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Abstract Theorem 2.2 stated a monoidal isomorphism between the comodule cate-
gories of two bialgebroids in a Hopf algebroid. The proof of Theorem 2.2 was based
on the journal version of Brzeziński (Ann Univ Ferrara Sez VII (NS) 51:15–27, 2005,
Theorem 2.6), whose proof turned out to contain an unjustified step. Here we show
that all other results in our paper remain valid if we drop unverified Theorem 2.2, and
return to an earlier definition of a comodule of a Hopf algebroid that distinguishes
between comodules of the two constituent bialgebroids.

Keywords Hopf algebroids · Comodules · Cleft extensions

Mathematics Subject Classifications (2000) 16W30 · 58B34 · 16E40 · 19D55

Throughout, H is a Hopf algebroid over base algebras L and R (over a commutative
ring k), with structure maps denoted as in Section 2.2.

Although we are not aware of any counterexamples, the unjustified step found
in the proof of the journal version of [7, Theorem 2.6] forces us to reformulate our
paper without referring to [7, Theorem 2.6] and our derived Theorem 2.2. In this way
we correct also the Examples 2.5(2) and 3.11 in [5], where cleft extensions by Hopf
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algebroids were first announced. The reader should be warned that there is a similar
error in [3, Proposition 3.1], and that the gap in the proof of Theorem 2.2 seriously
affects also the paper [1], see its Corrigendum.

Since there is no relation known any longer between comodule categories of two
constituent bialgebroids in a Hopf algebroid, we return to a previous definition of a
comodule for a Hopf algebroid in [3, Definition 3.2] and [2, Section 2.2]:

Definition 1 A right comodule of a Hopf algebroid H is a right L-module as well as
a right R-module M, together with a right coaction ρR : M → M⊗R H of the constit-
uent right bialgebroid HR and a right coaction ρL : M → M⊗L H of the constituent
left bialgebroid HL, such that ρR is an HL-comodule map and ρL is an HR-comodule
map. Explicitly, ρR is right L-linear, ρL is right R-linear and

(M⊗RγL) ◦ ρR = (ρR⊗L H) ◦ ρL and (M⊗LγR) ◦ ρL = (ρL⊗R H) ◦ ρR.

Morphisms of H -comodules are meant to be HR-comodule maps as well as
HL-comodule maps. The category of right H -comodules is denoted by MH .

The category H M of left H -comodules is defined symmetrically.

Note that since the right R- and L-actions on H commute, also any right-
H -comodule is a right R⊗k L-module.

Remark 2 The antipode S in a Hopf algebroid H defines a functor H M → MH .
Indeed, if M is a left H -comodule, with HR-coaction m �→ m[−1]⊗Rm[0] and HL-
coaction m �→ m[−1]⊗Lm[0], then it is a right H -comodule with right R-action mr :=
πL(tR(r))m, right L-action ml := πR(tL(l))m and respective coactions

m �→ m[0]⊗RS
(
m[−1]

)
and m �→ m[0]⊗LS

(
m[−1]) . (1)

Left H -comodule maps are also right H -comodule maps for these coactions.
A functor MH → H M is constructed symmetrically.

Proposition 3 Let H be a Hopf algebroid and (M, ρL, ρR) be a right H -comodule.
Then any coinvariant of the HR-comodule (M, ρR) is coinvariant also for the
HL-comodule (M, ρL).

If moreover the antipode of H is bijective, then coinvariants of the HR-comodule
(M, ρR) and the HL-comodule (M, ρL) coincide.

Proof For a right H -comodule (M, ρL, ρR), consider the map

�M : M⊗R H → M⊗L H, m⊗Rh �→ ρL(m)S(h), (2)

where H is a left L-module via the source map sL and a left R-module via the target
map tR, and M⊗L H is understood to be a right H-module via the second factor. Since
�M(ρR(m)) = m⊗L1H and �M(m⊗R1H) = ρL(m), the first claim in Proposition 3
follows. In order to prove the second assertion, note that if S is an isomorphism, then
so is �M, with the inverse �−1

M (m⊗Lh) = S−1(h)ρR(m), where M⊗R H is understood
to be a left H-module via the second factor. ��

Although the functors U and V in Theorem 2.2 are not known to exist without
further assumptions, they exist in all known examples of Hopf algebroids and they
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establish isomorphisms between the categories of HL-comodules, HR-comodules
and H -comodules. In the following theorem FR and FL denote the forgetful
functors MHR → Mk and MHL → Mk, respectively, while GR and GL denote the
forgetful functors MH → MHR and MH → MHL , respectively. H is regarded as
an R-bimodule via right multiplication by sR and tR and an L-bimodule via left
multiplication by sL and tL.

Theorem 4 Consider a Hopf algebroid H .

(1) If the equaliser

M
ρR

�� M⊗R H
ρR⊗R H

��

M⊗RγR

�� M⊗R H⊗R H (3)

in ML is H⊗L H-pure, i.e. it is preserved by the functor (−)⊗L H⊗L H : ML →
ML, for any right HR-comodule (M, ρR), then there exists a functor U : MHR →
MHL , such that FL ◦ U = FR and U ◦ GR = GL. In particular, GR is full.

(2) If the equaliser

N
ρL

�� N⊗L H
ρL⊗L H

��

N⊗LγL

�� N⊗L H⊗L H

in MR is H⊗R H-pure, i.e. it is preserved by the functor (−)⊗R H⊗R H : MR →
MR, for any right HL-comodule (N, ρL), then there exists a functor V : MHL →
MHR , such that FR ◦ V = FL and V ◦ GL = GR. In particular, GL is full.

(3) If both purity assumptions in parts (1) and (2) hold, then the forgetful functors
GR : MH → MHR and GL : MH → MHL are isomorphisms, hence U and V
are inverse isomorphisms.

We term a Hopf algebroid H satisfying the assumptions in Theorem 4(3) a pure
Hopf algebroid.

Proof (1) Recall that (3) defines the HR-cotensor product M�HR H � M. By (2.7),
H is an HR-HL bicomodule, with left coaction γR and right coaction γL. Thus in
light of [8, 22.3] and its Erratum, we can define a desired functor U := (−)�HR H.
Clearly, it satisfies FL ◦ U = FR. For an H -comodule (M, ρL, ρR), the coaction on
the HL-comodule U

(
GR(M, ρL, ρR)

) = U(M, ρR) is given by

M

ρR
�� M�HR

H

M�HR
γL

�� M�HR
(H⊗L H)

�
�� (M�HR

H)⊗L H
M⊗RπR⊗L H

�� M⊗L H,

(4)

where in the third step we used that since the equaliser (3) is H⊗L H-pure, it is in
particular H-pure. Using that ρR is a right HL-comodule map and counitality of ρR,
we conclude that (4) is equal to ρL. Hence U ◦ GR = GL. This proves that for any
two H -comodules M and M′, and any HR-comodule map f : M → M′, U( f ) = f
is an HL-comodule map hence an H -comodule map, i.e. that GR is full. Part (2) is
proven symmetrically.
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(3) For the functor U in part (1) and a right HR-comodule (M, ρR), denote
U(M, ρR) =: (M, ρL). With this notation, define a functor ĜR : MHR → MH , with
object map (M, ρR) �→ (M, ρR, ρL), and acting on the morphisms as the identity
map. Being coassociative, ρR is an HR-comodule map, so by part (1) it is an HL-
comodule map. Symmetrically, by part (2) ρL is an HR-comodule map. So ĜR is
a well defined functor. We claim that it is the inverse of GR. Obviously, GR ◦ ĜR

is the identity functor. In the opposite order, note that by construction GL ◦ ĜR =
U . Therefore, GL ◦ ĜR ◦ GR = U ◦ GR = GL, cf. part (1). That is, ĜR ◦ GR takes
an H -comodule (M, ρL, ρR) to the same HL-comodule (M, ρL). Since ĜR ◦ GR

obviously takes (M, ρL, ρR) to the same HR-comodule (M, ρR) as well, we conclude
that also ĜR ◦ GR is the identity functor.

In a symmetrical way, in terms of the functor V(N, ρL) =: (N, ρR) in part (2), one
constructs G−1

L with object map (N, ρL) �→ (N, ρL, ρR), and acting on the morphisms
as the identity map. The identities GL ◦ G−1

R = U and GR ◦ G−1
L = V prove that U

and V are mutually inverse isomorphisms, as stated. ��

Example 5 We list some families of pure Hopf algebroids.

(1) All purity conditions in Theorem 4 hold if H is flat as a left L- and a left
R-module. Indeed, in this case the functors (−)⊗L H⊗L H : ML → ML and
(−)⊗R H⊗R H : MR → MR preserve any equaliser. In particular, Frobenius
Hopf algebroids in [2] (being finitely generated and projective) are flat.

(2) Weak Hopf algebras, introduced in [6], determine Hopf algebroids over
Frobenius-separable base algebras L ∼= Rop, cf. [4, 4.1.2]. Recall that Frobenius
separability of a k-algebra R means the existence of a k-module map ψ : R → k
and an element

∑
i ei⊗k fi ∈ R⊗k R, such that

∑

i

ψ(rei) fi = r =
∑

i

eiψ( fir), for all r ∈ R, and
∑

i

ei fi = 1R.

Note that this implies that
∑

i rei⊗k fi = ∑
i ei⊗k fir, for all r ∈ R (hence the

name separable). For a Frobenius-separable algebra R, any right R-module
X and left R-module Y, the canonical epimorphism X⊗kY → X⊗RY is split
by x⊗R y �→ ∑

i xei⊗k fi y. For the base algebras of a weak Hopf algebra, the
Frobenius-separability structure arises from the restriction of the counit and
the image of the unit element 1H under the coproduct.
Let H be a weak Hopf algebra with (weak) coproduct � : H → H⊗k H. Denote
its left and right (or ‘target’ and ‘source’) subalgebras by L and R, respectively.
(These serve as the base algebras of the corresponding Hopf algebroid, see [4].)
Note that � is an R-L bimodule map.
Any right comodule (M, ρ) of a weak Hopf algebra H (as a coalgebra) can
be equipped with a right R-action via mr = m<0>ε(m<1>r), where ρ(m) =
m<0>⊗km<1> and ε denotes the counit of H. Moreover, any right comodule
(M, ρ) of H yields a right coaction of the constituent right bialgebroid, by
composing ρ with the (split) epimorphism pM : M⊗k H → M⊗R H. Define a
right L-module structure on M via (3).
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For any left L-module N, consider the following diagram (in Mk):

M⊗L N
pM◦ρ⊗L N

��

��

M⊗R H⊗L N
pM◦ρ⊗R H⊗L N

��

M⊗R pH◦�⊗L N

��

��

M⊗R H⊗R H⊗L N

��
M⊗k N

ρ⊗k N

�� M⊗k H⊗k N
ρ⊗k H⊗k N

��

M⊗k�⊗k N

�� M⊗k H⊗k H⊗k N .

(5)

The R-actions on H are given by right multiplications by the source and
target maps and the L-actions on H are given by left multiplications. The
vertical arrows denote the sections of the canonical epimorphisms given by the
Frobenius-separability structures of L and R. The diagram is easily checked
to be serially commutative (meaning commutativity with either simultaneous
choice of the upper or the lower ones of the parallel arrows). Clearly,

M
ρ

�� M⊗k H
ρ⊗k H

��

M⊗k�

�� M⊗k H⊗k H

is a split equaliser in Mk (with splitting provided by the counit of H), hence the
bottom row of the diagram in (5) is an equaliser. This proves that also the top
row is an equaliser, so in particular the purity conditions in Theorem 4 (1) hold.
The conditions in Theorem 4 (2) are verified by a symmetrical reasoning.

(3) For any k-algebra L, the tensor product algebra H := L⊗k Lop carries a Hopf
algebroid structure, see [4, 4.1.3]. Since the left L-action on H is given by multi-
plication in the first factor, the functors F((−)⊗L H⊗L H) and F(−)⊗k L⊗k L :
ML → Mk are naturally isomorphic, where F : ML → Mk denotes the forgetful
functor. The forgetful functor F has a left adjoint, hence it preserves any
equaliser. The functor F takes (3) to a split equaliser (with splitting provided
by πR), which is then preserved by any functor. This proves that F(−)⊗k L⊗k L
and hence F((−)⊗L H⊗L H) preserve (3). Since F also reflects equalisers,
we conclude that (3) is preserved by (−)⊗L H⊗L H : ML → ML. The purity
conditions in Theorem 4 (2) are proven to hold similarly.

(4) In [1, Corrigendum], the purity conditions in Theorem 4 are proven to hold
for a Hopf algebroid whose constituent R-coring (equivalently, the constituent
L-coring) is coseparable.

Theorem 6 For any Hopf algebroid H , MH is a monoidal category. Moreover, there
are strict monoidal forgetful functors rendering commutative the following diagram:

MH
GR

��

GL

��

MHR

��

MHL ��
RMR .
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Proof Commutativity of the diagram follows by comparing the unique R-actions
that make R-bilinear the HR-coaction and the HL-coaction in an H -comodule,
respectively, (see (2.12) and (2.16), and the algebra isomorphism (2.10)). Strict
monoidality of the functors on the right hand side and in the bottom row follows
by [9, Theorem 5.6] (and its application to the opposite of the bialgebroid HL),
cf. Section 2.3. In order to see strict monoidality of the remaining two functors GR

and GL, recall that by [9, Theorem 5.6] (applied to HR and the opposite of HL),
the R-module tensor product of any two H -comodules is an HR-comodule and
an HL-comodule, via the diagonal coactions, cf. (2.14) and the second formula on
page 437. It is straightforward to check compatibility of these coactions in the sense
of Definition 1. Similarly, R(∼= Lop) is known to be an HR-comodule and an HL-
comodule, and compatibility of the coactions is obvious. Finally, the R-module tensor
product of H -comodule maps is an HR-comodule map and an HL-comodule map
by [9, Theorem 5.6]. Thus it is an H -comodule map. By Theorem [9, Theorem 5.6]
also the coherence natural transformations in RMR are HR- and HL-comodule maps,
so H -comodule maps, what completes the proof. ��

Definition 7 A right comodule algebra of a Hopf algebroid H is a monoid in the
monoidal category MH of right H -comodules. Explicitly, an R-ring (A, μ, η), such
that A is a right H -comodule and η : R → A and μ : A⊗R A → A are right H -
comodule maps. Using the notations a �→ a[0]⊗Ra[1] and a �→ a[0]⊗La[1] for the HR-
and HL-coactions, respectively, H -colinearity of η and μ means the identities, for
all a, a′ ∈ A,

1A
[0]⊗R1A

[1] = 1A⊗R1H, (aa′)[0]⊗R(aa′)[1] = a[0]a′[0]⊗Ra[1]a′[1]

1A[0]⊗L1A[1] = 1A⊗L1H, (aa′)[0]⊗L(aa′)[1] = a[0]a′
[0]⊗La[1]a′

[1].

If A is a right comodule algebra of a Hopf algebroid H , with HR-coinvariant
subalgebra B, then we say that B ⊆ A is a (right) H -extension.

Symmetrically, a left H -comodule algebra is a monoid in H M and a left H -
comodule algebra is said to be a left H -extension of its HL-coinvariant subalgebra.

The functors in Remark 2 induced by the antipode are checked to be strictly anti-
monoidal. Therefore, the opposite of a right H -comodule algebra, with coactions in
Remark 2, is a left H -comodule algebra and conversely.

Above corrections make it necessary to make the following changes and supple-
ments in the text of the paper.

• Throughout the paper, comodules of a Hopf algebroid H and H -comodule
maps have to be understood as in Definition 1. In particular, H -colinearity of
the cleaving map (cf. Definition 3.5) has to be defined in this way.

• A comodule algebra of a Hopf algebroid H and an H -extension have to be
meant in the sense of Definition 7.

• By coinvariants of a right comodule M of a Hopf algebroid H , one should mean
coinvariants of M as an HR-comodule (that implies coinvariance with respect to
the HL-coaction, cf. Proposition 3).

• In Lemma 3.8, identities (3.9) and (3.10) are not known to be equivalent, in
proving the lemma both of them need to be verified (by similar steps).
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• In the last lines of page 448 and first line of page 449, in order to see that ν is right
H -colinear, left B-linearity of both (HL- and HR-) coactions has to be used, cf.
Proposition 3.

• Theorem 5.3 holds without modification, but the proof needs to be corrected.
Note that for any Hopf algebroid H , the forgetful functor MH → ML possesses
a right adjoint (−)⊗L H. The unit of the adjunction is given by the HL-coaction
M → M⊗L H, for any right H -comodule M. It is an H -comodule map by
definition. The counit is given by N⊗LπL : N⊗L H → N, for any right L-module
N. Symmetrically, the forgetful functor H M → LM possesses a right adjoint
H⊗L(−).
Next observe that for a cleft extension B ⊆ A of a Hopf algebroid H
with a bijective antipode, the obvious inclusion Hom H ,H (H, A ⊗T A) ↪→
Hom HR,HR(H, A ⊗T A) is an isomorphism. Indeed, in terms of a cleaving map
j and its convolution inverse jc, for any f ∈ Hom HR,HR(H, A ⊗T A) and any
h ∈ H,

f (h) = f
(
h(1)sR(πR(h(2)))

) = f (h(1))ηR(πR(h(2))) = f (h(1)) jc(h(2)
(1)) j(h(2)

(2))

= f (h(1)
(1)) jc(h(1)

(2)) j(h(2)) = f (h(1))
[0] jc( f (h(1))

[1]) j(h(2)). (6)

By Lemma 3.9, the left B-linearity of the right HL-coaction on A and the right
HL-colinearity of j, this proves that f is right HL-colinear. Left HL-colinearity
of f is proven symmetrically.
Putting together the above observations, by Theorem 3.11 and Corollary 3.12
there is a chain of isomorphisms

HomHR,HR
(
H, A⊗

T
A

) � HomH ,H (
H, A⊗

T
A

) � HomH ,H (
H, H⊗

L
B⊗

T
B⊗

L
H

)

� HomL,L
(
H, B⊗

T
B

)
.

The proof is then completed as in the paper.
• In Definition 5.4, a left total T-integral has to be defined as a left H -comodule

map, with respect to the left coactions on A that are related to the right coactions
via the isomorphism in (1). (Left HL-colinearity of ϑ is needed to see that the
range of the map (5.6) is in B, as stated.)
If B ⊆ A is a cleft extension by a Hopf algebroid H with a bijective
antipode, then similarly to (6), any morphism g ∈ Hom HR,−(H, A) is checked
to satisfy, for h ∈ H, g(h) = jc(h(1)) j

(
S−1(g(h(2))[1])

)
g(h(2))[0]. Therefore

Hom HR,−(H, A) = Hom H ,−(H, A). In particular, in this situation a left
total T-integral is the same as a left HR-colinear map ϑ : H → A such that
ϑ(H) ⊆ AT and ϑ(1H) = 1A.
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