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A Generalization of De Vries Duality

Theorem∗

Georgi Dimov

Abstract

Generalizing Duality Theorem of H. de Vries, we define a category which

is dually equivalent to the category of all locally compact Hausdorff spaces

and all perfect maps between them.

2000 MSC: primary 18A40, 54D45; secondary 06E15, 54C10, 54E05, 06E10.

Keywords: Local contact algebra; Locally compact spaces; Perfect maps; Duality.

Introduction

According to the famous Stone Duality Theorem ([17]), the category of
all zero-dimensional compact Hausdorff spaces and all continuous maps be-
tween them is dually equivalent to the categoryBool of all Boolean algebras
and all Boolean homomorphisms between them. In 1962, H. de Vries [6] in-
troduced the notion of compingent Boolean algebra and proved that the cate-
gory of all compact Hausdorff spaces and all continuous maps between them
is dually equivalent to the category of all complete compingent Boolean al-
gebras and appropriate morphisms between them. In 1997, Roeper [15]
defined the notion of region-based topology as one of the possible formaliza-
tions of the ideas of De Laguna [5] and Whitehead [19] for a region-based
theory of space. Following [18, 9], the region-based topologies of Roeper
appear here as local contact algebras (briefly, LCAs), because the axioms
which they satisfy almost coincide with the axioms of local proximities of
Leader [13]. In his paper [15], Roeper proved the following theorem: there
is a bijective correspondence between all (up to homeomorphism) locally
compact Hausdorff spaces and all (up to isomorphism) complete LCAs. It
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generalizes the theorem of de Vries [6] that there exists a bijective corre-
spondence between all (up to homeomorphism) compact Hausdorff spaces
and all (up to isomorphism) complete compingent Boolean algebras. Here,
using Roeper’s Theorem and the results of de Vries [6], a category dually
equivalent to the category of all locally compact Hausdorff spaces and all
perfect maps between them is defined (see Theorem 2.10 bellow), genera-
lizing in this way the Duality Theorem of H. de Vries.

Let us mention that, using de Vries Duality Theorem, V. V. Fedorchuk
[11] showed that the category of all compact Hausdorff spaces and all quasi-
open maps between them is dually equivalent to the category of all complete
compingent Boolean algebras and all complete Boolean homomorphisms be-
tween them satisfying one simple condition, and that in [7, 8] some exten-
sions of the Fedorchuk Duality Theorem ([11]) to some categories whose
objects are all locally compact Hausdorff spaces are obtained.

We now fix the notations.
If C denotes a category, we write X ∈ |C| if X is an object of C, and

f ∈ C(X, Y ) if f is a morphism of C with domain X and codomain Y .
All lattices are with top (= unit) and bottom (= zero) elements, de-

noted respectively by 1 and 0. We do not require the elements 0 and 1 to
be distinct.

If (X, τ) is a topological space and M is a subset of X , we denote
by cl(X,τ)(M) (or simply by cl(M) or clX(M)) the closure of M in (X, τ)
and by int(X,τ)(M) (or briefly by int(M) or intX(M)) the interior of M in
(X, τ). The Alexandroff compactification of a locally compact Hausdorff
non-compact space X will be denoted by αX and the added point by ∞X

(i.e. αX = X ∪ {∞X}).
The closed maps between topological spaces are assumed to be con-

tinuous but are not assumed to be onto. Recall that a map is perfect if it
is closed and compact (i.e. point inverses are compact sets).

1 Preliminaries

Definition 1.1 An algebraic system B = (B, 0, 1,∨,∧, ∗, C) is called a
contact algebra (abbreviated as CA) if (B, 0, 1,∨,∧, ∗) is a Boolean algebra
(where the operation “complement” is denoted by “ ∗ ”) and C is a binary
relation on B, satisfying the following axioms:

(C1) If a 6= 0 then aCa;
(C2) If aCb then a 6= 0 and b 6= 0;
(C3) aCb implies bCa;
(C4) aC(b ∨ c) iff aCb or aCc.

Usually, we shall simply write (B,C) for a contact algebra. The relation C
is called a contact relation. When B is a complete Boolean algebra, we will
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say that (B,C) is a complete contact algebra (abbreviated as CCA).
We will say that two CA’s (B1, C1) and (B2, C2) are CA-isomorphic

iff there exists a Boolean isomorphism ϕ : B1 −→ B2 such that, for each
a, b ∈ B1, aC1b iff ϕ(a)C2ϕ(b). Note that in this paper, by a “Boolean
isomorphism” we understand an isomorphism in the category Bool.

A CA (B,C) is called connected if it satisfies the following axiom:

(CON) If a 6= 0, 1 then aCa∗.

A contact algebra (B,C) is called a normal contact algebra (abbre-
viated as NCA) ([6, 11]) if it satisfies the following axioms (we will write
“− C” for “not C”):

(C5) If a(−C)b then a(−C)c and b(−C)c∗ for some c ∈ B;
(C6) If a 6= 1 then there exists b 6= 0 such that b(−C)a.

A normal CA is called a complete normal contact algebra (abbreviated as
CNCA) if it is a CCA. The notion of normal contact algebra was introduced
by Fedorchuk [11] under the name Boolean δ-algebra as an equivalent ex-
pression of the notion of compingent Boolean algebra of de Vries. We call
such algebras “normal contact algebras” because they form a subclass of
the class of contact algebras.

Note that if 0 6= 1 then the axiom (C2) follows from the axioms (C6)
and (C4).

For any CA (B,C), we define a binary relation “ ≪C” on B (called
non-tangential inclusion) by “ a ≪C b ↔ a(−C)b∗ ”. Sometimes we will
write simply “ ≪” instead of “ ≪C”.

The relations C and ≪ are inter-definable. For example, normal con-
tact algebras could be equivalently defined (and exactly in this way they
were defined (under the name of compingent Boolean algebras) by de Vries
in [6]) as a pair of a Boolean algebra B = (B, 0, 1,∨,∧, ∗) and a binary
relation ≪ on B subject to the following axioms:

(≪1) a≪ b implies a ≤ b;
(≪2) 0 ≪ 0;
(≪3) a ≤ b≪ c ≤ t implies a≪ t;
(≪4) a≪ c and b≪ c implies a ∨ b≪ c;
(≪5) If a≪ c then a≪ b≪ c for some b ∈ B;
(≪6) If a 6= 0 then there exists b 6= 0 such that b≪ a;
(≪7) a≪ b implies b∗ ≪ a∗.

Note that if 0 6= 1 then the axiom (≪2) follows from the axioms (≪3),
(≪4), (≪6) and (≪7).

Obviously, contact algebras could be equivalently defined as a pair of
a Boolean algebra B and a binary relation ≪ on B subject to the axioms
(≪1)-(≪4) and (≪7).
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It is easy to see that axiom (C5) (resp., (C6)) can be stated equiva-
lently in the form of (≪5) (resp., (≪6)).

Example 1.2 Let B be a Boolean algebra. Then there exist the largest
and the smallest contact relations on B; the largest one, ρl, is defined by
aρlb iff a 6= 0 and b 6= 0, and the smallest one, ρs, by aρsb iff a ∧ b 6= 0.

Note that, for a, b ∈ B, a ≪ρs b iff a ≤ b; hence a ≪ρs a, for any
a ∈ B. Thus (B, ρs) is a normal contact algebra.

Example 1.3 Recall that a subset F of a topological space (X, τ) is called
regular closed if F = cl(int(F )). Clearly, F is regular closed iff it is the
closure of an open set.

For any topological space (X, τ), the collection RC(X, τ) (we will of-
ten write simply RC(X)) of all regular closed subsets of (X, τ) becomes a
complete Boolean algebra (RC(X, τ), 0, 1,∧,∨, ∗) under the following oper-
ations:

1 = X, 0 = ∅, F ∗ = cl(X \ F ), F ∨G = F ∪G,F ∧G = cl(int(F ∩G)).

The infinite operations are given by the following formulas:
∨
{Fγ | γ ∈

Γ} = cl(
⋃
{Fγ | γ ∈ Γ})(= cl(

⋃
{int(Fγ) | γ ∈ Γ})), and

∧
{Fγ | γ ∈ Γ} =

cl(int(
⋂
{Fγ | γ ∈ Γ})).

It is easy to see that setting Fρ(X,τ)G iff F ∩ G 6= ∅, we define a
contact relation ρ(X,τ) on RC(X, τ); it is called a standard contact relation.
So, (RC(X, τ), ρ(X,τ)) is a CCA (it is called a standard contact algebra). We
will often write simply ρX instead of ρ(X,τ). Note that, for F,G ∈ RC(X),
F ≪ρX G iff F ⊆ intX(G).

Clearly, if (X, τ) is a normal Hausdorff space then the standard contact
algebra (RC(X, τ), ρ(X,τ)) is a complete NCA.

A subset U of (X, τ) such that U = int(cl(U)) is said to be regular
open. The set of all regular open subsets of (X, τ) will be denoted by
RO(X, τ) (or briefly, by RO(X)). Define Boolean operations and contact δX
in RO(X) as follows: U∨V = int(cl(U∪V )), U∧V = U∩V , U∗ = int(X\U),
0 = ∅, 1 = X and UδXV iff cl(U) ∩ cl(V ) 6= ∅. Then (RO(X), δX) is a CA.
This algebra is also complete, considering the infinite meet

∧
{Ui | i ∈ I} =

int(
⋂
i∈I Ui).
Note that (RO(X), δX) and (RC(X), ρX) are isomorphic CAs. The

isomorphism f between them is defined by f(U) = cl(U), for every U ∈
RO(X).

The following notion is a lattice-theoretical counterpart of the corre-
sponding notion from the theory of proximity spaces (see [14]):

1.4 Let (B,C) be a CA. Then a non-empty subset σ of B is called a cluster
in (B,C) if the following conditions are satisfied:
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(K1) If a, b ∈ σ then aCb;
(K2) If a ∨ b ∈ σ then a ∈ σ or b ∈ σ;
(K3) If aCb for every b ∈ σ, then a ∈ σ.

The set of all clusters in (B,C) will be denoted denoted by Clust(B,C).

The next assertion can be proved exactly as Lemma 5.6 of [14]:

Fact 1.5 If σ1, σ2 are two clusters in a normal contact algebra (B,C) and
σ1 ⊆ σ2 then σ1 = σ2.

Fact 1.6 ([3]) Let (X, τ) be a topological space. Then the standard contact
algebra (RC(X, τ), ρ(X,τ)) is connected iff the space (X, τ) is connected.

The following notion is a lattice-theoretical counterpart of the Leader’s
notion of local proximity ([13]):

Definition 1.7 ([15]) An algebraic system B l = (B, 0, 1,∨,∧, ∗, ρ, IB) is
called a local contact algebra (abbreviated as LCA) if (B, 0, 1,∨,∧, ∗) is a
Boolean algebra, ρ is a binary relation on B such that (B, ρ) is a CA, and
IB is an ideal (possibly non proper) of B, satisfying the following axioms:

(BC1) If a ∈ IB, c ∈ B and a ≪ρ c then a ≪ρ b ≪ρ c for some b ∈ IB (see
1.1 for “ ≪ρ”);
(BC2) If aρb then there exists an element c of IB such that aρ(c ∧ b);
(BC3) If a 6= 0 then there exists b ∈ IB \ {0} such that b≪ρ a.

Usually, we shall simply write (B, ρ, IB) for a local contact algebra.
We will say that the elements of IB are bounded and the elements of B \ IB
are unbounded. When B is a complete Boolean algebra, the LCA (B, ρ, IB)
is called a complete local contact algebra (abbreviated as CLCA).

We will say that two local contact algebras (B, ρ, IB) and (B1, ρ1, IB1)
are LCA-isomorphic iff there exists a Boolean isomorphism ϕ : B −→ B1

such that, for a, b ∈ B, aρb iff ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ IB1 iff a ∈ IB.
An LCA (B, ρ, IB) is called connected if the CA (B, ρ) is connected.

Remark 1.8 Note that if (B, ρ, IB) is a local contact algebra and 1 ∈ IB
then (B, ρ) is a normal contact algebra. Conversely, any normal contact
algebra (B,C) can be regarded as a local contact algebra of the form
(B,C,B).

The following lemmas are lattice-theoretical counterparts of some the-
orems from Leader’s paper [13].

Lemma 1.9 ([18]) Let (B, ρ, IB) be a local contact algebra. Define a binary
relation “Cρ” on B by

aCρb iff aρb or a, b 6∈ IB.(1)

Then “Cρ”, called the Alexandroff extension of ρ, is a normal contact rela-
tion on B and (B,Cρ) is a normal contact algebra.
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Lemma 1.10 ([18]) Let B l = (B, ρ, IB) be a local contact algebra and let

1 6∈ IB. Then σ
B l
∞ = {b ∈ B | b 6∈ IB} is a cluster in (B,Cρ) (see 1.9 for the

notation “Cρ”). (Sometimes we will simply write σ∞ instead of σ
B l
∞ .)

Definition 1.11 Let (B, ρ, IB) be a local contact algebra. A cluster σ in
(B,Cρ) (see 1.9) is called bounded if σ ∩ IB 6= ∅. The set of all bounded
clusters in (B,Cρ) will be denoted by BClust(B, ρ, IB).

Fact 1.12 Let (B, ρ, IB) be a local contact algebra and σ be a bounded clus-
ter in (B,Cρ) (see 1.9). Then there exists b ∈ IB such that b∗ 6∈ σ.

Proof. Let b0 ∈ σ ∩ IB. Since b0 ≪ρ 1, (BC1) implies that there exists
b ∈ IB such that b0 ≪ρ b. Then b0(−ρ)b

∗ and since b0 ∈ IB, we obtain that
b0(−Cρ)b

∗. Thus b∗ 6∈ σ.

Notation 1.13 Let (X, τ) be a topological space. We denote by CR(X, τ)
the family of all compact regular closed subsets of (X, τ). We will often
write CR(X) instead of CR(X, τ).

If x ∈ X then we set:

σx = {F ∈ RC(X) | x ∈ F}.(2)

Fact 1.14 Let (X, τ) be a locally compact Hausdorff space. Then the triple

(RC(X, τ), ρ(X,τ), CR(X, τ))

(see 1.3 for ρ(X,τ)) is a complete local contact algebra ([15]). It is called a
standard local contact algebra.

For every x ∈ X, σx is a bounded cluster in (RC(X), CρX) (see (2)
and (1) for the notations).

We will need a lemma from [4]:

Lemma 1.15 Let X be a dense subspace of a topological space Y . Then the
functions rX,Y : RC(Y ) −→ RC(X), F −→ F ∩X, and eX,Y : RC(X) −→
RC(Y ), G −→ clY (G), are Boolean isomorphisms between Boolean algebras
RC(X) and RC(Y ), and eX,Y ◦ rX,Y = idRC(Y ), rX,Y ◦ eX,Y = idRC(X). (We
will often write rX , eX instead of rX,Y , eX,Y , respectively.)

The next proposition is well known (see, e.g., [2]):

Proposition 1.16 Let f : X −→ Y be a perfect map between two locally
compact Hausdorff non-compact spaces. Then the map f has a continuous
extension α(f) : αX −→ αY ; moreover, α(f)(∞X) = ∞Y .

For all undefined here notions and notations see [1, 12, 10, 14, 16].

6



2 The Results

The next theorem was proved by Roeper [15]. We will give a sketch of its
proof; it follows the plan of the proof presented in [18]. The notations and
the facts stated here will be used later on.

Theorem 2.1 (P. Roeper [15]) There exists a bijective correspondence be-
tween the class of all (up to isomorphism) complete local contact alge-
bras and the class of all (up to homeomorphism) locally compact Hausdorff
spaces.

Sketch of the Proof. (A) Let (X, τ) be a locally compact Hausdorff space.
We put

Ψt(X, τ) = (RC(X, τ), ρ(X,τ), CR(X, τ))(3)

(see 1.14 and 1.13 for the notations).
(B) Let B l = (B, ρ, IB) be a complete local contact algebra. Let C = Cρ be
the Alexandroff extension of ρ (see 1.9). Then, by 1.9, (B,C) is a complete
normal contact algebra. Put X = Clust(B,C) and let T be the topology on
X having as a closed base the family {λ(B,C)(a) | a ∈ B} where, for every
a ∈ B,

λ(B,C)(a) = {σ ∈ X | a ∈ σ}.(4)

Sometimes we will write simply λB instead of λ(B,C).
It can be proved that (X,T) is a compact Hausdorff space and

λB : (B,C) −→ (RC(X), ρX) is a CA-isomorphism.(5)

(B1) Let 1 ∈ IB. Then C = ρ and IB = B, so that (B, ρ, IB) = (B,C,B) =
(B,C) is a complete normal contact algebra (see 1.8), and we put

Ψa(B, ρ, IB) = Ψa(B,C,B) = Ψa(B,C) = (X,T).(6)

(B2) Let 1 6∈ IB. Then, by Lemma 1.10, the set σ∞ = {b ∈ B | b 6∈ IB} is a
cluster in (B,C) and, hence, σ∞ ∈ X . Let L = X \ {σ∞}. Then

L = BClust(B, ρ, IB),(7)

i.e. L is the set of all bounded clusters of (B,Cρ) (sometimes we will write
LB l

or LB instead of L); let the topology τ(= τB l
) on L be the subspace

topology, i.e. τ = T|L. Then (L, τ) is a locally compact Hausdorff space.
We put

Ψa(B, ρ, IB) = (L, τ).(8)

Let λlB(a) = λB(a) ∩ L, for each a ∈ B. One can show that X = αL

and

λlB : (B, ρ, IB) −→ (RC(L), ρL, CR(L)) is an LCA-isomorphism.(9)
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(C) For every CLCA (B, ρ, IB) and every a ∈ B, set

λ
g
B(a) = λB(a) ∩Ψa(B, ρ, IB).(10)

Then, by (5) and (9), we get that

λ
g
B : (B, ρ, IB) −→ (Ψt ◦Ψa)(B, ρ, IB) is an LCA-isomorphism.(11)

(D) Let (Y, τ) be a locally compact Hausdorff space. It can be shown that
the map

t(Y,τ) : (Y, τ) −→ Ψa(Ψt(Y, τ)),(12)

defined by t(Y,τ)(y) = {F ∈ RC(Y, τ) | y ∈ F}(= σy), for every y ∈ Y , is a
homeomorphism; we will often write simply tY instead of t(Y,τ).

Therefore Ψa(Ψt(Y, τ)) is homeomorphic to (Y, τ) and Ψt(Ψa(B, ρ, IB))
is LCA-isomorphic to (B, ρ, IB).

Definition 2.2 (De Vries [6]) Let HC be the category of all compact Haus-
dorff spaces and all continuous maps between them.

Let DVAL be the category whose objects are all complete NCAs and
whose morphisms are all functions ϕ : (A,C) −→ (B,C ′) between the
objects of DVAL satisfying the conditions:
(DVAL1) ϕ(0) = 0;
(DVAL2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;
(DVAL3) If a, b ∈ A and a≪C b then (ϕ(a∗))∗ ≪C′ ϕ(b);
(DVAL4) ϕ(a) =

∨
{ϕ(b) | b≪C a}, for every a ∈ A,

and let the composition “∗” of two morphisms ϕ1 : (A1, C1) −→ (A2, C2)
and ϕ2 : (A2, C2) −→ (A3, C3) of DVAL be defined by the formula

ϕ2 ∗ ϕ1 = (ϕ2 ◦ ϕ1)̆ ,(13)

where, for every function ψ : (A,C) −→ (B,C ′) between two objects of
DVAL, ψ˘ : (A,C) −→ (B,C ′) is defined as follows:

ψ (̆a) =
∨

{ψ(b) | b≪C a},(14)

for every a ∈ A.

De Vries [6] proved the following duality theorem:

Theorem 2.3 The categories HC and DVAL are dually equivalent. In
more details, let Φt : HC −→ DVAL be the contravariant functor de-
fined by Φt(X, τ) = (RC(X, τ), ρX), for every X ∈ |HC|, and Φt(f)(G) =
cl(f−1(int(G))), for every f ∈ HC(X, Y ) and every G ∈ RC(Y ), and let
Φa : DVAL −→ HC be the contravariant functor defined by Φa(A,C) =

8



Ψa(A,C), for every (A,C) ∈ |DVAL|, and Φa(ϕ)(σ′) = {a ∈ A | if b≪C a
∗

then (ϕ(b))∗ ∈ σ′}, for every ϕ ∈ DVAL((A,C), (B,C ′)) and for every
σ′ ∈ Clust(B,C ′); then λ : IdDVAL −→ Φt ◦ Φa, where λ(A,C) = λ(A,C)

(see (4) and (5) for the notation λ(A,C)), for every (A,C) ∈ |DVAL|, and
t : IdHC −→ Φa ◦ Φt, where t(X) = tX (see (12) for the notation tX), for
every X ∈ |HC|, are natural isomorphisms.

In [6], de Vries uses the regular open sets instead of regular closed sets,
as we do, so that we present here the translations of his definitions for the
case of regular closed sets.

Definition 2.4 We will denote by PLC the category of all locally compact
Hausdorff spaces and all perfect maps between them.

Let PAL be the category whose objects are all complete LCAs and
whose morphisms are all functions ϕ : (A, ρ, IB) −→ (B, η, IB′) between the
objects of PAL satisfying the conditions:
(PAL1) ϕ(0) = 0;
(PAL2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;
(PAL3) If a ∈ IB, b ∈ A and a≪ρ b then (ϕ(a∗))∗ ≪η ϕ(b);
(PAL4) For every b ∈ IB′ there exists a ∈ IB such that b ≤ ϕ(a);
(PAL5) If a ∈ IB then ϕ(a) ∈ IB′;
(PAL6) ϕ(a) =

∨
{ϕ(b) | b≪Cρ

a}, for every a ∈ A (see (1) for Cρ);

let the composition “⋄” of two morphisms ϕ1 : (A1, ρ1, IB1) −→ (A2, ρ2, IB2)
and ϕ2 : (A2, ρ2, IB2) −→ (A3, ρ3, IB3) of PAL be defined by the formula

ϕ2 ⋄ ϕ1 = (ϕ2 ◦ ϕ1)̌ ,(15)

where, for every function ψ : (A, ρ, IB) −→ (B, η, IB′) between two objects
of PAL, ψˇ : (A, ρ, IB) −→ (B, η, IB′) is defined as follows:

ψ (̌a) =
∨

{ψ(b) | b≪Cρ
a},(16)

for every a ∈ A.
By NAL we denote the full subcategory of PAL having as objects all

CNCAs (i.e., those CLCAs (A, ρ, IB) for which IB = A).

Note that the categories DVAL and NAL are isomorphic (it can
be even said that they are identical) because the axiom (PAL5) is tri-
vially fulfilled in the category DVAL (indeed, all elements of its objects
are bounded), the axiom (PAL4) follows immediately from the obvious fact
that ϕ(1) = 1 for every DVAL-morphism ϕ, and the compositions are the
same.

We will generalize the Duality Theorem of de Vries showing that the
categories PAL and PLC are dually equivalent.

We will first show that PAL is indeed a category.
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Lemma 2.5 Let us regard two functions ϕ : (A, ρ, IB) −→ (B, η, IB′) and
ψ : (B, η, IB′) −→ (B1, η1, IB

′

1) between CLCAs. Then:
(a) If ϕ satisfies condition (PAL2) then ϕ is an order preserving function;
(b) If ϕ satisfies conditions (PAL1) and (PAL2) then ϕ(a∗) ≤ (ϕ(a))∗, for
every a ∈ A;
(c) Let ϕ satisfy conditions (PAL3) and (PAL5). If a, b ∈ A and a ≪Cρ

b

then (ϕ(a∗))∗ ≪Cη
ϕ(b). Hence, if ϕ satisfies in addition conditions (PAL1)

and (PAL2) then ϕ(a) ≪Cη
ϕ(b);

(d) If ϕ satisfies conditions (PAL1) and (PAL3) then ϕ(1) = 1;
(e) If ϕ satisfies condition (PAL2) then ϕˇ satisfies conditions (PAL2) and
(PAL6) (see (16) for ϕ )̌;
(f) If ϕ satisfies condition (PAL6) then ϕ = ϕ ;̌
(g) If ϕ satisfies condition (PAL2) then (ϕ )̌̌ = ϕ ;̌
(h) If ϕ and ψ satisfy condition (PAL2) and ϕ satisfies in addition condi-
tions (PAL1), (PAL3) and (PAL5) then (ψ ◦ ϕ)̌ = (ψˇ◦ ϕ )̌̌ .

Proof. The properties (a), (b), (d) and (f) are clearly fulfilled, and (g)
follows from (e) and (f).

(c) Let a, b ∈ A and a≪Cρ
b. Then a≪ρ b and at least one of the elements

a and b∗ is bounded.
Let a ∈ IB. Then (PAL3) implies that (ϕ(a∗))∗ ≪η ϕ(b). By (BC1),

there exists c ∈ IB such that a ≪ρ c. Hence, using again (PAL3), we get
that (ϕ(a∗))∗ ≪η ϕ(c). Since ϕ(c) ∈ IB′ (according to (PAL5)), we obtain
that (ϕ(a∗))∗ ∈ IB′. Therefore, (ϕ(a∗))∗ ≪Cη

ϕ(b).
Let now b∗ ∈ IB. Since b∗ ≪Cρ

a∗, we get, by the previous case, that
(ϕ(b))∗ ≪Cη

ϕ(a∗). Thus (ϕ(a∗))∗ ≪Cη
ϕ(b).

(e) By (a), for every a ∈ A, ϕ (̌a) ≤ ϕ(a). Let a ∈ A. If c ≪Cρ
a then

there exists dc ∈ A such that c ≪Cρ
dc ≪Cρ

a; hence ϕ(c) ≤ ϕ (̌dc). Now,
ϕ (̌a) =

∨
{ϕ(c) | c ≪Cρ

a} ≤
∨
{ϕ (̌dc) | c ≪Cρ

a} ≤
∨
{ϕ (̌e) | e ≪Cρ

a} ≤
∨
{ϕ(e) | e ≪Cρ

a} = ϕ (̌a). Thus, ϕ (̌a) =
∨
{ϕ (̌e) | e ≪Cρ

a}.
So, ϕˇ satisfies (PAL6). Further, let a, b ∈ A. Then ϕ (̌a) ∧ ϕ (̌b) =∨
{ϕ(d) ∧ ϕ(e) | d ≪Cρ

a, e ≪Cρ
b} =

∨
{ϕ(d ∧ e) | d ≪Cρ

a, e ≪Cρ

b} =
∨
{ϕ(c) | c≪Cρ

a ∧ b} = ϕ (̌a ∧ b). So, (PAL2) is fulfilled.

(h) Since ϕ (̌a) ≤ ϕ(a) for every a ∈ A, and ψ (̌b) ≤ ψ(b) for every b ∈ B,
we get that ψ (̌ϕ (̌a)) ≤ ψ(ϕ(a)), for every a ∈ A. Hence, using (16), we
obtain that (ψˇ ◦ ϕ )̌̌ (a) ≤ (ψ ◦ ϕ)̌ (a), for every a ∈ A. Further, by (16),
for every a ∈ A, (ψ ◦ ϕ)̌ (a) =

∨
{ψ(ϕ(e)) | e ≪Cρ

a} and (ψˇ ◦ ϕ )̌̌ (a) =∨
{ψ (̌ϕ (̌b)) | b ≪Cρ

a} =
∨
{
∨
{ψ(c) | c≪Cη

ϕ (̌b)} | b≪Cρ
a}. Let a ∈ A

and e ≪Cρ
a. Then there exist b, d ∈ A such that e ≪Cρ

d ≪Cρ
b ≪Cρ

a.
Set c = ϕ(e). Then, by (c), c ≪Cη

ϕ(d) ≤ ϕ (̌b). Hence ψ(ϕ(e)) = ψ(c) ≤
(ψˇ ◦ ϕ )̌̌ (a). We conclude that (ψ ◦ ϕ)̌ (a) ≤ (ψˇ ◦ ϕ )̌̌ (a). Therefore the
desired equality is proved.
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Proposition 2.6 Let ϕi : (Ai, ρi, IBi) −→ (Ai+1, ρi+1, IBi+1), where i =
1, 2, be two functions between CLCAs and let ϕ1 and ϕ2 satisfy conditions
(PAL1)-(PAL5). Then the function ϕ2 ◦ ϕ1 satisfies conditions (PAL1)-
(PAL5).

Proof. Let a ∈ IB1, b ∈ A1 and a ≪ρ1 b. Then, by (BC1), there exists
c ∈ IB1 such that a ≪ρ1 c ≪ρ1 b. From (PAL3) we get that (ϕ1(a

∗))∗ ≪ρ2

ϕ1(c). Then, since ϕ1(c) ∈ IB2 (by (PAL5)), (ϕ1(a
∗))∗ ∈ IB2. Now, using

twice (PAL3), we obtain that (ϕ1(a
∗))∗ ≪ρ2 ϕ1(b) and (ϕ2(ϕ1(a

∗)))∗ ≪ρ3

ϕ2(ϕ1(b)). Hence, the function ϕ2 ◦ ϕ1 satisfies condition (PAL3). The rest
is obvious.

Proposition 2.7 Let ϕ : (A, ρ, IB) −→ (B, η, IB′) be a function between
CLCAs and let ϕ satisfies conditions (PAL1)-(PAL5). Then the function ϕˇ
(see (16)) satisfies conditions (PAL1)-(PAL6) (i.e., it is a PAL-morphism).

Proof. Obviously, for every a ∈ A, ϕ (̌a) ≤ ϕ(a). Hence, ϕ (̌0) = 0, i.e.
(PAL1) is fulfilled. For (PAL2) and (PAL6) see 2.5(e). Let a ∈ IB, b ∈ A and
a≪ρ b. Then, by (BC1), there exist c, d ∈ IB such that a≪ρ c≪ρ d≪ρ b.
Thus a ≪Cρ

c ≪Cρ
d ≪Cρ

b and hence c∗ ≪Cρ
a∗. We obtain that ϕ(d) ≤

ϕ (̌b) and ϕ(c∗) ≤ ϕ (̌a∗). Hence (ϕ (̌a∗))∗ ≤ (ϕ(c∗))∗ ≪η ϕ(d) ≤ ϕ (̌b).
Therefore, (ϕ (̌a∗))∗ ≪η ϕ (̌b). So, (PAL3) is fulfilled. Finally, it is easy to
verify (PAL4) and (PAL5).

Proposition 2.8 PAL is a category.

Proof. This follows immediately from 2.5(f), 2.5(h), 2.6 and 2.7.

Proposition 2.9 Let X be a locally compact Hausdorff space. Then the
NCAs (RC(X), CρX) and (RC(αX), ραX) are CA-isomorphic (see 1.9 and
1.14 for the notations) and the maps eX,αX , rX,αX are CA-isomorphisms
between them (see 1.15 for the notations).

Proof. By 1.15, we have only to show that ACρXB iff clαX(A)ραXclαX(B),
for every A,B ∈ RC(X). This follows easily from the respective defi-
nitions. Hence, the map eX,αX : (RC(X), CρX) −→ (RC(αX, ραX) is a
CA-isomorphism. Thus the map rX,αX is also a CA-isomorphism.

Theorem 2.10 The categories PLC and PAL are dually equivalent.

Proof. We will define two contravariant functors

Ξa : PAL −→ PLC and Ξt : PLC −→ PAL.
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I. The definition of Ξt.

For every (X, τ) ∈ |PLC|, we let Ξt(X, τ) = Ψt(X, τ) (see (3) for Ψt).
Let f : (X, τ) −→ (Y, τ ′) ∈ PLC(X, Y ). We set

Ξt(f) : Ξt(Y, τ ′) −→ Ξt(X, τ), Ξt(f)(F ) = clX(f
−1(intY (F ))).(17)

Put, for the sake of brevity, ϕf = Ξt(f). We have to show that ϕf is
a PAL-morphism. Obviously, (PAL1) is fulfilled. For verifying (PAL4),
let H ∈ CR(X). Then f(H) is compact. Since Y is locally compact,
there exists F ∈ CR(Y ) such that f(H) ⊆ int(F ). Now we obtain that
H ⊆ f−1(int(F )) ⊆ int(cl(f−1(int(F )))) = int(ϕf (F )), i.e. H ≪ρX ϕf (F ).
Hence (PAL4) is checked.

Let now F ∈ CR(Y ). Then ϕf(F ) = cl(f−1(int(F ))) ⊆ f−1(F ). Since
f−1(F ) is compact (because f is perfect), ϕf (F ) ∈ CR(X). Therefore,
(PAL5) is fulfilled.

By 1.16, f has a continuous extension α(f) : αX −→ αY . Set ϕαf =
Φt(α(f)) (see Theorem 2.3 for Φt). Then, by Theorem 2.3, ϕαf is a DVAL-
morphism. We will prove that

rX,αX ◦ ϕαf = ϕf ◦ rY,αY(18)

(see 1.15 for the notations), i.e. that, for every G ∈ RC(Y ), the following
equality holds:

X ∩ ϕαf (clαY (G)) = ϕf (G),(19)

or, in other words, that

X ∩ clαX((α(f))
−1(intαY (clαY (G)))) = clX(f

−1(intY (G))).

Since the last equality follows easily from the obvious inclusions intY (G) ∪
{∞Y } ⊇ intαY (clαY (G)) ⊇ intY (G), (18) is proved. Therefore, ϕf = rX,αX ◦
ϕαf ◦ eY,αY (see 1.15). Since ϕαf satisfies (DVAL2), we obtain that ϕf
satisfies (PAL2).

For establishing (PAL3), let F ∈ CR(Y ), G ∈ RC(Y ) and F ≪ρY G.
Then F ≪CρY

G and hence, by 2.9, F ≪ραY
clαY (G). Thus, (DVAL3)

implies that
(ϕαf (F

∗α))∗α ≪ραX
ϕαf (clαY (G)),(20)

where “∗α” is used as a common notation of the complement in the Boole-
an algebras RC(αX) and RC(αY ). Since, for every H ∈ RC(X), X ∩
(clαX(H))∗α = rX,αX((clαX(H))∗α) = (rX,αX(clαX(H))∗ = H∗, we get, using
again 2.9, that (X ∩ ϕαf(F

∗α))∗ ≪CρX
(X ∩ ϕαf (clαY (G))); then, applying

twice (19), the equality F ∗α(= (eY,αY (F ))
∗α) = eY,αY (F

∗) and (18), we
obtain that (ϕf (F

∗))∗ ≪CρX
ϕf(G), i.e. (PAL3) is fulfilled.
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Now, we will verify (PAL6). Let F ∈ RC(Y ); then clαY (F ) ∈ RC(αY )
and hence, by (DVAL4),

ϕαf(clαY (F )) =
∨

{ϕαf (clαY (G)) | G ∈ RC(Y ), clαY (G) ≪ραY
clαY (F )}.

Since rX,αX is an isomorphism, we obtain that rX,αX(ϕαf(clαY (F ))) =∨
{rX,αX(ϕαf(clαY (G))) | G ∈ RC(Y ), clαY (G) ≪ραY

clαY (F )}. Thus, (18)
and 2.9 imply that ϕf (F ) =

∨
{ϕf(G) | G ∈ RC(Y ), G ≪CρY

F}. So,
(PAL6) is fulfilled.

Therefore, ϕf is a PAL-morphism.
Let f ∈ PLC(X, Y ) and g ∈ PLC(Y, Z). We will prove that Ξt(g ◦

f) = Ξt(f) ⋄ Ξt(g). Put h = g ◦ f , ϕh = Ξt(h), ϕf = Ξt(f) and ϕg = Ξt(g).
Let α(f) : αX −→ αY , α(g) : αY −→ αZ and α(h) : αX −→ αZ be
the continuous extensions of f , g and h, respectively (see 1.16). Then,
obviously, α(h) = α(g) ◦ α(f). Set ϕαf = Φt(α(f)), ϕαg = Φt(α(g)) and
ϕαh = Φt(α(h)) Then, by Theorem 2.3, ϕαh = (ϕαf ◦ϕαg )̆ . Now, using (18)
and 1.15, we get that eX ◦ϕh◦rZ = ϕαh = (eX ◦ϕf ◦ϕg◦rZ )̆ . Thus, for every
F ∈ RC(αZ), we have that ϕh(rZ(F )) =

∨
{(ϕf ◦ϕg)(rZ(G)) | G≪ραZ

F}.
Now, 1.15 and 2.9 imply that ϕh = (ϕf ◦ ϕg )̌ , i.e. ϕh = ϕf ⋄ ϕg.

So, Ξt : PLC −→ PAL is a contravariant functor.

II. The definition of Ξa.

For every (A, ρ, IB) ∈ |PAL|, we let Ξa(A, ρ, IB) = Ψa(A, ρ, IB) (see
(6) and (8) for Ψa).

Let ϕ ∈ PAL((A, ρ, IB), (B, η, IB′)). We define the map

Ξa(ϕ) : Ξa(B, η, IB′) −→ Ξa(A, ρ, IB)

by the formula

Ξa(ϕ)(σ′) = {a ∈ A | if b≪Cρ
a∗ then (ϕ(b))∗ ∈ σ′},(21)

for every bounded cluster σ′ in (B,Cη). Set, for the sake of brevity, Ξ
a(ϕ) =

fϕ, X = Ξa(A, ρ, IB) and Y = Ξa(B, η, IB′). We will show that fϕ : Y −→ X

is well-defined and is a perfect map.
Let ϕC : (A,Cρ) −→ (B,Cη) be defined by ϕC(a) = ϕ(a), for every

a ∈ A. Then ϕC is a DVAL-morphism. Indeed, (DVAL3) follows from
2.5(c), and the other three axioms are obviously fulfilled. Set fα = Φa(ϕC).
Then fα : αY −→ αX (see Theorem 2.3 and (B1), (B2) in the proof of
Theorem 2.1). The definitions of fϕ and fα coincide on the bounded clusters
of (B,Cη) (see (21) and Theorem 2.3); hence, the right side of the formula
(21) defines a cluster in (A,Cρ) and fα is an extension of fϕ. Thus, if we
show that f−1

α (∞X) = {∞Y }, the map fϕ will be well-defined and will be
a perfect map. Let us prove that fα(Y ) ⊆ X , i.e. that if σ′ is a bounded
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cluster in (B,Cη) then σ = fα(σ
′) = fϕ(σ

′) is a bounded cluster in (A,Cρ).
So, let σ′ be a bounded cluster in (B,Cη) and σ = fα(σ

′). Then 1.12 implies
that there exists b ∈ IB′ such that b∗ 6∈ σ′. By (PAL4), there exists a ∈ IB
such that b ≤ ϕ(a). Thus (ϕ(a))∗ ≤ b∗ and hence (ϕ(a))∗ 6∈ σ′. By (BC1),
there exists a1 ∈ IB such that a≪ρ a1. Then a≪Cρ

a1 and, by the definition
of σ, a∗1 6∈ σ. Therefore a1 ∈ IB ∩ σ, i.e. σ is a bounded cluster in (A,Cρ).
Hence fϕ(Y ) = fα(Y ) ⊆ X . Further, we have (by 1.10) that ∞X = A \ IB
and ∞Y = B \ IB′. Let us show that fα(∞Y ) = ∞X . Set σ′ = ∞Y and
σ = fα(σ

′). Let a ∈ σ. Suppose that a ∈ IB. Then, by (BC1), there exist
a1, a2 ∈ IB such that a ≪ρ a1 ≪ρ a2. Thus a ≪Cρ

a1 ≪Cρ
a2. Hence

a∗1 ≪Cρ
a∗. Since a ∈ σ, the definition of σ implies that (ϕ(a∗1))

∗ ∈ σ′.
By 2.5(c), we have that (ϕ(a∗1))

∗ ≤ ϕ(a2). Therefore, ϕ(a2) ∈ σ′. Since
ϕ(a2) ∈ IB′ (by (PAL5)), we obtain a contradiction. Thus σ ⊆ A \ IB. Now,
1.10 and 1.5 imply that σ = A\IB, i.e. fα(∞Y ) = ∞X . Hence f

−1
α (X) = Y .

This shows that fϕ is a perfect map (because fα is such). So, we have proved
that fϕ ∈ PLC(Y,X).

Let ϕi ∈ PAL((Ai, ρi, IBi), (Ai+1, ρi+1, IBi+1)) and fi = Ξa(ϕi) for i =
1, 2, ϕ = ϕ2 ⋄ϕ1, fϕ = Ξa(ϕ) and Xi = Ξa(Ai, ρi, IBi) for i = 1, 2, 3. We will
prove that fϕ = f1 ◦ f2. Let (ϕi)C : (Ai, Cρi) −→ (Ai+1, Cρi+1

) be defined
by (ϕi)C(a) = ϕi(a) for every a ∈ Ai, where i = 1, 2. Then, as we know,
(ϕi)C is a DVAL-morphism, for i = 1, 2. Set fiα = Φa((ϕi)C) for i = 1, 2,
ψ = (ϕ2)C ∗ (ϕ1)C , fψ = Φa(ψ). Let ϕC : (A1, Cρ1) −→ (A3, Cρ3) be defined
by ϕC(a) = ϕ(a) for every a ∈ A1. From the respective definitions we obtain
that, for every a ∈ A1, ψ(a) = ((ϕ2)C ◦ (ϕ1)C )̆ (a) = (ϕ2 ◦ ϕ1)̌ (a) = ϕ(a).
Thus, ψ = ϕC . Hence fψ = Φa(ϕC). We know that Φa(Ai, Cρi) = αXi, for
i = 1, 2, 3, and fiα is a continuous extension of fi, for i = 1, 2. The equality
“ψ = ϕC” implies that fψ is a continuous extension of fϕ. From Theorem
2.3 we get that fψ = f1α ◦ f2α. Since f

−1
1α (X1) = X2 and f−1

2α (X2) = X3, we
conclude that fϕ = f1 ◦ f2.

We have proved that Ξa : PAL −→ PLC is a contravariant functor.

III. Ξa ◦ Ξt is naturally isomorphic to the identity functor IdPLC.
Recall that, for every X ∈ |PLC|, the map tX : X −→ (Ξa ◦ Ξt)(X),

where tX(x) = σx for every x ∈ X , is a homeomorphism (see (12)). We will
show that tl : IdPLC −→ Ξa ◦ Ξt, where for every X ∈ |PLC|, tl(X) = tX ,
is a natural isomorphism.

Let f ∈ PLC(X, Y ) and f ′ = (Ξa ◦ Ξt)(f), X ′ = (Ξa ◦ Ξt)(X), Y ′ =
(Ξa ◦Ξt)(Y ). We have to prove that tY ◦f = f ′ ◦ tX . Let α(f) : αX −→ αY

and α(f ′) : αX ′ −→ αY ′ be the continuous extensions of f and f ′, respec-
tively (see 1.16). Then, by Theorem 2.3, we have that tαY ◦ α(f) = α(f ′) ◦
tαX . Obviously, tαX(∞X) = {clαX(F ) | F ∈ RC(X),∞X ∈ clαX(F )} =

{clαX(F ) | F ∈ RC(X) \ CR(X)} = σ
(RC(αX),ραX )
∞ = ∞X′, and, analo-

gously, tαY (∞Y ) = ∞Y ′. Using 1.15 and taking the restrictions on X , we
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obtain that tY ◦ f = f ′ ◦ tX , i.e. IdPLC
∼= Ξa ◦ Ξt.

IV. Ξt ◦ Ξa is naturally isomorphic to the identity functor IdPAL.
Recall that for every (A, ρ, IB) ∈ |PAL|, the function

λ
g
A : (A, ρ, IB) −→ (Ξt ◦ Ξa)(A, ρ, IB)

is an LCA-isomorphism (see (11)). We will show that λg : IdPAL −→
Ξt ◦ Ξa, where for every (A, ρ, IB) ∈ |PAL|, λg(A, ρ, IB) = λ

g
A, is a natural

isomorphism.
Let ϕ ∈ PAL((A, ρ, IB), (B, η, IB′)) and ϕ′ = (Ξt ◦ Ξa)(ϕ), X =

Ξa(A, ρ, IB), Y = Ξa(B, η, IB′). We have to prove that λgB ⋄ ϕ = ϕ′ ⋄ λgA.
According to (15) and (16), it is enough to show that λgB ◦ϕ = ϕ′ ◦ λgA. Set
f = Ξa(ϕ). Hence ϕ′ = Ξt(f). Let ϕC : (A,Cρ) −→ (B,Cη) be defined by
ϕC(a) = ϕ(a) for every a ∈ A, and let (ϕ′)C be defined analogously. Then
ϕC and (ϕ′)C are DVAL-morphisms. Set fα = Φa(ϕC) and (ϕC)

′ = Φt(fα).
We know that fα : αY −→ αX is a continuous extension of f . By the proof
of Theorem 2.3, λB ◦ ϕC = (ϕC)

′ ◦ λA (see (4) for λA and λB). Note that
λA : (A,Cρ) −→ (RC(αX), ραX) and λB : (B,Cη) −→ (RC(αY ), ραY ). Let
(ϕ′)C : (RC(X), CρX) −→ (RC(Y ), CρY ) be defined by (ϕ′)C(F ) = ϕ′(F ),
for every F ∈ RC(X). Then, by (18), (ϕ′)C ◦ rX = rY ◦ (ϕC)

′. By (10),
rX ◦ λA = λ

g
A and rY ◦ λB = λ

g
B. The last three equalities imply that

λ
g
B ◦ ϕ = ϕ′ ◦ λgA. Thus IdPAL

∼= Ξt ◦ Ξa.

Theorem 2.11 Let ϕ be a PAL-morphism. Then ϕ is an injection iff
Ξa(ϕ) is a surjection.

Proof. Let ϕ ∈ PAL((A, ρ, IB), (B, η, IB)) and let ϕC : (A,Cρ) −→ (B,Cη)
be defined by the formula ϕC(a) = ϕ(a), for every a ∈ A. Then ϕC is
a DVAL-morphism. Setting f = Ξa(ϕ), we obtain that α(f) = Φa(ϕC)
(see the proof of Theorem 2.10). Obviously, α(f) is a surjection iff f is
a surjection. By a theorem of de Vries ([6, Theorem 1.7.1]), Φa(ϕC) is a
surjection iff ϕC is an injection. Hence, f is a surjection iff ϕ is an injection.

It is clear that if we want to build PAL as a category dually equivalent
to the category PLC then the axiom (PAL5) is indispensable for describing
the morphisms of the category PAL. With the next simple example we
show that the axiom (PAL4) cannot be dropped as well.

Example 2.12 Let (A, ρ, IB) be a CLCA and IB 6= A. Then (A, ρs, A) is
also a CLCA (by 1.2). Obviously, the map i : (A, ρ, IB) −→ (A, ρs, A),
where i(a) = a, for every a ∈ A, satisfies the axioms (PAL1)-(PAL3),
(PAL5), (PAL6) but it does not satisfy the axiom (PAL4). If we suppose
that our duality theorem is true without the presence of the axiom (PAL4)
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in the definition of the category PAL then we will obtain, by Theorem 2.11,
that there exists a continuous map from a compact Hausdorff space onto a
locally compact non-compact Hausdorff space, a contradiction.

Fact 2.13 For every LCA (A, ρ, IB), the triple (A, ρs, IB) is also an LCA
(see 1.2 for ρs); if (A, ρ, IB) is a CLCA then the map i : (A, ρ, IB) −→
(A, ρs, IB), where i(a) = a, for every a ∈ A, is a PAL-morphism.

Proof. Since a ≪ρs a, for every a ∈ A, the axiom (BC1) of 1.7 is clearly
fulfilled. Obviously, for every a, b ∈ A, a≪ρ b implies a≪ρs b. This implies
that the axiom (BC3) is also satisfied. For checking (BC2), let a, b ∈ A

and aρsb. Then a ∧ b 6= 0. Since b =
∨
{c | c ∈ IB, c ≪ρ b}, we have that

b =
∨
{c | c ∈ IB, c ∧ b∗ = 0}. Hence a ∧ b =

∨
{a ∧ c | c ∈ IB, c ∧ b∗ = 0}.

Thus, there exists c ∈ IB such that c ∧ b∗ = 0 and a ∧ c 6= 0. Therefore,
there exists c ∈ IB such that aρs(c ∧ b). So, (A, ρs, IB) is an LCA. The rest
is clear.

Recall that a topological space X is said to be extremally disconnected
if for every open set U ⊆ X , the closure clX(U) is open in X . Clearly, a
topological space X is extremally disconnected iff RC(X) consists only of
clopen sets.

Proposition 2.14 Let (A, ρ, IB) be a CLCA and X = Ξa(A, ρ, IB). Then:
(a)([15]) X is a compact Hausdorff space iff IB = A;
(b) X is an extremally disconnected locally compact Hausdorff space iff ρ =
ρs (see 1.2 for ρs).

Proof. The assertion (a) is obvious.
(b) Recall that, by (11), λgA : (A, ρ, IB) −→ (RC(X), ρX) is an LCA-
isomorphism.

Let X be extremally disconnected. Then, for every a, b ∈ A, λgA(a ∧
b) = λ

g
A(a)∧λ

g
A(b) = cl(int(λgA(a)∩λ

g
A(b))) = λ

g
A(a)∩λ

g
A(b). Hence a∧b 6= 0

iff aρb. Thus ρ = ρs (see 1.2).
Conversely, let ρ = ρs. Then, for every a ∈ A, a ≪ρ a. Since for

every a, b ∈ A, a≪ρ b iff λ
g
A(a) ⊆ intX(λ

g
A(b)), we get that for every a ∈ A,

λ
g
A(a) ⊆ intX(λ

g
A(a)), i.e. λ

g
A(a) is a clopen set. Therefore, X is extremally

disconnected.

Note that from 2.14(b), 2.13 and Theorem 2.11, we obtain immedi-
ately an easy proof of the following well-known fact: every locally compact
Hausdorff space X is a perfect image of an extremally disconnected locally
compact Hausdorff space Y .

Theorem 2.15 Let X and Y be two locally compact Hausdorff spaces,
Ξt(X) = (A, ρ, IB) and Ξt(Y ) = (B, η, IB′). Then a map f : X −→ Y
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is a closed embedding iff the map ϕ = Ξt(f) satisfies the following two con-
ditions:
(1) ∀a, b ∈ A with a≪Cρ

b there exists c ∈ B such that a≪Cρ
ϕ(c) ≪Cρ

b;
(2) ∀a, b ∈ B, ϕ(a) ≪Cρ

ϕ(b) iff there exist a1, b1 ∈ B such that a1 ≪Cη
b1

and ϕ(a1) = ϕ(a), ϕ(b1) = ϕ(b).

Proof. Obviously, f : X −→ Y is a closed embedding iff the map α(f) :
αX −→ αY is an embedding (note that every closed embedding is a
perfect map and see 1.16 for α(f)). De Vries proved (see [6, Theorem
1.7.3]) that α(f) is an embedding iff the following two conditions are sa-
tisfied: (a) for every F,G ∈ RC(αX) with F ≪ραX

G, there exists H ∈
Φt(α(f))(RC(αY )) such that F ≪ραX

H ≪ραX
G, and (b) for every F,G ∈

RC(αY ), Φt(α(f))(F ) ≪ραX
Φt(α(f))(G) iff there exist F1, G1 ∈ RC(αY )

such that F1 ≪ραY
G1 and Φt(α(f))(F1) = Φt(α(f))(F ), Φt(α(f))(G1) =

Φt(α(f))(G). Now, using 2.9 and (18), it is easy to obtain that f is a closed
embedding iff ϕ satisfies conditions (1) and (2).

Notations 2.16 Let us denote by PLCC the full subcategory of the cate-
goryPLC whose objects are all connected locally compact Hausdorff spaces.
Let PALC be the full subcategory of the category PAL whose objects are
all connected CLCAs.

Theorem 2.17 The categories PLCC and PALC are dually equivalent.

Proof. It follows immediately from Theorem 2.10 and Fact 1.6.
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