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Abstract

In this paper we introduce and investigate top (bi)comodules of corings, that can
be considered as dual to top (bi)modules of rings. The fully coprime spectra of such
(bi)comodules attains a Zariski topology, defined in a way dual to that of defining
the Zariski topology on the prime spectra of (commutative) rings. We restrict our
attention in this paper to duo (bi)comodules (satisfying suitable conditions) and
study the interplay between the coalgebraic properties of such (bi)comodules and
the introduced Zariski topology. In particular, we apply our results to introduce a
Zariski topology on the fully coprime spectrum of a given non-zero coring considered
canonically as duo object in its category of bicomodules.

1 Introduction

Several papers considered the so called top modules, i.e. modules (over commutative
rings) whose spectrum of prime submodules attains a Zariski topology, e.g. [Lu1999],
[MMS1997], [Zha1999]. Dually, we introduce and investigate top (bi)comodules for corings
and study their properties (restricting our attention in this first paper to duo (bi)comodules
satisfying suitable conditions). In particular, we extend results of [NT2001] on the topology
defined on the spectrum of (fully) coprime subcoalgebras of a given coalgebra over a base
field to the general situation of a topology on the fully coprime spectrum of a given non-zero
bicomodule over a given pair of non-zero corings.

Throughout, R is a commutative ring with 1R 6= 0R and A,B are R-algebras. With
locally projective modules, we mean those in the sense of [Z-H1976] (see also [Abu2006]).
We denote by C = (C,∆C, εC) a non-zero A-coring with AC flat and by D = (D,∆D, εD) a
non-zero B-coring with DB flat, so that the categories DMC of (D, C)-bicomodules, MC of
right C-comodules and DM of left D-comodules are Grothendieck.

∗MSC (2000): 16W30, 16N60, 16D80
Keywords: fully coprime (bi)comodules, fully cosemiprime (bi)comodules, fully coprime corings, fully
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After this brief introduction, we include in the second section some preliminaries and
extend some of our results in [Abu2006] on fully coprimeness in categories of comodules to
fully coprimeness in categories of bicomodules.

In the third and main section, we introduce a Zariski topology for bicomodules. Let M
be a given non-zero (D, C)-bicomodule and consider the fully coprime spectrum

CPSpec(M) := {K | K ⊆M is a fully M-coprime (D, C)-subbicomodule}.

For every (D, C)-subbicomodule L ⊆ M, set VL := {K ∈ CPSpec(M) | K ⊆ L} and
XL := {K ∈ CPSpec(M) | K " L}. As in the case of the spectra of prime submodules
of modules over (commutative) rings (e.g. [Lu1999], [MMS1997], [Zha1999]), the class of
varieties ξ(M) := {VL | L ⊆M is a (D, C)-subbicomodule} satisfies all axioms of closed sets
in a topological space with the exception that ξ(M) is not necessarily closed under finite
unions. We say M is a top bicomodule, iff ξ(M) is closed under finite unions, equivalently
iff τM := {XL | L ⊆ M is a (D, C)-subbicomodule} is a topology (in this case we call
ZM := (CPSpec(M), τM) a Zariski topology of M). We then restrict our attention to the
case in which M is a duo bicomodule (i.e. every subbicomodule of M is fully invariant)
satisfying suitable conditions. For such a bicomodule M we study the interplay between
the coalgebraic properties of M and the topological properties of ZM .

In the fourth section we give some applications and examples. Our main application
will be to non-zero corings which turn out to be duo bicomodules in the canonical way.
We also give some concrete examples that establish some of the results in section three.

It is worth mentioning that several properties of the Zariski topology for bicomodules
and corings are, as one may expect, dual to those of the classical Zariski topology on the
prime spectrum of commutative rings (e.g. [AM1969], [Bou1998]).

This paper is a continuation of [Abu2006]. The ideas in both papers can be transformed
to investigate the notion of coprimeness in the sense of Annin [Ann2002] in categories of
(bi)comodules and define a Zariski topology on the spectrum of coprime sub(bi)comodules

of a given (bi)comodule. Moreover, different notions of primeness and coprimeness in these
papers can be investigated in categories of (bi)modules over rings, which can be seen as
bicomodules over the ground rings that should be considered with the trivial coring struc-
tures (a different approach has been taken in the recent work [Wij2006], where several
primeness and coprimeness conditions are studied in categories of modules and then ap-
plied to categories of comodules of locally projective coalgebras over commutative rings).
More generally, such (co)primeness notions can be developed in more general Grothendieck
categories. These and other applications will be considered in forthcoming papers.

2 Preliminaries

All rings and their modules in this paper are assumed to be unital. For a ring T, we
denote with Z(T ) the center of T and with T op the opposite ring of T. For basic definitions
and results on corings and comodules, the reader is referred to [BW2003]. A reference for
the topological terminology and other results we use could be any standard book in general
topology (notice that in our case, a compact space is not necessarily Hausdorff; such spaces
are called quasi-compact by some authors, e.g. [Bou1966, I.9.1.]).
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2.1. (e.g. [BW2003, 17.8.]) For any A-coring C, the dual module ∗C := HomA−(C, A)
(resp. C∗ := Hom−A(C, A)) is an A

op-rings with unity εC and multiplication

(f ∗l g)(c) :=
∑

f(c1g(c2)) (resp. (f ∗
r g)(c) :=

∑
g(f(c1)c2)).

2.2. Let M be a non-zero (D, C)-bicomodule. Then M is a (∗C,D∗)-bimodule with actions

f ⇀ m :=
∑

m<0>f(m<1>) and m ↼ g :=
∑

g(m<−1>)m<0>, f ∈
∗C, g ∈ D∗, m ∈M.

Moreover, the set DEC
M := DEndC(M)op of (D, C)-bicolinear endomorphisms of M is a

ring with multiplication the opposite composition of maps, so that M is canonically a
(∗C ⊗R D

∗op, DEC
M )-bimodule. A (D, C)-subbicomodule L ⊆M is called fully invariant, iff

it is a right DEC
M -submodule as well. We call M ∈ DMC duo (quasi-duo), iff every (simple)

(D, C)-subbicomodule of M is fully invariant. If AC and DB are locally projective, then
DMC ≃ DRatC((D∗)opM(∗C)op) =

DRatC(∗CMD∗) (the category of (D, C)-birational (∗C,D∗)-
bimodules, e.g. [Abu2003, Theorem 2.17.]).

Notation. LetM be a (D, C)-bicomodule. With L(M) (resp. Lf.i.(M)) we denote the lat-
tice of (fully invariant) (D, C)-subbicomodules ofM and with Ir(

DEC
M) (resp. I(DEC

M)) the
lattice of right (two-sided) ideals of DEC

M . With If.g.r (DEC
M) ⊆ Ir(

DEC
M) (resp. Lf.g.(M) ⊆

L(M)) we denote the subclass of finitely generated right ideals of DEC
M (the subclass

of (D, C)-subbicomodules of M which are finitely generated as (B,A)-bimodules). For
∅ 6= K ⊆M and ∅ 6= I ⊆ DEC

M we set

An(K) := {f ∈ DEC
M | f(K) = 0} and Ke(I) := {m ∈M | f(m) = 0 for all f ∈ I}.

In what follows we introduce some notions for an object in DMC :

Definition 2.3. We say that a non-zero (D, C)-bicomodule M is
self-injective, iff for every (D, C)-subbicomodule K ⊆ M, every f ∈ DHomC(K,M)

extends to some (D, C)-bicolinear endomorphism f̃ ∈ DEC
M ;

self-cogenerator, iff M cogenerates M/K in DMC ∀ (D, C)-subbicomodule K ⊆M ;
intrinsically injective, iff AnKe(I) = I for every finitely generated right ideal I ⊳r

DEC
M .

simple, iff M has no non-trivial (D, C)-subbicomodules;
subdirectly irreducible1, iff M contains a unique simple (D, C)-subbicomodule that is

contained in every non-zero (D, C)-subbicomodule ofM (equivalently, iff
⋂

06=K∈L(M)
6= 0).

semisimple, iff M = Corad(M), where Corad(M) :=
∑
{K ⊆ M | K is a simple

(D, C)-subbicomodule} (:= 0, if M has no simple (D, C)-subbicomodules).

Notation. Let M be a non-zero (D, C)-bicomodule. We denote with S(M) (Sf.i.(M)) the
class of simple (D, C)-subbicomodules ofM (non-zero fully invariant (D, C)-subbicomodules
of M with no non-trivial fully invariant (D, C)-subbicomodules). Moreover, we denote
with Maxr(

DEC
M ) (Max(DEC

M)) the class of maximal right (two-sided) ideals of DEC
M . The

Jacobson radical (prime radical) of DEC
M is denoted by Jac(DEC

M) (Prad(DEC
M )).

1Subdirectly irreducible comodules were called irreducible in [Abu2006]. However, we observed that
such a terminology may cause confusion, so we choose to change it in this paper to be consistent with the
terminology used for modules (e.g. [Wis1991, 9.11., 14.8.]).

3



2.4. Let M be a non-zero (D, C)-bicomodule. We M has Property S (Sf.i.), iff S(L) 6= ∅
(Sf.i.(L) 6= ∅) for every (fully invariant) non-zero (D, C)-subbicomodule 0 6= L ⊆ M.
Notice that if M has S, then M is subdirectly irreducible if and only if L1 ∩ L2 6= 0 for
any two non-zero (D, C)-subbicomodules 0 6= L1, L2 ⊆M.

Lemma 2.5. Let M be a non-zero (D, C)-bicomodule. If B ⊗R A
op is left perfect and AC,

DB are locally projective, then

1. every finite subset of M is contained in a (D, C)-subbicomodule L ⊆M that is finitely

generated as a (B,A)-bimodule.

2. every non-zero (D, C)-subbicomodule 0 6= L ⊆M has a simple (D, C)-subbicomodule,

so that M has Property S. If moreover, M is quasi-duo, then M has Property Sf.i..

3. Corad(M) ⊆e M (an essential (D, C)-subbicomodule).

Proof. 1. It’s enough to show the assertion for a single element m ∈M. Let ̺CM(m) =
n∑

i=1

mi⊗Aci and ̺
D
M(mi) =

ki∑

j=1

di,j⊗Bmij for each i = 1, ..., n. Since AC,DB are locally

projective, the (∗C,D∗)-subbimodule L := ∗C ⇀ m ↼ D∗ ⊆ M is by [Abu2003,
Theorem 2.17.] a (D, C)-subbicomodule. Moreover, {mi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki}
generates BLA, since

f ⇀ m ↼ g = [
n∑

i=1

mif(ci)]↼ g =
n∑

i=1

ki∑

j=1

g(di,j)mi,jf(ci) ∀ f ∈
∗C and g ∈ D∗.

2. Suppose 0 6= L ⊆M is a (D, C)-subbicomodule with no simple (D, C)-subbicomodules.
By “1”, L contains a non-zero (D, C)-subbicomodule 0 6= L1 $ M that is finitely
generated as a (B,A)-bimodule. Since L contains no simple (D, C)-subbicomodules,
for every n ∈ N we can pick (by induction) a non-zero (D, C)-subbicomodule 0 6=
Ln+1 $ Ln that is finitely generated as a B ⊗R A

op

-module. In this way we obtain
an infinite chain L1 % L2 % ... % Ln % Ln+1 % .... of finitely generated B ⊗R A

op

-
submodules of L (a contradiction to the assumption that B ⊗R A

op

is left perfect,
see [Fai1976, Theorem 22.29]). Consequently, L should contain at least one simple
(D, C)-subbicomodule. Hence M has property S. The last statement is obvious.

3. For every non-zero (D, C)-subbicomodule 0 6= L ⊆M, we have by “1” L∩Corad(M) =
Corad(L) 6= 0, hence Corad(M) ⊆e M.�

Given a non-zero (D, C)-bicomodule M, we have the following annihilator conditions.
The proofs are similar to the corresponding results in [Wis1991, 28.1.], hence omitted:

2.6. Let M be a non-zero (D, C)-bicomodule and consider the order-reversing mappings

An(−) : L(M)→ Ir(
DEC

M) and Ke(−) : Ir(
DEC

M)→ L(M). (1)
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1. An(−) and Ke(−) restrict to order-reversing mappings

An(−) : Lf.i.(M)→ I(DEC
M) and Ke(−) : I(DEC

M )→ Lf.i.(M). (2)

2. For a (D, C)-subbicomodule K ⊆ M : Ke(An(K)) = K if and only if M/K is
M-cogenerated. So, if M is self-cogenerator, then the map An(−) in (1) and its
restriction in (2) are injective.

3. If M is self-injective, then

(a) An(
n⋂

i=1

Ki) =
n∑

i=1

An(Ki) for any (D, C)-subbicomodules K1, ..., Kn ⊆ M (i.e.

An(−) in (1) and its restriction in (2) are lattice anti-morphisms).

(b) M is intrinsically injective.

Remarks 2.7. Let M be a non-zero (D, C)-bicomodule. If M is self-cogenerator and DEC
M

is right-duo (i.e. every right ideal is a two-sided ideal), then M is duo. On the otherhand,
if M is intrinsically injective and M is duo, then DEC

M is right-duo. If M is self-injective
and duo, then every fully invariant (D, C)-subbicomodule of M is also duo.

Fully coprime (fully cosemiprime) bicomodules

2.8. Let M be a non-zero (D, C)-bicomodule. For any R-submodules X, Y ⊆M we set

(X
(D,C)
:M Y ) :=

⋂
{f−1(Y ) | f ∈ AnDEC

M
(X)} =

⋂

f∈An(X)

{Ker(πY ◦ f :M →M/Y )}.

If Y ⊆M is a (D, C)-subbicomodule (and f(X) ⊆ X for all f ∈ DEC
M ), then (X

(D,C)
:M Y ) ⊆

M is a (fully invariant) (D, C)-subbicomodule. If X, Y ⊆ M are (D, C)-subbicomodules,

then we call (X
(D,C)
:M Y ) ⊆M the internal coproduct of X and Y in M.

Lemma 2.9. Let X, Y ⊆M be any R-submodules. Then

(X :CM Y ) ⊆ Ke(An(X) ◦op An(Y )), (3)

with equality in case M is self-cogenerator and Y ⊆M is a (D, C)-subbicomodule.

Definition 2.10. LetM be a non-zero (D, C)-bicomodule. We call a non-zero fully invari-
ant (D, C)-subbicomodule 0 6= K ⊆M :

fully M-coprime, iff for any fully invariant (D, C)-subbicomodules X, Y ⊆ M with

K ⊆ (X
(D,C)
:M Y ), we have K ⊆ X or K ⊆ Y ;

fully M-cosemiprime, iff for any fully invariant (D, C)-subbicomodule X ⊆ M with

K ⊆ (X
(D,C)
:M X), we have K ⊆ X ;

In particular, we call M fully coprime (fully cosemiprime), iff M is fully M-coprime
(fully M-cosemiprime).
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The fully coprime coradical

The prime spectra and the associated prime radicals for rings play an important role
in the study of structure of rings. Dually, we define the fully coprime spectra and the fully
coprime coradicals for bicomodules.

Definition 2.11. Let M be a non-zero (D, C)-bicomodule. We define the fully coprime

spectrum of M as

CPSpec(M) := {0 6= K | K ⊆M is a fully M-coprime (D, C)-subbicomodule}

and the fully coprime coradical of M as CPcorad(M) :=
∑

K∈CPSpec(M)

K (:= 0, in case

CPSpec(M) = ∅). Moreover, we set

CSP(M) := {K | K ⊆ M is a fully M-cosemiprime (D, C)-subbicomodule}.

Remark 2.12. We should mention here that the definition of fully coprime (bi)comodules
we present is motivated by the modified version of the definition of coprime modules (in the
sense of Bican et. al. [BJKN80]) as presented in [RRW2005]. (Fully) coprime coalgebras
over base fields were introduced first in [NT2001] and considered in [JMR] using the wedge
product of subcoalgebras.

2.13. Let M be a non-zero (D, C)-bicomodule and L ⊆ M a fully invariant non-zero
(D, C)-subbicomodule. Then L is called E-prime (E-semiprime), iff An(K) ⊳ DEC

M is
prime (semiprime). With EP(M) (ESP(M)) we denote the class of E-prime (E-semiprime)
(D, C)-subbicomodules of M.

The results of [Abu2006] on comodules can be reformulated (with slight modifications
of the proofs) for bicomodules. We state only two of them that are needed in the sequel.

Proposition 2.14. Let M be a non-zero (D, C)-bicomodule. If M is self-cogenerator,

then EP(M) ⊆ CPSpec(M) and ESP(M) ⊆ CSP(M), with equality if M is intrinsically

injective. If moreover DEC
M is right Noetherian, then

Prad(DEC
M) = An(CPcorad(M)) and CPcorad(M) = Ke(Prad(DEC

M));

in particular, M is fully cosemiprime if and only if M = CPcorad(M).

Proposition 2.15. Let M be a non-zero (D, C)-bicomodule and 0 6= L ⊆ M a fully

invariant (D, C)-subbicomodule. If M is self-injective, then

CPSpec(L) =Mf.i.(L) ∩ CPSpec(M) and CSP(L) =Mf.i.(L) ∩ CSP(M); (4)

hence CPcorad(L) := L ∩ CPcorad(M).

Remark 2.16. LetM be a non-zero (D, C)-bicomodule. Then every L ∈ Sf.i.(M) is trivially
a fully coprime (D, C)-bicomodule. If M is self-injective, then Sf.i.(M) ⊆ CPSpec(M)
by Proposition 2.15; hence if M has Property Sf.i., then every fully invariant non-zero
(D, C)-subbicomodule L ⊆ M contains a fully M-coprime (D, C)-subbicomodule K ⊆ L
(in particular, ∅ 6= CPSpec(L) ⊆ CPSpec(M) 6= ∅).
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3 Top Bicomodules

In what follows we introduce top (bi)comodules, which can be considered (in some
sense) as dual to top (bi)modules, [Lu1999], [MMS1997], [Zha1999]. We define a Zariski
topology on the fully coprime spectrum of such (bi)comodules in a way dual to that of
defining the classical Zariski topology on the prime spectrum of (commutative) rings.

As before, C is a non-zero A-coring and D is a non-zero B-coring with AC, DB flat.
Moreover, M is a non-zero (D, C)-bicomodule.

Notation. For every (D, C)-subbicomodule L ⊆M set

VL := {K ∈ CPSpec(M) | K ⊆ L}, XL := {K ∈ CPSpec(M) | K " L}.

Moreover, we set

ξ(M) := {VL | L ∈ L(M)}; ξf.i.(M) := {VL | L ∈ Lf.i.(M)};

τM := {XL | L ∈ L(M)}; τ f.i.M := {XL | L ∈ Lf.i.(M)}.

ZM := (CPSpec(M), τM); Zf.i.
M := (CPSpec(M), τ f.i.M ).

Lemma 3.1. 1. XM = ∅ and X{0} = CPSpec(M).

2. If {Lλ}Λ ⊆ L(M), then XP

Λ
Lλ
⊆

⋂
Λ

XLλ
⊆

⋃
Λ

XLλ
= XT

Λ
Lλ
.

3. For any L1, L2 ∈ Lf.i.(M), we have XL1+L2 = XL1 ∩ XL2 = X
(L1

(D,C)
:M L2)

.

Proof. Notice that “1” and “2” and the inclusion XL1+L2 ⊆ XL1 ∩ XL2 in (3) are obvious.
If K ∈ XL1∩XL2 , and K /∈ X

(L1
(D,C)
:M L2)

, then K ⊆ L1 or K ∈ L2 since K is fullyM-coprime,

hence K /∈ XL1 orK /∈ XL2 (a contradiction, hence XL1∩XL2 ⊆ X
(L1

(D,C)
:M L2)

). Since L2 ⊆M

is a fully invariant, we have L1 + L2 ⊆ (L1

(D,C)
:M L2), hence X

(L1
(D,C)
:M L2)

⊆ XL1+L2 and we

are done.�

Remark 3.2. Let L1, L2 ⊆ M be arbitrary (D, C)-subbicomodules. If L1, L2 ⊆ M are not
fully invariant, then it is not evident that there exists a (D, C)-subbicomodule L ⊆ M
such that XL1 ∩ XL2 = XL. So, for an arbitrary (D, C)-bicomodule M, the set ξ(M) is not
necessarily closed under finite unions.

The remark above motivates the following

Definition 3.3. We call M a top bicomodule, iff ξ(M) is closed under finite unions.

As a direct consequence of Lemma 3.1 we get

Theorem 3.4. Zf.i.
M := (CPSpec(M), τ f.i.M ) is a topological space. In particular, if M is

duo, then M is a top (D, C)-bicomodule (i.e. ZM := (CPSpec(M), τM) is a topological

space).

To the end of this section, M is duo, self-injective and has Property S, so that
∅ 6= S(L) = Sf.i.(L) ⊆ CPSpec(M) for every non-zero (D, C)-subbicomodule 0 6= L ⊆ M
(by Remark 2.16), and hence a top (D, C)-bicomodule.
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Remarks 3.5. Consider the Zariski topology ZM := (CPSpec(M), τM).

1. ZM is a T0 (Kolmogorov) space.

2. B := {XL | L ∈ L
f.g.(M)} is a basis of open sets for the Zariski topology ZM : any

K ∈ CPSpec(M) is contained in some XL for some L ∈ Lf.g.(M) (e.g. L = 0); and
if L1, L2 ∈ L

f.g.(M) and K ∈ XL1 ∩ XL2 , then setting L := L1 + L2 ∈ L
f.g.(M), we

have K ∈ XL ⊆ XL1 ∩ XL2 .

3. Let L ⊆M be a (D, C)-subbicomodule.

(a) L is simple if and only if L is fully M-coprime and VL = {L}.

(b) Assume L ∈ CPSpec(M). Then {L} = VL; in particular, L is simple if and only
if {L} is closed in ZM .

(c) XL = CPSpec(M) if and only if L = 0.

(d) If XL = ∅, then Corad(M) ⊆ L.

4. Let 0 6= L
θ
→֒ M be a non-zero (D, C)-bicomodule and consider the embedding

CPSpec(L)
eθ
→֒ CPSpec(M) (compare Proposition 2.15). Since θ−1(VN) = VN∩L for

every N ∈ L(M), the induced map θ : ZL → ZM , K 7→ θ(K) is continuous.

5. Let M
θ
≃ N be an isomorphism of non-zero (D, C)-bicomodules. Then we have

bijections CPSpec(M) ←→ CPSpec(N) and CSP(M) ←→ CSP(N); in particular,
θ(CPcorad(M)) = CPcorad(N). Moreover, ZM ≈ ZN are homeomorphic spaces.

Theorem 3.6. The following are equivalent:

1. CPSpec(M) = S(M);

2. ZM is discrete;

3. ZM is a T2 (Hausdorff space) .

4. ZM is a T1 (Frécht space).

Proof. (1)⇒ (2). For every K ∈ CPSpec(M) = S(M), we have {K} = XYK
whence open,

where YK :=
∑
{L ∈ CPSpec(M) | K " L}.

(2)⇒ (3) & (3)⇒ (4) : Every discrete topological space is T2 and every T2 space is T1.
(4) ⇒ (1) Let ZM be T1 and suppose K ∈ CPSpec(M)\S(M), so that {K} = VL for

some L ∈ L(M). Since K is not simple, there exists by assumptions and Remark 2.16
K1 ∈ S(K) ⊆ CPSpec(M) with K1 $ K, i.e. {K1, K} $ VL = {K}, a contradiction.
Consequently, CPSpec(M) = S(M).�

Proposition 3.7. Let M be self-cogenerator and DEC
M be Noetherian with every prime

ideal maximal (e.g. a biregular ring2).

2a ring in which every two-sided ideal is generated by a central idempotent (see [Wis1991, 3.18(6,7)]).
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1. S(M) = CPSpec(M) (hence M is subdirectly irreducible ⇔ |CPSpec(M)| = 1).

2. If L ⊆M is a (D, C)-subbicomodule, then XL = ∅ if and only if Corad(M) ⊆ L.

Proof. 1. Notice that S(M) ⊆ CPSpec(M) by Remark 2.16. If K ∈ CPSpec(M), then
An(K) ⊳ DEC

M is prime by Proposition 2.14, whence maximal by assumption and it
follows then that K = Ke(An(K)) is simple (if 0 6= K1 $ K, for some K1 ∈ L(M),
then An(K) $ An(K1) $ DEC

M since Ke(−) is injective, a contradiction).

2. If L ⊆ M is a (D, C)-subbicomodule, then it follows from “1” that XL = ∅ if and
only if Corad(M) = CPcorad(M) ⊆ L.�

Remark 3.8. Proposition 3.7 corrects [NT2001, Lemma 2.6.], which is absurd since it as-
sumes C∗ PID, while C is not (fully) coprime (but C∗ domain implies C is (fully) coprime!!).

Theorem 3.9. If |S(M)| is countable (finite), then ZM is Lindelof (compact). The con-

verse holds, if S(M) = CPSpec(M).

Proof. Assume S(M) = {Sλk
}k≥1 is countable (finite). Let {XLα

}α∈I be an open cover of

CPSpec(M) (i.e. CPSpec(M) ⊆
⋃

α∈I

XLα
). Since S(M) ⊆ CPSpec(M) we can pick for each

k ≥ 1, some αk ∈ I such that Sλk
" Lαk

. If
⋂

k≥1

Lαk
6= 0, then it contains by Property S a

simple (D, C)-subbicomodule 0 6= S ⊆
⋂

k≥1

Lαk
, (a contradiction, since S = Sλk

" Lαk
for

some k ≥ 1). Hence
⋂

k≥1

Lαk
= 0 and we conclude that CPSpec(M) = X⋂

k≥1

Lαk

=
⋃

k≥1

XLαk

(i.e. {XLαk
| k ≥ 1} ⊆ {XLα

}α∈I is a countable (finite) subcover). Notice that if S(M) =
CPSpec(M), then ZM is discrete by Theorem 3.6 and so ZM is Lindelof (compact) if and
only if CPSpec(M) is countable (finite).�

Definition 3.10. A collection G of subsets of a topological space X is locally finite, iff
every point of X has a neighbourhood that intersects only finitely many elements of G.

Proposition 3.11. Let K = {Kλ}Λ ⊆ S(M) be a non-empty family of simple (D, C)-
subbicomodules. If |S(L)| <∞ for every L ∈ CPSpec(M), then K is locally finite.

Proof. Let L ∈ CPSpec(M) and set F :=
∑
{K ∈ K | K " L}. Since |S(L)| <∞, there

exists a finite number of simple (D, C)-subbicomodules {Sλ1 , .., Sλn
} = K ∩ VL. If L ⊆ F,

then 0 6= L ⊆
n∑

i=1

Sλi
⊆ (Sλ1

:
(D,C)
M

n∑

i=2

Sλi
) and it follows by induction that 0 6= L $ Sλi

for some 1 ≤ i ≤ n (a contradiction, since Sλi
is simple), whence L ∈ XF . It is clear then

that K ∩ XF = {Kλ1 , .., Kλn
} and we are done.�

Definition 3.12. ([Bou1966], [Bou1998]) A topological space X is said to be irreducible

(connected), iff X is not the (disjoint) union of two proper closed subsets; equivalently, iff
the intersection of any two non-empty open subsets is non-empty (the only subsets of X
that are open and closed are ∅ and X). A maximal irreducible subspace of X is called an
irreducible component.
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Proposition 3.13. CPSpec(M) is irreducible if and only if CPcorad(M) is fully M-

coprime.

Proof. Let CPSpec(M) be irreducible. By Remark 2.16, CPcorad(M) 6= 0. Suppose that
CPcorad(M) is not fully M-coprime, so that there exist (D, C)-subbicomodules X, Y ⊆

M with CPcorad(M) ⊆ (X :
(D,C)
M Y ) but CPcorad(M) " X and CPcorad(M) " Y. It

follows then that CPSpec(M) = V
(X:

(D,C)
M

Y )
= VX ∪ VY a union of proper closed subsets, a

contradiction. Consequently, CPcorad(M) is fully M-coprime.
On the otherhand, assume CPcorad(M) ∈ CPSpec(M) and suppose that CPSpec(M) =

VL1 ∪ VL2 = V
(L1:

(D,C)
M

L2)
for some (D, C)-subbicomodules L1, L2 ⊆ M. It follows then

that CPcorad(M) ⊆ L1, so that VL1 = CPSpec(M); or CPcorad(M) ⊆ L2, so that
VL2 = CPSpec(M). Consequently CPSpec(M) is not the union of two proper closed sub-
sets, i.e. it is irreducible.�

Lemma 3.14. 1. M is subdirectly irreducible if and only if the intersection of any two

non-empty closed subsets of CPSpec(M) is non-empty.

2. If M is subdirectly irreducible, then CPSpec(M) is connected. If CPSpec(M) is

connected and CPSpec(M) = S(M), then M is subdirectly irreducible.

Proof. 1. Assume thatM is subdirectly irreducible with unique simple (D, C)-subbicomodule
0 6= S ⊆ M. If VL1 , VL2 ⊆ CPSpec(M) are any two non-empty closed subsets, then
L1 6= 0 6= L2 and so VL1∩VL2 = VL1∩L2 6= ∅, since S ⊆ L1∩L2 6= 0.On the otherhand,
assume that the intersection of any two non-empty closed subsets of CPSpec(M) is
non-empty. Let 0 6= L1, L2 ⊆ M be any non-zero (D, C)-subbicomodules, so that
VL1 6= ∅ 6= VL2 . By assumption VL1∩L2 = VL1 ∩ VL2 6= ∅, hence L1 ∩ L2 6= 0 and it
follows by 2.4 that M is subdirectly irreducible.

2. If M is subdirectly irreducible, then CPSpec(M) is connected by “1”. On the oth-
erhand, if CPSpec(M) = S(M), then ZM is discrete by Theorem 3.6 and so M is
subdirectly irreducible (since a discrete topological space is connected if and only if
it has only one point).�

Proposition 3.15. 1. If K ∈ CPSpec(M), then VK ⊆ CPSpec(M) is irreducible.

2. If VL is an irreducible component of ZM , then L is a maximal fullyM-coprime (D, C)-
subbicomodule.

Proof. 1. Let K ∈ CPSpec(M) and suppose VK = A ∪ B = (VK ∩ VX) ∪ (VK ∩ VY )
for two (D, C)-subbicomodules X, Y ⊆ M (so that A,B ⊆ VK are closed subsets
w.r.t. the relative topology on VK →֒ CPSpec(M)). It follows then that VK =

(VK∩X)∪ (VK∩Y ) = V(K∩X:
(D,C)
M

K∩Y )
and so K ⊆ (K ∩X :

(D,C)
M K ∩ Y ), hence K ⊆ X

so that VK = A; or K ⊆ Y, so that VK = B. Consequently VK is irreducible.

2. Assume VL is an irreducible component of CPSpec(M) for some 0 6= L ∈ L(M). If
L ⊆ K for some K ∈ CPSpec(M), then VL ⊆ VK and it follows then that L = K
(since VK ⊆ CPSpec(M) is irreducible by “1”). We conclude then that L is fully
M-coprime and is moreover maximal in CPSpec(M).�
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Lemma 3.16. If n ≥ 2 and A = {K1, ..., Kn} ⊆ CPSpec(M) is a connected subset, then

for every i ∈ {1, ..., n}, there exists j ∈ {1, ..., n}\{i} such that Ki ⊆ Kj or Kj ⊆ Ki.

Proof. Without loss of generality, suppose K1 " Kj and Kj " K1 for all 2 ≤ j ≤ n and

set F :=
n∑

i=2

Ki, W1 := A ∩ XK1 = {K2, ..., Kn and W2 := A ∩ XF = {K1} (if n = 2, then

clearly W2 = {K1}; if n > 2 and K1 /∈ W2, then K1 ⊆
n∑

i=2

Ki ⊆ (K2 :
(D,C)
M

n∑

i=3

Ki) and

it follows that K1 ⊆
n∑

i=3

Ki; by induction one shows that K1 ⊆ Kn, a contradiction). So

A = W1 ∪W2, a disjoint union of proper non-empty open subsets (a contradiction).�

Notation. For A ⊆ CPSpec(M) set ϕ(A) :=
∑

K∈A
K (:= 0, iff A = ∅). Moreover, set

CL(ZM) := {A ⊆ CPSpec(M) | A = A} and E(M) := {L ∈ L(M) | CPcorad(L) = L}.

Lemma 3.17. The closure of any subset A ⊆ CPSpec(M) is A = Vϕ(A).

Proof. LetA ⊆ CPSpec(M). SinceA ⊆ Vϕ(A) and Vϕ(A) is a closed set, we haveA ⊆ Vϕ(A).
On the other hand, suppose H ∈ Vϕ(A)\A and let XL be a neighbourhood of H, so that
H " L. Then there existsW ∈ A withW " L (otherwise H ⊆ ϕ(A) ⊆ L, a contradiction),
i.e. W ∈ XL ∩ (A\{H}) 6= ∅ and so K is a cluster point of A. Consequently, A = Vϕ(A).�

Theorem 3.18. We have a bijection CL(ZM) ←→ E(M). If M is self-cogenerator and
DEC

M is right Noetherian, then there is a bijection CL(ZM)\{∅} ←→ CSPSpec(M).

Proof. For L ∈ E(M), set ψ(L) := VL. Then for L ∈ E(M) and A ∈ CL(ZM) we have
ϕ(ψ(L)) = ϕ(VL) = L ∩ CPcorad(M) = CPcorad(L) = L and ψ(ϕ(A)) = Vϕ(A) = A = A.
If M is self-cogenerator and DEC

M is right Noetherian, then CSPSpec(M) = E(M)\{0} by
Proposition 2.14 and we are done.�

4 Applications and Examples

In this section we give some applications and examples. First of all we remark that
taking D := R (C := R), considered with the trivial coring structure, our results on
the Zariski topology for bicomodules in the third section can be reformulated for Zariski
topology on the fully coprime spectrum of right C-comodules (left D-comodules). However,
our main application will be to the Zariski topology on the fully coprime spectrum of non-
zero corings, considered as duo bicomodules in the canonical way.

Throughout this section, C is a non-zero A-coring with AC and CA flat.

4.1. The (A,A)-bimodule ∗C∗ := Hom(A,A)(C, A) :=
∗C ∩C∗ is an Aop-ring with multiplica-

tion (f ∗g)(c) =
∑

f(c1)g(c2) for all f, g ∈
∗C∗ and unit εC; hence every (C, C)-bicomodule

M is a (∗C∗,∗ C∗)-bimodule and the centralizer

C(M) := {f ∈ ∗C∗ | f ⇀ m = m ↼ f for all m ∈M}

is an R-algebra. If M is faithful as a left (right) ∗C∗-module, then C(M) ⊆ Z(∗C∗).
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4.2. Considering C as a (C, C)-bicomodule in the natural way, C is a (∗C∗,∗ C∗)-bimodule
that is faithful as a left (right) ∗C∗-module, hence the centralizer

C(C) := {f ∈ ∗C∗ | f ⇀ c = c ↼ f for every c ∈ C}

embeds in the center of ∗C∗ as an R-subalgebra, i.e. C(C) →֒ Z(∗C∗). If ac = ca for all
a ∈ A, then we have a morphism of R-algebras η : Z(A)→ C(C), a 7→ [εC(a−) = εC(−a)].

Remark 4.3. Notice that C(C) ⊆ Z(∗C) ⊆ Z(∗C∗) and C(C) ⊆ Z(C∗) ⊆ Z(∗C∗) (compare
[BW2003, 17.8. (4)]). If AC (CA) is A-cogenerated, then it follows by [BW2003, 19.10 (3)]
that Z(∗C) = C(C) ⊆ Z(C∗) (Z(C∗) = C(C) ⊆ Z(∗C)). If ACA is A-cogenerated, then
Z(∗C∗) ⊆ C(C) (e.g. [BW2003, 19.10 (4)]), whence Z(∗C) = Z(∗C∗) = Z(C∗).

Lemma 4.4. For every (C, C)-bicomodule M we have a morphism of R-algebras

φM : C(M)→ CEndC(M)op, f 7→ [m 7→ f ⇀ m = m ↼ f ] (with Im(φM) ⊆ Z(CEC
M)).

(5)

Proof. First of all we prove that φM is well-defined: for f ∈ C(M) and m ∈M we have
∑

(φM(f)(m))<0> ⊗A (φM(f)(m))<1> =
∑

(m ↼ f)<0> ⊗A (m ↼ f)<1>

=
∑
f(m<−1>)m<0><0> ⊗A m<0><1>

=
∑
f(m<0><−1>)m<0><0> ⊗A m<1>

=
∑

(m<0> ↼ f)⊗A m<1>

=
∑
φM(f)(m<0>)⊗A m<1>,

and
∑

(φM(f)(m))<−1> ⊗A (φM(f)(m))<0> =
∑

(f ⇀ m)<−1> ⊗A (f ⇀ m)<0>

=
∑
m<0><−1> ⊗A m<0><0>f(m<1>)

=
∑
m<−1> ⊗A m<0><0>f(m<0><1>)

=
∑
m<−1> ⊗A (f ⇀ m<0>)

=
∑
m<−1> ⊗A φM(f)(m<0>),

i.e. φM(f) : M → M is (C, C)-bicolinear. Obviously, φM(f ∗ g) = φM(f) ◦op φM(g) for
all f, g ∈ C(M), i.e. φM is a morphism of R-algebras. Moreover, since every g ∈ CEC

M

is (∗C∗,∗ C∗)-bilinear, we have g(f ⇀ m) = f ⇀ g(m) for every f ∈ ∗C∗ and m ∈ M, i.e.
Im(φM) ⊆ Z(CEC

M).�

Lemma 4.5. We have an isomorphism of R-algebras C(C)
φC

≃ CEndC(C), with inverse

ψC : g 7→ εC ◦ g. In particular, (CEndC(C), ◦) is commutative and C ∈ CMC is duo.

Proof. First of all we prove that ψ is well-defined: for g ∈ CEndC(C) and c ∈ C we have

ψC(g)⇀ c =
∑
c1ψ(g)(c2) =

∑
c1εC(g(c2)) =

∑
g(c)1εC(g(c)2)

= g(c) =
∑
εC(g(c)1)g(c)2 =

∑
εC(g(c1))c2

=
∑
ψ(g)(c1)c2 = c ↼ ψ(g),

i.e. ψC(g) ∈ C(C). For any f ∈ C(C), g ∈ CEndC(C) and c ∈ C we have ((ψC ◦φC)(f))(c) =
εC(φC(f)(c)) = εC(f ⇀ c) = f(c) and ((φC ◦ψC)(g))(c) =

∑
c1ψC(g)(c2) =

∑
c1εC(g(c2)) =∑

g(c)1εC(g(c)2) = g(c).�
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Zariski topologies for corings

Definition 4.6. A right (left) C-subcomodule K ⊆ C is called a right (left) C-coideal. A
(C, C)-subbicomodule of M is called a C-bicoideal.

Notation. With B(C) we denote the class of C-bicoideals and with L(Cr) (resp. L(Cl))
the class of right (left) C-coideals. For a C-bicoideal K ∈ B(C), Kr (K l) indicates that we
consider K as a right (left) C-comodule, rather than a (C, C)-bicomodule. We also set

CPSpec(C) := {K ∈ B(C) | K is fully C-coprime}; τ C := {XL | L ∈ B(C)};
CPSpec(Cr) := {K ∈ B(C) | Kr is fully Cr-coprime}; τ Cr := {XL | L ∈ L(C

r)};
CPSpec(Cl) := {K ∈ B(C) | K l is fully Cl-coprime}; τ Cl := {XL | L ∈ L(C

l)}.

In what follows we announce only the main result on the Zariski topologies for corings,
leaving to the interested reader the restatement of the other results of the third section.

Theorem 4.7. 1. ZC := (CPSpec(C), τ C) is a topological space.

2. Zf.i.
Cr := (CPSpec(Cr), τ f.i.Cr ) and Zf.i.

Cl := (CPSpec(C l), τ f.i.
Cl ) are topological spaces.

Proposition 4.8. Let θ : C → C′ be a morphism of non-zero A-corings with AC, AC
′ flat,

Cr intrinsically injective self-cogenerator and C′r self-cogenerator.

1. If θ is injective and C′r is self-injective, or if C∗ is right-duo, then we have a map θ̃ :
CPSpec(Cr)→ CPSpec(C′r), K 7→ θ(K) (and so θ(CPcorad(Cr)) ⊆ CPcorad(C′r)).

2. If Cr, C′r are duo, then the induced map θ : ZCr → ZC′r is continuous.

3. If every K ∈ CPSpec(Cr) is inverse image of a K ′ ∈ CPSpec(C′r), then θ̃ is injective.

4. If θ is injective and C′r is self-injective, then θ : Zf.i.
Cr → Zf.i.

C′r is continuous. If

moreover, θ̃ : CPSpec(Cr)→ CPSpec(C′r) is surjective, then θ is open and closed.

5. If C
θ
≃ C′, then Zf.i.

Cr

θ

≈ Zf.i.
C′r (homeomorphic spaces).

Proof. First of all notice for every K ∈ L(Cr) (K ∈ B(C)), we have θ(K) ∈ L(C′r)
(θ(K) ∈ B(C′)) and for every K ′ ∈ L(C′r) (K ′ ∈ B(C′)), θ−1(K ′) ∈ L(Cr) (θ−1(K ′) ∈ B(C)).

1. If θ is injective and C′r is self-injective, then CPSpec(Cr) = B(C) ∩ CPSpec(C′r)
by [Abu2006, Proposition 4.7.]. Assume now that C∗ is right-duo. Since θ is a
morphism of A-corings, the canonical map θ∗ : C′∗ → C∗ is a morphism of Aop-
rings. If K ∈ CPSpec(Cr), then annC∗(K) ⊳ C∗ is a prime ideal by [Abu2006,
Proposition 4.10.], whence completely prime since C∗ is right-duo. It follows then
that annC′∗(θ(K)) = θ(K)⊥C′∗

= (θ∗)−1(K⊥C∗

) = (θ∗)−1(annC∗(K)) is a prime ideal,
whence θ(K) ∈ CPSpec(C′r) by [Abu2006, Proposition 4.10.]. It is obvious then that
θ(CPcorad(Cr)) ⊆ CPcorad(C′r).

2. Since Cr ∈ MC, C′r ∈ MC′

are duo, ZCr := Zf.i.
Cr and ZC′r := Zf.i.

C′r are topological

spaces. Since Cr is intrinsically injective, C∗ is right-due and by “1” θ̃ : CPSpec(Cr)→

CPSpec(C′r) is well-defined. For L′ ∈ L(C′r), θ̃
−1
(XL′) = Xθ−1(L′), i.e. θ is continuous.
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3. Suppose θ̃(K1) = θ̃(K2) for some K1, K2 ∈ CPSpec(Cr) with K1 = θ−1(K ′
1), K2 =

θ−1(K ′
2) where K ′

1, K
′
2 ∈ CPSpec(C′r). Then K1 = θ−1(K ′

1) = θ−1(θ(θ−1(K ′
1))) =

θ−1(θ(θ−1(K ′
1))) = θ−1(θ(θ−1(K ′

2))) = θ−1(K ′
2) = K2.

4. By [Abu2006, Proposition 4.7.] CPSpec(Cr) = B(Cr) ∩ CPSpec(C′r), hence for L ∈
L(Cr) and L′ ∈ L(C′r) we have θ−1(VL′) = Vθ−1(L′), θ(VL) = Vθ(L) and θ(XL) = Xθ(L).

5. Since θ is an isomorphism, θ̃ is bijective by [Abu2006, Proposition 4.5.]. In this case
θ and θ

−1 are obviously continuous (see “4”).�

Example 4.9. ([NT2001, Example 1.1.]) Let k be a field and C := k[X ] be the cocommu-
tative k-coalgebra with ∆(Xn) := Xn⊗kX

n and ε(Xn) := 1 for all n ≥ 0. For each n ≥ 0,
set Cn := kXn. Then CPSpec(C) = S(C) = {Cn | n ≥ 0}. Notice that

1. ZC is discrete by Theorem 3.6, hence ZC is Lindelof (but not compact) by Theorem
3.9.

2. CPSpec(C) is not connected: CPSpec(C) = {Cn | n ≥ 1}∪{C0} = X{k}∪X<X,X2,...>

(notice that CPSpec(C) is not subdirectly irreducible, compare with Lemma 3.14.

Example 4.10. ([NT2001, Example 1.2.]) Let k be a field and C := k[X ] be the cocommu-

tative k-coalgebra with ∆(Xn) :=
∑n

j=1
Xj ⊗k X

n−j and ε(Xn) := δn,0 for all n ≥ 0. For

each n ≥ 0 set Cn :=< 1, ..., Xn > . For each n ≥ 1, Cn ⊆ (Cn−1 :C< kXn >), hence not
fully C-coprime and it follows that CPSpec(C) = {k, C} (since k is simple, whence fully
C-coprime and C∗ ≃ k[[X ]] is an integral domain, whence C is fully coprime). Notice that

1. C is subdirectly irreducible with unique simple subcoalgebra C0 = k;

2. the converse of Remark 3.5 “3(d)” does not hold in general: Corad(C) = k ⊆ C1

while XC1 = {C} 6= ∅ (compare Proposition 3.7 “2”).

3. CPSpec(C) is connected, although S(C) $ CPSpec(C) (see Lemma 3.14 “2”).

4. ZC is not T1 by Theorem 3.6, since C ∈ CPSpec(C)\S(C) : in fact, if C ∈ XL1 and
C0 ∈ XL2 for some C-subcoalgebras L1, L2 ⊆ C, then L2 = 0 (since C is subdirectly
irreducible with unique simple subcoalgebra C0); hence XL2 = {C0, C} = CPSpec(C)
and XL1 ∩ XL2 = XL1 6= ∅.

Remark 4.11. As this paper extends results of [NT2001], several proofs and ideas are along
the lines of the original ones. However, our results are much more general (as [NT2001] is
restricted to coalgebras over fields). Moreover, we should warn the reader that in addition
to the fact that several results in that paper are redundant or repeated, several other re-
sults are even absurd, e.g. Proposition 2.8., Corollary 2.4. and Theorem 2.4. (as noticed
by Chen Hui-Xiang in his review; Zbl 1012.16041) in addition to [NT2001, Lemma 2.6.]
as we clarified in Remark 3.8. We corrected the statement of some of these results (e.g.
Proposition 3.7 corrects [NT2001, Lemma 2.6.]; while Proposition 4.8 suggests a correc-
tion of [NT2001, Theorem 2.4.] which does not hold in general as the counterexample
[Abu2006, 5.20.] shows). Moreover, we improved some other results (e.g. applying Theo-
rem 3.6 to coalgebras over base fields improves and puts together several scattered results
of [NT2001]).

14



Acknowledgments: The author is grateful for the financial support and the excellent
research facilities provided by KFUPM.

References

[Abu2006] J.Y. Abuhlail, Fully coprime comodules and fully coprime corings, Appl. Categ.
Structures 14(5-6), 379-409 (2006).

[Abu2003] J.Y. Abuhlail, Rational modules for corings, Comm. Alg. 31, 5793-5840 (2003).

[AM1969] M. Atiyah and I. Macdonald, Introduction to commutative algebra, Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969).

[Ann2002] S. Annin, Associated and Attached Primes over Noncommutative Rings, Ph.D.
Dissertation, University of California at Berkeley (2002).

[BJKN80] L. Bican, P. Jambor, T. Kepka, P. Nĕmec, Prime and coprime modules, Fund.
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