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Abstract. Exponentiable functors between quantaloid-enriched categories are

characterized in elementary terms. The proof goes as follows: the elementary

conditions translate into existence statements for certain adjoints that obey

some lax commutativity; this, in turn, is precisely what is needed to prove the

existence of partial products; so that the result follows from an observation by

Dyckhoff and Tholen [1987].
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1. Introduction

The study of exponentiable morphisms in a category C, in particular of exponentiable

functors between (small) categories (i.e. Conduché fibrations), has a long history;

see [Niefield, 2001] for a short account. Recently M. M. Clementino and D. Hofmann

[2006] found simple necessary-and-sufficient conditions for the exponentiability of a

functor between V-enriched categories, where V is a symmetric quantale which has its

top element as unit for its multiplication and whose underlying sup-lattice is a locale.

The modest aim of this short note is to prove the following characterization of the

exponentiable functors between Q-enriched categories, where now Q is any (small)

quantaloid, thus considerably generalizing the aforementioned result of [Clementino

and Hofmann, 2006].

Theorem 1.1 A functor F :A // B between Q-enriched categories is exponentiable

if and only if the following two conditions hold:

1. for every a, a′ ∈ A and
∨

i fi ≤ B(Fa′, Fa),
(

∨

i

fi

)

∧ A(a′, a) =
∨

i

(

fi ∧ A(a′, a)
)

,
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2. for every a, a′′ ∈ A, b′ ∈ B, f ≤ B(b′, Fa) and g ≤ B(Fa′′, b′),

(g ◦ f) ∧ A(a′′, a) =
∨

a′∈F−1b′

(

(g ∧ A(a′′, a′)) ◦ (f ∧ A(a′, a))
)

.

These conditions are “elementary” in the sense that they are simply equalities (of

infima, suprema and compositions) of morphisms in the base quantaloid Q. The

second condition is precisely what [Clementino and Hofmann, 2006] had too, but

they did not discover the first condition an sich: because it is obviously always true

if the base category is a locale.

The proof of 1.1 goes as follows. First we translate the conditions in 1.1 into

existence statements for certain adjoints obeying some lax commutativity, see section

3. Next, in section 4, we show that these latter adjoints are precisely what is needed

to prove the existence of partial products in Cat(Q) over F :A //B. The result

then follows from R. Dyckhoff and W. Tholen’s [1987] observation that a morphism

f :A // B in a category C with finite limits is exponentiable if and only if C admits

partial products over f .

Acknowledgement. I thank Maria Manuel Clementino and Dirk Hofmann for

explaining me their paper [2006] and suggesting the topic of this note; and I thank

them again for patiently listening to me explaining the result presented here. This

work was done in the spring of 2006, during my post-doc stay at the Centre for

Mathematics of the University of Coimbra.

2. Fixing notation

For the basics on Q-enriched categories we refer to [Stubbe, 2005]. Here we shall just

observe that Cat(Q) has pullbacks and a terminal – and therefore all finite limits

[Borceux, 1994, Proposition 2.8.2] – and fix some notations.

The terminal object in Cat(Q), write it as T, has:

- objects: T0 = Q0, with types tX = X,

- hom-arrows: T(Y,X) = ⊤X,Y = the top element of Q(X,Y ).

For two functors F :A // C and G:B //C with common codomain, their pullback

A×C B has:

- objects: (A×C B)0 = {(a, b) ∈ A0 × B0) | Fa = Gb} with t(a, b) = ta = tb,

- hom-arrows: (A×C B)((a′, b′), (a, b)) = A(a′, a) ∧ B(b′, b),

and comes with the obvious projections. All verifications are entirely straightfor-

ward.
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For an X ∈ Q, the one-object Q-category with hom-arrow 1X is written as ∗X .

There is an obvious bijection between the objects of type X in some Q-category B

and the functors from ∗X to B. Thus, let [b]: ∗tb // B stand for the functor “pointing

at” b ∈ B. Given a functor F :A //B and an object b ∈ B in its codomain, we shall

write Ab for the pullback

Ab
//

��

A

F

��

∗tb
[b]

// B

That is to say, Ab has

- objects: Ab = F−1b = {a ∈ A | b = Fa}, all of type tb,

- hom-arrows: Ab(a
′, a) = 1tb ∧ A(a′, a).

3. Adjoints obeying a lax commutativity

In this section we shall translate conditions 1.1–1 and 1.1–2 to existence statements

of certain adjoints obeying some lax commutative diagrams.

Lemma 3.1 For a functor F :A // B between Q-categories, the following are equiv-

alent conditions:

1. 1.1–1 holds,

2. for every a, a′ ∈ A, the order-preserving map

↓ B(Fa′, Fa) //Q(ta, ta′): f 7→ f ∧ A(a′, a) (1)

has a right adjoint,

3. for every b, b′ ∈ F (A), the order-preserving map

↓ B(b′, b) // Matr(Q)(Ab,Ab′): f 7→
(

f ∧ A(a′, a)
)

(a,a′)∈Ab×A
b′

(2)

has a right adjoint.

4. for every b, b′ ∈ B, the order-preserving map in (2) has a right adjoint.

Proof : The equivalence of the first two statements is trivial: an order-preserving

map between complete lattices has a right adjoint if and only if it preserves arbitrary
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↓ B(b′, Fa)× ↓ B(Fa′′, b′)

OO

//

Matr(Q)({ta},Ab′ )×Matr(Q)(Ab′ , {ta
′′}) //

↓ B(Fa′′, Fa)

OO
Q(ta, ta′′)

Matr(Q)({ta}, {ta′′})

≥

Figure 1: the diagram for 3.2–2

suprema. Further, if we use g 7→ gF as generic notation for the right adjoints to the

maps in (1), then

M 7→ MF :=
∧

{M(a′, a)F | (a, a′) ∈ Ab × Ab′}

is the right adjoint to the map in (2). Conversely, if M 7→ MF is the right adjoint

to the map in (2), then for any a, a′ ∈ A

g 7→ gF :=
(

T (a,a′)(g)
)F

is the right adjoint to the map in (1), with T (a,a′)(g) standing for the Q-matrix from

Ab to Ab′ all of whose elements are set to the top element in Q(tb, tb′) = Q(ta, ta′)

except for the element indexed by (a, a′) which is set to g. Finally, the only difference

between the third and the fourth statement is that in the latter it may be that Ab or

Ab′ is empty; but then Matr(Q)(Ab,Ab′) is a singleton (containing the empty matrix)

in which case the right adjoint to (2) always exists. ✷

Lemma 3.2 For a functor F :A //B between Q-categories for which the equivalent

conditions in 3.1 hold, the following are equivalent conditions:

1. 1.1–2 holds,

2. for every a, a′′ ∈ A and b′ ∈ B, the diagram in figure 1, in which the horizontal

arrows are given by composition (in Matr(Q), resp. Q), the left vertical arrow

is

(f, g) 7→
(

(

f ∧A(a′, a)
)

a′∈A
b′
,
(

g ∧ A(a′′, a′)
)

a′∈A
b′

)

and the right vertical arrow is a map as in (1), is lax commutative as indicated,

3. for every b, b′′ ∈ F (A) and b′ ∈ B, the diagram in figure 2, in which the hor-

izontal arrows are given by composition and the vertical arrows are (products

of) maps as in (2), is lax commutative as indicated,
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↓ B(b′, b)× ↓ B(b′′, b′)

OO

//

Matr(Q)(Ab,Ab′)×Matr(Q)(Ab′ ,Ab′′) //

↓ B(b′′, b)

OO
Matr(Q)(Ab,Ab′′)

≥

Figure 2: the diagram for 3.2–3

Matr(Q)(Ab,Ab′)×Matr(Q)(Ab′ ,Ab′′)

(−)F × (−)F

��

// Matr(Q)(Ab,Ab′′)

(−)F

��

↓ B(b′, b)× ↓ B(b′′, b′) // ↓ B(b′′, b)

≤

Figure 3: the diagram for 3.2–5

4. for every b, b′, b′′ ∈ B, the diagram in figure 2, in which the horizontal arrows

are given by composition and the vertical arrows are (products of) maps as in

(2), is lax commutative as indicated,

5. for every b, b′, b′′ ∈ B, the diagram in figure 3, in which the horizontal arrows

are given by composition and the vertical arrows are instances of the adjoints

to the maps as in (2), is lax commutative as indicated.

Proof : The equivalence of the first two statements is immediate; the “oplax commu-

tativity” of the diagram in figure 1 is always true, thus explaining why in 1.1–2 there

is an equality instead of an inequality. That the second and the third statement are

equivalent, is because operations on a Q-matrix are done “elementwise”; and the

third and fourth are equivalent because in case Ab or Ab′′ is empty, Matr(Q)(Ab,Ab′′)

is a singleton, hence all is trivial. Finally, the equivalence of the two last statements

follows from the respective vertical arrows being adjoint. ✷

4. Partial products

In this section we complete the proof of 1.1 by establishing a link with the theory

of partial products.

First recall Dyckhoff and Tholen’s [1987] definition (which they gave for any

morphism f :A // B and any object C in any category C with finite limits, but here

it is for Q-categories): the partial product of a functor F :A // B with a Q-category

C is a Q-category P together with functors P :P // B, E:P ×B A //C such that,
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C P×B A
E

oo //

��

A

F

��

P′ ×B A

33hhhhhhhhhhhhhhhhhhhhhhhh

��

E′

ccG
G
G
G
G
G
G
G
G

K ×B 1A
99

P
P

// B

P
′

P ′

33ggggggggggggggggggggggggggg

K
88

Figure 4: the definition of a partial product

for any other Q-category P
′ and functors P ′:P′ // B, E′:P′ ×B A // C there exists

a unique functor K:P′ // P satisfying P ◦K = P ′ and E ◦ (K ×B 1A) = E′. Figure

4 pictures the situation.

Suppose now that F :A //B and C are given, and that we want to describe – if it

exists – the partial product P together with its functors P and E. Putting P
′ = ∗X

in the diagram in figure 4, and letting X range over all objects of Q, determines at

once the object-set P0 and the object-maps P :P0
// C0 and E: (P ×B A)0 //C0:

- P0 = {(b,H) | b ∈ B and H:Ab
// C is a functor1}, with types t(b,H) = tb,

- for (b,H) ∈ P0, P (b,H) = b,

- for ((b,H), a) ∈ (P×B A)0, E((b,H), a) = Ha.

Thus we are left to find a Q-enrichment of the object-set P0, making it a Q-category

P and making P and E functors, having the required universal property.

Lemma 4.1 Cat(Q) admits partial products over F :A // B if and only if F :A //B

satisfies 3.1–4 and 3.2–5.

Proof : Sufficiency of 3.1–4 and 3.2–5. Assuming 3.1–4 it makes sense to define

P((b′,H ′), (b,H)) := C(H ′−,H−)F

= the outcome of applying the right adjoint to the map

in (2) on the Q-matrix
(

C(H ′a′,Ha)
)

(a,a′)∈Ab×A
b′

Whereas the identity inequality

1t(b,H) ≤ P((b,H), (b,H))
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reduces to the fact that H:Ab
//C is a functor, it is the assumed 3.2–5 together

with the composition inequality in the Q-category C that assures the composition

inequality

P((b′′,H ′′), (b′,H ′)) ◦ P((b′,H ′), (b,H)) ≤ P((b′′,H ′′), (b,H)).

Moreover, this construction clearly makes P and E functorial:

P((b′,H ′), (b,H)) ≤ B(b′, b),

P((b′,H ′), (b,H)) ∧A(a′, a) ≤ C(H ′a′,Ha) for any a ∈ Ab and a′ ∈ Ab′ .

As for the universal property, for a given Q-category P
′ together with functors

P ′:P′ // B and E′:P′ ×B A // C, it is straightforward to verify that

K:P′ // P:x 7→ K(x) :=
(

P ′x, E′(x,−):AP ′x
// C: a 7→ E′(x, a)

)

is the required unique factorization.

Necessity of 3.1–4. Let M ∈ Matr(Q)(Ab,Ab′) for some b, b′ ∈ B, then consider

the Q-category C as follows:

- objects: C0 = Ab ⊎ Ab′ with “inherited types”,

- hom-arrows: C(a′, a) = M(a′, a) when a ∈ Ab and a′ ∈ Ab′ , all endo-hom-

arrows are identities, and all remaining hom-arrows are zero.

Assuming that the partial product P (together with its functors P and E) exists, we

get from the discussion prior to the statement of 3.2 that P0 contains in particular

(

b, H:Ab
// C: a 7→ a

)

and
(

b′, H ′:Ab′
// C: a′ 7→ a′

)

. (3)

Next, let f ≤ B(b′, b) in Q(X,Y ) and consider the Q-category Pf with:

- objects: (Pf )0 = {X} ⊎ {Y } with tX = X ∈ Q and tY = Y ∈ Q,

- hom-arrows: Pf (Y,X) = f , Pf (X,X) = 1X , Pf (Y, Y ) = 1Y and Pf (X,Y ) =

0Y,X .

There is a functor P ′:Pf
//B:X 7→ b, Y 7→ b′, and because of the existence of the

partial product, the following are now equivalent statements:

1. for all a ∈ Ab and a′ ∈ Ab′ , f ∧A(a′, a) ≤ M(a′, a),

2. there is a functor E′:Pf ×B A //C:

{

(X, a) 7→ a

(Y, a′) 7→ a′

7



3. there is a functor K:Pf
// P:

{

X 7→ (b,H)

Y 7→ (b′,H ′)
(with notations as in (3)),

4. f ≤ P((b′,H ′), (b,H)) (again with notations as in (3)).

Hence P((b′,H ′), (b,H)) is precisely the value on M of the sought-after right adjoint

to the map in (2).

Necessity of 3.2–5. Consider objects b, b′, b′′ ∈ B and matricesM ∈ Matr(Q)(Ab,Ab′)

and N ∈ Matr(Q)(Ab′ ,Ab′′); these determine a Q-category C like so:

- objects: C0 = Ab ⊎ Ab′ ⊎ Ab′′ with “inherited types”,

- hom-arrows: all endo-hom-arrows are identities, for a ∈ Ab, a
′ ∈ Ab′ , a

′′ ∈ Ab′′

put C(b′′, b′) = N(b′′, b′), C(b′, b) = M(b′, b) and C(b′′, b) = (N ◦M)(b′′, b), all

other hom-arrows are zero.

Assuming that the partial product of F and C exists, the objects

(b, H:Ab
// C: a 7→ a), (b′, H:Ab′

//C: a′ 7→ a′) and (b′′, H:Ab′′
//C: a′′ 7→ a′′)

of the partial product P satisfy in particular the compostion-inequality

P((b′′,H ′′), (b′,H ′)) ◦ P((b′,H ′), (b,H)) ≤ P((b′′,H ′′), (b,H)),

saying precisely that NF ◦MF ≤ (N ◦M)F . ✷

5. Comments

Exponentiable Q-categories. A Q-category A is exponentiable if and only if the

unique functor !:A //T into the terminal is exponentiable, which – as a corollary

of 1.1 – easily translates into two elementary necessary-and-sufficient conditions.

Multiple pullback of partial products of Q-arrows. With notations as in

the proof of 3.1, given objects b, b′ ∈ B and a Q-matrix M :Ab
// Ab′ , the Q-arrow

M(a′, a)F is precisely the partial product in Q(ta, ta′) as suggested by the diagram

in figure 5. And the Q-arrow

MF =
∧

{M(a′, a)F | (a, a′) ∈ Ab ×Ab′}

which results from applying the right adjoint to the map in (2) to the matrix M , is

then the multiple pullback in Q(ta, ta′) of these partial products. In other words,

condition 1.1–1 says something about the existence of certain multiple pullbacks of

partial products in the hom-sup-lattices of Q.
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M(a′, a) ≥ M(a′, a)F ∧ A(a′, a) ≤ A(a′, a)

≤ ≤

M(a′, a)F ≤ B(Fa′, Fa)

Figure 5: another partial product

On the construction of Q-categories. In the proof of 4.1 we build Q-categories

from given Q-matrices, in such a way that certain hom-arrows of the category are

precisely the elements of the matrix. A Q-matrix is exactly a distributor between

discrete Q-categories, and in fact this construction of a Q-category can be carried

out for any given distributor. To see this, let Φ:A ❝ // B be a distributor; consider

now the endo-Q-matrix
(

A Φ

0A,B B

)

on the Q-typed set A0 ⊎ B0: on easily sees that this is a monad, i.e. a Q-category.

That is to say, this Q-category, call it [Φ], has:

- objects: [Φ]0 = A0 ⊎ B0 with “inherited types”,

- hom-arrows: for a, a′ ∈ A0 and b, b′ ∈ B0, put [Φ](a
′, a) = A(a′, a), [Φ](b′, b) =

B(b′, b), [Φ](b, a) = Φ(b, a) and [Φ](a, b) = 0ta,tb.

This construction is of independent interest: writing SA:A // [Φ] and SB:B // [Φ]

for the obvious inclusions, Φ is precisely the distributor “represented by” these

functors in a universal way: Φ = [Φ](SB−, SA−). (See also footnote 3 in [Stubbe,

2005].)
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