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A CONVENIENT CATEGORY OF LOCALLY PREORDERED

SPACES

SANJEEVI KRISHNAN

Abstract. As a practical foundation for a homotopy theory of abstract space-
time, we extend a category of certain compact partially ordered spaces to a
convenient category of “locally preordered” spaces. In particular, we show
that our new category is Cartesian closed and that the forgetful functor to the
category of compactly generated spaces creates all limits and colimits.

1. Introduction

A homotopy theory which respects the flow of time on a machine state space
X can detect behavior unseen by the classical homotopy theory of X , as shown
in [6, 5, 11, 15, 23]. Take as an example X = S1, the state space of a cyclical
process. We might write x 6S1 y to express the reachability of state y from state x,
but the resulting preorder 6S1 would have graph S1 × S1 and therefore would fail
to distinguish between clockwise and counterclockwise traversals of S1. A single
preorder need not describe the “local” behavior of time.

The literature adopts several distinct formalisms to encode the time in abstract
spacetime: an “atlas” on X of partial orders in [6], a distinguished choice of paths
onX in [12], a quotient map E → X of spaces together with a preorder on E in [14],
and structure maps “almost” turning X into an internal topological category in [7];
the resulting categories of abstract spacetime share certain characteristic features
identified in [16]. We propose an alternative axiomatization of abstract spacetime
which generalizes the partially ordered spaces we encounter in nature while forming
a category convenient for a homotopy theorist.

As in [19], we define a stream (X,6) in §3.1 to be a space X equipped with a
circulation 6, a coherent preordering U 7→6U of its open subsets. The category
S of maps preserving all structure in sight is complete and cocomplete. Colimits,
limits, and substreams are colimits, limits, and subspaces equipped with universal
circulations, which we construct as pushforwards and cosheafifications of pullbacks
in §3.2. We can think of S as an extension of the category K of locally convex,
compact Hausdorff partially ordered spaces whose bounded intervals are closed and
connected.

Theorem 4.7. There exists a full and concrete embedding

(1) K →֒ S

sending each K -object to a unique stream it underlies. The image of (1) contains
all compact Hausdorff streams having locally convex underlying preordered spaces
whose bounded intervals are closed.

The category S is not Cartesian closed. In §5, we replace S with its full
subcategory S ′ of compactly flowing streams, analogous to the category T ′ of
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compactly generated spaces. A stream is compactly flowing if it is locally compact
Hausdorff, for example. Our new forgetful functor S ′ → T ′ creates limits and
colimits as before, our old embedding K →֒ S corestricts to a new embedding
K →֒ S ′, the formation of products and colimits in S ′ remains intuitive, and S ′

contains all streams of interest - but now we have an additional convenience.

Theorem 5.12. The category S ′ is Cartesian closed.

We translate our formalism into others where topical. Examples 3.7, 3.13, 4.3,
and 5.3 compare streams with the d-spaces of [12], while Examples 3.24, 3.19, and
4.8 compare streams with the locally partially ordered spaces of [6]. The comparison
functors in the examples facilitate the construction of abstract spacetime in all three
settings. We suggest a possible line of research in §6.

2. Preordered spaces

We fix some order-theoretic notation in §2.1 and recall the basic definitions of
preordered spaces in §2.2.

2.1. Some order-theoretic conventions. Recall that a relation R on a set X ,
generalizing a function X → X , encapsulates the data of its domain domain(R) =
X and its graph graph(R), a subset of X ×X .

Example 2.1. A relation f on a set X is a function f : X → X if for each x ∈ X,
there exists a unique y ∈ Y such that (x, y) ∈ graph(f).

For a relation R, write x R y if (x, y) ∈ graph(R). Write

x0 R1 x1 R2 . . . xn−1 Rn xn

for a sequence R1, . . . , Rn of relations if xi−1 Ri xi for each 0 < i ≤ n. Certain
operations on functions X → X generalize to arbitrary relations.

Definition 2.2. Consider a relation R on a set X. For each subset A ⊂ X, define
R↾A to be the relation on A having graph

graph(R) ∩ (A×A).

Define R−1 to be the relation on X having graph

{(y, x) | (x, y) ∈ graph(R)}.

For each x ∈ X, define R[x] to be the subset {y | x R y} ⊂ X.

A major reason we choose to distinguish a relation from its graph is so that
we unambiguously can denote “product relations,” generalizations of products of
functions X → X .

Definition 2.3. Consider an indexing set I and a relation Ri on a set Xi for each
i ∈ I. For each j ∈ I, let πj :

∏
i∈I Xi → Xj denote projection. Define

∏
i∈I Ri

to be the relation on
∏

i∈I Xi having graph
⋂

i∈I

{(x, y) ∈ (
∏

i∈I

Xi)× (
∏

i∈I

Xi) | πi(x) Ri πi(y)}.

If I consists of two elements, say 0 and 1, write R0 ×R1 for
∏

i∈I Ri.

A relation 6X is a preorder if x 6X x for all x and x 6X z whenever x 6X y 6X

z. Furthermore, a preorder 6X is a partial order if x = y whenever x 6X y 6X x.
A preordered set (X,6X) is a set X equipped with a preorder 6X on X .
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Example 2.4. The identity function idX : X → X on a set X is the preorder on
X with smallest graph.

Example 2.5. The standard order 6I on the unit interval I = [0, 1] is a partial
order.

We can generalize the closed intervals and convex subsets of R to the setting of
arbitrary preordered sets.

Definition 2.6. Consider a preordered set (X,6X). The bounded intervals of
(X,6X) are all subsets of X of the form

6X[x] ∩ 6
−1
X [y], x, y ∈ X.

More generally, a subset C ⊂ X is convex in (X,6X) if y ∈ C whenever x 6X

y 6X z, for all x, z ∈ C and all y ∈ X.

Example 2.7 (Geometric convexity). Consider a real vector space V and let x, y, v
denote points in V . For each v, define a relation R(v) on V by the rule x R(v) y if
y − x = λv for some non-negative scalar λ. We leave it to the reader to check that
a subset A ⊂ V is convex in the usual sense if and only if A is convex in (V,R(v))
for each v.

We denote the transitive-reflexive closure of a relation R on a set X , the preorder
on X with smallest graph containing graph(R), by the notation R∞ in the following
statements. We omit proofs, as they are straightforward.

Lemma 2.8. For all functions f : X → Y and preorders 6Y on Y ,

(f × f)(graph(R∞)) ⊂ graph(6Y )

for every relation R whose graph maps into graph(6Y ) under f × f .

Lemma 2.9. For all relations R and S, (R× S)∞ = R∞ × S∞.

We single out transitive-reflexive closures of “unions.”

Definition 2.10. Consider a family {(A,6A)}A∈O of preordered sets. Define∨
A∈O 6A to be the transitive-reflexive closure of the relation on

⋃
O with graph⋃

A∈O graph(6A).

The operation × distributes over
∨

in the sense of the following lemma, whose
proof is straightforward.

Lemma 2.11. For all sets {6X} ∪ {(6A)}A∈O of preorders,

6X ×(
∨

A∈O

6A) =
∨

A∈O

(6X × 6A).

A (weakly) monotone function is a function f : (X,6X) → (Y,6′
Y ) between

preordered sets satisfying f(x) 6′
Y f(y) whenever x 6X y.

2.2. Topology and order. We are interested in sets which are at once topolo-
gized and preordered, such as the circle S1 of states discussed in §1. Recall that a
preordered space is a preordered set whose underlying set comes equipped with a
topology - bearing no particular relationship with the order.
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Example 2.12. Let n be a positive integer and πi be the ith projection map In → I.
Define 6∂In to be the partial order on the subspace

∂In = {x ∈ In |
n∏

i=1

πi(x)(1 − πi(x)) = 0} ⊂ In

with smallest graph satisfying x 6∂In y whenever (i) πi(x) ≤ πi(y) for all integers
1 ≤ i ≤ n and (ii) πj(x) = πj(y) ∈ {0, 1} for some integer 1 ≤ j ≤ n.

Each point x ∈ ∂In can encode the collective progress of, say, n customers on a
telephone service with n− 1 operators. Each coordinate of x represents the progress
of an individual customer; at each point in time, at least one customer has made no
progress (0) or complete progress (1). The partial order 6∂In describes the causal
relationship between the possible states of the customer-operator system.

The homotopy type of ∂In ≃ Sn−1 captures obstructions to simultaneous tele-
phone support for all customers. As we glue such spaces together to form state
spaces of more complicated systems, we require a subtler homotopy theory to re-
member the order of such obstructions. See [6] for a homotopy theory of partially
ordered spaces.

Following [21], we call a preordered space locally convex if it admits a basis of
open convex subsets.

Example 2.13. A pospace is a partially ordered space (X,6X) such that graph(6X

) is closed in the standard product topology on X ×X. Pospaces are automatically
Hausdorff by [21, Proposition 2]. Compact pospaces are locally convex by [21, Theo-
rem 5]. The reader can check that the preordered space in Example 2.12 is a pospace
and hence locally convex.

Example 2.14 (A non-example). The preordered circle of §1 is not locally convex
because its only convex subsets are ∅ and S1.

Example 2.15 (A partially ordered non-example). Let 6lex denote the “lexico-
graphic order” on R × R defined by the rule (s1, s2) 6lex (t1, t2) if s1 < t1 or
s1 = t1 and s2 ≤ t2. The totally ordered space (R × R,6lex) is not locally convex
because images of its non-empty convex subsets under projection R × R → R onto
the second factor are singletons and R.

Local convexity sometimes implies “antisymmetry.” Recall that a partially or-
dered space is a preordered space whose preorder is a partial order.

Lemma 2.16. A T0 preordered space is a partially ordered space if each of its points
admits a local base of convex neighborhoods.

Proof. Consider a preordered space (X,6X) and suppose x 6X y 6X y for some
x, y ∈ X . Then x, y share the same convex neighborhoods and they hence share a
common local base if they both admit a local base of convex neighborhoods. Thus
x = y if X is also T0. �

Recall that a monotone map f : (X,6X) → (Y,6Y ) is a (weakly) monotone and
continuous function between preordered spaces.

Example 2.17. Continuing Example 2.12, x 6∂In y if and only if there is a
monotone map (I,6I) → (∂In,6∂In) sending 0 to x and 1 to y. Following [6],
we can think of such paths as all possible evolutions of our understaffed telephone
support service.
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3. Locally preordered spaces

We introduce the category of streams, spaces equipped with some coherent pre-
ordering of their open subsets. In §3.1, we introduce some basic definitions and
examples. We then construct limits and colimits in §3.2.

3.1. Streams: basic definitions and examples. Given a state space X , we can
write x 6U y whenever a machine can evolve from x to y when restricted to an open
subset U ⊂ X of states. Borrowing a metaphor from [12], we call such endowed
spaces streams.

Definition 3.1. A circulation 6 on a space X is a function assigning to each open
subset U ⊂ X a preorder 6U on U such that for each collection O of open subsets
of X,

(2) 6S

O =
∨

U∈O

6U .

A stream (X,6) is a space X equipped with a circulation 6 on it. We say that
the preordered space (X,6X) underlies a stream (X,6).

Example 3.2. For a preordered set (X,6X), the function sending ∅ to the unique
preorder on ∅ and sending X to 6X defines a circulation on (X, {∅, X}).

As another trivial example, we can form the “weakest” circulation on a given
space.

Definition 3.3. The trivial circulation id on a space X is the circulation assigning
to each open subset U ⊂ X the trivial preorder idU .

We can also form the “strongest” circulation on a given space.

Lemma 3.4. The pointwise application of
∨

to a non-empty set of circulations on
a space is a circulation.

Proof. The operation
∨

is associative and commutative. �

The following examples suggest a relationship between connectivity and non-
trivial circulation implicit in (2).

Example 3.5. Every space admits a circulation ∼ defined by the rule “x∼U y if
x, y occupy a common compact Hausdorff and connected subspace of U whose closed
subsets are locally connected.”

Example 3.6. Consider the specialization preorder 6X on a space X defined by
x 6X y if all neighborhoods of x contain y. The rule

(6X)↾(−) : U 7→ (6X)↾U

defines a circulation because x 6U y whenever x 6S

O y, for each set O of open
subsets of X and each neighborhood U ∈ O of x in X.

Example 3.7 (Stream from d-space). Consider a d-space (X, dX) as defined in
[12]: a space X and a set dX on X containing all constant paths and closed un-
der both concatenation and precomposition with monotone maps I → I. The rule
“x 6dX

U y when dX contains a path in U from x to y” defines a circulation because
every path in U is the concatenation of paths whose images each lie inside elements
of a given open cover of U .
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A restriction of machine states results in a restriction of machine behavior.

Lemma 3.8. For all open subsets U ⊂ V of a stream (X,6),

graph(6U ) ⊂ graph(6V ).

Proof. Observe

graph(6U ) ⊂ graph(
∨

{6U ,6V }) = graph(6U∪V ) = graph(6V ).

�

For a set O of open subsets of a stream (X,6), each machine step

x 6S

O y

breaks down into some sequence of smaller steps

x = x0 6U1 x1 6U2 . . . 6Un
xn = y

for some integer n ≥ 0 and some U1, . . . , Un ∈ O by (2). When O contains exactly
two sets, the following lemma asserts that we can take U1, . . . , Un to alternate and
that consequently x1, . . . , xn−1 ∈

⋂
O.

Lemma 3.9. Consider a stream (X,6). For every pair of open subsets U1, U−1 ⊂
X and every pair x, y ∈ X satisfying x 6U1∪U−1 y, there exist n ∈ {0, 1, . . .},
m ∈ {0, 1}, and a sequence

x = x0 6U(−1)m
x1 6U(−1)m+1 · · · 6U(−1)m+n

xn = y.

Proof. For some minimal positive integer n, there exists a sequence of points x =
x0, x1, · · · , xn = y ∈ X such that for each 0 < i ≤ n, either xi−1 6U1 xi or
xi−1 6U−1 xi. For all 0 < j < n, neither xj−1 6U1 xj 6U1 xj+1 nor xj−1 6U−1

xj 6U−1 xj+1 because n is minimal and 6U1 ,6U−1 are transitive. �

We can apply the lemma, for example, to extract information about underlying
preordered spaces.

Lemma 3.10. The bounded intervals of the underlying preordered space of every
stream have connected closures.

Proof. Consider a stream (X,6) and a non-empty bounded interval

I = 6X[x] ∩ 6
−1
X [y]

in (X,6X), for some x, y ∈ X . Let Ī denote the closure in X of I. Consider some
open subsets U, V ⊂ X such that Ī ⊂ U ∪ V , U ∩ Ī 6= ∅, and V ∩ Ī 6= ∅. We can
assume x ∈ U without loss of generality and consider some v ∈ V ∩ I.

In the case v ∈ U , v ∈ U ∩ V ∩ Ī. Suppose v /∈ U . There is a sequence

x = x0 6U x1 6V ∪(X\Ī) · · · 6U xn−1 6V ∪(X\Ī) xn = v

for some integer n > 0 by Lemma 3.9. We conclude x 6X x1 6X v 6X y from
Lemma 3.8 and x1 ∈ U ∩(V ∪(X \ Ī)). Hence x1 ∈ U ∩(V ∪(X \ Ī))∩I ⊂ U ∩V ∩ Ī.
In either case, U ∩ V ∩ Ī 6= ∅. �

Example 3.11. A circulation on a totally disconnected space must be trivial by
Lemma 3.10. As likewise noted in [3], “atlases” of partial orders are trivial on
discrete spaces.

Stream maps preserve all structure in sight.
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Definition 3.12. Given two streams (X,6) and (Y,6′), a stream map f : (X,6
) → (Y,6′) is a continuous function f : X → Y satisfying f(x) 6U f(y) whenever
x 6f−1U y, for all open subsets U ⊂ Y .

Let S denote the category of streams and stream maps.

Example 3.13 (d-space from stream). Continuing Example 3.7, we can take dI
to be the set of monotone paths I → I and we can associate to each stream (Y,6′)
the d-space (Y,S ((I,6dI), (Y,6′))). Our constructions from streams to d-spaces
and vice versa extend to an adjunction between S and a category dT of d-spaces
defined in [12].

3.2. Cosheafifications of precirculations. Presheaves are to sheaves what pre-
circulations are to circulations: “functors” which need no longer satisfy the “sheaf
condition” (2). We can construct with ease a precirculation satisfying some pre-
scribed universal property, and then apply cosheafification to obtain some desired
universal stream.

Definition 3.14. A precirculation 6 on a space X is a function assigning to each
open subset U ⊂ X a preorder 6U on U such that graph(6U ) ⊂ graph(6V ) when-
ever U ⊂ V .

Precirculations generalize circulations by Lemma 3.8 and satisfy half of the
“cosheaf” condition (2).

Lemma 3.15. For every precirculation 6 on a space X and every set O of open
subsets of X,

graph(
∨

U∈O

6U ) ⊂ graph(6S

O).

Proof. Immediate from Lemma 2.8. �

Our generalizations of circulations straightforwardly “pullback” and “pushfor-
ward” along continuous functions.

Definition 3.16. Consider a map f : X → Y of spaces and let TY denote the
topology of Y . For each precirculation 6 on Y , the pullback 6f∗

of 6 along f is
the precirculation on X defined by

graph(6f∗

U ) =
⋂

f(U)⊂V ∈TY

(f × f)−1(graph(6V )) ∩ (U × U).

For each precirculation 6′ on X, the pushforward (6′)f∗ of 6′ along f is the
precirculation on Y assigning to each open subset U ⊂ Y the transitive-reflexive
closure of the relation on U with graph

(f × f)(graph(6′
f−1U )).

Example 3.17. Consider a continuous function f : X → Y . Then idf∗ = id but

idf
∗

= id if and only if f is injective.

Pushfowards and certain pullbacks preserve circulations.

Lemma 3.18. For each continuous function f : X → Y of spaces and each circu-
lation 6 on X, 6f∗ is a circulation.
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Proof. Consider a family O of open subsets of Y . Then

(f × f)(graph(6f−1
S

O)) = (f × f)(graph(
∨

U∈O

6f−1U )),

(f × f)(
⋃

U∈O

graph(6f−1U )) =
⋃

U∈O

(f × f)(graph(6f−1U ))

⊂ graph(
∨

U∈O

6
f∗
U ),

and therefore graph(6f∗
S

O) ⊂ graph(
∨

U∈O 6
f∗
U ) by Lemma 2.8. The result follows

from Lemma 3.15. �

Example 3.19. Continuing Example 3.7, we can model the states S1 of §1 as
the stream (S1, (6dI)q∗), where q : I → S denotes the quotient map identifying
endpoints.

Example 3.20. Pullbacks along open maps similarly preserve circulations.

Example 3.21 (Pullback not preserving circulation). Let ∆ be the diagonal map
I → I2 and let dI2 denote the set of all paths on I2 which are (weakly) monotone
in each coordinate and whose images intersect ∆(0, 1) only when those images are

singletons. Continuing Example 3.7, let 6=6dI2. Although 0 6∆∗

I
1 because every

neighborhood in I2 of ∆(I) contains a path in dI2 from ∆(0) to ∆(1),

6∆∗

I
[0] ∩ (6∆∗

I
)−1[1] = {0, 1}

has disconnected closure and hence 6∆∗

I
cannot be a circulation by Lemma 3.10.

Pushforwards satisfy a universal property best articulated in the language of
categorical topology. Consider a functor F : C1 → C2 - our motivating example is
the forgetful functor T : S → T . Consider also a functor D : D → C1 and some
cocones on D and FD as follows:

λ = (λx : Dx → c)x∈ob D , λ̄ = (λ̄x : FDx → c̄)x∈ob D .

Dualizing the definition of initial structures in [1], we call λ a final structure for
(F,D, λ̄) to c if Fλ = λ̄ and for each cocone λ′ from D to a C1-object c′, every
C2-map Fc → Fc′ by which Fλ′ factors through Fλ has a unique preimage under
F by which λ′ factors through λ.

The following lemma asserts that final structures always exist for the case F = T .
In stating and proving the lemma, we adopt the following conventions. We reuse
the symbol 6 to signify different circulations. Also, we write

∨
for the pointwise

application of
∨

to precirculations on a fixed space, defining
∨
∅ = id.

Lemma 3.22. For each diagram D : D → S and each cocone

λ = (λx : TDx → X)x∈ob D

on TD, (X,
∨

x∈ob D
6(λx)∗) is a stream to which there is a final structure for

(T,D, λ).

Proof. The precirculation 6′=
∨

x∈ob D
6(λx)∗ is a circulation by Lemmas 3.4 and

3.18. For all x ∈ ob D , the function λx defines a stream map Dx → (X,6′) because
for all open subsets U ⊂ X ,

(λx × λx)(graph(6λ
−1
x U )) ⊂ graph(6′

U ).
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Consider a cocone (λ′
x : Dx → (Y,6′′))x∈ob D on D and a continuous function

η : X → Y such that ηλx = λ′
x for each x ∈ ob D . For all open subsets V ⊂ Y and

all x ∈ ob D ,

(η × η)(λx × λx)(graph(6λ
−1
x (η−1V ))) = (λ′

x × λ′
x)(graph(6(λ′

x)
−1V ))

⊂ graph(6′′
V ),

hence (η × η)(graph(6
(λx)∗
η−1V

) ⊂ graph(6′′
V )) by Lemma 2.8, and hence

(η × η)(graph(6′
η−1V )) ⊂ graph(6′′

V )

by Lemma 2.8 again. Equivalently, η defines a stream map (X,6′) → (Y,6′′). �

In the language of [1], a functor F : C1 → C2 is topological if there always exists
an initial structure for the appropriate set (F,D, λ) of data. As a consequence
of Lemma 3.22 and [1, Proposition 7.3.6, Proposition 7.3.11], the functor T is
topological and thus creates limits and colimits by [1, Proposition 7.3.8]. We form
initial structures, such as limits, by approximating precirculations with circulations
in a manner analogous to sheafification.

Definition 3.23. The cosheafification 6! of a precirculation 6 on a space X is
the pointwise application of

∨
to all circulations 6′ on X satisfying graph(6′

U ) ⊂
graph(6U ) for each open subset U ⊂ X.

Example 3.24 (Stream from locally partially ordered space). A local partial order
6 on a space X, defined in [6], amounts to a precirculation on X such that for
some open cover O of X, 6 assumes partial orders on O and for all open subsets
U ⊂ X and all V ∈ O, 6U∩V = (6V )↾U∩V . Two local partial orders are equivalent
if they coincide on an open basis.

The cosheafification of a local partial order 6 only depends upon the equivalence
class [6] of 6. We thereby obtain a functor from a category in [3] of locally partially
ordered spaces (X, [6]) to S . Images of locally partially ordered spaces under this
functor include the “quotient stream” constructed in Example 3.19.

Example 3.25 (Product streams). Consider a family {(Xi,6
i)}i∈I of streams and

let X =
∏

i Xi. For each j ∈ I, the projection πj : X → Xj onto the jth factor is
an open map. We can therefore define a precirculation 6 on X by the rule

graph(6U ) = graph(
∏

i∈I

6
i
πi(U)) ∩ (U × U).

This precirculation is almost never a circulation on X. We leave it to the reader
to check that (X,6!) is the S -product

∏
i∈I(Xi,6

i).

The general failure of pullbacks along inclusions to preserve circulations, as
demonstrated in Example 3.21, reflects some of the pathology that substreams can
exhibit.

Definition 3.26. For a stream (X,6) and a subspace A ⊂ X,

(A, (6(A→֒X)∗)!)

is a substream of (X,6) and we write 6↾A for (6(A→֒X)∗)!A. A stream inclusion is
an inclusion function to a stream (X,6) from a substream of (X,6).
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For example, an open substream of a stream (X,6) is just an open subspace
of X equipped with a suitable restriction of 6. We give a concrete description of
certain closed substreams below.

Example 3.27. Let (X,6) be a stream and let A be a closed and convex subspace
of (X,6X). The precirculation 6′ on A sending A ∩U to (6U )↾A∩U for each open
subset U ⊂ X is well-defined - for open subsets V,W ⊂ X such that A∩V = A∩W ,

(6V )↾A∩V = (6V )↾A∩V ∩W

= (6V ∩W )↾A∩V ∩W

= (6W )↾A∩V ∩W

= (6W )↾A∩W

by an application of Lemma 4.1 given later in §4. It is straightforward to check
that 6′ is a circulation because 6 is a circulation and A is convex in (X,6X). It
follows that (A,6′) is a substream of (X,6).

Example 3.28 (One-point compactifications). Let X̂ = X ∪{∞} be the one-point
compactification of a non-compact space X. For each circulation 6 on X, define
a precirculation 6̂ on X̂ as sending each open subset U ⊂ X̂ to the preorder on U
with smallest graph containing

(U × U) ∩ (({∞} ×X) ∪ (X × {∞}) ∪ graph(6X∩U )).

The reader can check that for all locally compact Hausdorff, non-compact streams
(X,6), (X̂, 6̂ !) is “final” among all compact Hausdorff streams in which (X,6)
lies as a dense substream.

As a formal consequence of our definitions, stream inclusions define “initial struc-
tures.” We include proofs of the next two lemmas for completeness.

Lemma 3.29. Stream inclusions are stream maps. For each diagram

(X,6)

$$

f
// (Y,6′)

(A,6A)

ι

::
t

t
t

t
t

t
t

t
t

of solid arrows denoting stream maps, where ι denotes stream inclusion and f(X) ⊂
A, there exists a unique dotted stream map making the diagram commute.

Proof. Let D be the discrete category of streams (A,6′′) from which inclusion
defines a stream map to (Y,6′). Consider a circulation 6′′′ on A. Then (A,6′′′) ∈
ob D if and only if, for each open subset V ⊂ Y ,

graph(6′′′
U ) ⊂ (U × U) ∩ graph(6′

V )

for U = A ∩ V and hence for all open subsets U ⊂ A sitting inside V by Lemma
3.8. Thus (A,6′′′) ∈ ob D if and only if, for each open subset U ⊂ A,

(3) graph(6′′′
U ) ⊂ graph((6′)

(A→֒Y )∗

U ).

Let D be the inclusion functor D →֒ S , and let λ̄ be the cocone on TD to A
defined by identity maps. The final structure for (T,D, λ̄) is a cocone λ to (A,6A)
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by Lemma 3.22 because

6A =
∨

(A,6′′)∈ob D

6′′

=
∨

(A,6′′)∈ob D

(6′′)(idA)∗ ,

the first line following from (3). One consequence is that inclusion defines a stream
map (A,6A) →֒ (Y,6′).

The continuous function T (f) factors through its corestriction ḡ : X → A and
T (ι). Let E : {∗} → S be the discrete diagram sending ∗ to (X,6), and let µ̄ be
the cocone on TE to A defined by ḡ. There exists a final structure µ for (T,E, µ̄)
to (A,6ḡ∗) by Lemma 3.22. In particular, ḡ defines a stream map g : (X,6) →
(A,6ḡ∗). Let µ′ denote the cocone on E to (Y,6′) defined by f . The stream
(A,6ḡ∗) ∈ D because µ′ factors through µ. The stream map

λ(A,6ḡ∗ ) : (A,6
ḡ∗) → (A,6A)

composes with g to define our dotted arrow. Uniqueness follows from the uniqueness
of the dotted arrow making the diagram of underlying sets commute. �

A consequence is that a substream of a substream of a stream (X,6) is a sub-
stream of (X,6).

Lemma 3.30. The composite of stream inclusions is a stream inclusion.

Proof. Consider three stream inclusions

i : (B,6′′) →֒ (C,6′), j : (C,6′) →֒ (D,6), k : (B,6′′′) →֒ (D,6).

Then idB defines a stream map (B,6′′) → (B,6′′′) by Lemma 3.29 applied to the
case A = B and f = ji. Inclusion defines a stream map i′ : (B,6′′′) → (C,6′) by
Lemma 3.29 applied to the case A = C and f = k. Thus idB defines a stream map
(B,6′′′) → (B,6′′) by Lemma 3.29 applied to the case A = B and f = i′. �

Circulations of substreams sometimes obey a generalization of (2).

Lemma 3.31. Consider a stream (X,6). For each family N of subsets of X
containing a neighborhood in X for each point in its union,

(4) 6S

N =
∨

A∈N

6↾A =
∨

A∈N

(6S

N )↾A.

Proof. Let A◦ denote the interior in X of a subset A ⊂ X . Then

graph(6A◦) = graph(6↾A◦)

⊂ graph(6↾A)

for all A ∈ N , the first line due to the fact that circulations of open substreams
of (X,6) are just restrictions of 6 and the second line due to an application of
Lemma 3.29. Thus in (4), the graph of the leftmost preorder lies inside the graph
of the middle preorder because 6S

N=
∨

A∈N 6A◦ . For each A ∈ N ,

graph(6↾A) = graph((6(A→֒X)∗)!A)

⊂ graph((6(A→֒X)∗)A)

⊂ graph((6S

N )↾A)
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and therefore in (4), the graph of the middle preorder lies inside the graph of the
rightmost preorder. Finally, the graph of the rightmost preorder lies inside the
graph of the leftmost preorder in (4), completing the chain of inclusions demon-
strating (4). �

4. Streams in nature

Although a general stream appears to encode a frightening amount of order-
theoretic information, we can identify streams in nature which are determined by
their underlying preordered spaces. We can start by identifying when “global sec-
tions” determine “local sections.”

Lemma 4.1. For a stream (X,6) and a convex subset A of (X,6X),

(6U )↾A = (6X)↾A

for each open neighborhood U of the closure of A in X.

Proof. Consider some x, y ∈ A satisfying x 6X y and consider an open neighbor-
hood U of the closure Ā of A in X . There exists a sequence

x = x0 6U x1 6X\Ā . . . 6U xn = y

by Lemma 3.9. Then n < 2 - otherwise x1 /∈ A because x1 ∈ U ∩ (X \ Ā) and
x 6X x1 6X y by Lemma 3.8, contradicting A convex. The result follows. �

Recall that a space X is regular if every closed subset C ⊂ X and every point
in X \ C can be separated by disjoint neighborhoods.

Lemma 4.2. A regular Hausdorff preordered space underlies at most one stream
if each of its points admits a local base of convex neighborhoods.‘

Proof. Consider a regular Hausdorff stream (X,6) whose points admit local bases
of convex neighborhoods in (X,6X). Let N be the family of convex subsets of
(X,6X) whose closures in X lie inside an open subset U ⊂ X . Then

6U =
∨

A∈N

(6U )↾A =
∨

A∈N

(6X)↾A.

The first equality follows from Lemma 3.31 because each point in a regular Hausdorff
space has a local base of closed neighborhoods. The second equality follows from
Lemma 4.1. �

Example 4.3 (Distinct d-spaces forming same stream). Let sR2 be the set of all
concatenations of all paths on R2 which are constant in one coordinate and (weakly)
monotone in the other coordinate. Let dR2 be the set of all paths on I2 which are

(weakly) monotone in both coordinates. Continuing Example 3.7, 6sR2

=6dR2

by
Lemma 4.2, even though sR2 6= dR2.

We now give a criterion for a preordered space to underlie a stream.

Lemma 4.4. A locally convex, compact Hausdorff preordered space underlies a
stream if its bounded intervals are closed and connected.
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Proof. Consider a locally convex, compact Hausdorff preordered space (X,6X)
whose bounded intervals [x, y] =6X [x] ∩ 6

−1
X [y] are closed and connected for all

x, y ∈ X . Define a precirculation 6′ on X by

6′
U =

∨

∅ 6=[x,y]⊂U

(6X)↾{x,y}

Let B denote the family of all open and convex subsets of X . Consider a family
O of open subsets of X and a bounded interval [a, b] 6= ∅ contained in the union
of O. There exists a finite subset OF ⊂ B whose union also contains [a, b] and
whose elements each lie inside an element of O because [a, b] is compact and B is
a basis. In order to show a (

∨
U∈O 6′

U ) b and thereby conclude 6′ is a circulation
from Lemma 3.15, it suffices to show

(5) graph(6′
S

OF
) ⊂ graph(

∨

U∈OF

6
′
U )

for such finite OF ⊂ B by induction on the cardinality of OF . For then,

(a, b) ∈ graph(6′
S

OF
) ⊂ graph(

∨

U∈OF

6′
U ) ⊂ graph(

∨

U∈O

6′
U ),

the last containment following from the fact that 6′ is a precirculation.
As the base case OF = ∅ is vacuous, assume (5) for all subsets OF ⊂ B

of cardinality n − 1 and consider some bounded interval [c, d] 6= ∅ and some
U1, . . . , Un ∈ B whose union contains [c, d]. Heading towards a contradiction,
assume (c, d) /∈ graph(

∨n
i=1 6′

Ui
). We can assume c ∈ U1 and U1 ∩ U2 ∩ [c, d]

contains some point c′ by reordering and [c, d] connected.
The set [c′, d] * U2 ∪ . . .∪Un - otherwise c 6′

U1
c′ (

∨n
i=2 6′

Ui
) d by our inductive

hypothesis. Thus [c′, d] ∩ (X \ (U2 ∪ . . . ∪ Un)) contains some c′′. The set [c′′, d] ∩
U2 contains some c′′′ - otherwise c 6′

U1
c′′ (6′

U1
∨
∨n

i=3 6′
Ui
) d by our inductive

hypothesis. However, c′, c′′′ ∈ U2 and c′′ /∈ U2, contradicting U2 convex. �

Example 4.5. Continuing Example 2.13, a compact pospace underlies a stream if
and only if its bounded intervals are connected by [21, Propositions 1 and 2, Theorem
5] (or the more accessible [8, Propositions VI-1.4 and VI-1.6, Corollary VI-1.9]) and
Lemmas 3.10 and 4.4. Examples of such pospaces include all connected, compact
Hausdorff topological lattices by [8, Proposition VI-5.15] and the pospace in Example
2.12.

Example 4.6 (A generalization). The hypothesis of local convexity in Lemma 4.4 is
unnecessary. Consider a compact Hausdorff partially ordered space (X,6X) whose
bounded intervals are closed and connected. Let M denote the family of maximal
chains in (X,6X) endowed with their subspace topologies.

Consider an A ∈ M. The space A is closed in X and hence compact Hausdorff
by [8, Proposition VI-5.1]. The pospace (A, (6X)↾A) is order-dense, or equivalently
its bounded intervals never contain exactly two points, by the maximality of A. Then
(A, (6X)↾A) is a compact pospace whose intervals are connected and whose partial
order is a total order, by [8, Proposition VI-5.6]. Therefore (A, (6X)↾A) underlies
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a stream (A,6A) by Lemma 4.4 and

6X =
∨

A∈M

(6X)↾A

=
∨

A∈M

(6X)↾A ∨ idX

=
∨

A∈M

(6A)
(A→֒X)∗
X

= (
∨

A∈M

(6A)(A→֒X)∗)X .

We conclude that (X,6X) underlies (X,
∨

A∈M(6A)(A→֒X)∗).

Let K denote the category of locally convex, compact Hausdorff partially or-
dered spaces whose bounded intervals are closed and connected, and monotone
maps between them.

Theorem 4.7. There exists a full and concrete embedding

(6) K →֒ S

sending each K -object to a unique stream it underlies. The image of (6) contains
all compact Hausdorff streams having locally convex underlying preordered spaces
whose bounded intervals are closed.

Proof. Lemmas 4.2 and 4.4 define the injective object class function E of our desired
embedding (6). Consider some images (X,6) and (Y,6′) of E and a monotone map
f : (X,6X) → (Y,6′

Y ). Then

(f × f)(graph(6X)) ⊂ graph(6′
Y )

or equivalently, 6′
Y =

∨
{6f∗

Y ,6′
Y }. Therefore 6′=

∨
{6f∗ ,6′} by Lemmas 3.4,

3.18, and 4.2, and so f defines a stream map (X,6) → (Y,6′) by Lemma 3.22.
We conclude E extends to a concrete functor, which is full because every stream
map is a monotone map of underlying preordered spaces. The last statement of the
theorem follows from Lemmas 2.16 and 3.10. �

Example 4.8. The functor defined in Example 3.24 restricts to an embedding from
the category of those locally partially ordered spaces (X, [6]) admitting bases of open
subsets U whose points admit neighborhoods (N, (6U )↾N ) in K .

5. Compactly flowing streams

We modify the category of streams in order to obtain a category of compactly
flowing streams whose limits and colimits are created by forgetting to the standard
category of compactly generated spaces. We observe in this section that the cate-
gory is convenient in the sense of [25] - it is Cartesian closed, it includes all streams
of possible interest, and it is often closed under intuitive constructions.

Recall that a space X is compactly generated if it is weak Hausdorff (continuous
images of compact Hausdorff spaces in X are closed) and a subset U ⊂ X is open
in X if U ∩K is open in K for all compact Hausdorff subspaces K ⊂ X . We can
define when a circulation is also “compactly generated.”
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Definition 5.1. Fix a weak Hausdorff space X. Let K(X) denote the family of
compact Hausdorff subsets of X. A circulation 6 on X is a k-circulation if, for all
open subspaces U ⊂ X,

(7) 6U =
∨

L∈K(U)

6↾L .

A stream (X,6) is compactly flowing if X is compactly generated and 6 is a k-
circulation.

Equivalently, a circulation 6 on a weak Hausdorff space X is a k-circulation if
and only if, for each open subspace U ⊂ X ,

(8) graph(6U ) =
⋃

L∈K(U)

graph(6↾L)

because K(U) is closed under finite unions.

Example 5.2. Consider a weak Hausdorff space X. Continuing Example 3.5, the
circulation ∼ on X is a k-circulation.

Example 5.3. Continuing Example 3.7, 6dX is a k-circulation for every weak
Hausdorff d-space (X, dX).

We write S ′ for the category of compactly flowing streams and stream maps
between them. A topological criterion identifies typical examples of such streams.

Proposition 5.4. Locally compact Hausdorff streams are compactly flowing.

Proof. Consider a locally compact Hausdorff stream (X,6). For each open sub-
space U ⊂ X , (7) follows from Lemma 3.31 because K(U) contains a neighborhood
for each point in its union. �

Our old forgetful functor restricts and corestricts to a new forgetful functor
T ′ : S ′ → T ′ creating final structures exactly as before.

Lemma 5.5. For each diagram D : D → S ′ and each cocone

λ = (λx : T ′Dx → X)x∈ob D

on T ′D, there is a final structure for (T ′, D, λ) to (X,
∨

x∈ob D
6(λx)∗).

Proof. Trivial circulations on weak Hausdorff spaces are k-circulations. The op-
eration

∨
applied to a non-empty set of k-circulations on a fixed weak Hausdorff

space is a k-circulation because
∨

is commutative. Therefore the result follows
from Lemma 3.22. �

Consequently, we can characterize compactly flowing streams as quotients of
locally compact Hausdorff streams by equivalence relations having closed graphs.

Lemma 5.6. Every compactly flowing stream is the S ′-colimit of compact Haus-
dorff substreams.

Proof. Consider a compactly flowing stream (X,6). Let D denote the category
of all compact Hausdorff substreams of (X,6) and all stream maps between them
which are inclusions of underlying sets and let D : D → S ′ denote inclusion. For
each x ∈ ob D , let 6x denote the circulation of Dx.



16 SANJEEVI KRISHNAN

The colimit λ̄ = colim T ′D is the cocone on T ′D defined by all possible inclu-
sions into X , because the diagram T ′D contains (at least) all possible inclusions of
singletons into compact Hausdorff subspaces of X . For each open subspace U ⊂ X ,

6U =
∨

L∈K(U)

6↾L(9)

=
∨

x∈ob D

∨

L∈K(Dx∩U)

6↾L(10)

=
∨

x∈ob D

∨

L∈K(Dx∩U)

(6x)↾L(11)

=
∨

x∈ob D

6x
Dx∩U(12)

=
∨

x∈ob D

6x
Dx∩U ∨ idU

=
∨

x∈ob D

(6x)
(λx)∗
U ,(13)

as (9) and (13) follow from definitions, (10) follows from K(U) =
⋃

x∈ob D
K(Dx ∩

U), (11) follows from Lemma 3.30, and (12) follows from Proposition 5.4. The
final structure for (T ′, D, λ) is a cocone to (X,6) by Lemma 5.5. Thus (X,6) =
colim D. �

Example 5.7 (CW streams). For each integer n ≥ 0, let 6In denote the n-fold
product of the natural order 6I on I. We can construct stream-theoretic analogues
of CW complexes as inductive pushouts of copies of (In,6In), regarded as compactly
flowing streams by Theorem 4.7 and Proposition 5.4, along their boundaries ∂In.
These “CW streams” are compactly flowing by Lemma 5.6 and they have CW com-
plexes as their underlying spaces by Lemma 5.5. Examples include the “directed

circle” in Example 3.19 and the stream (R2,6dR2

) from Example 4.3.

As before, a direct consequence of [1, Propositions 7.3.6 and 7.3.11] and Lemma
5.5 is that we can also form arbitrary initial structures in S ′.

Proposition 5.8. The functor T ′ : S ′ → T ′ is topological.

In particular, T ′ has full and faithful left and right adjoints by [1, Proposition
7.3.7] and T ′ creates limits and colimits by [1, Proposition 7.3.8]. We must generally
“k-ify” the cosheafifications of pullbacks in order to form initial structures. We
highlight some cases where k-ification is unnecessary.

Example 5.9 (Compactly generated open substream). An open substream of a
compactly flowing stream is compactly flowing if its underlying space is compactly
generated because the restriction of a k-circulation is a k-circulation.

Example 5.10 (Closed and “convex” substream). Consider a compactly flowing
stream (X,6) and a closed substream (A,6′) of (X,6) such that A is a convex
subset of (U,6U ), for some open neighborhood U of A in X. The space A is
compactly generated. It is straightforward to show 6′ is a k-circulation, following
our discussion in Example 3.27 and Lemma 3.30.

The circulations of (compactly flowing) streams “preserve finite products.”
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Proposition 5.11. For a S ′-product (X,6) = (Y,6′)× (Z,6′′),

(14) 6U×V = 6′
U × 6′′

V

for all open subsets U ⊂ Y, V ⊂ Z.

Proof. The space X is the T ′-product Y × Z and projections define stream maps
(X,6) → (Y,6′) and (X,6) → (Z,6′′) because T ′ : S ′ → T ′ preserves products
by Proposition 5.8. Therefore in (14), the graph of the right side contains the graph
of the left side; it suffices to show the reverse containment.

Consider some y, y′ ∈ Y and z, z′ ∈ Z satisfying

(y, y′) (6′
U × 6′′

V ) (z, z
′)

for some open subsets U ⊂ Y, V ⊂ Z. The identity on (Y,6′) and the constant
stream map (Y,6′) → (Z,6′′) at z together induce a universal stream map

ι : (Y,6′) → (X,6).

The identity on Y and the constant function Y → Z at z induce T ′(ι) because
T ′ preserves products. Thus ι(y) = (y, z) and ι(y′) = (y′, z), and hence (y, z) =
ι(y) 6U×V ι(y′) = (y′, z). Similarly, (y′, z) 6U×V (y′, z′). Then (y, z) 6U×V (y′, z′)
by transitivity. We have thus shown that in (14), the graph of the left side contains
the graph of the right side. �

We have constructed a full, complete, and cocomplete subcategory S ′ ⊂ S

large enough to contain all streams of interest, including “mapping streams.”

Theorem 5.12. The category S ′ is Cartesian closed.

Proof. Consider a compactly flowing stream (X0,6
0). The category S ′ has all

colimits and finite products by Proposition 5.8 because T ′ has all colimits and
finite products. In order to show that the functor

(15) (X0,6
0)×− : S

′ → S
′

has a right adjoint, it suffices to show that (15) is cocontinuous by the Adjoint
Functor Theorem - the solution set condition is trivial because T ′ is Cartesian
closed and T ′ is both topological and fibre-small.

It suffices to take the case X0 compact Hausdorff by Lemma 5.6. For brevity,
we write 60 × 6′ for the circulation of each product stream of the form (X0,6

0

)× (W,6′). Consider a compactly generated space Z. The product X0 × Z has as
a basis B all open subsets of the form U × V because X0 is compact Hausdorff.

Consider a compactly flowing stream (Y,6) and a continuous function p : Y →
Z. The circulations 60×6p∗ and (60×6)(idX×p)∗ coincide because they coincide
on B by Proposition 5.11 and Lemma 2.8. Consider a set {6i}i∈I of k-circulations
on Z. The circulations of 60×

∨
i∈I 6i and

∨
i∈I(6

0×6i) coincide because they
coincide on B by Proposition 5.11 and Lemma 2.11. The functor (15) preserves
final structures by Lemma 5.5 and (15) hence preserves colimits because X0 ×− :
T ′ → T ′ preserves colimits. �

6. Future directions for streams

We can systematically enrich spaces from nature - machine state spaces, clas-
sifying spaces of small categories, underlying spaces of time-oriented Lorentzian
manifolds, one-point compactifications of (ordered) topological vector spaces - with
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the structure of time and adapt the machinery of homotopy theory to mine such
streams for tractable order-theoretic information. In our new world, fundamental
categories from [6], homotopy monoids from [13], homology monoids from [4, 22],
and preordered homology groups from [14] replace fundamental groupoids, homo-
topy groups, and homology groups. Potential applications of these tools extend far
beyond the static analysis of programs, as suggested in [9, 10].

One possible line of research is a homotopic approach to monoid theory. Topolog-
ical simplices naturally admit partial orders, allowing us to lift geometric realization
to a functor from simplicial spaces sT ′ to S ′ by Theorem 4.7. Our new realization
|B∗(L)| of the nerve of a discrete, unital semilattice L has fundamental monoid
L (at a natural basepoint) - even though the classifying space BL is contractible.
We believe homotopy invariants on “classifying streams” of topological monoids
can extract algebraic information inaccessible to classical methods. Perhaps such
invariants can sharpen the necessary homotopic conditions of [2, 17, 18, 20, 24] for
monoids to admit finite and complete presentations.

7. Acknowledgements

The author is greatly indebted to the anonymous referee for detailed corrections
and suggestions. Additionally, the author thanks Eric Goubault, Marco Grandis
and Peter May for spotting errors and suggesting improvements in earlier drafts.

References

[1] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Encyclopedia of
Mathematics and its Applications, vol. 51, Cambridge University Press, 1994, pp. xviii+443.

[2] K. Brown, The Geometry of Rewriting Systems: a proof of the Anick-Groves-Squier theorem,
Algorithms and classification in combinatorial group theory, (Berekely, CA, 1989), Math. Sci.
Res. Inst. Publ., vol. 23, Springer, New York, 1992, pp. 137-163.

[3] P. Bubenik, K. Worytkiewicz, A model category for local pospaces, Homology Homotopy
Appl., vol. 8(1), 2006, pp. 263-292.

[4] U. Fahrenberg, Directed Homology, In Proc. GETCO&CMCIM 2003, Electronic Notes in
Theoretical Computer Science, vol. 100, Elsevier, 2004.

[5] L. Fajstrup, E. Goubault, E. Haucourt, M. Raussen, Components of the fundamental cate-
gory, Appl. Categ. Structures, vol. 12, no. 1, 2004, pp. 84-108.

[6] L. Fajstrup, E. Goubault, M. Raussen, Algebraic topology and concurrency, Theoret. Comput.
Sci, vol. 357(1-3), 2006, pp. 241-278.

[7] P. Gaucher, A model category for the homotopy theory of concurrency, Homology Homotopy
Appl., vol. 5(1), 2003, pp. 549-599.

[8] G. Gierz, K.H. Hoffman, K. Keimel, J.D. Lawsonj, M. Mislove, and D.S. Scott, Continuous
lattices and domains, vol. 63 of Encyclopedia of Mathematics and Applications, Cambridge
University Press, Cambridge, 2003.

[9] E. Goubault, Geometry and Concurrency: A User’s Guide, Mathematical Structures in
Computer Sciences, vol. 10, no 4, Aug. 2000, pp. 411-425.

[10] E. Goubault, J. Goubault-Larrecq, On the Geometry of Intutionistic S4 Proofs, Homology
Homotopy Appl., vol. 5(2), 2003, pp. 137-209.

[11] E. Goubault, E. Haucourt, Components of the fundamental category II, Appl. Categ. Struc-
tures, vol. 15, no. 4, 2007, pp. 387-414.

[12] M. Grandis, Directed homotopy theory. I., Cah. Topol. Géom. Différ. Catég, vol. 44(4), 2003,
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