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Abstract

A global action is the algebraic analogue of a topological manifold. This construction
was introduced in first place by A. Bak as a combinatorial approach to K-Theory and
the concept was later generalized by Bak, Brown, Minian and Porter to the notion
of groupoid atlas. In this paper we define and investigate homotopy invariants of
global actions and groupoid atlases, such as the strong fundamental groupoid, the
weak and strong nerves, classifying spaces and homology groups. We relate all these
new invariants to classical constructions in topological spaces, simplicial complexes
and simplicial sets. This way we obtain new combinatorial formulations of classical
and non classical results in terms of groupoid atlases.
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1 Introduction

The global action construction of K-theory, introduced by A.Bak [2, 3], associates to a ring
A an algebraic object, namely the global action GL(A) which constitutes the algebraic
analogue of the standard topological construction. The underlying set of the global action
GL(A) consists of the points of the general linear group of A and the action consists of
the virtual triangular subgroups of the general linear group acting on the general linear
group by left multiplication.

This new approach introduced by Bak has the advantage that the solutions of algebraic
problems can be followed algebraically step by step. The notion of global action gives
algebraic objects such as groups, structures which allow one to develop homotopy theory
similarly to the classical way, by defining paths and deformations of morphisms. In [12, 13],
the second named author developed an axiomatic homotopy theory for categories with
natural cylinders, which can be applied to global actions.

Recently, A. Bak, R. Brown, E.G. Minian and T. Porter generalized ideas and construc-
tions of global actions and introduced groupoid atlases [4]. As it was pointed out in
[4], there were many advantages in formulating the concept of global action in terms of
groupoids instead of group actions, so that it becomes part of a wider notion, namely the
concept of a groupoid atlas. This was done using the well know transition of group actions
to groupoids. A groupoid atlas can be regarded as an algebraic manifold, where the local
groupoids play the role of the charts.

In this paper we define and investigate homotopy invariants of global actions and groupoid
atlases. We study the strong fundamental groupoid, the weak and strong nerves, classifying
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spaces and homology theory of groupoid atlases. We also relate all these new invariants to
classical constructions in topological spaces, simplicial complexes and simplicial sets and
obtain this way new combinatorial formulations of classical and non classical results in
terms of groupoid atlases.

The rest of the paper is organized as follows.

In section 2 we recall the basic definitions, examples and results on global actions and
groupoid atlases. Nothing is very new in this section with the exception of a couple of
new examples. One of these examples appears naturally when the global action A(G,H)
(defined in [4]) acts on a G- set X. This induces a new and interesting global action. In the
particular case that the general linear group acts on the quadratic forms, this construction
is related to hermitian K-Theory.

It is important to remark that the model for the line L that we introduce here is not exactly
the same one that is used in [2] or [4]. Both models are isomorphic at the weak level, but
the original notion of the line becomes quite rigid when one works with morphisms that
also preserve information of the local actions. This change is essential when defining the
strong fundamental group of a groupoid atlas.

We explain below the reasons of this change. We shall also prove that both models are
equivalent groupoid atlases. Moreover, our model is the regularization of the original one.

In section 3 we introduce some of the fundamental concepts of this work, such as the
notion of equivalence between maps of groupoid atlases and the notions of irreducible and
regular atlases.

In section 4 we study the strong fundamental group of a groupoid atlas. We use first a
geometric approach and later we prove that it can also be defined and computed with a
more algebraic approach, related to the vertex group of the colimit groupoid of the atlas.
We relate the strong fundamental groupoid with the weak one (introduced in [4]) and we
also show how to compute the fundamental groupoid of a topological space using groupoid
atlases, via the Van Kampen Theorem. New formulations of classical and non classical
results on the fundamental group of an open covering are also discussed.

The last section of the paper is devoted to simplicial methods. To each groupoid atlas we
associate a simplicial set, which we call the (strong) nerve for historical reasons and also
because it generalizes in some sense the nerve of a groupoid. We also introduce a weak
version of the nerve (compare with [4]). We obtain this way another definition for the
fundamental group of a groupoid atlas. This independently defined simplicial version is
proved to coincide with the other two defined in the previous section.

We finish the paper with an introduction to the homology theory of groupoid atlases. We
compute some easy but clarifying examples. The article ends with a result which relates
the local homology groups with the homology of the whole atlas.

2 Preliminaries: Global Actions and Groupoid Atlases

Before recalling the basic definitions of global actions, let us begin with an easy example,
which was already exhibited in [4].
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Let G be a group and let H = {Hα}α∈φ be a family of subgroups of G, acting on G by
left multiplication. This will induce a global action, denoted by A(G,H).

If H consists of a single group H, then this global action is simply the set of orbits of the
action, but when H consists of more than one subgroup of G, then the different orbits of
the actions interact. We will see later that this interaction is crucial from the homotopical
point of view. For example, consider the case A = A(D3,H), where D3 denotes the
dihedral group of order 6. Take φ = {a, b}, Ha = 〈r〉 with r a rotation of order 3 and
Hb = 〈s〉 with s a symmetry. The actions of each Hα divides G in orbits which determine
the following covering of G.

s*rs

1 r r^2

s*r^2

We denote by U this covering. Its nerve NU is the simplicial complex corresponding to
the following diagram

Ha

zz
zz

zz
zz

GG
GG

GG
GG

G

Hb Hb.r Hb.r
2

Ha.s

DDDDDDDD

wwwwwwwww

In section 3 we shall study the strong fundamental group of global actions. As we can
guess, in this case the fundamental group will be isomorphic to Z ∗ Z.

2.1 Definitions and examples on global actions

Definition 2.1.1. A global action A consists of a set XA together with a family of group
actions {Gα y Xα| α ∈ φA} on subsets Xα ⊆ XA. These actions are related by certain
morphisms which glue them together coherently. More exactly,

A = (XA, φA, {Xα}α, {Gα}α)

where

(a) XA is a set,

(b) φA = (φA,6) is an index set equipped with a reflexive relation,

(c) for each α ∈ φA, there is a subset Xα ⊂ XA and a local group Gα acting on Xα and
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(d) if α 6 β, there exists a homomorphism φβ
α : Gα → Gβ such that g.x = φβ

α(g).x for
every x in Xα ∩Xβ, g ∈ Gα.

Moreover, φα
α = idGα and φβ

γ ◦ φγ
α = φβ

α, whenever these compositions have sense.

Note that Gα(Xα ∩Xβ) ⊂ Xα ∩Xβ , i.e. the α-orbits of each element in the intersection
are included in the intersection.

We call A a single domain global action if XA = Xα for each α. If XA =
⋃

α Xα, we say
that A is covered.

The global action A = A(G,H) of above is an example of a single domain global action.
In this case, XA = G, the local actions Hα y Xα = G are the subgroups of the family
acting by left multiplication, and any two indices α and β satisfy α 6 β if and only if
Hα ⊂ Hβ. The associated group homomorphisms φβ

α are the inclusions.

Another interesting example of a single domain global action is the general linear global
action GL(n,R), where R is an associative ring with unit. This example was already
studied in [2] and [4], but we recall it here briefly, since it is one of the motivating examples
for this theory. The homotopy groups of this global action coincide with the K-theory
groups of the ring R.
Let n ∈ N. A subset α of Λ = {(i, j) | i 6= j, 1 6 i, j 6 n} is called closed if every time
that it contains the pairs (i, j) and (j, k), then the pair (i, k) is also in α.
Consider the poset φ = {α ⊂ Λ | α closed} partially ordered by inclusion.
Let Gα = GL(n,R)α be the subgroup of GL(n,R) generated by the matrices

{Eij(r)| r ∈ R, (i, j) ∈ α},

where Eij(r) is the matrix containing 1 in the diagonal, r in the position (ij) and 0
elsewhere.
It is not difficult to verify that a matrix A belongs to GL(n,R)α if and only if Aij = 1 for
i = j and Aij = 0 if (i, j) /∈ α.

For α ⊂ β, we denote φβ
α the inclusion GL(n,R)α → GL(n,R)β . Now let Xα = GL(n,R).

The subgroup GL(n,R)α acts on GL(n,R) by left multiplication.

Note that the general linear global action is a particular example of the actions A(G,H)
introduced before. If A(G,H) is considered as an atlas with discrete index set (see [4]),
this is not longer true since in the general linear global action situation we are making
some identifications between local actions.

Example 2.1.2. Let A = A(G,H) and let G y X be a G-set. The global action A y X
is an extension of the action of G on X and it is defined as follows. Take XAyX = Xα = X
for each α ∈ φAyX = φA, with the action induced by the action of G.
As a particular case, consider the general lineal group GL(n,R) acting over the quadratic
forms in Rn by base change, i.e.

(C ·Q)(x) = Q(C.x), C ∈ GLn(R), Q a quadratic form, x ∈ Rn.

This action restricts well to the subset X of positive defined quadratic forms. If A is the
matrix of Q, then CtAC is the matrix of C ·Q.
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2.2 Path components and the weak fundamental group

Consider again our first example A = A(D3,H), where D3 denotes the dihedral group of
order 6, and take the element 1 ∈ D3. When different elements of the local groups Ha and
Hb act consecutively on it, we obtain a path like the following

1
s.
−→ s

r.
−→ rs

s.
−→ srs

r.
−→ rsrs = 1.

In general, the various actions of the local groups Gα interact on the intersections of the
local sets Xα and this induces a global dynamics in A. The elements of XA move along XA

through the actions of the different local groups. This idea suggests definitions for paths
and loops in A and therefore notions for path connectedness and simply connectedness.

Let A = (XA, φA, {Xα}α, {Gα}α) be a global action and let α ∈ φA. An α-frame is a finite
subset {x0, . . . , xn} ⊂ XA such that for each i there exists gi ∈ Gα with gi · xi−1 = xi. A
(weak) path is a finite sequence x0, . . . , xn such that for each i the set {xi−1, xi} is a local
frame, i.e. an α-frame for some index α.
Given two elements x, y of XA, we say that they are in the same connected component of
A if there exists a path joining both points. As usual, we denoted by π0(A) the set of
(path) components of A.

Let us compute π0(A) in the examples of above.
Consider first the case A = GL(n,R). If x and y are in the same component, then there
is a finite sequence of matrices Ei ∈ Gi = GL(n,R)αi

such that

EnEn−1 . . . E1x = y

which implies that they determine the same class in the quotient GL(n,R)/E(n,R). Here
E(n,R) denotes the subgroup of elementary matrices. Since every elementary matrix can
be factored as a finite products of Ei ∈ GL(n,R)αi

, we obtain that

π0(GL(n,R)) = GL(n,R)/E(n,R) = K1(n,R).

For more details, see [2, 3, 5, 4, 11, 18].
In the case A = A(G,H), a similar argument shows that x, y ∈ A are in the same com-
ponent if and only if there exists a sequence hαi

∈ Hαi
such that hαn . . . hα1x = y. If we

denote 〈H〉 = 〈Hi | i ∈ φ〉 the subgroup of G generated by all Hi, then we obtain

π0(A(G,H)) = G/〈H〉.

Recall that a weak morphism f : A → B is a set theoretic function f : XA → XB which
preserves local frames. A path is a particular example of a weak morphism between global
actions. More exactly, let L be the global action with underlying set XL = Z, with the
index set φL ⊂ P(Z) the family of subset of Z of the form {n} and {n, n+ 1}, and whose
local actions are the free and transitive actions of the trivial group and G2 respectively.
A path in A is simply a morphism L → A that stabilizes in both directions (i.e. ∃ N such
that f(n) = f(n+ 1) for |n| > N).
If a weak morphism f : L → A does not stabilize, we call it a weak curve. A path with
the same initial and final point is a weak loop.
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Remark 2.2.1. As we pointed out in the introduction, the model for the line L that we
introduce here is not the same one used in [2] or [4]. Both models are isomorphic at the
weak level, but the original notion becomes very rigid when one works with morphisms
that preserve the information of the local actions.

Recall that the product of global actions is defined as follows. Given two global actions
A and B, the product A×B is the global action with underlying set XA ×XB and index
set φA × φB , equipped with the product relation. The local action of A × B indexed by
(α, β) is the product action between Gα y (XA)α and Gβ y (XB)β .

The product A × B, defined as above, satisfies the universal property of the categorical
product in the category of global actions.

A homotopy between paths ω and ω′ is defined as a weak morphism

H : L× L → A

for which there exist integers N0, N1 such that H(−, N0) = ω and H(−, N1) = ω′, and that
stabilizes in an appropriate sense (see [2]). In particular, the local frames of the product
L× L are the subsets S satisfying

S ⊂ {(n,m), (n,m+ 1), (n + 1,m), (n + 1,m+ 1)}

for some n,m ∈ Z.

Definition 2.2.2. Let ω and ω′ be loops based on x ∈ XA. A homotopy between ω and
ω′ is a function H : Z× Z → XA such that

• for all m,n, the sets {H(n,m),H(n,m+1),H(n+1,m),H(n+1,m+1)} are local
frames of A, and

• there exist N0 < N1,M0 < M1 ∈ Z such that H(−,M0) = ω, H(−,M1) = ω′ and

H(n,m) =





H(N0,m) if n < N0

H(N1,m) if n > N1

H(n,M0) if m < M0

H(n,M1) if m > M1

We can thus define the weak fundamental group of a global action XA with base point
a ∈ XA as follows.

Definition 2.2.3. The weak fundamental group πw
1 (A, x) is the set of homotopy classes

of loops at x. The multiplication is defined via concatenation of paths.

Let us compute πw
1 (A, x) in the case A = A(G,H). Without loss of generality, we may

suppose x = e the neutral element of G. We denote with
∐
∩
Hα the amalgamated product

of Hα, i.e. the colimit in the category of groups over the diagram {Hα ∩Hβ,Hα}.
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Proposition 2.2.4. The weak fundamental group of A(G,H) can be computed as the
kernel of the canonical map

∐
∩
Hα → G.

Proof. The group πw
1 (A, e) is isomorphic to the fundamental group of the nerve of the

cover of G by H-coclasses, with H ∈ H (see below). Let G̃ =
∐
∩
Hα and write j(H)

for the image of H → G̃. Let NG̃ be the nerve of the cover of G̃ by j(H)-coclasses.
The canonical group homomorphism G̃ → G induces the universal covering NG̃ → NG
between the nerves (see [1],[4]). Given j(H) a vertex of NG̃, a Deck transformation ϕ
is determined by ϕ(j(H)), which could be any element of {g.j(H)|g ∈ Ker(G̃ → G)},
the fiber over H. Multiplication by g gives a simplicial map on NG̃ for g ∈ G̃, hence it
gives a Deck transformation for g ∈ Ker(G̃ → G). We conclude that the group of Deck
transformations is exactly Ker(G̃ → G).

Note. Here, by a covering of simplicial complexes, we mean a simplicial map with the
unique lifting property of simplices. Observe that a simplicial map K → L is a covering
if and only if |K| → |L| is a covering of topological spaces.

At the weak level, a global action is the same as a set equipped with a cover. Let A be a
global action, XA the underlying set and UA the covering determined by the local orbits.
Let V (UA) be the Vietoris complex of UA, whose simplices are the finite subsets of XA

that are included in some element of UA. Let N(UA) be the nerve of this covering, whose
simplices are the finite subsets of UA with non trivial intersection. Since local frames in
A are just simplices in V UA, we have

π0(A) ∼= π0(V UA) ∼= π0(NUA)

and
πw
1 (A)

∼= π1(V UA) ∼= π1(NUA).

Dowker’s theorem, proved in [4], relates both simplicial complexes NUA and V UA.
In general, one has the following result.

Proposition 2.2.5. The functor A 7→ V A is an equivalence between the category of
(covered) global actions with weak morphism and the category of simplicial complex.

An inverse can be obtained by giving to a simplicial complex K a global action

{S(s) y s | s simplex of K},

with the simplices of K as indices and whose underlying set is the set of vertices of K.
Here S(X) means the group of bijections of the set X.

There exists a stronger notion of morphisms of global actions, which originally were called
regular in [2].
A regular morphism f : A → B is a triple (Xf , φf , Gf ) satisfying

(a) φf : φA → φB is a relation preserving map,
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(b) Gf (α) : Gα → Gφf (α) is a group morphism such that if α 6 β the diagram

Gα
//

��

Gφf (α)

��

Gβ
// Gφf (β)

commutes,

(c) Xf : XA → XB is a set function such that Xf (Xα) ⊂ Xφf (α) and

(d) for each α ∈ φA, (Gf ,Xf ) : Gα y Xα → Gφf (α) y Xφf (α) is a morphism of actions,
i.e. Gf (α)(g) ·Xf (x) = Xf (g · x) ∀ g ∈ Gα, x ∈ Xα.

In order to generalize the constructions of above, we must be very careful about what a
strong path or a strong homotopy is. Regular morphisms, that a priori allow us to work
with curves, paths and loops in a strong sense, are very restrictive. To give an idea, let
us consider a global action such that all its local groups are finite of odd order. Because
a regular morphism contains group morphisms as part of its data, there are no regular
morphisms L → A which are not constant. The regular maps L → A do not measure, in
general, the dynamics of A.

Important Note. In this paper, the word regular will mean a different concept (see
3.4.1). Since regular morphisms of global actions (in the sense of [2]) are not used in this
article, there should be no confusion.

2.3 Groupoid atlases

Giving a group G acting on a set X, one can associate to the group action G y X a
groupoid G = G ⋉X. The objects of G are the elements of X and for any x, y ∈ X, the
arrows from x to y are the pairs (g, x) with g ∈ G such that g · x = y. Composition is
defined in the obvious way.
Applying this construction to each local orbit of a global action A, we obtain a groupoid
atlas. The concept of a groupoid atlas was introduced in [4].

Definition 2.3.1. A groupoid atlas A = (XA, φA,GA) consists of a set XA, an index set
φA equipped with a reflexive relation, and for each α ∈ φ, a groupoid Gα such that

- Xα = Obj Gα ⊂ XA,

- if α 6 β in φA, Xα ∩ Xβ is union of components of Gα, and there is a functor

φβ
α : Gα|Xα∩Xβ

→ Gβ|Xα∩Xβ
which restricts to the identity in objects.

The structural functor φβ
α is the identity when α = β, and it commutes with the compo-

sitions. The groupoids Gα are called the local groupoids of A.

Notation. Let G be a groupoid and let X ⊂ Obj G. We denote by G|X the full subgroupoid
of G on X.
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Example 2.3.2. As we mentioned above, every global action induces a groupoid atlas. In
particular, we endow A(G,H) and GL(n,R) with a structure of global action. Although
not every groupoid atlas comes from a global action. For some examples, see [14].

Example 2.3.3. Any groupoid G can be viewed as a groupoid atlas with trivial index set.
This groupoid atlas is denoted by a(G). This construction induces a fully faithful functor
into any of the categories of groupoid atlases that we discuss later.

Example 2.3.4. Let K be a simplicial complex. We define a groupoid atlas a(K) as
follows: XaK = VK , the set of vertices of K; φaK = SK , the set of simplices of K ordered
by inclusion; for each simplex s, the local groupoid Gs is the simply connected groupoid
(tree) with object set s; the structural functors φt

s are the inclusions.

As a particular case, the n-sphere is defined to be the groupoid atlas a(∂∆[n]), where
∂∆[n] is the simplicial complex with vertices {0, ..., n} and simplices all the nonempty
proper subsets of {0, ..., n}.

This functorial construction K 7→ aK associates to every simplicial complex K a groupoid
atlas aK satisfying some extra properties that we will discuss later. For example, aK is
irreducible, regular and infimum. Also, this construction induces a fully faithful functor
into the category [GpdAtl] defined in the next section. This way one might view groupoid
atlases as generalized simplicial complexes, for which there are many others local models
than the (homotopy trivial) simplices.

Another interesting examples of groupoid atlases arise from the fundamental groupoids of
topological spaces.

Example 2.3.5. Let X be a topological space and U an open cover of X. The groupoid
atlas A(X,U) is defined as follows. The underlying set is X and the index set φ is the
poset (U ,⊂). For each U ∈ U , the local groupoid GU is the fundamental groupoid π1(U)
and the morphisms φV

U are induced by the inclusions U →֒ V .

In section 4 we relate both the weak and the strong version of the fundamental group of
A(X,U) with π1(X).

Weak morphisms between groupoid atlases are, as one might suppose, functions between
the underlying sets which preserve local frames. In this context, a local frame is a finite
subset of some connected component of a local groupoid. This category, with groupoid
atlases as objects and weak morphism as arrows, is canonically equivalent to those of
global actions and simplicial complexes. We call it the weak category of groupoid atlases.

The notion of (strong) morphism of groupoid atlases is not as rigid as the notion of regular
morphism of global actions.

Definition 2.3.6. Amorphism f : A → B between groupoid atlases is a triple (Xf , φf ,Gf )
satisfying

- Xf : XA → XB is a set-theoretic function,
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- φf : φA → φB is a function which preserves the relation ≤,

- Gf : GA → GB is a (generalized) natural transformation of groupoid diagrams over
the function φf , which restricts to Xf in the objects.

In other words, for each α a functor Gf (α) : Gα → Gφf (α) is given in such a way that
Obj Gf (α) = Xf |Xα and, if α 6 β, the diagram

Gα
//

��

Gφf (α)

��

Gβ
// Gφf (β)

commutes.

We denote by GpdAtl the category of groupoid atlases with (strong) morphisms.

The atlas A is covered if every element of XA is an object of some local groupoid. All the
groupoid atlases that we consider are assumed to be covered.

Note that, if A is covered and f : A → B is any morphism, then the function Xf is locally
determined by the values of the functors {Gf (α)}α in objects. However, Xf must be part
of the data.

To illustrate this, consider the following example. Suppose A is the groupoid atlas with
XA = ∗, φA = {1, 2} with the discrete order and X1 = X2 = ∗ and let B be any groupoid
atlas. Suppose also that we are given a map φf : φA → φB and a generalized natural
transformation Gf : GA → GB. Note that the map φf : φA → φB picks two indices φf(1)

and φf(2) of φB , and Gf : GA → GB determines two objects x and y of Gφf(1)
and Gφf(2)

,
respectively. If we take x 6= y, then (φf ,Gf ) does not come from a morphism of atlases.

Under certain condition on the atlas A, a relation preserving map φf : φA → φB and a
natural family of functors Gα → Gφf (α) do determine a map A → B. We introduce the
concept of a good atlas, which solves this problem and plays a fundamental role in the
next sections. This concept is weaker than (but intimately related with) the notion of
infimum, introduced in [2] and [4] (cf. 4.4).

Definition 2.3.7. Let A be a groupoid atlas. We say that A is good if for every x ∈ XA

the set

φx = {α ∈ φA | x ∈ Xα}

has an initial element, i.e. there exists αx ∈ φx such that αx 6 β for all β ∈ φx.

Remark 2.3.8. Suppose A is a good atlas. Given a relation preserving map φf : φA → φB

and Gf : GA → GB a natural family of functors over φf , the various local functions
{Obj Gf (α)}α∈φA

agree in the intersections because Obj Gf (α)(x) must be Obj Gf (αx)(x)
for all α, and therefore there is a well defined function Xf : XA → XB . In this case, a
morphism f : A → B can be regarded as a pair (φf ,Gf ).
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3 Equivalences of Maps and Irreducible Atlases

In order to define the right notion of strong fundamental group we need to change first a
little bit our notion of morphism. Many maps A → B seem to carry the same information,
and they just differ in the indices. For example, if A is such that φA = {0 < 1} with G0

a subgroupoid of G1 and φ1
0 is the inclusion, this atlas does not contain more information

than the one coming from G1. Moreover, given a ∈ XA, it is necessary to identify the
various identities of this element viewed as an object of the different local groupoids.
Also, we should understand φβ

α(g) as an extension of the movement g.

This induces the notion of equivalence between morphisms.

3.1 Morphisms modulo equivalences

Definition 3.1.1. Given f, f ′ : A → B, we say that f is a corestriction of f ′ if φf (α) 6
φf ′(α) for all α ∈ φA and all the diagrams

Gα

Gf (α)

||yy
yy

yy
yy Gf ′(α)

""FF
FFFF

FF

Gφf (α)

φ
φ
f ′

(α)

φf (α)

// Gφf ′ (α)

are commutative. We write f ⊳ f ′.

The morphisms f, f ′ : A → B are equivalent if they are in the same class of the equivalence
relation generated by the corestrictions. We write f ∼ f ′.

Remark 3.1.2. It is easy to see that f ∼ f ′ implies Xf = Xf ′ .

Note that the relation ⊳ is transitive. Moreover, if f⊳f ′, then g◦f⊳g◦f ′ and f ◦h⊳f ′◦h
for any g, h. It follows that, if f, f ′ : A → B and g, g′ : B → C are such that f ∼ f ′

and g ∼ g′, then g ◦ f ∼ g′ ◦ f ′. Therefore, we can define a new category [GpdAtl], with
groupoid atlases as objects and the classes of (strong) morphisms as maps. We denote the
class of f by [f ].

The notion of equivalence between morphisms loosen the dependence of A from the index
set φA. Let us go back to the example at the beginning of this section. The information
of the atlas A seems to lie just in G1. If we call B = aG1 the atlas with this only local
groupoid, the canonical arrows f : A → B and g : B → A satisfy gf ∼ idA and fg = idB ,
so they are isomorphic in [GpdAtl].

Definition 3.1.3. We say that f : A → B is an equivalence if there exists g : B → A such
that gf ∼ idA and fg ∼ idB , i.e. [f ] is an isomorphism in [GpdAtl]. Given atlases A and
B, we say that they are equivalent if there is an equivalence between them.
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3.2 Irreducible atlases

Recall that the set φA of a groupoid atlas (XA, φA,GA) is equipped with a reflexive relation.
If α, β ∈ φA are such that α 6 β, by definition Xα ∩ Xβ can be written as union of
connected components of the groupoid Gα. If in addition Gα is connected, it follows that
Xα ⊂ Xα ∩ Xβ and the structural functor φβ

α : Gα|Xα∩Xβ
→ Gβ |Xα∩Xβ

can be regarded
simply as a functor between Gα and Gβ. So, when each local groupoid is connected, a
groupoid atlas is nothing but a particular diagram of groupoids.

Definition 3.2.1. We will say that a groupoid atlas A is irreducible if Gα is a connected
groupoid for every index α in φA.

Given any atlas A, there is a natural way to associate to it an irreducible atlas i(A),
considering each component of any local groupoid as an individual local groupoid. The
underlying set of i(A) is the same of A, so Xi(A) = XA. The index set of i(A) must
repeat each index of A as many times as many components of the corresponding groupoid.
Explicitly,

φi(A) = { (α,X) | α ∈ φA, X = Obj G′ ⊂ XA, G′ component of Gα}

and the relation is induced from φA:

(α,X) 6 (β, Y ) ⇐⇒ α 6 β and X ⊂ Y.

Finally, the local groupoid G(α,X) is the component of Gα with object setX, and if (α,X) 6

(β, Y ), the morphism φ
(β,Y )
(α,X) equals φ

β
α. Like in any irreducible atlas, the structural maps

of i(A) are defined over the whole local groupoid.

This construction is functorial, since every map f = (Xf , φf ,Gf ) : A → B induces a new
map if : iA → iB given by Xif = Xf , φif (α,X) = (φf (α), Y ) where Y is the component
of Gφf (α) that contains Gf (α)(X), and Gif (α,X) : G(α,X) → Gφif (α,X) is the restriction of
the functor Gf (α) : Gα → Gφf (α).

The canonical map ϕA : iA → A that forgets the second coordinate of the indices
(φϕA

(α,X) = α) and such that GϕA
(α,X) : Gα|X → Gα is the inclusion of each com-

ponent, is natural in A. It satisfies also the following universal property, whose proof is
straightforward.

Proposition 3.2.2. Let g : B → A a map of groupoid atlases, and suppose that B is
irreducible. Then, there exists a unique map h : B → iA such that g = ϕA ◦ h.

It is clear that iA = A when the atlas A is already irreducible. The functor i is a right
adjoint for the inclusion of the full subcategory of irreducible atlases into the category of
atlases.

The map φA : iA → A is a weak isomorphism, but it is not an isomorphism or an
equivalence in general. However, the groupoid atlases A and iA are intimately related:
they share all the invariants that we will study, such as the nerve, the homology groups
and even the fundamental group.
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3.3 A new approach

Given an irreducible atlas A and indices α, β and γ in φA such that α 6 β 6 γ, then
Xα ⊂ Xβ ⊂ Xγ and the composition φγ

β ◦φ
β
α is defined and it agrees with φγ

α if α 6 γ in φ.
Therefore, in an irreducible atlas we can assume that the relation 6 is transitive without
loss of generality.

Proposition 3.3.1. Given an irreducible atlas A, the relation 6 defined in its set of
indices φA is a partial order “up to equivalence”, i.e. there exists an atlas B whose set of
indices is partially ordered by 6, and an equivalence A → B.

Proof. Recall that the relation 6 defined in φA is always reflexive, and since A is irre-
ducible, it can also be taken transitive. It only remains to make 6 antisymmetric.

The atlas B will be obtained from A by deleting some local groupoids. We say that two
indices α, β ∈ φA are paired if α 6 β and β 6 α. Clearly, been paired is an equivalence
relation. We denote by [α] the paired class of α. If α and β are paired indices, then

Xα = Xβ and the functor φβ
α must be an isomorphism. Let c be a selector function that

assigns to each paired class an element of itself. We define B as follows,

- XB = XA,

- φB = {c[α] | α ∈ φA}, with the relation induced by the inclusion φB →֒ φA,

- GB is the restriction of GA to φB .

The map f : B → A is the canonical inclusion. The inverse, g : B → A is given by

- Xg = id : XA → XB ,

- φg : φA → φB is the map α 7→ c[α]. If α 6 β, because α and c[α] are paired, β and
c[β] are paired and 6 is transitive, we have c[α] 6 c[β],

- the functor Gg(α) : Gα → Gc[α] equals φ
c[α]
α the structural functor of A. The square

Gα
φ
c[α]
α

//

φ
β
α

��

Gc[α]

φ
c[β]
c[α]

��

Gβ
φ
c[β]
β

// Gc[β]

is commutative because of the naturality of GA.

The composition g ◦ f is the identity of B, and f ◦ g is a corestriction of idA. It follows
that A and B are equivalent.

The next definition, which is motivated by the last proposition, gives another approach
to irreducible groupoid atlases. The proof of the equivalence between both definitions is
omitted.
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Alternative Definition 3.3.2. Given a partially ordered set φ, an irreducible groupoid
atlas A with index set φ is a diagram in the category of groupoids GA : φ → Gpd such that
for each α the groupoid GA(α) = Gα is connected and if α 6 β then the induced functor

φβ
α, is an inclusion on the objects.

With this definition, the underlying set XA is the union
⋃

Obj Gα.

A morphism f : A → B is a pair (φf ,Gf ), with φf : φA → φB a map of posets and Gf a
natural transformation between GA and GB ◦ φf that induces a function Xf .

φA

φf
//

GA !!CC
CC

CC
CC

φB

GB}}{{
{{

{{
{{

Gpd

In this context, the corestrictions arise naturally. Given f, f ′ : A → B, the relation f ⊳ f ′

is equivalent to the existence of a natural transformation η : φf ⇒ φ′
f : φA → φB such

that GA

G′

f
−→ GB ◦ φf ′ equals the composition GA

Gf
−→ GB ◦ φf

GB◦η
−−−→ GB ◦ φf ′ ,

φA

φf ′

++

φf

33

GA !!CC
CC

CC
CC

⇑ φB

GB}}{{
{{

{{
{{

Gpd

3.4 Regular atlases

We may think a regular atlas as a well pointed atlas. Our model for the line is regular, and
this is very convenient because of the existence of sections for the projection A× L → A
(they are necessary for the homotopies).

Definition 3.4.1. An atlas A is called regular if it is good and Gαx = ∗ for every x ∈ XA,
where αx is the minimum of φx (cf. 2.3.7).

Remark 3.4.2. Given x ∈ XA, the index αx in the definition of regular atlas is not unique,
but two of such indices must be mutually related by 6, and therefore the uniqueness can
be assumed up to equivalence (proposition 3.3.1) when A is irreducible.

There is a regularization functor A → r(A) defined as follows.

Xr(A) = XA

and

φr(A) = φA ⊔ {αx}x∈XA
, with αx 6 α if and only if x ∈ Xα.

The local groupoids Gαx are singletons and the Gα
′s are as before.
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Example 3.4.3. The line L is a regular groupoid atlas. As we pointed out above, it is
the regularization of the one used in [2] and [4].

Sometimes one need to replace a groupoid atlas A by its regularization rA, in order to
work with paths, homotopies and morphisms in a right way. The following proposition
asserts that, when A is good, this replacement does not change the equivalence class of
the atlas. Then, every good atlas can be supposed to be regular up to equivalence.

Proposition 3.4.4. Let A be a good atlas. The canonical inclusion A → rA is an equiv-
alence.

Proof. Let f be the inclusion A → rA, we define g : rA → A by sending φg(αx) to the
initial element of φx. It is easy to see that g is a morphism, gf = idA and idrA ∼ fg (in
fact, idrA ⊳ fg).

We will say that a morphism f : A → B between regular atlases is regular if φf (αx) =
αXf (x) for all α. The following three results will be used to characterize the (strong)
fundamental group of groupoid atlases.

Proposition 3.4.5. Let f : A → B be a morphism between regular atlases. Then there
exists f ′ : A → B regular such that f ∼ f ′.

Proof. Let us define f ′ and prove that it is equivalent to f . Take Xf ′ equals Xf . For
each α there is at least one x ∈ XA such that α = αx is the initial element of φx. Define
φf ′ as the function that sends the initial element of φx to the initial element of φXf (x),
and the other indices α to φf (α). The family of functors Gf ′(α) : Gα → Gf ′(α) is defined
as follows: if there is an x such that α = αx, Gf ′(α) is uniquely determinated by Xf ;
otherwise, Gf ′(α) is just Gf (α). Naturality follows from the naturality of Gf , and since
f ′ ⊳ f the result follows.

Proposition 3.4.6. Let f : A → B. If B is good, then there exists g : r(A) → B that
extends f . Moreover, if g′ is another extension, then g ∼ g′.

Proof. It is sufficient to extend φf to the indices {αx | x ∈ XA} of φrA that are not in φA,
and this can be done sending each αx to the minimum of {α ∈ φB | Xf (x) ∈ Xα}. The
morphism g obtained this way is a corestriction of any other extension.

When A is good and f = idA : A → A, the map g : rA → A is exactly the one constructed
in 3.4.4. Proposition 3.4.6 proves that the regularization functor is right adjoint to the
inclusion of the full subcategory of [GpdAtl] formed by the good atlases.

Proposition 3.4.7. Let f, g : A → B with A regular and B good. If φf (α) = φg(α) and
Gf (α) = Gg(α) for all α ∈ φA except perhaps for the indices {αx}, then f ∼ g.

Proof. Follows from the previous result.
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4 The (Strong) Fundamental Group

Along this section, we work with good groupoid atlases.

4.1 Global points and global arrows

From the notion of equivalence, we will obtain a definition for points and arrows of an
atlas A in a global sense, i.e. independent of the local groupoids.
We denote with ∗ the singleton groupoid (a single object and a single arrow), and with I
the 2-point simply connected groupoid. Recall that a : Gpd → GpdAtl is the functor that
maps each groupoid G into the atlas whose unique local groupoid is G.

A morphism a(∗) → A is a pair (α, x), where α ∈ φA and x ∈ Xα are the images of the
unique index and the unique object respectively. A same element x ∈ XA gives rise to
many morphisms a(∗) → A, one for each α such that x ∈ Xα. On the other hand, if
α 6 β, the two corresponding morphisms are equivalent.

Definition 4.1.1. A global point in A is the equivalence class of an arrow a(∗) → A.

{points of A} = Hom[GpdAtl](a(∗), A)

Remark 4.1.2. The canonical function {points of A} → XA that maps the class of p :
a(∗) → A in Xp(∗) is bijective when the atlas A is good. In fact, it is surjective because
A is covered and injective because each φx has initial element.

As we pointed out before, we think φβ
α(g) ∈ Gβ as an extension of the movement g ∈ Gα.

Let us consider the case of A(G,H), with the family H closed under (finite) intersections.
The arrows of a local groupoid H⋉G come from the action of the subgroup H in G by left
multiplication. Recall that (h, g) is the arrow with source g and target hg. These arrows
are identified with the corresponding elements of G, without considering which H does
actually contain them: if h belongs to H and H ′, since H is closed under intersections we
might think (h, g) ∈ H ⋉ G and (h, g) ∈ H ′ ⋉ G as extensions of (h, g) ∈ (H ∩H ′) ⋉ G.
Thus, the arrows of A are

{(h, g)| g ∈ G, h ∈ H for some H ∈ H}

For a general atlas A, we propose the following definition.

Definition 4.1.3. A global arrow [g] of A is the class of some local arrow g ∈ Gα by the

relation generated by g ∼ φβ
α(g). Equivalently, a global arrow is the equivalence class of a

morphism a(I) → A.

{arrows of A} = Hom[GpdAtl](a(I), A)

Since g ∼ g′ implies Xg = Xg′ , there are well defined source and target of a global arrow
[g]. They are Xg(0) and Xg(1), respectively.

Let A be a good atlas, and x ∈ XA. If x ∈ Xα ∩Xβ, then idx ∈ Gα ∼ idx ∈ Gβ because we

can reach one from the other by functors φβ
α. We denote this global arrow as idx. Observe
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that [g] = idx does not imply that g is the identity of x in some local groupoid, because

the structural functors φβ
α may not be faithful.

Finally, recall that the standard n-simplex ∆[n] in the category of groupoids is the simply
connected groupoid with object set {0, ..., n}. In particular, we have ∗ = ∆[0] and I =
∆[1]. These classical definitions give us models for the simplices in GpdAtl, composing
with a. As a generalization of what we did with points and arrows, they will be used in
section 5 to define the nerve of a groupoid atlas.

4.2 Curves, paths and loops

In this subsection we will interpret a curve L → A as a sequence of global arrows. This
leads to a very nice result: the fundamental group of a groupoid atlas equals the funda-
mental group of the colimit groupoid over the set of indices.

In the category GpdAtl, we consider the inclusions in : a(I) → L given by φin(∗) =
{n, n+1} and id = Gin(∗) : I → G{n,n+1}. A morphism λ : L → A gives rise to a sequence
(λn)n∈Z defining λn : a(I) → A, λn = λ ◦ in.

Given λ : L → A, in the triple (Xλ, φλ,Gλ) the function Xλ is determinated by the others,
and any natural family of functors (φλ,Gλ) induces a map λ : L → A since L is regular.
Moreover, the local groupoids of L of the form G{n} are singletons so each functor Gλ({n})
must be trivial, and each functor Gλ({n, n + 1}) is given by an arrow in Gφ({n,n+1})(the
image of the arrow {n → n+ 1}). Thus, a morphism λ determines and is determined by
the following data.

• (αn)n ⊂ φA where αn = φλ({n}), and

• (λn)n, where λn = λ ◦ in : I → A satisfies s(λn+1) = t(λn) and αn, αn+1 6 φλn
(∗).

Remark 4.2.1. A map L → A gives rise to a curve with a framing β in the vocabulary of
[4]. Here, β is the function n → αn. Conversely, one can get a map L → A from a weak
curve w with a framing β, specifying local arrows gn which make w a curve.

Definition 4.2.2. A curve l in A is an equivalence class of a morphism λ : L → A.

If (λn)n is a sequence of local arrows such that s(λn+1) = t(λn), we can construct a
morphism λ : L → A taking for each n an index αn 6 φλn−1(∗), φλn

(∗), which exists when
A is good. Here φλn

(∗) is the index of the groupoid that contains the local arrow λn.
Since L is good, by proposition 3.4.7, the class of this λ does not depend on the choice of
the αn. Hence, we have established the following (partial) correspondence:

(λn : a(I) → A)n/sλn+1 = tλn ⇒ [λ] curve

([λn])n ⊂ {arrows of A} ⇐ λ : L → A

If λ ∼ λ′ then [λn] = [λ]◦ [in] = [λ′]◦ [in] = [λ′
n] for all n. We investigate now under which

hypothesis the converse is also true, namely: λn ∼ λ′
n ∀n ⇒ [λ] = [λ′].
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Proposition 4.2.3. Let λ, λ′ : L → A be such that λn = λ′
n ∀n 6= n0 and λn0 ⊳ λ′

n0
.

Then, λ ∼ λ′.

Proof. For each n, let αn ∈ φA be less or equal than φλ({n}) and φλ′({n}). Let h : L → A
be given for the sequences (αn)n and (λn)n. It is easy to check that h⊳ λ and h⊳ λ′.

Corollary 4.2.4. Let λ, λ′ : L → A. Suppose that there exists a finite subset J ⊂ Z with
λn = λ′

n for n /∈ J and λn ∼ λ′
n for n ∈ J , then λ ∼ λ′.

Proof. It suffices to construct a finite sequence λ = λ0, λ1, . . . , λk = λ′ such that λi and
λi+1 are in the conditions of the proposition.

We say that λ : L → A stabilizes to the left (resp. to the right) if there are x ∈ XA and
α ∈ φA such that λn = idx ∈ Gα for small (resp. big) enough values of n.

Proposition 4.2.5. If λ, λ′ : L → A stabilize in both directions and λn ∼ λn′ for every
n, then λ ∼ λ′.

Proof. Let (N0, N1) be a stabilization pair for λ and λ′. We have λn = idx0 ∈ Gα0 for
n 6 N0 and some α0 in φA, and λn = idx1 ∈ Gα1 for n > N1 and some α1. The map
λ gives an infinit sequence (φλ({n}))n ∈ φA that not necessary stablize in any direction.
However, we may suppose that φλ({n}) = α0 for n 6 N0 and φλ({n}) = α1 for n > N1

without change the equivalence class of λ (actually, λ is a corestriction of a map satisfying
this).

Similarly, let α′
0 and α′

1 be the indices where λ′ stabilizes.

Choose γ0, γ1 in φA such that γi 6 αi, α
′
i, i = 0, 1. Define (δn)n ⊂ φA as

δn =





γ0 if n 6 N0

φλ({n}) if N0 < n < N1

γ1 if n > N1

.

Define gn : I → A by

gn =





idx0 ∈ Gγ0 si n 6 N0

λn si N0 < n < N1

idx1 ∈ Gγ1 si n > N1

.

Denote λ̃ : L → A the morphism induced by the sequences (δn)n and (gn)n. Clearly, λ̃⊳λ.
Analogously, define λ̃′ : L → A such that λ̃′ ⊳ λ′. By the propostion of above and since
λ̃n = λ̃′

n for n < N0 or n > N1 and λ̃n = λn ∼ λ′
n = λ̃′

n for N0 6 n 6 N1, it follows that
λ̃ ∼ λ̃′. Therefore, λ ∼ λ.

If l is a curve, we say that l stabilizes to the left (resp. to the right) if there exists λ : L → A
such that [λ] = l and λ stabilizes to the left (resp. to the right).

Definition 4.2.6. A path in A is a curve which stabilizes in both directions.
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Note that if l is a path in A, then there exists λ : L → A, N0, N1 ∈ Z, x0, x1 ∈ XA and
α0, α1 ∈ φA such that l = [λ], λn = idx0 ∈ Gα0 for n < N0 and λn = idx1 ∈ Gα1 for
n > N1.

Consider again the correspondence between curves and sequences of global arrows. A path
l = [λ] is associated to the sequence ([λn])n ⊂ {arrows of A} which stabilizes in identities
at both sides.
Conversely, given a sequence (gn)n ⊂ {arrows of A} such that s(gn+1) = t(gn), gn = idx0

for n < N0 and gn = idx1 for n > N1, one can take local arrows (λn)n such that [λn] = gn
and construct the curve associated to this sequence. Note that this curve does not have to
be a path. This can be solved choosing α0, α1 such that x0 ∈ Xα0 , x1 ∈ Xα1 and taking
λn = idx0 ∈ Gα0 and λn = idx1 ∈ Gα1 for n small or big enough. This new curve is a path,
and is uniquely determinated by proposition 4.2.5. Thus we have obtained the following
result.

Proposition 4.2.7. The constructions of above are mutually inverse. They define a
bijection between the set of paths of an atlas A and the sequences (gn)n ⊂ {arrows of A}
that stablizes on identities and satisfies s(gn+1) = t(gn) for all n.

This correspondence preserves sources and targets, and concatenations of paths up to
homotopy. This leads to a simplicial computation of the fundamental group. In fact, we
will prove in the next section that the fundamental group of an atlas A is the fundamental
group of its nerve NA.

4.3 The fundamental group

In this subsection we introduce the (strong) fundamental group of a good groupoid atlas
A with a fixed base point. Later we will generalize this construction to any groupoid
atlas. The definitions and results introduced here admit formulations in terms of the
fundamental groupoid.

Recall that L is regular. Its points can be represented by the inclusions

jn : ∗ → L, φjn(∗) = {n}, id = Gjn(∗) : ∗ → G{n}.

The projections p1, p2 : L×L → L admit sections idL × jn, jn × idL respectively. We will
simply write jn instead of idL × jn, the inclusion of L in the n-th row.

Definition 4.3.1. A homotopy between two paths l and l′ is a map

H : L× L → A

such that there exist integers N0, N1,M0 and M1 satisfying

• H ◦ jN0 = λ with [λ] = l,

• H ◦ jN1 = λ′ with [λ′] = l′,
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• there are α0, α1 ∈ φA such that for all local arrow f of L × L, GH(f) = idx0 ∈ Gα0

if the first coordinate of s(f) is less than M0 and GH(f) = idx1 ∈ Gα1 if the first
coordinate of t(f) is greater than M1.

It is clear that homotopy of paths is an equivalence relation.

Definition 4.3.2. Let A be a good atlas and x ∈ XA. The fundamental group π1(A, x) is
the set of homotopy classes of loops at x, with the operation induced by the concatenation
of paths.

Proposition 4.3.3. If f : A
∼
−→ B is an equivalence, then π1(A, x0) ∼= π1(B,Xf (x0)).

Proof. It is a consequence of the definition of paths and homotopies. The fundamental
group is actually a well defined invariant in the category [GpdAtl]. For an alternative
proof, see section 5.

Important remark: We extend the definition of the fundamental group to non neces-
sarily good atlases, taking the fundamental group of their regularizations. By the last
proposition, this new definition agree with the original one on good atlases.

A homotopy H : l ∼= l′ can be decomposed into more elementary homotopies, considering
the various ways to reach the upper-right point from the lower-left one in a lattice (say
[0, N ] × [0, N ] ⊂ XL×L), that gives rise to a sequence of paths ..., λi, λi+1, ... where two
consecutive paths just differ in a single square. Note that all these paths become loops
when H is applied.

These elementary homotopies relate a path ([gM0 ], . . . , [gM1 ]), viewed as a sequence of
global arrows, with another ([hM0 ], . . . , [hM1 ]), where hi+1 ◦ hi = gi+1 ◦ gi ∈ Gα for some
i and some α, and hj = gj ∈ Gαj

for j 6= i, i + 1. Inserting the loop ([gM0 ], . . . , [gi ◦
gi−1], . . . , [gM1 ]) between them, we can observe that the homotopies in A define the same
equivalence relation that the one used to represent the morphisms in a colimit on the
category of categories (cf. [8],[9]).

This proves the following result.

Theorem 4.3.4. Let A be an irreducible groupoid atlas and let x ∈ XA. Consider G(A) =
colim Gα the colimit over the diagram φA. Then the fundamental group π1(A, x) equals

the fundamental group of the groupoid π1(G(A), x).

Remark 4.3.5. The hypotesis of irreducible on A is necessary to make {Gα}α a groupoid

diagram. Otherwise, the functors φβ
α are partially defined and the colimit does not have

sense.

Last theorem shows another way to define the group π1(A, x0) when A is irreducible.
When A is not irreducible, the group π1(iA, x0) defined in this way is isomorphic to the
fundamental group defined as before. This approach will be study in section 5.
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Example 4.3.6. We return to example 2.3.5. By definition, the local groupoid GU =
π1(U) is connected when the open subset U is path connected. So, the atlas A(X,U) is
irreducible if and only if U is path connected for all U ∈ U . If in addition the family U is
closed under finite intersections, then

π1(A(X,U)) = colim
U∈U

π1(U) = π1(X)

as a consequence of the last theorem and (the groupoid formulation) of Van Kampen’s
theorem (cf. [6], [10]).

4.4 Some examples

The fundamental group π1(A, x) appears as a natural invariant for groupoid atlases in
many ways: from paths and homotopies of paths (4.3.2), by simplicial calculation (5.2.7)
and even as a purely algebraic invariant (4.3.4, 5.3). In some special cases coincides with
the weaker one πw

1 (A, x). The group πw
1 (A, x) describes some of the algebra of the global

nontrivial loops, while π1(A, x) detects also the local ones. It is clear that these groups
are not equal in general.

The following examples are the simplest cases where the differences between these two
groups are noticed. In a proposition of below we will prove that these are essentially the
unique kinds of differences they could have.

Given a groupoid atlas A and x ∈ XA, recall that the group πw
1 (A, x) is the fundamental

group of the simplicial complex V UA. We denote this complex by V A.

Example 4.4.1. Let G be a groupoid and let x be an object of G. The groups π1(a(G), x)
and πw

1 (a(G), x) depends only of the component of G that contains x, so G can be supposed
connected. The Vietoris complex V (a(G)) is the simplex spanned by O = Obj G, so it is
contractible. Hence, πw

1 (a(G), x) = π1(V (a(G)), x) = 0. On the other hand, π1(a(G), x) =
HomG(x, x), which is not trivial in general.

Example 4.4.2. Let A be a groupoid atlas with discrete set of indices φA = {α, β} and
such that XA = Xα = Xβ and the local groupoids Gα and Gβ are simply connected. Every
finite subset of XA is a local frame, so as in the last example, V A is contractible and

πw
1 (A, x) = 0 for any x. Let y

i
−→ z be the unique arrow in Gi with source y and target z.

The (strong) loop whose associated sequence of global arrows is

([x
α
−→ y], [y

β
−→ x])

is a non trivial element of π1(A, x) for any y ∈ XA, y 6= x (in fact, π1(A, x) is the free

group with one generator ([x
α
−→ y], [y

β
−→ x]) for each y). Therefore, the groups π1 and πw

1

are distinct if A has other points than x.
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There is a canonical group morphism

p : π1(A, x) → πw
1 (A, x)

which sends a loop l to the weak loop Xλ, where λ is a representative of l that stabilizes in
both directions. The map p can also be defined using the simplicial information: mapping
a path of global arrows (g1, ..., gN ) to the path ({s(g1), t(g1)}, ..., {s(gN ), t(gN )}) of edges
of V A. This map is defined up to homotopy. Note that p is the group morphism induced
by the simplicial map p of 5.4.

The last examples show that p is not an isomorphism in general, but it is so in many
interesting cases.

Consider for example the groupoid atlas A = A(G,H), with G a group and H a family of
subgroups closed under finite intersections. Let x be an element of G. In order to compute
the group π1(A, x), note that {arrows of A} = {(h, g)| g ∈ G, h ∈ H for some H ∈ H},
as one can easily check from definition 4.1.3 and the paragraph above it. Then, we have
the isomorphism

π1(A, x)
∼
−→ πw

1 (A, x)

since (the groupoid form of) p maps bijectively global arrows into edges and elementary
homotopy triangles into three-elements local frames. This result is not true if the family
H is not closed under intersections.

The general linear global action is a particular case of an A(G,H) where H is closed under
intersections. To see that, recall that for A = GL(n,R) the index set φA consists of the
closed subsets of {(i, j) / i 6= j, 1 6 i, j 6 n} partially ordered by inclusion. If α and
β are in φA, it is clear that α ∩ β is also closed, and hence it is in φA. The subgroup
GL(n,R)α∩β of the linear group equals GL(n,R)α ∩ GL(n,R)β . Therefore, the natural
map between both fundamental groups of GL(n,R) is an isomorphism.

The homotopy of A(G,H) is locally trivial, in the sense that the local groupoids of A are
simply connected groupoids. This leads us to a more general family of atlases in which
the map relating both groups πw

1 (A, x) and π1(A, x) is an isomorphism.

Recall the definition of infimum from [2], [3]. A groupoid atlas A is infimum if for every
local frame s the set

φs = {α ∈ φA | s ⊂ Xα}

has an initial element. Note that an infimum groupoid atlas is, in particular, a good atlas.
This condition, when all local groupoids are simply connected, implies that both groups
π1(A, x) and πw

1 (A, x) are isomorphic by p.

Theorem 4.4.3. If A is an infimum groupoid atlas such that every local groupoid Gα of A
is simply connected, then the canonical map p : π1(A, x) → πw

1 (A, x) is an isomorphism.
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Proof. Given a two elements local frame {y, z} ⊂ XA, since φ{x,y} has an initial element,
there is a unique global arrow with source y and target z. Then, p maps bijectively the
paths of global arrows into the paths of edges. The 2-simplices of V A arise from the
three elements local frames. Under this bijection, any three edges which are the faces of
a 2-simplex in V A correspond to a homotopy triangle.

Remark 4.4.4. We propose a stronger version of the definition of infimum atlases (the
definition of above is the original introduced in [2]) that seems to fit better from the
strong point of view. We might say that A is infimum if φs has an initial element for
every simplex s of NA. When A is such that all its local groupoids are simply connected,
the original and the strong definition of infimum agree, since, in this case, a simplex is
essentially determined by its underlying local frame.

Remark 4.4.5. Theorem 4.4.3 remains true when all the local groupoids are simply con-
nected and A satisfies the following condition: the sets φs are filtered for all local frame
s. Note that this condition is weaker than the infimum condition, but it is sufficient to
prove the result.

We finish this section considering the atlas A = A(X,U), where X is a topological space
and U is an open cover of X. The atlas A is infimum if U is closed under intersections,
and we have seen in 4.3.6 that A is irreducible if U is path connected for all U ∈ U . When
these conditions hold, the strong fundamental group of A equals π1(X) (cf. 4.3.4) and the
weak one is, by Dowker’s theorem, the fundamental group of the nerve of the cover.
By last proposition, these groups are isomorphic when each U is simply connected. By
the remark of above, it is sufficient for U to be closed under finite intersections. Thus, we
obtain as a corollary of 4.4.3 an alternative proof of the following result.

Corollary 4.4.6. Let X be a topological space and U an open cover by simply connected
open subsets. If U is closed under finite intersections, then the group π1(X,x) equals the
fundamental group of the nerve of the cover NU .

5 Nerves for Atlases

Let SSet the category of simplicial sets and simplicial morphisms. We introduce two
functorial constructions GpdAtl → SSet for the nerve of a groupoid atlas A. The first
one, NwA, is based on the cover by components of local groupoids. The second one, NA,
preserves more information about the local groupoids. Using these constructions, we can
define homology theory of groupoid atlases and also a weak and a strong version of the
classifying space of a groupoid atlas.

5.1 The weak nerve N
w(A)

Definition 5.1.1. The weak nerve NwA of a groupoid atlas is the simplicial set whose
n-simplices are the sequences of n+1 elements of the same component of a local groupoid,

(NwA)n = {(x0, . . . , xn) | {x0, . . . , xn} is an α-frame for some α}
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equipped with usual faces and degeneracies: the face di erases the i-th element and the
degeneracy sj repeats the j-th.

Given a weak map of groupoid atlases f : A → B, we have f∗ : N
wA → NwB defined by

(x0, . . . , xk) 7→ (f(x0), . . . , f(xk)). It is well defined since f preserves local frames. Note
that this construction is functorial: id∗ = id and (f ◦ g)∗ = f∗ ◦ g∗.

Consider a(∆[n]) the n-simplex in the category GpdAtl. Since it has only one index, the
entire set Xa(∆[n]) = {0, ..., n} is a local frame. A weak map a(∆[n]) → A is a function
{0, . . . , n} → XA such that its image is a local frame. Thus, a simplex s ∈ (NwA)n
can be viewed as a weak map a(∆[n]) → A. Faces and degeneracies are, under this
correspondence, compositions with the canonical inclusions a(∆[n − 1]) → a(∆[n]) and
projections a(∆[n+ 1]) → a(∆[n]), respectively. Hence,

(NwA)n = Homweak(a(∆[n]), A).

The weak nerve of A is the simplicial set that naturally arises from the complex V A (cf.
[17]). The geometric realization |NwA| has the homotopy type of the polyhedron induced
by V A, so it has the same fundamental group and the same homology groups.

5.2 The (strong) nerve N(A)

The weak nerve is constructed from the covering of XA by the components of each Gα.
It has no more information about the groupoid structure than that. The strong version
of the nerve appears naturally when one looks for a construction that preserves the local
information.

Definition 5.2.1. Let A be a regular atlas. The nerve NA is the simplicial set whose
n-simplices are

NAn = {x0
g1
−→ x1

g2
−→ ...

gn
−→ xn | g1, ..., gn ∈ Gα for some α}/ ∼

where we identify (g1, ..., gk) with (φβ
α(g1), ..., φ

β
α(gn)), its image through the structure

functors φβ
α. The face and degeneracy maps are defined as it is usual for nerves of cate-

gories: a face composes two arrows, a degeneracy inserts an identity (cf. [16]). They pass

to the quotient since φβ
α are functors.

Remark 5.2.2. Given a groupoid G, the nerve N(aG) coincides with the nerve NGα defined
as usual for categories.

Note that the 0-simplices of an atlas A are the points and the 1-simplices are the global
arrows. In general, the set NAk is a quotient of the disjoint union of the k-simplices of
the nerves of the local groupoids (NGα)k.

Given f : A → B a map of groupoid atlases, it determines a map between the nerves
f∗ : NA → NB by the formula

f∗[(g1, ..., gk)] = [(Gf (α)(g1), ...,Gf (α)(gk))]
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for arrows g1, ..., gk in Gα. This definition does not depend on the representative of the
class [(g1, ..., gk)] ∈ NAk.

Proposition 5.2.3. If f ⊳ f ′ then f∗ = f ′
∗. Therefore, equivalent atlases have isomorphic

nerves.

Proof. The simplex [(g1, ..., gk)] is mapped by f∗ and f ′
∗ into [(Gf (α)(g1), ...,Gf (α)(gk))]

and [(Gf ′(α)(g1), ...,Gf ′ (α)(gk))], respectively. Since f ⊳ f ′, we have f(α) 6 f ′(α) and

φ
φf ′(α)

φf (α)
◦ Gf (α) = Gf ′(α).

Gα

Gf (α)

||yy
yy

yy
yy Gf ′(α)

""FF
FFFF

FF

Gφf (α)

φ
φ
f ′

(α)

φf (α)

// Gφf ′ (α)

We conclude that (Gf (α)(g1), ...,Gf (α)(gk)) ∼ (Gf ′(α)(g1), ...,Gf ′ (α)(gk)).

The definition of the nerve NA can be extended to non regular atlases, defining NA as
the nerve of its regularization:

NA = N(rA)

By the last proposition, this identity remains true even when A is already regular, since
in this case, A ∼ rA (cf. 3.4.4).

Recall that the k-simplices of the nerve NC of a small category C can be presented as

NCk = HomCat({0 → 1 → ... → k}, C),

and when C is a groupoid, by the universal property of localization, we have

NCk = HomGpd(∆[k], C).

It is clear that HomGpdAtl(a(∆[k]), A) equals the disjoint union of the k-simplices of NGα,
since a map a(∆[k]) → A picks an index α of φA and gives a functor ∆[k] → Gα. Note
that two maps a(∆[k]) → A are equivalent if and only if the simplices that they define are
identified in NA. Thus,

NAk = HomGpdAtl(a(∆[k]), A)/ ∼ = Hom[GpdAtl](a(∆[k]), A).

Therefore, as it happens with the weak nerve, the functor N : [GpdAtl] → SSet is
an example of singular functor in the vocabulary of [7]. It means that there exists
a functor θ : ∆ → [GpdAtl] from the category of finite ordinal numbers such that
NAk = Hom[GpdAtl](θ({0 < ... < k}), A), and the faces and degeneracies are given by
composition with θ(x), where x is an elementary injection or surjection in ∆. In this case,
the functor θ is {0 < ... < k} 7→ a(∆[k]).
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Remark 5.2.4. The nerve of a groupoid atlas NA is not in general a Kan complex. It
might happen that two 1-simplices cannot be extended to another 1-simplex: take local
groupoids Gα and Gβ and let x, y be objects of Gα and Gβ , respectively. Let z be an object
shared by these two groupoids. Suppose that {x, y, z} is not a local frame. If g : x → z
and g′ : z → y are arrows of Gα and Gβ respectively, then there is not a 2-simplex s in NA
such that d0(s) = g′ and d2(s) = g.

Example 5.2.5. In the nerve of the groupoid atlas corresponding to the global action
A(D3,H) discussed in the introduction, there is no s ∈ NA2 satisfying d0(s) = 1 → r and
d2(s) = r → s · r.

If the atlas A is irreducible, the set NAk is the colimit over φA of the sets (NGα)k, since
it is the largest quotient of the disjoint union that makes the diagrams

(NGα)k
φ
β
α

//

''OOOOOOOOOOOO
(NGβ)k

wwooooooooooo

(
∐
(NGα)k)/ ∼

commutative. Since limits and colimits in SSet can be computed coordinatewise, we have

NA = colim
φA

NGα.

When A is not irreducible, there is not a well defined diagram in the category of sets since
the functions NGα → NGβ are partially defined.

Remark 5.2.6. The nerve NA of an atlas A is equal to the nerve N(iA) of the irreducible
atlas iA, since both atlases have the same simplices by the universal property of iA. Then,
the nerve of an arbitrary atlas can be computed as the nerve of an irreducible atlas. In
the rest of this section we will assume, without loss of generality, that A is irreducible.

Proposition 5.2.7. The fundamental group of the atlas A is equal to π1(NA,x).

Proof. We have seen that the fundamental group of A is the set of paths of global arrows
modulo the relations generated by (g, h) ∼ (hg). Note that g, h and hg are the three faces
of the 2-simplex (g, h), so the group π1(A, x) is the set of paths of 1-simplices that start
and end in x modulo the simplicial homotopies, i.e. π1(A, x) equals π1(NA,x).

Corollary 5.2.8. Let A be a groupoid atlas and x ∈ XA. The map iA → A induces an
isomorphism π1(iA, x) → π1(A, x).

Last proposition also gives an alternative proof of 4.3.3.
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5.3 The colimit groupoid G(A)

In theorem 4.3.4 we introduced another algebraic object related to A, namely the colimit
groupoid over the diagram GA, which we denoted G(A).

G(A) = colim
φA

Gα

Let f = (φf ,Gf ) : A → B be a map in GpdAtl. The family {Gα → Gφf (α) → G(B)}α∈φA

commutes with the structural functors φβ
α, hence induces a functor f∗ : G(A) → G(B)

by the universal property of G(A). With this definition on arrows, G : GpdAtl → Gpd
becomes a left adjoint for the functor a : Gpd → GpdAtl.

HomGpd(G(A), G) ≡ HomGpdAtl(A, aG)

The functor G factors through [GpdAtl], since a map and a corestriction of it give rise to
the same family {Gα → Gφf (α) → G(B)}α∈φA

.

It is easy to see that Obj G(A) = XA. Recall that an arrow of G(A) is a path of colimit
arrows modulo the smallest equivalence class that contains the local identities and com-
positions. Here, a colimit arrow x → y means an element of colimφA

HomGα(x, y). In
other words, it is an arrow of the colimit graph of the underlying graphs of Gα.

Remark 5.3.1. Note that a global arrow of A is the same as a colimit arrow. They are the
arrows of G(A) that are in the image of some Gα → G(A).

The functors iα : Gα → G(A) give rise to simplicial maps Niα : NGα → NG(A). Last
remark can be generalized to the following result.

Proposition 5.3.2. The nerve NA is the subsimplicial set of NG(A) that consists of
those simplices that are in the image of Niα, for some α.

Proof. Let S be the union
⋃

Niα(NGα). With the faces and degeneracies of NG(A), S
results a simplicial set. Recall that an n-simplex s of NA is the class of a functor

∆[n]
s
−→ Gα

for some α, under the quotient map that identifies s with φβ
α ◦ s for all α 6 β. We assign

to s the composition iα ◦ s : ∆[n] → G(A). This factors through the quotient, so there is
a function NAn → Sn. Since this function preserves faces and degeneracies, it gives rise
to a simplicial map NA → S. It is surjective by definition of S. It is not difficult to prove
that it is also injective.

Remark 5.3.3. It is well known that the nerve of a groupoid is a Kan complex, therefore
the nerve NA is not equal in general to NG(A) (see 5.2.4).
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5.4 The classifying space of a groupoid atlas

Given an atlas A, we can associate to it a topological space BA via its nerve. In this
subsection we introduce this construction and relate it with other spaces associated to A.

Definition 5.4.1. The classifying space BA of an atlas A is the geometric realization of
its nerve NA.

Like the geometric realization of any simplicial set, BA is a CW-complex with a cell for
each non-degenerated simplex of NA. As a consequence of our results on the nerve of a
groupoid atlas, we obtain the following propositions.

Proposition 5.4.2. Let A be a groupoid atlas. Then the canonical map ϕA : iA → A
induces a homeomorphism B(ϕA) : BiA → BA.

Proposition 5.4.3. Let f, g : A → B be two equivalent maps. The induced continuous
functions Bf and Bg are equal. In particular, equivalent atlases have homeomorphic
classifying spaces.

Remark 5.4.4. Given a simplicial complex K, its associated groupoid atlas a(K) is infimum
and all its local groupoids are simply connected. Then, by proposition 5.2.6 its weak nerve
equals its strong nerve. It follows that B(aK) = Bw(aK). Since Bw(aK) is homotopy
equivalent to the polyhedron K, we conclude that any interesting homotopy type can be
obtained as the classifying space of a groupoid atlas.

Remark 5.4.5. An algebraic loop in A induces a topological one in BA, since BL ∼= R

and a map of groupoid atlases L → A which stabilizes can be restricted to a closed
real interval. This assignation preserves homotopy classes and induces an isomorphism
π1(A, x) → π1(BA, x), which is just the composition π1(A, x)

∼
−→ π1(NA,x)

∼
−→ π1(BA, x).

Relation between the weak and the strong nerves

Given a groupoid atlas A, there is a canonical projection p : NA → NwA given by

(x0
g1
−→ x1 → ...

gn
−→ xn) 7→ (x0, ..., xn)

Every simplex of NwA is in the image of p, thus p : (NwA)k → NAk is onto for all k.

Proposition 5.4.6. If A is infimum and all its local groupoids are simply connected, then
p : NA → NwA is an isomorphism.

Proof. The argument is analogous to the one used in 4.4.3. It is sufficient to prove that
over each simplex of NwA there is one and only one simplex of NA.

In general, this is not longer true. As we can see in the following example, p might have
no inverse, even no section.

Example 5.4.7. Let XA = {a, b, c, d}, φA = {1, 2} discrete. Let G1 and G2 be the simply
connected groupoids with objects {a, b, c} and {a, b, d} respectively.
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b

X_A

a

c

d

X_1

X_2

Consider (a, b) ∈ (NwA)1. Suppose that there exists a section i : NwA → NA for p. Then

p(i(a, b)) = (a, b), and i(a, b) = a
1
−→ b or a

2
−→ b, arrows of G1 and G2, respectively. Since

i(a, b, c) = a
1
−→ b

1
−→ c, i(a, b, d) = a

2
−→ b

2
−→ d and since i commutes with the face maps

then we have

a
1
−→ b = d2 ◦ i(a, b, c) = i ◦ d2(a, b, c) = i(a, b) = i ◦ d2(a, b, d) = d2 ◦ i(a, b, d) = a

2
−→ b

which is a contradiction.

Compare the spaces BA and BwA.

B^w ABA

In BA one can notice the existence of a non trivial algebraic loop a
1
−→ b

2
−→ a, while the

space BwA is simply connected.

5.5 A little of homology

Definition 5.5.1. Let A be a groupoid atlas and let R be a commutative ring. The
homology of A with coefficients in R is the homology of the associated simplicial set NA.

Hn(A,R) = Hn(NA,R)

Explicitly, for each n we put Cn(A,R) = R[NAn], the free R-module with basis NAn, and
the boundary map d : Cn → Cn−1 is defined, as usual, by

d(x) =
∑

i

(−1)idi(x)

in the basis elements. We will simply denote Cn(A) and Hn(A) when R = Z.
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Generalities 5.5.2.

(a) Two equivalent atlases have the same homology groups, since their nerves are iso-
morphics (cf. 5.2.3).

(b) Similarly, the homologies of A and iA are the same. Thus, we can restrict our
attention to the homology of irreducible atlases.

(c) If φA has a single element α, the homology groups of A are the homology groups of
the groupoid Gα, which are the direct sum of the homologies of the vertex groups of
each component of Gα.

(d) If n = 0, the group H0(A,R) is free with one generator for each component of A.
Thus, we have an isomorphism

H0(A,R) = R[π0(A)].

(e) When R = Z, the groups π1(A) and H1(A) are related by a quotient map π1(A) ։
H1(A) with kernel the commutator of the fundamental group (the first one coincides
with π1(NA) and the second one with H1(NA)). Thus, the classical equation

H1(A) = π1(A, a)/[π1(A, a), π1(A, a)]

remains true in this context.

Example 5.5.3. Recall that a simplicial set and its geometrical realization share all their
homology groups. We can compute the homology of the atlas A of 5.4.7 from its classifying
space, since it has the homotopy type of S1.

Hn(A) =

{
0 if n 6= 0, 1

Z if n = 0, 1

Given A a groupoid atlas, note that the chain complex C∗(A,R) is the colimit of the
complexes C∗(Gα, R): the free functor R[−] is left adjoint to the forgetful functor, hence
it preserves colimits.

C∗(A,R) = R[NA] = colim R[NGα] = colim C∗(Gα, R)

Example 5.5.4. In the case of A(G,H), the chain complex C∗(A) coincides with the
chain complex β(H), defined in [1] as the colimit of the Z[G]-complexes induced by the
non normalized homogeneous bar resolutions β(Hα) of the groups Hα. The homology
groups of A are the homology groups of the nerve of the cover of G by the H-orbits,
H ∈ H.

Remark 5.5.5. The nerve NA is a simplicial subset of NG(A). They may differ (5.3.3)
as the functor N : Gpd → SSet does not preserve colimits. When A is a connected
atlas, H∗(G(A)) equals the homology groups of its fundamental group. We deduce that
H∗(A) ≇ H∗(G(A)) in general, since BA can reach the homotopy type of any CW-complex,
and the fundamental group of a CW-complex does not determine all its homology groups.
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5.6 Relation between HA and the local homology groups HGα

Consider the map p =
∐

iα :
∐

α∈φNGα → NA. It induces an epimorphism of chain
complexes p∗, with kernel Ker∗. The short exact sequence

0 → Ker∗ →
⊕

α∈φ

C∗(Gα)
p∗
−→ C∗(A) → 0

induces a long exact sequence relating the homologies of the complex Ker∗, the local
groupoids Gα and the groupoid atlas A.

...
∂
−→ Hn(Ker) →

⊕
Hn(Gα) → Hn(A)

∂
−→ Hn−1(Ker) → ...

In some cases, the complex Ker∗ can be written as a direct sum of some of the complexes
C∗(Gα). In these cases, the homology of A can be computed from the homology of the
local groupoids.

Example 5.6.1. Let A be the 1-sphere, defined in 2.3.4. The set XA is {0, 1, 2}, the set
of indices φA consists of the proper non empty subsets of XA, ordered by inclusion, and
for every s, the local groupoid Gs is the tree over s. Since it is infimum and all its local
groupoids are simply connected, by (5.4.6) we have

NAn = NwAn = {0, 1}n+1 ∪ {0, 2}n+1 ∪ {1, 2}n+1

For each s, the nerve of the local groupoid Gs is (NGs)n = sn+1. Then, there is a short
exact sequence of complexes

0 → (C∗(G{0})⊕ C∗(G{1})⊕C∗(G{2}))
2 i∗−→

⊕

s∈φA

C∗(Gs)
p∗
−→ C∗(A) → 0

where

i∗(
∑

ci{i}
n+1,

∑
c′i{i}

n+1)s =

{
ci + c′i if s = {i}

−ci − c′j if s = {i, j}, j ≡ i+ 1 mod 3

Since the groupoids Gs are simply connected, the non trivial part of the long exact sequence
relating the homology groups is, in this case,

0 → H1(A) → Z6 → Z6 → H0(A) → 0.

The group H0(A) is isomorphic to Z because A is connected, and so H1(A) ∼= Z: it is free
of rank 1 since H1(A) →֒ Z6 and the Euler characteristic of the last complex is 0.

Remark 5.6.2. Of course, the homology of a(∂∆[1]) can be easily computed noting that
its classifying space is homeomorphic to S1, but we proceeded in this way to illustrate the
general idea (see below).

Remark 5.6.3. All the local groupoids are, in this example, simply connected. Then, by
the long exact sequence, the homology groups Hn(A) should be trivial for n > 2. This
does not happen, for example, with the n-sphere (n > 2), whose local groupoids are also
simply connected. Therefore, for many examples we cannot find any expression of Ker∗
as a sum of complexes C∗(Gα).
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In the example of above, we use the usual presentation of the colimit C∗(A) as the cokernel
of the map ⊕

α<β∈φ

C∗(Gα)
j
−→

⊕

α∈φ

C∗(Gα)

which is defined on the basis elements by j(s, α < β) = (s, α) − (φβ
α(s), β). Here (s, i)

denotes the element of the factor i given by the simplex s. In general j is not a monomor-
phism, then one cannot identify Ker∗ with the sum

⊕
α<β∈φC∗(Gα).

Proposition 5.6.4. The map j is mono if and only if φs has no cycles (viewed as a graph)
for all simplices s.

Proof. Note that Ker(j) =
⊕

Ker(jn), where jn is the n-th component of j.

Let k :
⊕

α∈φ Cn(Gα) →
⊕

α∈φCn(A) be the map defined in the basis elements by (s, α) 7→
(s, α). Here s denotes the class of the simplex s inNA. Let

∑
i ci(si, αi < βi) be an element

of Ker(jn). We have

0 = k(j(
∑

i

ci(si, αi < βi)))

= k(
∑

i

cij(si, αi < βi))

= k(
∑

i

ci(si, αi)− ci(φ
β
α(si), βi))

=
∑

i

cik(si, αi)− cik(φ
β
α(si), βi)

=
∑

i

ci(si, αi)− ci(si, βi)

Then, for all s ∈ NAn we have 0 =
∑

si=s ci(s, αi)− ci(s, βi) and d(
∑

si=s ci(αi, βi)) = 0,
where d is the boundary map of the simplicial chain complex of φs. This way, a non trivial
element of Ker(jn) gives a cycle in some φs. The converse is clear.

Remarks 5.6.5.

• If there exist α, β, γ ∈ φA such that α < β < γ, then j is not a monomorphism.

• j could be a monomorphism even if φA has non trivial cycles, e.g. A the 1-sphere.

We expose a simple aplication of last result. Let A be a groupoid atlas such that φA is
discrete (α 6 β ⇒ α = β). Recall that, since A is not good, NA = NrA by definition,
and note that (φrA)(s) is discrete for s of dimension ≥ 1 and is a star for s a point. Thus,
we have

Corollary 5.6.6. If φA is discrete, then Hn(A) =
⊕

α Hn(Gα) for n > 2. For n = 1 we
have H1(A) = (

⊕
αH1(Gα))⊕ F with F a free abelian group.
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The procedure of above can be emulated in other contexts, considering a cofinal subset
of local groupoids {Gα}α∈S to make the canonical map p :

⊕
α∈S C∗(Gα) → C∗(A) an

epimorphism (when φA is finite, then S could be the set of maximal objects), and then
construct Ker∗(p) as the sum of the chain complexes associated to certain local groupoids.
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