
ar
X

iv
:m

at
h/

06
06

58
6v

1 
 [

m
at

h.
Q

A
] 

 2
3 

Ju
n 

20
06

AN EXPLICIT FORMULA FOR A STRONG CONNECTION

E.J. BEGGS & TOMASZ BRZEZIŃSKI

Abstract. An explicit formula for a strong connection form in a principal ex-
tension by a coseparable coalgebra is given.

1. In the studies of geometry of non-commutative principal bundles or coalgebra-
Galois extensions (cf. [7]) an important role is played by the notion of a strong
connection (for the universal differential structure) first introduced in the context
of Hopf-Galois extensions in [10]. The existence of a strong connection guarantees
that a bundle associated to a coalgebra-Galois extension is a (finitely generated
and) projective module, hence it is (a module of sections on) a vector bundle in
the sense of non-commutative geometry (cf. [9]). Furthermore, a strong connection
form gives rise to a Chern-Galois character [6], a mapping from the Grothendieck
group of isomorphism classes of finite dimensional corepresentations of the structure
coalgebra to the cyclic homology of the base algebra (see [3] for the most general,
relative formulation).

The existence of a strong connection in a Hopf-Galois extension is assured by
the classical Schneider Theorem I [15]. This states that a free coaction of a Hopf
algebra with bijective antipode on its injective comodule algebra determines a Hopf-
Galois extension with a strong connection. This theorem has been extended to
coalgebra (entwined) extensions with a coseparable colagebra [4, Theorem 4.6] [14,
Theorem 5.9]. In all these cases the proof of existence is not a constructive proof:
the existence follows by general arguments, but no explicit form of connection is
given. On the other hand, the knowledge of this form is needed for construction
and calculation of Levi-Civitá connections and projectors for associated bundles,
and the Chern-Galois characters. Recently, several examples of strong connections
have been constructed (cf. [8], [11], [13], [12]) or their form conjectured [1], but no
general procedure has been established. The aim of this note is to give a direct
proof of a Schneider type theorem for coalgebra extensions in which the connection
is explicitly given.

We work over a field k, unadorned tensor product is over k. For a vector space
V , the identity map is denoted by the same symbol V . All algebras are associative
and unital. In an algebra A, 1 denotes the unit both as an element and as a k-
linear map k → A and µ : A⊗A → A denotes the product. In a coalgebra C,
the coproduct is denoted by ∆ and counit by ε. We denote coactions of C on a
vector space A by ̺A (the right coaction) and A̺ (the left coaction). The following
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Sweedler’s notation is used: ∆(c) = c(1)⊗c(2), ̺
A(a) = a(0)⊗a(1),

A̺(a) = a(−1)⊗a(0)
(summation suppressed).

2. In this section a strong connection form is explicitly constructed from a cointegral
in a coseparable coalgebra. First we recall the definition of a non-commutative
object which captures most of the geometric information carried by (locally trivial)
principal bundles.

Definition 1 (cf. [6], Definition 2.1). Let C be a coalgebra and A an algebra and a
right C-comodule via ̺A : A→ A⊗C. Let

B = AcoC := {b ∈ A | ̺A(ba) = b̺A(a), ∀a ∈ A},

denote the subalgebra of C-coinvariants of A. The inclusion of algebras B ⊆ A is
called a principal C-extension if

(a) can : A⊗BA→A⊗C, a⊗a′ 7→ a̺A(a′) is bijective (the Galois condition);

(b) A is C-equivariantly projective as a left B-module, i.e. there exists a left B-
module, right C-comodule section of the product B⊗A→ A;

(c) ψ : C⊗A→A⊗C, c⊗a 7→ can(can−1(1⊗c)a) is bijective;

(d) there is a group-like element e ∈ C such that ̺A(a) = ψ(e⊗a), for all a ∈ A.

By [5, Theorem 3.5], the map ψ defined in Definition 1(c) is an example of a
right-right entwining map, i.e. it is a map ψ : C ⊗ A → A ⊗ C, which, satisfies the
following relations:

ψ ◦ (C ⊗µ) = (µ⊗C) ◦ (A⊗ψ) ◦ (ψ⊗A), ψ ◦ (C ⊗ 1) = 1⊗C,

(A⊗∆) ◦ ψ = (ψ⊗C) ◦ (C ⊗ψ) ◦ (∆⊗A), (A⊗ ε) ◦ ψ = ε⊗A.

Consequently, the inverse of ψ is a left-left entwining map, i.e. the following relations

ψ−1 ◦ (µ⊗C) = (C ⊗µ) ◦ (ψ−1⊗A) ◦ (A⊗ψ−1), C ⊗ 1 = ψ−1 ◦ (1⊗C),

(1) (∆⊗) ◦ ψ−1 = (C ⊗ψ−1) ◦ (ψ−1⊗C) ◦ (A⊗∆), A⊗ ε = (ε⊗A) ◦ ψ−1.

are satisfied.
Furthermore, A is a right entwined module, i.e. the map ψ makes the C-coaction

̺A compatible with the product in the sense that, for all a, ã ∈ A,

(2) ̺A(aã) = a(0)ψ(a(1)⊗ã).

Since ψ is bijective, A is also a left C-comodule with the coaction

(3) ∀a ∈ A, A̺(a) = ψ−1(a̺A(1)).

In view of condition (d) in Definition 1, in the case of a principal extension this left
coaction comes out explicitly as ̺A(a) = ψ−1(e⊗a). With this coaction A is a left
entwined module, i.e., for all a, ã ∈ A, A̺(aã) = ψ−1(a⊗ã(−1))ã(0). Note that if C
is a Hopf algebra with a bijective antipode S and A is a right C-comodule algebra,
then the map ψ in Definition 1(c) and its inverse come out as

ψ(c⊗a) = a(0)⊗ca(1), ψ−1(a⊗c) = cS−1a(1)⊗a(0).
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Hence, by setting e = 1C we obtain that ̺A(a) = ψ(1C⊗a) and
A̺(a) = S−1a(1)⊗a(0).

In general, we make the following

Definition 2 (cf. Definition 2.2 in [3]). Let C be a coalgebra and let A be an algebra
and a right C-comodule. An inclusion of algebras B ⊆ A is called an entwined C-
extension if B is a subalgebra of coinvariants B = AcoC and there exists a bijective
right-right entwining map ψ : C⊗A → A⊗C such that compatibility condition (2)
is satisfied.

Note that the compatibility condition (2) imply that the right coaction in an
entwined extension is given by

(4) ∀a ∈ A, ̺A(a) = 1(0)ψ(1(1)⊗a).

In particular, conditions (a) and (c) in Definition 1 imply that a principal exten-
sion is an example of an entwined extension. The condition (c) in Definition 1 is
equivalent to the existence of a strong connection form.

Definition 3. Let B ⊆ A be an entwined C-extension and let can be the lifted
canonical map,

can : A⊗A→A⊗C, a⊗a′ 7→ a̺A(a′).

A k-linear map ℓ : C → A⊗A satisfying the following properties:

(a) can ◦ ℓ = 1A ⊗ C;

(b) (ℓ⊗ C) ◦∆ = (A⊗ ̺A) ◦ ℓ;

(c) (C ⊗ ℓ) ◦∆ = (A̺⊗ A) ◦ ℓ,

is called a strong connection form or a strong connection lifting. Here A̺ is the
induced left coaction as in (3).

Existence of a strong connection form ℓ in an entwined C-extension B ⊆ A implies
that it is a Galois extension, i.e. the canonical map can is bijective, and that A is
C-equivariantly projective as a left B-module (cf. [3, Theorem 3.7, Corollary 3.8]
for a detailed proof in the most general case). Explicitly, the splitting s : A→ B⊗A
of the product is given by s(a) = a(0)ℓ(a(1)). If, in addition, there is a group-like
element e ∈ C such that ̺A(1) = 1⊗e, then an entwined extension with a strong
connection form is a principal extension. In this case, ℓ can always be chosen in such
a way that ℓ(e) = 1⊗1. The existence of a group-like element e is needed in order
to have a bijective correspondence between strong connection forms ℓ and strong
covariant differentials (and also to make the universal differential calculus on A a
C-covariant calculus, cf. discussion in [8, Sections 4,5]).

Recall that a coalgebra C is said to be coseparable if the coproduct has a retraction
in the category of C-bicomodules, equivalently, if there exists a k-linear map δ :
C⊗C → k with the following properties, for all c, c′ ∈ C,

(5) δ(c(1)⊗c(2)) = ε(c), c(1)δ(c(2)⊗c
′) = δ(c⊗c′(1))c

′

(2).

Such a map δ is called a cointegral. For example, if C is a coalgebra spanned by a set
of group-like elements xi, then C is a coseparable with a cointegral δ(xi⊗xj) = δij.
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If C is a Hopf algebra, then it is coseparable if and only if there exists a normalised
left (or right) integral on C, i.e. a linear map λ : C → k such that, for all c ∈ C,

c(1)λ(c(2)) = λ(c), λ(1) = 1.

The corresponding cointegral is δ(c⊗c′) = λ (cS(c′)) . Conversely, given a cointegral
δ on a Hopf algebra C, the left integral is obtained as λ(c) = δ(c⊗1). Since, by
the Woronowicz theorem [16, Theorem 4.2] every compact quantum group has an
integral (or a Haar measure) most of the coalgebras which are of interest in non-
commutative differential geometry are coseparable.

The main result of this note is contained in the following theorem, which gives
the explicit form of a strong connection.

Theorem 4. Let B ⊆ A be an entwined C-extension. Assume that C is a cosepa-
rable coalgebra with a cointegral δ : C⊗C → k and that the (lifted) canonical map

can : A⊗A→A⊗C, a⊗a′ 7→ a̺A(a′)

is surjective. Write σ : C → A⊗A for a k-linear map such that can ◦ σ = 1⊗C and
define maps γ : C⊗A→ A and α : A⊗C → A by

γ = (δ⊗A) ◦ (C⊗A̺), α = (A⊗δ) ◦ (̺A⊗C).

Then

(6) ℓ = (γ⊗α) ◦ (C⊗σ⊗C) ◦ (∆⊗C) ◦∆,

is a strong connection form.
Furthermore, if ̺A(1) = 1⊗e, then A is a principal C-extension.

Proof. Using the definition of a cointegral, one easily checks that the map γ is
left C-colinear, where C⊗A as understood as a left C-comodule via ∆⊗A, and α is
right C-colinear, where A⊗C is a right C-comodule via A⊗∆. By the colinearity of
γ and α the map ℓ is C-bicolinear.

To prove that ℓ is a section of the map can we start with the following simple
calculation, for all a, ã ∈ A,

ψ−1(aã(0)⊗ã(1)) = ψ−1
(

a1(0)ψ(1(1)⊗ã)
)

= ψ−1(a1(0)⊗1(1))ã = a(−1)⊗a(0)ã.

Here the first and last equalities follow from the definitions of the right and left
C-coactions on A (cf. (4), (3)), and the second equality follows by (1) and by the
fact that ψ−1 is the inverse of ψ. Thus we obtain the equality

(7) ψ−1(aã(0)⊗ã(1))⊗ã(2) = a(−1)⊗a(0)ã(0)⊗ã(1).

For any c ∈ C, write explicitly c(1)⊗c(2) := σ(c), so that c(1)c(2)(0)⊗c
(2)

(1) = 1⊗c.
This leads to the equality

c(1)⊗c(2)
(1)c(2)

(2)
(0)⊗c(2)

(2)
(1)⊗c(3) = c(1)⊗1⊗c(2)⊗c(3).

Apply (C⊗ψ−1⊗C⊗∆) ◦ (C⊗A⊗∆⊗C) and then use (7) on the left hand side and
(1) on the right hand side to obtain

c(1)⊗c(2)
(1)

(−1)⊗c(2)
(1)

(0)c(2)
(2)

(0)⊗ c(2)
(2)

(1)⊗c(3)⊗c(4) = c(1)⊗c(2)⊗1⊗c(3)⊗c(4)⊗c(5).
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Now apply δ⊗A⊗δ⊗C and use the definitions of maps γ and α in terms of δ on the
left hand side, and the properties of the cointegral (5) on the right, to conclude that

γ(c(1)⊗c(2)
(1))α(c(2)

(2)⊗c(3))⊗c(4) = 1⊗c.

By the right C-colinearity of α this implies that can ◦ ℓ = 1⊗C as required. In view
of the discussion that follows Definition 3, the second assertion is obvious. ⊔⊓

Note that if ̺A(1) = 1⊗e, then can(1⊗1) = 1⊗e, hence the linear map σ can
always be normalised so that σ(e) = 1⊗1 by making the linear change

σ 7→ σ + 1⊗1ε− σ(e)ε.

The strong connection form obtained with such normalised σ is also normalised, i.e.
ℓ(e) = 1⊗1. Furthermore, if σ is right (resp. left) C-colinear, then the formula (6)
reduces to

ℓ = (γ⊗A) ◦ (C⊗σ) ◦∆, (resp. ℓ = (A⊗α) ◦ (σ⊗C) ◦∆).

Thus, if σ is C-bicolinear, then ℓ = σ. This gives an effective way of testing whether
the map σ is bicolinear.

3. The main usefulness of formula (6) lies in the fact that usually the map σ in
Theorem 4 is already obtained as the first step of checking whether a given extension
is a Galois extension. Furthermore, in geometrically most interesting cases, the
coalgebra C is a Hopf algebra (although the coaction is not necessarily an algebra
map), for which the explicit form of the left integral (or Haar measure) is known.
As an illustration one can consider an entwined extension A(Σ4

q) ⊆ A(S7
q ) by a

coalgebra A(SUq(2)) constructed in [2]. Here A(Σ4
q) is the algebra of functions on a

quantum four-sphere, A(S7
q ) is the algebra of functions on a quantum seven-sphere

(obtained as a quotient of the quantum group U(4)), while A(SUq(2)) is the algebra
of functions on the quantum group SU(2). The k-linear splitting σ required in
Theorem 4 is constructed explicitly in [1, Equations (11)] (as a part of a complete
proof that this is a coalgebra-Galois extension), while the formula for the left integral
on A(SUq(2)) is derived in [16, Appendix A1]. Once these two are combined with
each other, finding a strong connection ℓ (6) is a matter of straightforward albeit
tedious calculations. In view of the discussion at the end of §2, this provides one also
with a means of checking if [1, Equations (11)] indeed define a strong connection
form as conjectured at the end of [1].

An example of quantum principal bundles is provided by quantum homogeneous
spaces. In this case A is a Hopf algebra and a quantum homogeneous space is defined
as a subalgebra B ⊆ A such that ∆(B) ⊆ A⊗B. The coalgebra C is defined as a
quotient C = A/B+A, where B+ = B ∩ ker ε, while the surjection π : A → C
induces left and right coactions of C on A via (π⊗A) ◦ ∆ and (A⊗π) ◦ ∆. If the
antipode in A is bijective, this produces an entwined extension AcoC ⊆ A (and
B = AcoC for example if there is a strong connection). By [8, Proposition 4.4], left
invariant strong connection forms are in bijective correspondence with C-bicolinear
maps ι : C → A such that π ◦ ι = C. In view of Theorem 4 (or directly using (5)),
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if C is a coseparable coalgebra with a cointegral δ, then any k-linear section i of π
gives rise to such a C-bicolinear section ι by the formula, for all c ∈ C,

(8) ι(c) = δ
(

c(1)⊗π(i(c(2))(1))
)

i(c(2))(2)δ
(

π(i(c(2)))(3)⊗c(3)
)

.

For example, [8, Proposition 6.1] gives an explicit formula for such a k-linear section
of π in the case of a quantum Hopf fibration over a general quantum two-sphere
and hence a C-bicolinear map such as in [8, Proposition 6.3] can be obtained by the
above averaging procedure (8).

Finally, the explicit formula (6) can be used to calculate Chern-Galois characters
for principal extensions with coseparable coalgebras. The components of the Chern-
Galois character are defined in [6, Corollary 3.2] in terms of the strong connection
form ℓ. However, settling the question whether the explicit knowledge of ℓ in terms
of a cointegral provides one with an effective method of gaining information about
a principal extension seems to require a case by case analysis. This is hoped to be
attempted elsewhere.
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