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THE GROUPOIDAL ANALOGUE Θ̃

TO JOYAL’S CATEGORY Θ IS A TEST CATEGORY

DIMITRI ARA

Abstract. We introduce the groupoidal analogue Θ̃ to Joyal’s cell category Θ and

we prove that Θ̃ is a strict test category in the sense of Grothendieck. This implies

that presheaves on Θ̃ model homotopy types in a canonical way. We also prove that

the canonical functor from Θ to Θ̃ is aspherical, again in the sense of Grothendieck.

This allows us to compare weak equivalences of presheaves on Θ̃ to weak equivalences
of presheaves on Θ. Our proofs apply to other categories analogous to Θ.

1. Introduction

In Pursuing Stacks, Grothendieck defines a notion of weak ∞-groupoid (see [11], [16],
[2] and [17]) and conjectures that his weak ∞-groupoids model homotopy types in a pre-
cise way. His definition of weak ∞-groupoids is based on the notion of coherator. Roughly
speaking, a coherator is a category encoding the algebraic theory of weak ∞-groupoids.
If C is a coherator, a weak ∞-groupoid (of type C) is a presheaf on C satisfying some
left exactness condition. A first step toward Grothendieck’s conjecture would thus be to
prove that presheaves on a coherator (without the exactness condition) model homotopy
types.

This is where test categories enter the picture. Test categories were introduced by
Grothendieck in [11] (see also [15] and [9]). The main property of these categories is
that presheaves on a test category canonically model homotopy types. Therefore, to
prove Grothendieck’s conjecture, it is reasonable to start by trying to prove that every
coherator is a test category. In [16], Maltsiniotis gave a series of conjectures implying
Grothendieck’s conjecture based on this idea.

Conjecturally, every coherator is (non canonically) endowed with a “forgetful” functor

to Θ̃. This is the reason why we are interested in understanding the homotopy theory of

Θ̃. In this article, we prove that Θ̃ is a test category. Our hope is that we will be able
to deduce that every coherator C is a test category from this result, using properties of

the functor from C to Θ̃.
As announced in the title, Θ̃ is the groupoidal analogue to Joyal’s cell category Θ.

The category Θ was introduced by Joyal in [13] as the opposite category of the category
of so-called finite disks. Batanin and Street conjectured in [6] that Θ could be seen as a

2000 Mathematics Subject Classification. 18D05, 18E35, 18F20, 18G55, 55P15, 55P60, 55U35, 55U40.
Key words and phrases. ∞-category, ∞-groupoid, cell category, décalage, globular extension, homo-

topy, localization, test category, weak equivalence.
The author is grateful to Georges Maltsiniotis for having suggested him this approach to prove that

Θ̃ is a test category.

1

http://arxiv.org/abs/1012.4319v3


2 DIMITRI ARA

full subcategory of the category of strict ∞-categories. This was proved independently
by Makkai and Zawadowski in [14] and by Berger in [7]. In the latter article, Berger also
gave a nice combinatorial description of Θ. In our paper, the category Θ is introduced
as the universal categorical globular extension. Roughly speaking, a categorical globular
extension is a category endowed with operations dual to those of strict ∞-categories
and satisfying axioms dual to those of strict ∞-categories. We show, starting from our
definition, that Θ can be seen as the full subcategory of the category of strict ∞-categories
whose objects are free strict ∞-categories on globular pasting schemes. This implies,
using the result of Berger, Makkai and Zawadowski, that our category Θ is canonically
isomorphic to Joyal’s cell category.

The category Θ̃ is defined in the same way by replacing strict ∞-categories by strict

∞-groupoids. In our terminology, Θ̃ is the universal groupoidal globular extension. We

prove that Θ̃ can be seen as the full subcategory of the category of strict ∞-groupoids
whose objects are free strict ∞-groupoids on globular pasting schemes. To our knowledge,

there is no known combinatorial description of Θ̃ analogous to Berger’s description of Θ.
In [10], Cisinski and Maltsiniotis introduced the notion of décalage and used it to

prove that Θ is a test category. They actually proved that Θ is a strict test category:
a test category A is strict if the binary product of presheaves on A is compatible with
the product of homotopy types in a strong sense. They proved that a small category
satisfying some easy to check condition, plus the existence of a splittable décalage, is a
strict test category. They then constructed a splittable décalage DΘ on Θ and applied
this result to Θ. To construct this décalage, they used a beautiful description of Θ in
terms of wreath products due to Berger (see [8]). Another proof of the fact that Θ is a
test category is given in Section 7.2 of the PhD thesis [2] of the author.

Unfortunately, the category Θ̃ cannot be obtained using wreath products and therefore

the construction of the décalage DΘ does not apply to Θ̃. In this article, we construct

a splittable décalage DΘ̃ on Θ̃ “by hand”. The formulas defining DΘ̃ are inspired by the
ones one can get by unfolding the definition of DΘ. In particular, the construction of our
décalage DΘ̃ will also apply to Θ and, in this case, we will get the décalage DΘ of [10].

We deduce from the existence of the splittable décalage D
Θ̃

that Θ̃ is a strict test
category. By a theorem of Cisinski, conjectured by Grothendieck, this implies that the

category of presheaves on Θ̃ is endowed with a model category structure whose homotopy
category is the homotopy category of CW-complexes. There exists a canonical functor

from Θ to Θ̃. Using the fact that this functor is compatible with the décalages DΘ

and D
Θ̃
, we deduce that it is aspherical in the sense of Grothendieck. This implies

that this functor induces a Quillen equivalence between the Grothendieck-Cisinski model

category structures on presheaves on Θ and on Θ̃. Note that the Grothendieck-Cisinski
model structure on presheaves on Θ had already been obtained by Berger in [7] using
topological techniques.

Moreover, our construction applies to other categories having similar universal prop-
erties. For instance, the category Θlr, which has a universal property related to “strict
∞-categories not necessarily satisfying the axiom of functoriality of units”, is also a strict
test category and the canonical functor from Θlr to Θ is aspherical.
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Most of the content of this article is extracted from the last chapter of the PhD thesis
[2] of the author. The calculations have been entirely rewritten “using elements” (see
Paragraph 5.3 for details).

Our paper is organized as follows. In Section 2, we recall the definitions of strict
∞-categories and strict ∞-groupoids. We introduce the globular language and in partic-
ular globular sums and globular extensions. We also define the notion of categorical and
groupoidal globular extensions, which are in a sense dual to those of strict ∞-categories

and strict ∞-groupoids. In Section 3, we introduce the categories Θ0, Θ and Θ̃. In
Section 4, we give a brief introduction to the theory of test categories and we gather the
definitions and results from [10] about décalages that we will need. We then enter the
heart of the article. In Section 5, we explain how to construct a new globular extension,
the twisted globular extension, from a globular extension endowed with some comultipli-
cations. In Section 6, we apply this construction to a groupoidal globular extension and
we show that the twisted globular extension is endowed with a structure of groupoidal
globular extension. In Section 7, we use the results of Section 6 to build our décalage
DΘ̃. We show that DΘ̃ is splittable. In the final Section, we draw the consequences of

the previous Sections. We show that Θ̃ is a strict test category and that the functor

from Θ to Θ̃ is aspherical. We explain how these results generalize to other analogous
categories.

If C is a category, we will denote by Co the opposite category. If

X1

f1 !!B
BB

B
X2

g1}}||
||

f2 !!B
BB

B
· · · Xn

gn−1{{wwww

Y1 Y2 · · · Yn−1

is a diagram in C, we will denote by

(X1, f1)×Y1
(g1,X2, f2)×Y2

· · · ×Yn−1
(gn−1,Xn)

its projective limit. Dually, we will denote by

(X1, f1) ∐Y1
(g1,X2, f2) ∐Y2

· · · ∐Yn−1
(gn−1,Xn)

the inductive limit of the corresponding diagram in Co.

2. Strict ∞-categories and strict ∞-groupoids

2.1. We will denote by G the globular category, that is the category generated by the
graph

D0

σ
1 //

τ
1

// D1

σ
2 //

τ
2

// · · ·
σi−1 //
τi−1

// Di−1

σi //
τi

// Di

σi+1 //
τi+1

// . . .

and the coglobular relations

σi+1σi = τi+1σi and σi+1τi = τi+1τi, i ≥ 1.

For i ≥ j ≥ 0, we will denote by σi
j and τ ij the morphisms from Dj to Di defined by

σi
j = σi · · · σj+2σj+1 and τ ij = τi · · · τj+2τj+1.
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A globular set or ∞-graph is a presheaf on G. The datum of a globular set X amounts
to the datum of a diagram of sets

· · ·
si+1 //

ti+1

// Xi

si //

ti

// Xi−1

si−1 //

ti−1

// · · ·
s2 //

t2
// X1

s1 //

t1
// X0

satisfying the globular relations

sisi+1 = siti+1 and tisi+1 = titi+1, i ≥ 1.

For i ≥ j ≥ 0, we will denote by sij and tij the maps from Xi to Xj defined by

sij = sj+1 · · · si−1si and tij = tj+1 · · · ti−1ti.

A morphism of globular sets is a morphism of presheaves on G.

2.2. An ∞-precategory is a globular set X endowed with maps

∗ij :
(
Xi, s

i
j

)
×Xj

(tij ,Xi) → Xi, i > j ≥ 0,

ki : Xi → Xi+1, i ≥ 0,

such that

(1) for every (u, v) in (Xi, s
i
j)×Xj

(tij ,Xi) with i > j ≥ 0, we have

si
(
u ∗ij v

)
=

{
si(v), j = i− 1,

si(u) ∗
i−1
j si(v), j < i− 1,

and

ti(u ∗ij v) =

{
ti(u), j = i− 1,

ti(u) ∗
i−1
j ti(v), j < i− 1;

(2) for every u in Xi with i ≥ 0, we have

si+1ki(u) = u = ti+1ki(u).

For i ≥ j ≥ 0, we will denote by kji the map from Xj → Xi defined by

kji = ki−1 · · · kj+1kj.

A morphism of ∞-precategories is a morphism of globular sets between ∞-precatego-
ries which is compatible with the ∗ij ’s and the ki’s in an obvious way.

An ∞-precategory X is a strict ∞-category if it satisfies the following axioms:

• (Assi,j), i > j ≥ 0,
for every (u, v, w) in (Xi, s

i
j)×Xj

(tij ,Xi, s
i
j)×Xj

(tij ,Xi), we have

(u ∗ij v) ∗
i
j w = u ∗ij (v ∗

i
j w);

• (Exci,j,k), i > j > k ≥ 0,
for every (u, u′, v, v′) in

(Xi, s
i
j)×Xj

(tij ,Xi, s
i
k)×Xk

(tik,Xi, s
i
j)×Xj

(tij,Xi),

we have

(u ∗ij u
′) ∗ik (v ∗

i
j v

′) = (u ∗ik v) ∗
i
j (u

′ ∗ik v
′);
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• (LUniti,j), i > j ≥ 0,
for every u in Xi, we have

kji t
i
j(u) ∗

i
j u = u;

• (RUniti,j), i > j ≥ 0,
for every u in Xi, we have

u ∗ij k
j
i s

i
j(u) = u;

• (FUniti,j), i > j ≥ 0,
for every (u, v) in (Xi, s

i
j)×Xj

(tij ,Xi), we have

ki(u ∗ij v) = ki(u) ∗
i+1
j ki(v).

The category of strict ∞-categories is the full subcategory of the category of ∞-pre-
categories whose objects are strict ∞-categories. We will denote it by ∞-Cat.

2.3. An ∞-pregroupoid X is an ∞-precategory endowed with maps

wi
j : Xi → Xi, i > j ≥ 0,

such that for every u in Xi for i ≥ 1 and j such that i > j ≥ 0, we have

si(w
i
j(u)) =

{
ti(u), j = i− 1,

wi−1
j (si(u)), j < i− 1,

and

ti(w
i
j(u)) =

{
si(u), j = i− 1,

wi−1
j (ti(u)), j < i− 1.

A morphism of ∞-pregroupoids is a morphism of ∞-precategories between ∞-group-
oids which is compatible with the wi

j’s in an obvious way.
An ∞-pregroupoid X is a strict ∞-groupoid if it is a strict ∞-category and if it satisfies

the following axioms:

• (LInvi,j), i > j ≥ 0,
for every u in Xi, we have

wi
j(u) ∗

i
j u = kji (s

i
j(u));

• (RInvi,j), i > j ≥ 0,
for every u in Xi, we have

u ∗ij w
i
j(u) = kji (t

i
j(u)).

The category of strict ∞-groupoids is the full subcategory of the category of ∞-pre-
groupoids whose objects are strict ∞-groupoids. We will denote it by ∞-Grpd. Note
that a morphism of strict ∞-categories between strict ∞-groupoids is automatically a
morphism of strict ∞-groupoids.

Although it is not clear from our definition, being a strict ∞-groupoid is a property
of a strict ∞-category. More precisely, if X is a strict ∞-category such that for every
i > j ≥ 0, every i-arrow u admits a ∗ij-inverse (i.e., an i-arrow wi

j(u) satisfying the axioms

(LInvi,j) and (RInvi,j)), then X is endowed with a unique structure of ∞-groupoid. Note
also that our axioms for strict ∞-groupoids are highly redundant. For instance, for a
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strict ∞-category to be a strict ∞-groupoids, it suffices to ask for ∗i0-inverses or for
∗ii−1-inverses for every i ≥ 1 (see Proposition 2.3 of [3]).

One can easily check that a strict ∞-groupoid automatically satisfies the following
additional axiom:

• (FInvi,j,j′), i > j, j′ ≥ 0,
for every (u, v) in (Xi, s

i
j)×Xj

(tij ,Xi), we have

wi
j′(u ∗ij v) =

{
wi
j′(v) ∗

i
j w

i
j′(u), j = j′,

wi
j′(u) ∗

i
j w

i
j′(v), j 6= j′.

More precisely, if an ∞-pregroupoid satisfies Axioms (Ass), (Exc), (LUnit), (RUnit)
and (RInv), then it satisfies Axiom (FInv) (where by the name of an axiom without
subscripts, we denote the conjunction on all meaningful subscripts of this axiom).

3. The categories Θ0, Θ and Θ̃

3.1. Let n be a positive integer. A table of dimensions of width n is the datum of integers
i1, . . . , in, i

′
1, . . . , i

′
n−1 such that

ik > i′k and ik+1 > i′k, 1 ≤ k ≤ n− 1.

We will denote such a table of dimensions by
(
i1 i2 · · · in

i′1 i′2 · · · i′n−1

)
.

Let (C,F ) be a category under G, that is a category C endowed with a functor
F : G → C. We will denote in the same way the objects and morphisms of G and their
image by the functor F . Let

T =

(
i1 i2 · · · in

i′1 i′2 · · · i′n−1

)

be a table of dimensions. The globular sum in C associated to T (if it exists) is the
iterated amalgamated sum

(Di1 , σ
i1
i′
1

)∐Di′
1

(τ i2
i′
1

,Di2 , σ
i2
i′
2

)∐Di′
2

. . . ∐Di′
n−1

(τ in
i′n−1

,Din)

in C. We will denote it briefly by

Di1 ∐Di′
1

Di2 ∐Di′
2

. . . ∐Di′
n−1

Din .

If the table of dimensions T is understood, for k such that 1 ≤ k ≤ n, we will denote by
εk the canonical morphism

εk : Dik → Di1 ∐Di′
1

Di2 ∐Di′
2

. . . ∐Di′
n−1

Din .

The pair (C,F ) is said to be a globular extension if for every table of dimensions T (of
any width), the globular sum associated to T exists in C. We will often say, by abuse of
language, that C is a globular extension.
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Let C and D be two globular extensions. A morphism of globular extensions from C
to D is a functor from C to D under G (that is such that the triangle

G

~~~~
~~

  A
AA

A

C // D

is commutative) which respects globular sums. We will also call such a functor a globular
functor.

If C is a category under G and D is a category, we will denote by Hom gl(C,D) the
full subcategory of the category Hom(C,D) of functors from C to D, whose objects are
functors C → D such that (D,G → C → D) is a globular extension. In particular, when
C = G (and G → G is the identity functor), the objects of Hom gl(G,D) are the globular
extension structures on D. We will also denote this category by Extgl(D).

Let C be a globular extension. A model of C or globular presheaf on C is a presheaf
G : Co → Set which respects globular products (i.e., limits dual to globular sums). We

will denote by Mod(C) the full subcategory of the category Ĉ of presheaves on C whose
objects are globular presheaves.

Proposition 3.2 (Universal property of Θ0). There exists a globular extension Θ0 such
that for every category C, the precomposition by the functor G → Θ0 induces an equiva-
lence of categories

Hom gl(Θ0, C) → Extgl(C).

Moreover, for every such Θ0, this equivalence of categories is surjective on objects.

Proof. Consider the Yoneda functor G → Ĝ. For each table of dimensions T , choose a

globular sum ST in Ĝ. Let Θ0 be the full subcategory of Ĝ whose objects are the ST ’s.
Before proving that Θ0 has the desired universal property, let us introduce some nota-

tions. If A is a category, we will denote by Ã the category of copresheaves on A, that is
the category Hom(A,Set)o. If B is a second category, we will denote by Hom !(A,B) the
full subcategory of Hom(A,B) whose objects are functors preserving inductive limits.

Let C be a category. We will construct a quasi-inverse to the canonical functor

U : Hom gl(Θ0, C) → Extgl(C).

Let
U ′ : Hom !(Ĝ, C̃) → Hom(G, C̃)

be the functor induced by the Yoneda functor G → Ĝ. Since the category C̃ is cocom-

plete, the universal property of Ĝ gives us a quasi-inverse L′ of U ′. Consider now the
functor G defined by the composition

Extgl(C) → Hom(G, C̃)
L′

−→ Hom !(Ĝ, C̃) → Hom(Θ0, C̃),

where the first and the last functors are respectively induced by the (contravariant)

Yoneda functor C → C̃ and the inclusion Θ0 → Ĝ. Since the Yoneda functor C → C̃
preserves inductive limits, the functor G factors through Hom gl(Θ0, C) and gives rise to
a functor

L : Extgl(C) → Hom gl(Θ0, C).

One easily checks that L is a quasi-inverse of U .
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Since the second assertion is invariant under equivalences of categories under G, it
suffices to prove it for the category Θ0 we have just built. The assertion then follows
from the fact that the functor U ′ is surjective on objects. �

3.3. Two globular extensions satisfying the above universal property are uniquely equiv-
alent up to a unique natural isomorphism. One can show that the objects of such a
globular extension have no automorphisms. In particular, a skeletal version of such a
globular extension (i.e., such that isomorphic objects are equal) is unique up to a unique
isomorphism. We will denote by Θ0 this globular extension.

Note that the above universal property states in particular that Θ0 is the free globular
completion of G in the following sense: if (C,F : G → C) is a globular extension, there
exists a globular functor Θ0 → C unique up to a unique natural isomorphism. More
precisely, the choice of such a functor Θ0 → C amounts to the choice of a globular sum
for every table of dimensions.

The category Θ0 defined above is canonically isomorphic to the category Θ0 defined
in terms of finite planar rooted trees by Berger in [7]. Berger’s definition is explained
in detail in Section 2.3 of [2]. See also Section 4 of [18] or [14] for a description of the
bijection between tables of dimensions and finite planar rooted trees. Note that tables
of dimensions are called zig-zag sequences in [18] and ud-vectors (standing for up and
down vectors) in [14].

3.4. Let C be a globular extension. If X is a globular presheaf on C, then by restricting
it to G, we obtain a globular set. We thus have a canonical functor

Mod(C) → Ĝ.

Proposition 3.5. The functor

Mod(Θ0) → Ĝ

is an equivalence of categories.

Proof. This is exactly what the universal property of Θ0 claims when applied to Seto. �

3.6. If C is a globular extension, the Yoneda functor C → Ĉ factors through Mod(C).
We thus have a functor C → Mod(C).

By the previous proposition, the functor

Θ0 → Mod(Θ0) → Ĝ

is fully faithful. A globular set which is in the image of this functor will be called a

globular pasting scheme. We can thus view Θ0 as the full subcategory of Ĝ whose objects
are globular pasting schemes.

Note that in the bijection between tables of dimensions and finite planar rooted trees,

the above functor from Θ0 to Ĝ associates to a tree T the globular set T ∗ introduced by
Batanin in [5]. The globular pasting schemes can also be characterized as the cardinals

(in the sense of Definition 4.16 of [19]) of the free strict ∞-category functor Ĝ → ∞-Cat
(see Section 9 of [18]).

3.7. A globular extension under Θ0 is a category C endowed with a functor Θ0 → C such
that (C,G → Θ0 → C) is a globular extension. If C is a globular extension under Θ0,
the globular sum associated to a table of dimensions is uniquely defined. A morphism of
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globular extensions under Θ0 is a functor under Θ0 between globular extensions under
Θ0. Note that such a functor automatically respects globular sums.

If C is a category under Θ0 and D is a category, we will denote by Hom gl0
(C,D) the

full subcategory of the category Hom(C,D) whose objects are functors C → D such that
(D,Θ0 → C → D) is a globular extension under Θ0.

Proposition 3.8. Let C be a category under Θ0. There exists a globular extension C
under Θ0, endowed with a functor C → C under Θ0 such that the functor C → C induces
an isomorphism of categories

Hom gl0
(C,D) → Hom gl0

(C,D).

Proof. This is a special case of a standard categorical construction (see Proposition 3 of
[4]). See also Section 2.6 of [2] and Paragraph 3.10 of [17]. �

3.9. If C is a category under Θ0, the globular extension C of the previous proposition
(which is unique up to a unique isomorphism) will be called the globular completion of C.
Note that the functor C → C is bijective on objects.

3.10. A precategorical globular extension is a globular extension C under Θ0 endowed
with morphisms

∇i
j : Di → Di ∐Dj

Di, i > j ≥ 0,

κi : Di+1 → Di, i ≥ 0,

such that

(1) for every i, j such that i > j ≥ 0, we have

∇i
jσi =

{
ε2σi, j = i− 1,(
σi ∐Dj

σi
)
∇i−1

j j < i− 1,

and

∇i
jτi =

{
ε1τi, j = i− 1,(
τi ∐Dj

τi
)
∇i−1

j j < i− 1,

where ε1, ε2 : Di → Di ∐Di−1
Di denote the canonical morphisms;

(2) for every i ≥ 0, we have

κiσi+1 = 1Di
and κiτi+1 = 1Di

.

If C is a precategorical globular extension, for i ≥ j ≥ 0, we will denote by κji the
morphism from Di to Dj defined by

κji = κj . . . κi−2κi−1,

and, for i > 0, we set

∇i = ∇i
i−1.

A morphism of precategorical globular extensions is a morphism of globular extensions
under Θ0 between precategorical globular extensions preserving the ∇i

j’s and the κi’s.
A precategorical globular extension is categorical if it satisfies the following axioms:
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• (Assi,j), i > j ≥ 0,
the following square commutes:

Di

∇i
j

//

∇i
j

��

Di ∐Dj
Di

1
Di

∐
Dj

∇i
j

��
Di ∐Dj

Di
∇i

j∐Dj
1
Di

// Di ∐Dj
Di ∐Dj

Di ;

• (Exci,j,k), i > j > k ≥ 0,
the following diagram commutes:

Di

∇i
k

zzuuuuuuuuuuuuuu

∇i
j

&&LLLLLLLLLLLLLLLL

Di ∐Dk
Di

∇i
j∐Dk

∇i
j

��

Di ∐Dj
Di

∇i
k
∐

∇
j
k

∇i
k

��
(Di ∐Dj

Di) ∐Dk
(Di ∐Dj

Di)
∼ // (Di ∐Dk

Di) ∐Dj∐Dk
Dj

(Di ∐Dk
Di),

where the left amalgamated sum is

(Di ∐Dk
Di, σ

i
j ∐Dk

σi
j)∐Dj∐Dk

Dj
(τ ij ∐Dk

τ ij ,Di ∐Dk
Di) ;

• (LUniti,j), i > j ≥ 0,
the following triangle commutes:

Di

∇i
j

��

∼

''NNNNNNNNNNNNNNNNN

Di ∐Dj
Di

κ
j
i∐Dj

1
Di

// Dj ∐Dj
Di ;

• (RUniti,j), i > j ≥ 0,
the following triangle commutes:

Di

∇i
j

��

∼

''NNNNNNNNNNNNNNNNN

Di ∐Dj
Di

1
Di

∐
Dj

κ
j
i

// Di ∐Dj
Dj ;
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• (FUniti,j), i > j ≥ 0,
the following square commutes:

Di+1

∇i+1
j

//

κi

��

Di+1 ∐Dj
Di+1

κi∐Dj
κi

��
Di

∇i
j

// Di ∐Dj
Di .

The category of categorical globular extensions is the full subcategory of the category
of precategorical globular extensions whose objects are categorical globular extensions.

If C is a category, we will denote by Extcat(C) the category whose objects are categor-
ical globular extension structures on C, i.e., functors from Θ0 to C endowed with ∇i

j’s
and κi’s making C a categorical globular extension, and whose morphisms are natural
transformations.

Proposition 3.11 (Universal property of Θ). There exists a categorical globular exten-
sion Θ such that for every category C, the precomposition by the functor Θ0 → Θ induces
an isomorphism of categories

Hom gl0
(Θ, C) → Extcat(C).

Proof. Let Θpcat be the globular completion of the category obtained from Θ0 by for-
mally adjoining morphisms κi and ∇i

j satisfying the relations of precategorical globular
extensions.

Let now Θ be the globular completion of the category obtained from Θpcat by formally
imposing the commutativity of the diagrams appearing in the definition of categorical
globular extensions.

It is clear that Θ has the desired universal property. �

3.12. We will denote by Θ the categorical globular extension of the previous proposi-
tion (which is unique up to a unique isomorphism). We will see that this category is
canonically isomorphic to Joyal’s cell category introduced in [13]. Note that the functor
Θ0 → Θ is bijective on objects.

3.13. Let C be a categorical globular extension. If X is a globular presheaf on C, the
globular set obtained by restricting X to G is canonically endowed with a structure of
strict ∞-category whose compositions are the

∗ij = X(∇i
j) : Xi ×Xj

Xi → Xi, i > j ≥ 0,

and whose units are the

ki = X(κi) : Xi → Xi+1, i > 0.

We thus have a canonical functor

Mod(C) → ∞-Cat.
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Proposition 3.14. The functor

Mod(Θ) → ∞-Cat

is an equivalence of categories.

Proof. This is an immediate consequence of the universal property of Θ applied to Seto

and of Proposition 3.5. �

Proposition 3.15. The functor

Θ → Mod(Θ) → ∞-Cat

identifies Θ with the full subcategory of ∞-Cat whose objects are free strict ∞-categories
on globular pasting schemes.

Proof. By the previous proposition, this functor is fully faithful. It thus suffices to
describe its image.

If C is a globular extension, we will denote by

C
iC−→ Mod(C)

jC−→ Ĉ

the canonical decomposition of the Yoneda functor. By Propositions 1.27 and 1.51 of [1],
the functor iC admits a left adjoint rC .

Let now u : C → D be a morphism of globular extensions. Denote by u∗ : D̂ → Ĉ the

restriction functor and by u! : Ĉ → D̂ its left adjoint. The functor u∗ induces a functor
u• : Mod(D) → Mod(C). Moreover, this functor admits u• = rDu!jC as a left adjoint
and the square

C
u //

i
C

��

D

i
D

��
Mod(C)

u•

// Mod(D)

is commutative up to isomorphism. In particular, if k : Θ0 → Θ denotes the canonical
morphism, the square

Θ0

i
Θ0

��

k // Θ

i
Θ

��
Mod(Θ0)

k•

// Mod(Θ)

is commutative up to isomorphism.

Let U be the forgetful functor ∞-Cat → Ĝ and let L : Ĝ → ∞-Cat be its left adjoint,
i.e., the free strict ∞-category functor. The square

Mod(Θ0)

��

Mod(Θ)
k•oo

��

Ĝ ∞-Cat ,
U

oo
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where the vertical functors are the equivalences of categories of Propositions 3.5 and 3.14,
is obviously commutative. It follows that the square

Mod(Θ0)
k• //

��

Mod(Θ)

��
Ĝ L

// ∞-Cat

is commutative up to isomorphism.
We thus obtain that the diagram

Θ0

i
Θ0

��

k // Θ

i
Θ

��
Mod(Θ0)

k• //

��

Mod(Θ)

��
Ĝ

L // ∞-Cat

is commutative up to isomorphism, hence the result. �

Proposition 3.16. The category Θ is canonically isomorphic to Joyal’s cell category.

Proof. By Theorem 5.10 of [14] (or Theorem 1.12 of [7]), Joyal’s cell category is canoni-
cally isomorphic to the full subcategory of ∞-Cat described in the previous proposition.
Hence the result by this proposition. �

3.17. A pregroupoidal globular extension is a precategorical globular extension endowed
with morphisms

Ωi
j : Di → Di, i > j ≥ 0,

such that for all i, j satisfying i > j ≥ 0, we have

Ωi
jσi =

{
τi j = i− 1,

σiΩ
i−1
j j < i− 1,

and

Ωi
jτi =

{
σi j = i− 1,

τiΩ
i−1
j j < i− 1.

A morphism of pregroupoidal globular extensions is a morphism of precategorical glob-
ular extensions between pregroupoidal globular extensions preserving the Ωi

j’s.
A pregroupoidal globular extension is groupoidal if it is categorical and if it satisfies

the following additional axioms:
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• (LInvi,j), i > j ≥ 0,
the following square commutes:

Di

∇i
j

��

κ
j
i // Dj

σi
j

��
Di ∐Dj

Di
(Ωi

j ,1Di
)
// Di ;

• (RInvi,j), i > j ≥ 0,
the following square commutes:

Di

∇i
j

��

κ
j
i // Dj

τ ij

��
Di ∐Dj

Di
(1

Di
,Ωi

j)

// Di .

The category of groupoidal globular extensions is the full subcategory of the category
of pregroupoidal globular extensions whose objects are groupoidal globular extensions.

If C is a category, we will denote by Extgr(C) the category whose objects are groupoidal
globular extension structures on C, i.e., functors from Θ0 to C endowed with ∇i

j’s, κi’s

and Ωi
j’s making C a groupoidal globular extension, and whose morphisms are natural

transformations.

Proposition 3.18 (Universal property of Θ̃). There exists a groupoidal globular exten-

sion Θ̃ such that for every category C, the precomposition by the functor Θ0 → Θ̃ induces
an isomorphism of categories

Hom gl0
(Θ̃, C) → Extgr(C).

Proof. The proof is similar to the one of the categorical case (Proposition 3.11). �

3.19. We will denote by Θ̃ the groupoidal globular extension of the previous proposition

(which is unique up to a unique isomorphism). The category Θ̃ is the groupoidal analogue

to Joyal’s category Θ. Note that the functor Θ0 → Θ̃ is bijective on objects.

3.20. Let C be a groupoidal globular extension. As in the categorical case, if X is a
globular presheaf on C, the globular set obtained by restricting X to G is canonically
endowed with a structure of strict ∞-category, and this ∞-category is a strict ∞-groupoid
whose inverses are given by the

wi
j = X(Ωi

j) : Xi → Xi, i > j ≥ 0.

We thus have a canonical functor

Mod(C) → ∞-Grpd.

The two following propositions are proved exactly as in the categorical case.
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Proposition 3.21. The functor

Mod(Θ̃) → ∞-Grpd

is an equivalence of categories.

Proposition 3.22. The functor

Θ̃ → Mod(Θ̃) → ∞-Grpd

identifies Θ̃ with the full subcategory of ∞-Grpd whose objects are free strict ∞-groupoids
on globular pasting schemes.

4. Test categories and décalages

4.1. We recall that if A is a small category, we denote by Â the category of presheaves
on A. Let u : A → B be a functor and b an object of B. We will denote by A/b the
comma category whose objects are pairs (a, f : u(a) → b) where a is an object of A and
f a morphism of B, and whose morphisms from an object (a, f) to an object (a′, f ′) are
morphisms g : a → a′ of A such that f ′u(g) = f . In particular, if A is a small category

and F is a presheaf on A, the category A/F (where u : A → Â is the Yoneda functor) is
the category of elements of F .

4.2. We will denote by Cat the category of small categories. We recall that a weak
equivalence of small categories is a functor which is sent by the nerve functor on a weak
equivalence of simplicial sets. We will denote by W the class of weak equivalences of small
categories and by Hot the Gabriel-Zisman localization Cat[W−1] of Cat by W. A famous
theorem of Quillen states that Hot is canonically equivalent to the homotopy category
of simplicial sets (see Corollary 3.3.1 of [12]) and hence to the homotopy category of
CW-complexes.

4.3. Let A be a small category. We have a pair of adjoint functors

iA : Â → Cat i∗A : Cat → Â
F 7→ A/F C 7→

(
a 7→ HomCat(A/a,C)

)
.

A morphism of presheaves on A is a weak equivalence if it is sent by iA on a weak
equivalence of small categories. We will denote by W

Â
the class of weak equivalences of

presheaves on A and by HotA the Gabriel-Zisman localization of Â by W
Â
. The functor

iA induces a functor iA : HotA → Hot. If i∗A(W) ⊂ W
Â
, i.e., if iAi

∗
A(W) ⊂ W, then the

functor i∗A induces a functor i∗A : Hot → HotA. Moreover, if this condition is satisfied,

the pair of adjoint functors (iA, i
∗
A) induces a pair of adjoint functors (iA, i

∗
A).

4.4. A small category A is a weak test category if the following conditions are satisfied:

• we have i∗A(W) ⊂ W
Â

;
• for every presheaf F on A, the unit morphism ηF : F → i∗AiA(F ) belongs to W

Â
;

• for every small category C, the counit morphism εC : iAi
∗
A(C) → C belongs to

W.
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The two last conditions are the obvious sufficient conditions for the adjunction (iA, i
∗
A)

to be an equivalence adjunction. In particular, if A is a weak test category, the category
HotA is canonically equivalent to Hot.

4.5. A small category A is a local test category if for every object a of A, the category
A/a is a weak test category. A small category is a test category if it is a weak test
category and a local test category.

A test category A is a strict test category if the functor iA respects binary products
up to weak equivalence, i.e., if for all presheaves F and G on A, the canonical functor

A/(F ×G) → A/F ×A/G

is a weak equivalence.

Theorem 4.6 (Grothendieck-Cisinski). Let A be a local test category. Then (Â,W
Â
) is

endowed with a structure of model category whose cofibrations are the monomorphisms.
This model category structure is cofibrantly generated and proper.

Moreover, if A is a strict test category, weak equivalences are stable by binary products.

Proof. See Corollary 4.2.18 of [9] for the model category structure. The properness follows
by Theorem 4.3.24 of [9] and by the case of simplicial sets.

The last assertion is obvious. �

4.7. A small category A is aspherical if the unique functor from A to the terminal
category is a weak equivalence. It is easy to check that categories admitting a terminal
object are aspherical. One can prove (see Remark 1.5.4 of [15]) that a local test category
is test if and only if it is aspherical. We will only need the following obvious case: a local
test category with a terminal object is a test category.

Let u : A → B be a functor between small categories. The functor u is aspherical if
for every object b of B, the category A/b is aspherical.

Let A be a small category. A presheaf F on a A is aspherical if the category A/F is
aspherical. Every representable presheaf is aspherical since for every object a of A, the
category A/a admits a terminal object.

If u : A → B is a functor between small categories, we will denote by u∗ : B̂ → Â the

restriction functor and by u∗ : Â → B̂ its right adjoint.

Proposition 4.8. Let u : A → B be a functor between aspherical small categories. The
following properties are equivalent:

(1) the functor u is aspherical;
(2) for every morphism ϕ : F → G of presheaves on B, the morphism ϕ is a weak

equivalence of presheaves on B if and only if the morphism u∗(ϕ) is a weak
equivalence of presheaves on A.

Proof. See [11] or Proposition 1.2.9 of [15]. �

Proposition 4.9. Let u : A → B be an aspherical functor between test categories. Then

(u∗, u∗) is a Quillen equivalence (where Â and B̂ are endowed with the Grothendieck-
Cisinski model structure of Theorem 4.6).

Proof. See Proposition 4.2.24 of [9]. �
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4.10. Let A be a small category. Denote by ∅
Â

the initial presheaf on A and by e
Â

the terminal one. An interval (I, ∂0, ∂1) on Â consists of a presheaf I on A and two
morphisms ∂0, ∂1 : e

Â
→ F . Such an interval is separating if the equalizer of ∂0 and ∂1

is ∅
Â
.

4.11. Let A be a small category. A décalage on A consists of an endofunctor D : A → A,
an object a0 of A and two natural transformations

1A
α // D a0

β
oo

(where a0 denotes the constant endofunctor whose value is a0). We will denote by
(A, a0,D, α, β) such a décalage. A splitting of (A, a0,D, α, β) consists of a retraction
ra : D(a) → a of αa for every object a of A. Note that the ra’s are not asked to be
functorial in a. A décalage is splittable if it admits a splitting.

Proposition 4.12. Let A be a small category. If A admits a splittable décalage and Â
admits a separating interval (I, ∂0, ∂1) such that I is aspherical, then A is a strict test
category.

Proof. See Proposition 3.6 and Corollary 3.7 of [10]. �

4.13. Let DA = (A, a0,D, α, β) and DB = (B, b0, E, γ, δ) be two décalages. A morphism
of décalages from DA to DB is a functor u : A → B such that

uD = Eu, u(a0) = b0, u ∗ α = γ ∗ u, and u ∗ β = δ ∗ u.

Proposition 4.14. Let u : A → B be a functor between small categories. If there exists
a décalage DA on A and a splittable décalage DB on B such that u induces a morphism
of décalages from DA to DB, then u is aspherical.

Proof. See Proposition 3.9 of [10]. �

5. Shifted globular extensions

5.1. In this section, we fix a globular extension (C,F ) endowed with morphisms

∇i : Di → Di ∐Di−1
Di, i ≥ 1,

such that

∇iσi = ε2σi and ∇iτi = ε1τi,

where ε1, ε2 : Di → Di ∐Di−1
Di denote the canonical morphisms.

The purpose of the section is to define a new structure of globular extension on C,
i.e., a functor K : G → C such that (C,K) is a globular extension, using the ∇i’s. We
will call (C,K) the twisted globular extension of (C,F ) (by the ∇i’s).

5.2. We set

D̃i = D1 ∐D0
D2 ∐D1

. . . ∐Di−1
Di+1, i ≥ 1.

Recall that we denote the canonical morphisms by

εk : Dk → D̃i, 1 ≤ k ≤ i+ 1.
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We define morphisms

σ̃i : D̃i−1 → D̃i, i ≥ 1,

τ̃i : D̃i−1 → D̃i, i ≥ 1,

by the formulas

σ̃i = (ε1, . . . , εi−1, (εi, εi+1τi+1)∇i),

τ̃i = (ε1, . . . , εi).

(It is obvious that τ̃i is well-defined and we will prove that σ̃i is well-defined in Paragraph
5.3.)

Let X be a globular presheaf on C. We set

X̃i = X(D̃i) = X1 ×X0
X2 ×X1

. . .×Xi−1
Xi+1, i ≥ 1.

For k such that 1 ≤ k ≤ i+ 1, we will denote by pk the canonical projection

pk : X̃i → Xk.

We will often denote by x an element of X̃i and by x1, . . . , xi+1 the components of x.
We define maps

s̃i : X̃i → X̃i−1, i ≥ 1,

t̃i : X̃i → X̃i−1, i ≥ 1,

by the formulas dual to the ones defining σ̃i and τ̃i:

s̃i(x1, . . . , xi+1) = (x1, . . . , xi−1, xi ∗
i
i−1 ti+1(xi+1)),

t̃i(x1, . . . , xi+1) = (x1, . . . , xi).

In particular, once we have proved that σ̃i is well-defined, we will have

s̃i = X(σ̃i) and t̃i = X(τ̃i).

5.3. Let i ≥ 1. Let us prove that σ̃i is well-defined. We need to show that

εi−1σi−1 = (εi, εi+1τi+1)∇iτiτi−1.

But

(εi, εi+1τi+1)∇iτiτi−1 = (εi, εi+1τi+1)ε1τiτi−1

= εiτiτi−1

= εi−1σi−1.

This calculation was straightforward. However, in the sequel of this paper, we will need to
prove more and more complicated identities. For this reason, we will prove our identities
“using elements”. In [2], we gave proofs without using this technique. The result is barely
readable.

Let us explain what we mean by “using elements”. Let f, g : S → T be two parallel
morphisms of C. Suppose we want to prove that f is equal to g. By the (contravariant)
Yoneda lemma, it suffices to check that for every object U of C, the two maps

HomC(T,U) → HomC(S,U),
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induced by f and g, are equal. Since every representable presheaf on C is globular, it
suffices to prove that for every globular presheaf X on C, the two maps

Hom
Ĉ
(T,X) → Hom

Ĉ
(S,X),

induced by f and g, are equal. But by the Yoneda lemma, these maps correspond to the
maps

X(f),X(g) : X(T ) → X(S).

In conclusion, the morphisms f and g are equal if and only the maps X(f) and X(g) are
equal for every globular presheaf X.

Let us apply this to

f = εi−1σi−1 and g = (εi, εi+1τi+1)∇iτiτi−1.

Let X be a globular presheaf on C. For x in X̃i, we have

X(f)(x) = si−1(xi−1) and X(g)(x) = ti−1ti(xi ∗
i
i−1 ti+1(xi+1)).

But

ti−1ti(xi ∗
i
i−1 ti+1(xi+1)) = ti−1ti(xi) = si−1(xi−1).

We have thus given another proof of the well-definedness of σ̃i.

From now on, we fix a globular presheaf X on C.

Proposition 5.4. The maps

Di 7→ D̃i, σi+1 7→ σ̃i+1, τi+1 7→ τ̃i+1, i ≥ 0,

define a functor G → C.

In the sequel of this section, we will denote this functor by K.

Proof. We need to prove that the σ̃i’s and τ̃i’s satisfy the coglobular relations. By

Paragraph 5.3, it suffices to show that the s̃i’s and t̃i’s satisfy the globular relations.

Let i ≥ 2 and x in X̃i. We have

s̃i−1s̃i(x) = s̃i−1(x1, . . . , xi−1, xi ∗
i
i−1 ti+1(xi+1))

= (x1, . . . , xi−2, xi−1 ∗
i−1
i−2 ti(xi ∗

i
i−1 ti+1(xi+1)))

= (x1, . . . , xi−2, xi−1 ∗
i−1
i−2 ti(xi))

= s̃i−1(x1, . . . , xi)

= s̃i−1t̃i(x)

and

t̃i−1s̃i(x) = t̃i−1(x1, . . . , xi−1, xi ∗
i
i−1 ti+1(xi+1))

= (x1, . . . , xi−1)

= t̃i−1t̃i(x),

hence the result. �

We collect in the following lemma two identities related to the structure of X̃i that we
will use several times.
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Lemma 5.5. Let x in X̃i. We have

sl+2
l (xl+2) = si+1

l (xi+1), 0 ≤ l ≤ i− 1,

sl+1(xl+1) = ti+1
l (xi+1), 0 ≤ l ≤ i− 1.

Proof. We have

sl+2
l (xl+2) = sl+1sl+2(xl+2)

= sl+1tl+2tl+3(xl+3)

= sl+3
l (xl+3)

= · · ·

= si+1
l (xi+1),

and

sl+1(xl+1) = tl+2
l (xl+2)

= tl+1tl+2(xl+2)

= tl+1sl+2(xl+2)

= tl+1t
l+3
l+1(xl+3)

= tl+3
l (xl+3)

= · · ·

= ti+1
l (xi+1).

�

5.6. Let us introduce some more notations. We set

D̃j,i = Dj+1 ∐Dj
Dj+2 ∐Dj+1

. . . ∐Di−1
Di+1, i ≥ j ≥ 0.

In particular, we have

D̃0,i = D̃i, i ≥ 0,

D̃i = D̃0,k ∐Dk
D̃k+1,i, i > k ≥ 0,

D̃j,i = D̃j,k ∐Dk
D̃k+1,i, i > k ≥ j ≥ 0.

Dually, we set

X̃j,i = X(D̃j,i) = Xj+1 ×Xj
Xj+2 ×Xj+1

. . .×Xi−1
Xi+1, i ≥ j ≥ 0,

and we have

X̃0,i = X̃i, i ≥ 0,

X̃i = X̃0,k ×Xk
X̃k+1,i, i > k ≥ 0,

X̃j,i = X̃j,k ×Xk
X̃k+1,i, i > k ≥ j ≥ 0.

We will now prove that (C,K) is a globular extension.
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Lemma 5.7. Let C be a category and let f : X → Y , gX : A → X, gY : A → X and
gZ : A → Z be morphisms of C. Suppose that the amalgamated sums

X ∐A Z = (X, gX ) ∐A (gZ , Z) and Y ∐A Z = (Y, gY ) ∐A (gZ , Z)

exist in C, and that we have fgX = gY , so that the morphism

X ∐A Z
f ∐AZ
−−−−→ Y ∐A Z

is well-defined. Then the square

X

f

��

// X ∐A Z

f ∐AZ

��
Y // Y ∐A Z

is cocartesian.

Proof. The square of the statement is the coproduct in A\C of the squares

X
1
X //

f

��

X

f

��

A
g
Z //

1A
��

Z

1Z
��

Y

and

1
Y

// Y A g
Z

// Z ,

which are both cocartesian in A\C. �

Proposition 5.8. Let T =
(
i j
k

)
be a table of dimensions of width 2. The globular sum

D̃i ∐D̃k

D̃j associated to T in (C,K) exists and is canonically isomorphic to

D̃i ∐Dk
D̃k+1,j = (D̃i, εi+1σ

i+1
k )∐Dk

(ε1τ
k+2
k , D̃k+1,j).

Proof. We prove that the square

D̃k
//

σ̃i
k

��

D̃j = D̃k ∐Dk
D̃k+1,j

σ̃i
k
∐

Dk
D̃k+1,j

��

D̃i
// (D̃i, εi+1σ

i+1
k )∐Dk

(ε1τ
k+2
k , D̃k+1,j)

is cocartesian by applying the previous lemma to

X = D̃k, Y = D̃i, Z = D̃k+1,j, A = Dk,

and
f = σ̃i

k, gX = εk+1σk+1, gY = εi+1σ
i+1
k , gZ = ε1τ

k+2
k .

The two amalgamated sums appearing in the square exist since they are globular sums
in (C,F ). Hence, to apply the lemma, it suffices to check that

σ̃i
kεk+1σk+1 = εi+1σ

i+1
k .

Let us prove this identity using elements. Let x in X̃i. We need to prove that

sk+1pk+1s̃
i
k(x) = si+1

k (xi+1).
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But

sk+1pk+1s̃
i
k(x) = sk+1pk+1s̃k+1t̃

i
k+1(x)

= sk+1pk+1s̃k+1(x1, . . . , xk+2)

= sk+1(xk+1 ∗
k+1
k tk+2(xk+2))

= sk+1tk+2(xk+2)

= sk+2
k (xk+2)

= si+1
k (xi+1),

where the last equality follows from Lemma 5.5. �

Proposition 5.9. Let

T =

(
i1 i2 · · · in

i′1 i′2 · · · i′n−1

)

be a table of dimensions. The globular sum D̃i1 ∐D̃i′
1

. . . ∐
D̃i′

n−1

D̃in associated to T in

(C,K) exists and is canonically isomorphic to

D̃i1 ∐Di′
1

D̃i′
1
+1,i2 ∐Di′

2

D̃i′
2
+1,i3 ∐Di′

3

. . . ∐Di′
n−1

D̃i′n−1
+1,in .

In particular, (C,K) is a globular extension.

As announced at the beginning of this section, we will call (C,K) the twisted globular
extension of (C,F ) (by the ∇i’s).

Proof. We prove the result by induction on the width n of the table of dimensions.
Suppose

D̃i2 ∐D̃i′
2

. . . ∐
D̃i′

n−1

D̃in

= D̃i2 ∐Di′
2

D̃i′
2
+1,i3 ∐Di′

3

. . . ∐Di′
n−1

D̃i′n−1
+1,in

= D̃i′
1
∐Di′

1

(
D̃i′

1
+1,i2 ∐Di′

2

D̃i′
2
+1,i3 ∐Di′

3

. . . ∐Di′
n−1

D̃i′n−1
+1,in

)
.

As in the proof of the previous proposition, by using Lemma 5.7, we obtain that the
square

D̃i′
1

//

σ̃
i1
i′
1

��

D̃i′
1
∐Di′

1

(
D̃i′

1
+1,i2 ∐Di′

2

∐Di′
2

D̃i′
2
+1,i3 . . . ∐Di′

n−1

D̃i′n−1
+1,in

)

σ̃
i1
i′
1

∐
D
i′
1

1

��

D̃i1
// D̃i1 ∐Di′

1

(
D̃i′

1
+1,i2 ∐Di′

2

∐Di′
2

D̃i′
2
+1,i3 . . . ∐Di′

n−1

D̃i′n−1
+1,in

)

is cocartesian. Hence the result. �

5.10. Dually, if (
i1 i2 · · · in

i′1 i′2 · · · i′n−1

)
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is a table of dimensions, the globular product X̃i1 ×
X̃i′

1

. . . ×
X̃i′

n−1

X̃in exists and is

canonically isomorphic to

X̃i1 ×Xi′
1

X̃i′
1
+1,i2 ×Xi′

2

X̃i′
2
+1,i3 ×Xi′

3

. . .×Xi′
n−1

X̃i′n−1
+1,in .

Moreover, the canonical isomorphism

c : X̃i1 ×X̃i′
1

. . .×
X̃i′

n−1

X̃in → X̃i1 ×Xi′
1

X̃i′
1
+1,i2 ×Xi′

2

. . .×Xi′
n−1

X̃i′n−1
+1,in

is given by the formula

c
(
x11, . . . , x

1
i1+1, x

2
1, . . . , x

2
i2+1, . . . , x

n
1 , . . . , x

n
in+1

)

=
(
x11, . . . , x

1
i1+1, x

2
i′
1
+2, . . . , x

2
i2+1, . . . , x

n
i′n−1

+2, . . . , x
n
in+1

)
.

Let us describe the inverse of c starting by the case n = 2. Let
(
i j
k

)
be a table of

dimensions of width 2 and let (x, y) be an element of X̃i ×
X̃k

X̃j . By definition, we have

s̃ik(x) = t̃jk(y). Since s̃ik = s̃k+1t̃
i
k+1, this means that

(
x1, . . . , xk, xk+1 ∗

k+1
k tk+2(xk+2)

)
=

(
y1, . . . , yk+1

)
,

i.e., that

yl = xl, 1 ≤ l ≤ k,

yk+1 = xk+1 ∗
k+1
k tk+2(xk+2).

(∗)

The inverse

c−1 : X̃i ×Xk
X̃k+1,j → X̃i ×X̃k

X̃j

is thus given by the formula

c−1
(
x1, . . . , xi+1, yk+2, . . . , yj+1

)

=
(
x1, . . . , xi+1, x1, . . . , xk, xk+1 ∗

k+1
k tk+2(xk+2), yk+2, . . . , yj+1

)
.

In the general case, the inverse

c−1 : X̃i1 ×Xi′
1

X̃i′
1
+1,i2 ×Xi′

2

. . .×Xi′
n−1

X̃i′n−1
+1,in → X̃i1 ×X̃i′

1

. . .×
X̃i′

n−1

X̃in

is given by the formula

c−1
(
x11, . . . , x

1
i1+1, x

2
i′
1
+2, . . . , x

2
i2+1, . . . , x

n
i′n−1

+2, . . . , x
n
in+1

)

=
(
x11, . . . , x

1
i1+1, x

2
1, . . . , x

2
i2+1, . . . , x

n
1 , . . . , x

n
in+1

)
,

where the

xlj, 2 ≤ l ≤ n, 1 ≤ j ≤ i′l + 1,

are defined (by induction on l) by

xl+1
j = xlj , 1 ≤ j ≤ i′l,

xl+1
i′
l
+1

= xli′
l
+1 ∗

i′
l
+1

i′
l

ti′
l
+2(x

l
i′
l
+2).
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5.11. Since (C,K) is a globular extension, by the universal property of Θ0 (Proposition
3.2), we can lift K to a globular functor K0 : Θ0 → C defined up to a unique isomorphism.
Suppose now that a globular lifting F0 : Θ0 → C to F is given. Proposition 5.9 allows
us to express globular sums of (C,K) in terms of those of (C,F ). The globular lifting
K0 : Θ0 → C is hence uniquely determined by F0. We will call (C,K0) the twisted
globular extension under Θ0 of (C,F0).

6. Shifted groupoidal globular extensions

6.1. In this section, we fix a pregroupoidal globular extension (C,F0). In particular, the
globular extension C is endowed with morphisms

∇i = ∇i
i−1, i ≥ 1,

and we can thus apply the previous section and in particular Proposition 5.9 and Para-
graph 5.11 to get a twisted globular extension (C,K0) under Θ0.

The purpose of the section is to put (under some assumptions) a structure of pre-
groupoidal globular extension on (C,K0) and to prove that if (C,F0) is groupoidal, then
so is (C,K0). In the latter case, we will call (C,K0) (endowed with its additional struc-
ture) the twisted groupoidal globular extension of (C,K0).

6.2. We define morphisms

∇̃i
j : D̃i → D̃i ∐D̃j

D̃i = D̃i ∐Dj
D̃j+1,i, i > j ≥ 0,

κ̃i : D̃i+1 → D̃i, i ≥ 0,

Ω̃i
j : D̃i → D̃i, i > j ≥ 0,

by the formulas

∇̃i
j =

(
ε1, . . . , εj+1,

(
εj+2, ε

′
j+2

)
∇j+2

j , . . . ,
(
εi+1, ε

′
i+1

)
∇i+1

j

)
,

where ε′k denotes εk+i−j,

κ̃i =
(
ε1, . . . , εi+1, εi+1σi+1κiκi+1

)
,

Ω̃i
j =

(
ε1, . . . , εj ,

(
εj+1, εj+2τj+2

)
∇j+1, εj+2Ω

j+2
j , . . . , εi+1Ω

i+1
j

)
.

Note that ε′k : Dk → D̃i∐Dj
D̃j+1,i is the canonical morphism corresponding to the factor

Dk of D̃j+1,i. In the sequel of this section, (C,K0) will denote the globular extension

(C,K0) under Θ0 endowed with these ∇̃i
j’s, κ̃i’s and Ω̃i

j’s.
Dually, we define maps

∗̃ij : X̃i ×X̃j
X̃i = X̃i ×Xj

X̃j+1,i → X̃i, i > j ≥ 0,

k̃i : X̃i → X̃i+1, i ≥ 0,

w̃i
j : X̃i → X̃i, i > j ≥ 0,

by the formulas

x ∗̃ij y =
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)
,
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where (x, y) is in X̃i ×
X̃j

X̃i, and

k̃i(x) =
(
x1, . . . , xi+1, ki+1kisi+1(xi+1)

)
,

w̃ i
j(x) =

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2), w

j+2
j (xj+2), . . . , w

i+1
j (xi+1)

)
,

where x is in X̃i.

Proposition 6.3. The ∇̃i
j’s are well-defined. Moreover, if (C,F0) satisfies Axioms (Ass)

and (Exc), then the ∇̃i
j’s have the desired globular source and target, i.e., they satisfy

Condition (1) of the definition of a precategorical globular extension (see Paragraph 3.10).

Proof. Recall that we have fixed a globular presheaf X on C. Let i > j ≥ 0. By
Paragraph 5.3, showing that ∇i

j is well-defined is equivalent to showing that for every

(x, y) in X̃i ×
X̃j

X̃i, the element x ∗̃ij y belongs to X̃i.

Let us show this. Let (x, y) be in X̃i ×
X̃j

X̃i. We need to check that

sj+1(xj+1) = tj+1tj+2(xj+2 ∗
j+2
j yj+2),

and

sl(xl ∗
l
j yl) = tltl+1(xl+1 ∗

l+1
j yl+1), j + 2 ≤ l ≤ i.

But

tj+1tj+2(xj+2 ∗
j+2
j yj+2) = tj+1

(
tj+2(xj+2) ∗

j+1
j tj+2(yj+2)

)

= tj+1tj+2(xj+2)

= sj+1(xj+1),

and

sl(xl ∗
l
j yl) = sl(xl) ∗

l−1
j sl(yl)

= tltl+1(xl+1) ∗
l−1
j tltl+1(yl+1)

= tltl+1(xl+1 ∗
l+1
j yl+1).

Again by Paragraph 5.3, proving that ∇i
j has the desired source and target is equivalent

to proving the analogous result for x ∗̃ij y.
Let us prove this. If j = i− 1, we have

s̃i
(
x ∗̃ii−1 y

)
= s̃i

(
x1, . . . , xi, xi+1 ∗

i+1
i−1 yi+1

)

=
(
x1, . . . , xi−1, xi ∗

i
i−1 ti(xi+1 ∗

i+1
i−1 yi+1)

)

=
(
x1, . . . , xi−1, xi ∗

i
i−1

(
ti(xi+1) ∗

i
i−1 ti(yi+1)

))

=
(
x1, . . . , xi−1,

(
xi ∗

i
i−1 ti(xi+1)

)
∗ii−1 ti(yi+1)

)

(by Axiom (Assi,i−1))

=
(
y1, . . . , yi−1, yi ∗

i
i−1 ti(yi+1)

)

(by Equations (∗) of Paragraph 5.10)

= s̃i(y),
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and

t̃i
(
x ∗̃ii−1 y

)
= t̃i

(
x1, . . . , xi, xi+1 ∗

i+1
i−1 yi+1

)

=
(
x1, . . . , xi

)

= t̃i(x).

If j < i− 1, we have

s̃i
(
x ∗̃ij y

)
= s̃i

(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi−1 ∗

i−1
j yi−1,

(xi ∗
i
j yi) ∗

i
i−1 ti+1(xi+1 ∗

i+1
j yi+1)

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi−1 ∗

i−1
j yi−1,

(
xi ∗

i
j yi

)
∗ii−1

(
ti+1(xi+1) ∗

i
j ti+1(yi+1)

))

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi−1 ∗

i−1
j yi−1,

(
xi ∗

i
i−1 ti+1(xi+1)

)
∗ij

(
yi ∗

i
i−1 ti+1(yi+1)

))

(by Axiom (Exci,i−1,j))

=
(
x1, . . . , xi−1, xi ∗

i
i−1 ti+1(xi+1)

)
∗̃ij(

y1, . . . , yi−1, yi ∗
i
i−1 ti+1(yi+1)

)

= s̃i(x) ∗̃
i
j s̃i(y),

and

t̃i
(
x ∗̃ij y

)
= t̃i

(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi ∗

i
j yi

)

= (x1, . . . , xi) ∗̃
i−1
j (y1, . . . , yi)

= t̃i(x) ∗̃
i−1
j t̃i(y),

hence the result. �

Proposition 6.4. If (C,F0) satisfies Axiom (Ass), then so does (C,K0).

Proof. Let i > j ≥ 0 and let (x, y, z) be in X̃i ×
X̃j

X̃i ×
X̃j

X̃i. We have

(
x ∗̃ij y

)
∗̃ij z =

(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)
∗̃ij z

=
(
x1, . . . , xj+1,

(xj+2 ∗
j+2
j yj+2) ∗

j+2
j zj+2, . . . , (xi+1 ∗

i+1
j yi+1) ∗

i+1
j zi+1

)

=
(
x1, . . . , xj+1,

xj+2 ∗
j+2
j (yj+2 ∗

j+2
j zj+2), . . . , xi+1 ∗

i+1
j (yi+1 ∗

i+1
j zi+1)

)

(by Axiom (Assl,j) for j + 2 ≤ l ≤ i+ 1)

= x ∗̃ij
(
y1, . . . , yj+1, yj+2 ∗

j+2
j zj+2, . . . , yi+1 ∗

i+1
j zi+1

)

= x ∗̃ij
(
y ∗̃ij z

)
.
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�

Proposition 6.5. If (C,F0) satisfies Axiom (Exc), then so does (C,K0).

Proof. Let i > j > k ≥ 0 and let (x, y, z, t) be in

X̃i ×X̃j
X̃i ×X̃j

X̃i ×X̃j
X̃i.

We have
(
x ∗̃ij y) ∗̃

i
k

(
z ∗̃ij t

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)
∗̃ik(

z1, . . . , zj+1, zj+2 ∗
j+2
j tj+2, . . . , zi+1 ∗

i+1
j ti+1

)

= (x1, . . . , xk+1, xk+2 ∗
k+2
k zk+2, . . . , xj+1 ∗

j+1
k zj+1,

(
xj+2 ∗

j+2
j yj+2

)
∗j+2
k

(
zj+2 ∗

j+2
j tj+2

)
, . . . ,

(
xi+1 ∗

i+1
j yi+1

)
∗i+1
k

(
zi+1 ∗

i+1
j ti+1

))

= (x1, . . . , xk+1, xk+2 ∗
k+2
k zl+2, . . . , xj+1 ∗

j+1
k zj+1,

(
xj+2 ∗

j+2
k zj+2

)
∗j+2
j

(
yj+2 ∗

j+2
k tj+2

)
, . . . ,

(
xi+1 ∗

i+1
k zi+1

)
∗i+1
j

(
yi+1 ∗

i+1
k ti+1

))

(by Axiom (Excl,j,k) for l such that j + 2 ≤ l ≤ i+ 1)

=
(
x1, . . . , xk+1, xk+2 ∗

k+2
k zk+2, . . . , xi+1 ∗

i+1
k zi+1

)
∗̃ij(

y1, . . . , yk+1, yk+2 ∗
k+2
k tk+2, . . . , yi+1 ∗

i+1
k ti+1

)

=
(
x ∗̃ik z

)
∗̃ij

(
y ∗̃ik t

)
.

�

Proposition 6.6. The κ̃i’s are well-defined. Moreover, if (C,F0) satisfies Axiom (RUnit),
then the κ̃i’s have the desired globular source and target, i.e., they satisfy Condition (2)
of the definition of a precategorical globular extension (see Paragraph 3.10).

Proof. Let i ≥ 0 and let x be in X̃i. Let us first prove that k̃i(x) belongs to X̃i+1. We
need to show that

si+1(xi+1) = ti+1ti+2ki+1kisi+1(xi+1),

but this identity holds since tl+1kl = 1Xl
for every l ≥ 0.

Let us now prove that k̃i(x) has the desired globular source and target. We have

s̃i+1k̃i(x) = s̃i+1

(
x1, . . . , xi+1, ki+1kisi+1(xi+1)

)

=
(
x1, . . . , xi, xi+1 ∗

i+1
i ti+2ki+1kisi+1(xi+1)

)

=
(
x1, . . . , xi, xi+1 ∗

i+1
i kisi+1(xi+1)

)

=
(
x1, . . . , xi+1

)

(by Axiom (RUniti+1,i))

= x,
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and

t̃i+1k̃i(x) = t̃i+1

(
x1, . . . , xi+1, ki+1kisi+1(xi+1)

)

=
(
x1, . . . , xi+1

)

= x,

hence the result. �

Proposition 6.7. If (C,F0) satisfies Axioms (LUnit) and (RUnit), then so does (C,K0).

Proof. Let j ≥ 0 and let y be in X̃j . Let us first prove by induction on i > j that

k̃ji (y) =
(
y1, . . . , yj+1, k

j
j+2sj+1(yj+1), . . . , k

j
i+1sj+1(yj+1)

)
.

For i = j+1, this identity holds by definition of k̃j . Assume the result holds for an i > j.
Then we have

k̃ji+1(y) = k̃ik̃
j
i (y)

= k̃i
(
y1, . . . , yj+1, k

j
j+2sj+1(yj+1), . . . , k

j
i+1sj+1(yj+1)

)

=
(
y1, . . . , yj+1, k

j
j+2sj+1(yj+1), . . . , k

j
i+1sj+1(yj+1),

ki+1kisi+1k
j
i+1sj+1(yj+1)

)
,

but

ki+1kisi+1k
j
i+1sj+1(yj+1) = ki+1kisi+1kik

j
i sj+1(yj+1)

= ki+1kik
j
i sj+1(yj+1),

= kji+2sj+1(yj+1),

hence the formula.
Let now i > j and let x be in X̃i. We have

k̃ji s̃
i
j(x) = k̃ji s̃j+1t̃

i
j+1(x)

= k̃ji s̃j+1

(
x1, . . . , xj+2

)

= k̃ji
(
x1, . . . , xj, xj+1 ∗

j+1
j tj+2(xj+2)

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

kjj+2sj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

)
, . . . ,

kji+1sj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

))
.

But for l such that j + 2 ≤ l ≤ i+ 1, we have

kjl sj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

)
= kjl sj+1tj+2(xj+2)

= kjl s
j+2
j (xj+2)

= kjl s
l
j(xl),
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where the last equality comes from Lemma 5.5. Hence the identity

k̃ji s̃
i
j(x) =

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

kjj+2s
j+2
j (xj+2), . . . , k

j
i+1s

i+1
j (xi+1)

)
.

(∗ks)

Let us now compute k̃ji t̃
i
j(x). We have

k̃ji t̃
i
j(x) = k̃ji

(
x1, . . . , xj+1

)

=
(
x1, . . . , xj+1, k

j
j+2sj+1(xj+1), . . . , k

j
i+1sj+1(xj+1)

)
.

But by Lemma 5.5, we have

sj+1(xj+1) = tlj(xl), j + 2 ≤ l ≤ i+ 1,

and so we obtain the formula

k̃ji t̃
i
j(x) =

(
x1, . . . , xj+1, k

j
j+2t

j+2
j (xj+2), . . . , k

j
i+1t

i+1
j (xi+1)

)
. (∗kt)

We can now prove the proposition. We have

x ∗̃ij k̃
j
i s̃

i
j(x) = x ∗̃ij

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

kjj+2s
j+2
j (xj+2), . . . , k

j
i+1s

i+1
j (xi+1)

)

=
(
x1, . . . , xj+1,

xj+2 ∗
j+2
j kjj+2s

j+2
j (xj+2), . . . , xi+1 ∗

i+1
j kji+1s

i+1
j (xi+1)

)

=
(
x1, . . . , xi+1

)

(by Axioms (RUnitl,j) for l such that j + 2 ≤ l ≤ i+ 1)

= x,

and

k̃ji t̃
i
j(x) ∗̃

i
j x =

(
x1, . . . , xj+1, k

j
j+2t

j+2
j (xj+2), . . . , k

j
i+1t

i+1
j (xi+1)

)
∗̃ij x

=
(
x1, . . . , xj+1,

kjj+2t
j+2
j (xj+2) ∗

j+2
j xj+2, . . . , k

j
i+1t

i+1
j (xi+1) ∗

i+1
j xi+1

)

=
(
x1, . . . , xi+1

)

(by Axioms (LUnitl,j) for l such that j + 2 ≤ l ≤ i+ 1)

= x.

�

Proposition 6.8. If (C,F0) satisfies Axiom (FUnit), then so does (C,K0).
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Proof. Let i > j ≥ 0 and let (x, y) be in X̃i ×
X̃j

X̃i. We have

k̃i
(
x ∗̃ij y

)
= k̃i

(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1,

kii+2si+1(xi+1 ∗
i+1
j yi+1)

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1,

kii+2(si+1(xi+1) ∗
i
j si+1(yi+1))

)

=
(
x1, . . . , xj+1, xj+2 ∗

j+2
j yj+2, . . . , xi+1 ∗

i+1
j yi+1,

(kii+2si+1(xi+1) ∗
i+2
j kii+2si+1(yi+1))

)

(by Axioms (FUniti,j) and (FUniti+1,j))

=
(
x1, . . . , xi+1, k

i
i+2si+1(xi+1)

)
∗̃ij

(
y1, . . . , yi+1, k

i
i+2si+1(yi+1)

)

= k̃i
(
x
)
∗̃i+1
j k̃i

(
y
)
.

�

Proposition 6.9. The Ω̃i
j’s are well-defined. Moreover, if (C,F0) satisfies Axioms (Ass),

(Exc), (LUnit), (RUnit) and (RInv), then the Ω̃i
j’s have the desired globular source and

target, i.e., they satisfy the condition of the definition of a pregroupoidal globular extension
(see Paragraph 3.17).

Proof. Note that by the remark at the end of Paragraph 2.3, (C,F0) also satisfies Axiom
(FInv).

Let i > j ≥ 0 and let x be in X̃i. Let us first prove that w̃ i
j(x) belongs to X̃i. We

need to show that

sj(xj) = tjtj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

)
,

sj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

)
= tj+1tj+2w

j+2
j (xj+2),

and

slw
l
j(xl) = tltl+1w

l+1
j (xl+1), j + 2 ≤ l ≤ i.

The first identify has already been proved in Paragraph 5.3. The two others follow from
the following calculations:

sj+1

(
xj+1 ∗

j+1
j tj+2(xj+2)

)
= sj+1tj+2(xj+2)

= tj+1w
j+1
j tj+2(xj+2)

= tj+1tj+2w
j+2
j (xj+2),

and

slw
l
j(xl) = wl−1

j sl(xl)

= wl−1
j tltl+1(xl+1)

= tltl+1w
l+1
j (xl+1).
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Let us now prove that w̃i
j(x) has the desired globular source and target. For j = i−1,

we have

s̃iw̃
i
i−1(x) = s̃i

(
x1, . . . , xi−1, xi ∗

i
i−1 ti+1(xi+1), w

i+1
i−1(xi+1)

)

=
(
x1, . . . , xi−1,

(
xi ∗

i
i−1 ti+1(xi+1)

)
∗ii−1 ti+1w

i+1
i−1(xi+1)

)

=
(
x1, . . . , xi−1,

(
xi ∗

i
i−1 ti+1(xi+1)

)
∗ii−1 w

i
i−1ti+1(xi+1)

)

=
(
x1, . . . , xi−1, xi ∗

i
i−1

(
ti+1(xi+1) ∗

i
i−1 w

i
i−1ti+1(xi+1)

))

(by Axiom (Assi,i−1))

=
(
x1, . . . , xi−1, xi ∗

i
i−1 ki−1titi+1(xi+1)

)

(by Axiom (RInvi,i−1))

=
(
x1, . . . , xi−1, xi ∗

i
i−1 ki−1si(xi)

)

=
(
x1, . . . , xi

)

(by Axiom (RUniti,i−1))

= t̃i(x),

and

t̃iw̃
i
i−1(x) = t̃i

(
x1, . . . , xi−1, xi ∗

i
i−1 ti+1(xi+1), w

i+1
i−1(xi+1)

)

=
(
x1, . . . , xi−1, xi ∗

i
i−1 ti+1(xi+1)

)

= s̃i(x).

For j < i− 1, we have

s̃iw̃
i
j(x) = s̃i

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2), w

j+2
j (xj+2), . . . , w

i+1
j (xi+1)

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2), . . . , w

i−1
j (xi−1), w

i
j(xi) ∗

i
i−1 ti+1w

i+1
j (xi+1)

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2), . . . , w

i−1
j (xi−1), w

i
j(xi) ∗

i
i−1 w

i
jti+1(xi+1)

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2), . . . , w

i−1
j (xi−1), w

i
j

(
xi ∗

i
i−1 ti+1(xi+1)

))

(by Axiom (FInvi,i−1,j))

= w̃i−1
j

(
x1, . . . , xi−1, xi ∗

i
i−1 ti+1(xi+1)

)

= w̃i−1
j s̃i(x),

and

t̃iw̃
i
j(x) = t̃i

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2), w

j+2
j (xj+2), . . . , w

i+1
j (xi+1)

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2), w

j+2
j (xj+2), . . . , w

i
j(xi)

)

= w̃i−1
j

(
x1, . . . , xi

)

= w̃i−1
j t̃i(x),
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hence the result. �

Proposition 6.10. If (C,F0) satisfies Axioms (LInv) and (RInv), then so does (C,K0).

Proof. Let i > j ≥ 0 and let x be in X̃i. We have

w̃ i
j(x) ∗̃

i
j x =

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2), . . . , w

i+1
j (xi+1)

)
∗̃ij x

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2) ∗

j+2
j xj+2, . . . , w

i+1
j (xi+1) ∗

i+1
j xi+1

)

=
(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

kjj+2s
j+2
j (xj+2), . . . , k

j
i+1s

i+1
j (xi+1)

)

(by Axioms (LInvl,j) for l such that j + 2 ≤ l ≤ i+ 1)

= k̃ji s̃
i
j(x),

where the last equality is Equation (∗ks) (see the proof of Proposition 6.7), and

x ∗̃ij w̃
i
j(x) = x ∗̃ij

(
x1, . . . , xj , xj+1 ∗

j+1
j tj+2(xj+2),

wj+2
j (xj+2), . . . , w

i+1
j (xi+1)

)

=
(
x1, . . . , xj+1,

xj+2 ∗
j+2
j wj+2

j (xj+2), . . . , xi+1 ∗
i+1
j wi+1

j (xi+1)
)

=
(
x1, . . . , xj+1, k

j
j+2t

j+2
j (xj+2), . . . , k

j
i+1t

i+1
j (xi+1)

)

(by Axioms (RInvl,j) for l such that j + 2 ≤ l ≤ i+ 1)

= k̃ji t̃
i
j(x),

where the last equality is Equation (∗kt) (see the proof of Proposition 6.7). �

Corollary 6.11. If (C,F0) is groupoidal, then (C,K0) (endowed with the ∇̃i
j’s, κ̃i’s and

Ω̃i
j’s) is a groupoidal globular extension.

As announced at the beginning of this section, if (C,F0) is a groupoidal globular
extension, we will call (C,K0) the twisted groupoidal globular extension of (C,F0).

7. The décalage on Θ̃

7.1. We now introduce the morphisms that will give rise to our décalage on Θ̃.
Let (C,F ) be a globular extension endowed with ∇i’s as in Section 5 and let (C,K)

be the twisted globular extension of (C,F ). We define morphisms

αi : Di → D̃i, i ≥ 0,

βi : D0 → D̃i, i ≥ 0,

by the formulas

αi = εi+1σi+1,

βi = ε1τ1.
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Dually, we define maps

ai : X̃i → Xi, i ≥ 0,

bi : X̃i → X0, i ≥ 0,

by the formulas

ai(x1, . . . , xi+1) = si+1(xi+1),

bi(x1, . . . , xi+1) = t1(x1).

Proposition 7.2. The maps

Di 7→ αi, i ≥ 0,

Di 7→ βi, i ≥ 0,

define natural transformations

F
α // K D0

β
oo

(where D0 denotes the constant functor G → C of value D0).

Proof. Let us first prove that α is a natural transformation. We must show that

σ̃iαi−1 = αiσi and τ̃iαi−1 = αiτi, i ≥ 1.

Let i ≥ 1 and let x be in X̃i. We have

ai−1s̃i(x) = ai−1(x1, . . . , xi−1, xi ∗
i
i−1 ti+1(xi+1))

= si(xi ∗
i
i−1 ti+1(xi+1))

= siti+1(xi+1)

= sisi+1(xi+1)

= siai(x),

and

ai−1t̃i(x) = ai(x1, . . . , xi)

= si(xi)

= titi+1(xi+1)

= tisi+1(xi+1)

= tiai(x),

hence the naturality of α.
To prove the naturality of β, we must check that

σ̃iβi−1 = βi and τ̃iβi−1 = βi, i ≥ 1.

This follows from the following calculations:

bi−1s̃i(x) = bi−1(x1, . . . , xi−1, xi ∗
i
i−1 ti+1(xi+1))

= t1(x1)

= bi(x),
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and

bi−1t̃i(x) = bi−1(x1, . . . , xi)

= t1(x1)

= bi(x).

�

7.3. Let now C be equal to Θ̃. By the previous proposition, we have a diagram

F
α // K D0

β
oo

of functors from G to Θ̃. The functor F is globular by definition, the functor K is
globular by Proposition 5.9 and the functor D0 is trivially globular. This diagram thus

lives in Extgl(Θ̃). Let F0 : Θ0 → Θ̃ be the canonical functor. By the universal property
of Θ0 (Proposition 3.2), we obtain a diagram

F0

α
0 // K0 D0

β
0oo

in Hom gl(Θ0, Θ̃). Note that for the same reason as in Paragraph 5.11, this lifting is

unique. But this diagram lives in Extgr(Θ̃). Indeed, (Θ̃, F0) is a groupoidal globular

extension by definition, (Θ̃,K0) is a groupoidal globular extension by Proposition 6.11

and (Θ̃,D0) is trivially a groupoidal globular extension. Hence by the universal property

of Θ̃ (Proposition 3.18), this diagram lifts to a unique diagram

1
Θ̃

α̃ // K̃ D0
β̃

oo

in Hom gl0
(Θ̃, Θ̃). This is our desired décalage on Θ̃. We will denote it by D

Θ̃
.

7.4. We will now construct a splitting to the décalage DΘ̃. Let

ρi : D̃i → Di, i ≥ 0,

be the morphism defined by the formula

ρi =
(
τ i0κ0, . . . , τ

i
i−1κi−1, κi

)
.

This morphism is not natural in i. For instance, the square

D̃0

σ̃
1
��

ρ
0 // D0

σ1

��
D̃1 ρ

1

// D1

is not commutative. Therefore, we cannot extend formally ρ to a general globular sum.
Denote by

ρj,i : D̃j,i → Di, i ≥ j ≥ 0,
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the composition of the canonical morphism D̃j,i → D̃i followed by ρi. If S is a globular
sum whose table of dimensions is(

i1 i2 · · · in
i′1 i′2 · · · i′n−1

)
,

we define

ρS : S̃ = D̃i1 ∐Di′
1

D̃i′
1
+1,i2 ∐Di′

2

. . . ∐Di′
n−1

D̃i′n−1
+1,in → S

by the formula

ρS = ρi1 ∐Di′
1

ρi′
1
+1,i2

∐Di′
2

. . . ∐Di′
n−1

ρi′n−1
+1,in

.

Dually, we define maps

ri : Xi → X̃i, i ≥ 0,

rj,i : Xi → X̃j,i, i ≥ j ≥ 0,

rS : X(S) → X̃(S), S globular sum,

by the formulas

ri(xi) =
(
k0t

i
0(xi), . . . , ki−1t

i
i−1(xi), ki(xi)

)
,

rj,i(xi) =
(
kjt

i
j(xi), . . . , ki−1t

i
i−1(xi), ki(xi)

)
,

rS(xi1 , . . . , xin) =
(
ri1(xi1), ri′1+1,i2(xi2), . . . , ri′n−1

+1,in(xin)
)
.

Proposition 7.5. The ρS’s are well-defined. Moreover, for every object S of Θ̃, we have

ρSα̃S = 1S .

In other words, ρ is a splitting of D
Θ̃
.

Proof. Let i ≥ 0 and let xi be in Xi. To prove that ri(xi) belongs to X̃i, we need to
check that

slkl−1t
i
l−1(xi) = tltl+1klt

i
l(xi), 1 ≤ l ≤ i.

But using the identities slkl−1 = 1Xl−1
and tl+1kl = 1Xl

, we get that both sides are equal

to til−1(xi).
Let now S be a globular sum whose table of dimensions is

(
i1 i2 · · · in

i′1 i′2 · · · i′n−1

)
,

and let (xi1 , . . . , xin) be in X(S). To prove that rS(xi1 , . . . , xin) belongs to X̃(S), we
need to check that

sil+1
i′
l

kil(xil) = t
i′
l
+2

i′
l

ki′
l
+1s

il+1

i′
l
+1(xil+1

), 1 ≤ l ≤ n− 1.

But this equality is equivalent to the equality

sil
i′
l

(xil) = t
il+1

i′
l

(xil+1
)

which holds by definition of X(S).
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Let us now prove that rS is a section of aS . We easily check that ri is a section of ai:

airi(xi) =
(
k0t

i
0(xi), . . . , ki−1t

i
i−1(xi), ki(xi)

)

= si+1ki(xi)

= xi.

More generally, if

aj,i : X̃j,i → Xi, i ≥ j ≥ 0,

is defined by the formula

aj,i(xj+1, . . . , xi+1) = si+1(xi+1),

the same calculation shows that rj,i is a section of aj,i.
Let ãS = X(α̃S) and let ã′S be the morphism ãS viewed as a morphism

Xi1 ×Xi′
1

. . .×Xi′
n−1

Xin → X̃i1 ×X̃i′
1

. . .×
X̃i′

n−1

X̃in .

By definition, we have

ã′S = ri1 ×ri′
1

· · · ×ri′
n−1

rin .

Let d be the canonical isomorphism

X̃i1 ×Xi′
1

X̃i′
1
+1,i2 ×Xi′

2

. . .×Xi′
n−1

X̃i′n−1
+1,in → X̃i1 ×X̃i′

1

. . . ×
X̃i′

n−1

X̃in .

We recall that

d
(
x11, . . . , x

1
i1+1, x

2
i′
1
+2, . . . , x

2
i2+1, . . . , x

n
i′n−1

+2, . . . , x
n
in+1

)

=
(
x11, . . . , x

1
i1+1, x

2
1, . . . , x

2
i2+1, . . . , x

n
1 , . . . , x

n
in+1

)
,

where the

xlj, 2 ≤ l ≤ n, 1 ≤ j ≤ i′l + 1,

are defined by formulas given in Paragraph 5.10.
We thus have

ãS
(
x11, . . . , x

1
i1+1, x

2
i′
1
+2, . . . , x

2
i2+1, . . . , x

n
i′n−1

+2, . . . , x
n
in+1

)

= ã′Sd
(
x11, . . . , x

1
i1+1, x

2
i′
1
+2, . . . , x

2
i2+1, . . . , x

n
i′n−1

+2, . . . , x
n
in+1

)

= ã′S
(
x11, . . . , x

1
i1+1, x

2
1, . . . , x

2
i2+1, . . . , x

n
1 , . . . , x

n
in+1

)

=
(
ai1(x

1
1, . . . , x

1
i1+1), . . . , ain(x

n
1 , . . . , x

n
in+1)

)

=
(
si1+1(x

1
i1+1), . . . , sin+1(x

n
in+1)

)
,

hence the equality

ãS = ai1 ×Xi′
1

ai′
1
+1,i2 ×Xi′

2

. . .×Xi′
n−1

ai′n−1
+1,in .
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We can now compute ãSrS :

ãSrS
(
xi1 , . . . , xin

)

= ãS
(
ri1(xi1), ri′1+1,i2(xi2), . . . , ri′n−1

+1,in(xin)
)

=
(
ai1ri1(xi1), ai′1+1,i2ri′1+1,i2(xi2), . . . , ai′n−1

+1,inri′n−1
+1,in(xin)

)

=
(
xi1 , . . . , xin

)
,

where the last equality follows from the fact that rj,i is a section of aj,i. We thus have
shown that rS is a section of ãS . �

Remark 7.6. The category Θ̃ has been defined by a universal property related to the

notion of strict ∞-groupoid. For each n ≥ 1, we can define a category Θ̃n enjoying a
similar universal property with respect to the notion of strict n-groupoid. The category

Θ̃n can be seen as the full subcategory of Θ̃ whose objects are globular sums of dimension
at most n, i.e., globular sums

Di1 ∐Di′
1

. . . ∐Di′
n−1

Din ,

with ik ≤ n for all k such that 1 ≤ k ≤ n. Let us denote by in the inclusion functor

Θ̃n → Θ̃. This functor admits a left adjoint pn : Θ̃ → Θ̃n which truncates globular sums
in dimension n, i.e., which sends the globular sum

Di1 ∐Di′
1

. . . ∐Di′
n−1

Din

to the (possibly degenerated) globular sum

Dj1 ∐Dj′
1

. . . ∐Dj′
n−1

Djn ,

where

jk = min(ik, n), 1 ≤ k ≤ n,

j′k = min(i′k, n), 1 ≤ k ≤ n− 1.

Note that we have pnin = 1
Θ̃
.

The décalage

D
Θ̃
= 1

Θ̃

α̃ // K̃ D0
β̃

oo

induces a décalage

DΘ̃n
= 1

Θ̃n

α̃n // K̃n D0
β̃noo

on Θ̃n, defined by

K̃n = pnK̃in, α̃n = pn ∗ α̃ ∗ in and β̃n = pn ∗ β̃ ∗ in.

Moreover, every splitting of DΘ̃ induces a splitting of DΘ̃n
. Note that the inclusion

functor in : Θ̃n → Θ̃ is not a morphism of décalages.

For each n ≥ 1, the category Θ̃n is canonically isomorphic to the full subcategory of
the category of strict n-groupoids whose objects are free strict n-groupoids on globular
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pasting schemes of dimension at most n. In particular, Θ̃1 is canonically isomorphic to

the category ∆̃ defined as follows: the objects of ∆̃ are the sets

∆n = {0, . . . , n}, n ≥ 0,

and its morphisms are all the applications between these sets.

Let us now try to understand the induced décalage on ∆̃ = Θ̃1. The functor K̃1 sends

∆n to ∆n+1 and we thus set ∆̃n = ∆n+1. The functor p1 : Θ̃ → ∆̃ sends the morphisms

∇1
0 : D1 → D1 ∐D0

D1,

κ0 : D1 → D0,

Ω1
0 : D1 → D1,

to the morphisms

∇ : ∆1 → ∆1 ∐∆0
∆1 = ∆2,

κ : ∆1 → ∆0,

Ω : ∆1 → ∆1,

defined by

∇ : 0 7→ 0, 1 7→ 2,

κ : 0 7→ 0, 1 7→ 0,

Ω : 0 7→ 1, 1 7→ 0.

In the same way, the morphisms

∇̃1
0 : D̃1 = D1 ∐D0

D2 → D̃1 ∐D̃0
D̃1 = D1 ∐D0

D2 ∐D1
∐D2

,

κ̃0 : D̃1 = D1 ∐D0
D2 → D̃0 = D1,

Ω̃1
0 : D̃1 = D1 ∐D0

D2 → D̃1 = D1 ∐D0
D2,

are sent to the morphisms

∇̃ : ∆̃1 = ∆2 → ∆̃1 ∐∆̃0
∆̃1 = ∆3,

κ̃ : ∆̃1 = ∆2 → ∆̃0 = ∆1,

Ω̃ : ∆̃1 = ∆2 → ∆̃1 = ∆2,

defined by

∇̃ : 0 7→ 0, 1 7→ 2, 2 7→ 3,

κ̃ : 0 7→ 0, 1 7→ 0, 2 7→ 1,

Ω̃ : 0 7→ 1, 1 7→ 0, 2 7→ 2.

Let D be the endofunctor of ∆̃ defined by

D(∆n) = ∆̃n = ∆n+1

for every n ≥ 0, and by

D(ϕ)(k) =

{
ϕ(k), 0 ≤ k ≤ m,

n+ 1, k = m+ 1,
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for every morphism ϕ : ∆m → ∆n of ∆̃. We have

∇̃ = D(∇), κ̃ = D(κ) and Ω̃ = D(Ω).

Thus the functors K̃1 and D agree on objects and on the morphisms ∇, κ and Ω. The

universal property of ∆̃ = Θ̃1 then implies that K̃1 = D. One can show in a similar way

that the natural transformations α̃1 : 1
∆̃

→ K̃1 and β̃1 : ∆0 → K̃1 are induced by the

applications

∆n → ∆n+1

k 7→ k
and

∆0 → ∆n+1

0 7→ n+ 1.

Note that this décalage restricts to the subcategory ∆ of ∆̃ whose objects are the ∆n’s
and whose morphisms are order-preserving maps. The induced décalage on ∆ is precisely
the one defined in Example 3.14 of [10].

8. Θ̃ is a test category

Proposition 8.1. The object D0 is terminal in Θ̃.

Proof. This is an immediate consequence of Proposition 3.22. �

Proposition 8.2. (D1, σ1, τ1) is a separating interval on
̂̃
Θ.

Proof. We need to show that the equalizer of σ1, τ1 : D0 → D1 in
̂̃
Θ is the initial presheaf,

i.e., that there does not exist an object S in Θ̃ such that the diagram

S // D0

σ1 //
τ
1

// D1

is commutative. Suppose that such an S exists. By precomposing with a morphism from
D0, we can assume that S is D0. Since by the previous proposition, D0 is a terminal

object, that would imply that σ1 and τ1 are equal. By the universal property of Θ̃
(Proposition 3.21), that would mean that s1 and t1 are equal for every strict ∞-groupoid.
This is obviously false. �

Theorem 8.3. The category Θ̃ is a strict test category.

Proof. By the previous proposition, (D1, σ1, τ1) is a separating interval on
̂̃
Θ. Moreover,

since D1 is a representable presheaf, it is aspherical. Furthermore, by Paragraph 7.3

and Proposition 7.5, Θ̃ admits a splittable décalage. Hence the result by Proposition
4.12. �

Corollary 8.4. The pair (
̂̃
Θ,WΘ̃) is endowed with a structure of model category whose

cofibrations are the monomorphisms. This model category structure is cofibrantly gener-
ated, proper and the weak equivalences are stable by binary products.

Moreover, the homotopy category HotΘ̃ of
̂̃
Θ is canonically equivalent to the homotopy

category Hot.

Proof. This follows from the previous theorem by Theorem 4.6. �
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8.5. A similar proof (using the very same calculations) shows analogous results for the
category Θ. Indeed, let (C,F0) be a categorical globular extension. The definitions of
the ∇i

j’s and κi’s of Paragraph 6.2 still make sense. Moreover, by Propositions 6.3, 6.4,

6.5, 6.6, 6.7 and 6.8, the twisted globular extension (C,K0) under Θ0, endowed with
these morphisms, is a categorical globular extension. By this result and the universal

property of Θ, we can construct a décalage DΘ on Θ as we did in Paragraph 7.3 for Θ̃.
The definition of the ρS’s of Paragraph 7.4 still makes sense and the proof of Proposition
7.5 applies and shows that ρ is a splitting of DΘ. Moreover, the proof of Proposition

8.2 shows that (D1, σ1, τ1) is a separating interval on Θ̂. We hence obtain by Theorem

4.12 that Θ is a strict test category. In particular, Θ̂ is endowed with a model category
structure as in Corollary 8.4. One can show that the décalage DΘ and its splitting are
the same as those constructed in [10].

Moreover, since the décalages DΘ and DΘ̃ are defined in a uniform way, the canonical

functor i : Θ → Θ̃ (obtained by the universal property of Θ) induces a morphism of
décalages. Proposition 4.14 thus implies the following theorem.

Theorem 8.6. The canonical functor i : Θ → Θ̃ is aspherical.

Corollary 8.7. Let i∗ :
̂̃
Θ → Θ̂ be the restriction functor and let i∗ be its right adjoint.

Then (i∗, i∗) is a Quillen equivalence.

Proof. This follows from the previous theorem by Proposition 4.9. �

8.8. If I is a subset of {l, r, f}, let us denote by ΘI the universal precategorical globular
extension satisfying Axioms (Ass) and (Exc), plus Axiom (LUnit) (respectively (RUnit),
respectively (FUnit)) if l (respectively r, respectively f) belongs to I. In particular, we
have Θ = Θl,r,f .

In the same way, if J is a subset of {l, r, f, l̃, r̃}, let us denote by Θ̃J the universal
pregroupoidal globular extension satisfying the same axioms as ΘJ∩{l,r,f} plus Axiom

(LInv) (respectively (RInv)) if l̃ (respectively r̃) belongs to J . In particular, we have

Θ̃ = Θ̃
l,r,f,l̃,r̃

.

A closer look at the calculations of the previous sections reveals that

Θlr
//

  A
AA

AA
AA

AA
Θ̃lrr̃

//

��<
<<

<<
<<

Θ̃lrl̃r̃

""D
DD

DD
DD

D

Θr

CC��������

��8
88

88
88

Θ = Θlrf
// Θ̃lrf r̃

// Θ̃ = Θ̃
lrf l̃r̃

Θrf

=={{{{{{{{

is a diagram of strict test categories and aspherical functors.
By duality, the diagram obtained by exchanging l and r, and l̃ and r̃, is also a diagram

of strict test categories and aspherical functors.
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