattice with its binary operation given by ⊗; better yet, any complete lattice has a binary
operation given by infimum). There is an induced order on the set LX of maps from X to L

defined by
A ≤ B ⇐⇒ for all x ∈ X, we have A(x) ≤ B(x) ,

where A,B ∈ LX . The top and bottom elements of L are denoted by ⊤ and ⊥, and those of
LX by ⊤X and ⊥X respectively. An L-valued filter on X is a map f : LX → L satisfying the
following conditions for A,B ∈ LX :

(F1) f(⊤X) = ⊤ ,

(F2) A ≤ B implies f(A) ≤ f(B) ,

(F3) f(A) ∗ f(B) ≤ f(A ∗B) .

The set of all L-valued filters on X is denoted by F
L
X. Of course, in the case L = 2, we get

the usual definition of filters, so that F
2
X = FX.

The L-valued filter functor F
L
assigns to a set X the set F

L
X, and sends a map f : X → Y

to F
L
f : F

L
X → F

L
Y defined by

[F
L
f(f)](A) = f(A · f),

where A ∈ LY , and f ∈ F
L
X. The L-valued filter monad F

L
is the triple (F

L
, e,m), where

e : Id → F
L
and m : F 2

L
→ F

L
are the natural transformations whose components at X are

obtained via
[eX(x)](A) = A(x) and [mX(F)](A) = F(evA) ,
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where A ∈ LX , F ∈ F 2
L
X, and evA : F

L
X → L is given by evA(f) = f(A). The order on F

L
X

is defined by
f ≤ g ⇐⇒ g(A) ≤ f(A) for all A ∈ LX .

With this order, F
L
is a complete lattice, and it is easily checked that F

L
factors coherently

through Sup (see also [10], Proposition 2.4.2.3).

The category of Kleisli F
L
-algebras is called the category of L-valued topological spaces (or

fuzzy topological spaces, see [7]), and is denoted by Top(L). Furthermore, if (X,α) is a Kleisli
F
L
-algebra, then for each x ∈ X, the L-valued filter α(x) is called the L-valued neighborhood

system of x.

6.2 Remark. The previous definition of the L-valued filter monad differs in two points with
the one given in [10]. First, we do not ask that filters f ∈ F

L
X satisfy f(⊥X) = ⊥. This

will not be a problem in using results of op.cit., since L-valued topologies are defined via
neighborhoods, and a neighborhood f of x must satisfy f(A) ≤ A(x) for all A ∈ LX ; in
particular f(⊥X) = ⊥, so the resulting L-valued neighborhood systems are the same. Second,
the order on F

L
X is chosen as opposite to the one in the cited reference. In particular,

with the present definition, F
L
X is a complete lattice rather than an “almost complete join-

semilattice”.

6.3 Proposition. The category of (F
L
,V)-algebras associated to the Kleisli extension of F

L

is isomorphic to the category of L-valued topologies:

Alg(F
L
,2) ∼= Top(L) .

Proof. This is a direct consequence of Propositions 2.9 and 3.3.
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