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ASSOCIATION SCHEMOIDS AND THEIR CATEGORIES

KATSUHIKO KURIBAYASHI AND KENTARO MATSUO

ABSTRACT. We propose the notion of association schemoids generalizing that
of association schemes from small categorical points of view. In particular, a
generalization of the Bose-Mesner algebra of an association scheme appears as a
subalgebra in the category algebra of the underlying category of a schemoid. In
this paper, the equivalence between the categories of groupoids and that of thin
association schemoids is established. Moreover linear extensions of schemoids
are considered. A general theory of the Baues-Wirsching cohomology deduces
a classification theorem for such extensions of a schemoid. We also introduce
two relevant categories of schemoids into which the categories of schemes due
to Hanaki and due to French are embedded, respectively.

1. INTRODUCTION

Finite groups are investigated in appropriate derived categories via group rings
with categorical representation theory and in the category of topological spaces via
classifying spaces with homotopy theory. Since association schemes are regarded as
generalizations of finite groups, it is natural to construct a categorical framework
for studying such generalized groups. Then we introduce association schemoids and
their categories in expectation of interaction with association schemes, groupoids,
the classifying spaces of small categories and the new notion in the study of these
subjects.

An association scheme is a pair of a finite set and a particular partition of the
Cartesian square of the set. The notion plays a crucial role in algebraic combi-
natorics [3], including the study of designs and graphs, and in coding theory [g].
In fact, such schemes encode combinatorial phenomena in terms of representation
theory of finite dimensional algebras. To this end, we may use the Bose-Mesner
algebra of an association scheme which, by definition, is the matrix algebra gen-
erated by adjacency matrices of the elements of the partition. Each spin model
[16], which is a square matrix yielding an invariant of links and knots, is realized
as an element of the Bose-Mesner algebra of some association scheme [14] [I5] [19].
This also exhibits the importance of association schemes. Moreover, the structure
theory of association schemes have been investigated in the framework of group
theory as generalized groups; see [23| [24]. Very recently, global nature of the in-
teresting objects is studied in such a way as to construct categories consisting of
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finite association schemes and appropriate morphisms [9] [T1]. Interaction with the
above-mentioned subjects makes the realm of such schemes more fruitful.

In this paper, by generalizing the notion of association schemes itself from a
categorical point of view, we introduce a particular structure on a small category
and coin the notion of association schemoids. Roughly speaking, a specific partition
of the set of morphisms brings the additional structure into the small category we
deal with. One of important points is that the Bose-Mesner algebra associated with
a schemoid can be defined in a natural way as a subalgebra in the category algebra
of the underlying category of the given schemoid. Here the category algebra is a
generalization of the path algebra associated with a quiver, which is a main subject
of consideration in representation theory of associative algebras [I]. Moreover, we
should mention that the category AS of finite association schemes introduced by
Hanaki [11] is imbedded into our category ASmd of association schemoids fully
and faithfully; see Theorem

A thin association scheme is identified with a group; see [23 (1.12)] for example.
With our setting, the correspondence is generalized; that is, we give an equivalence
between the category of based thin association schemoids and that of groupoids;
see Theorem [L.11l Indeed, the equivalence is an expected lift of a functor from the
category of finite groups to that of based thin association schemes in [I1]; see the
diagram (6.1) below and the ensuring comments.

Baues and Wirsching [6] have defined the linear extension of a small category,
which is a generalization of a group extension, and have proved a classification
theorem for such extensions with cohomology of small categories. We show that
each linear extension of a given schemoid admits a unique schemoid structure; see
Proposition[5.21 This result enables one to conclude that extensions of a schemoid
are also classified by the Baues-Wirsching cohomology; see Theorem .71 In our
context, every extension of an arbitrary association scheme is trivial; see Corollary
B8 Unfortunately, our extensions of a schemoid do not cover extensions of an
association scheme, which are investigated in [2] and [13].

In [9], French has introduced a wide subcategory of the category AS of finite
association schemes. The subcategory consists of all finite association schemes
and particular maps called the admissible morphisms. In particular, the result
[0, Corollary 6.6] asserts that the correspondence sending a finite scheme to its
Bose-Mesner algebra gives rise to a functor A(-) from the wide subcategory to
the category of algebras. To understand the functor in terms of schemoids, we
introduce a category B of basic schemoids and admissible morphisms, into which
the subcategory due to French is embedded. In addition, the functor A(-) can be
lifted to the category B; see the diagram (6.1) again.

Let ¢ : £ — C be a linear extension over a schemoid C; see Definition B.1l It
is remarkable that in some case, the projection ¢ from the schemoid £ to C is
admissible. Moreover, the morphism induces an isomorphism between the Bose-
Mesner algebras of £ and C even if £ and C are not equivalent as a category; see
Corollary and Remark [6.14]

The plan of this paper is as follows. In Section 2, we introduce the association
schemoids, their Bose-Mesner algebras, and their Terwilliger algebras. Ad hoc
examples and the category ASmd of schemoids mentioned above are also described.
Section 3 relates the category ASmd with other categories, especially AS and the
category of groupoids. In Section 4, after dealing with (semi-)thin schemoids, we
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prove Theorem [LT1l Section 5 explores linear extensions of schemoids. At the end
of the section, we give an example of a non-split schemoid extension. Section 6
is devoted to describing some of results due to French [9] in our context, namely
in terms of schemoids. Section 7 explains a way to construct a (quasi-)schemoid
thickening a given association scheme. In Appendix, we try to explain that a toy
model for a network seems to be a schemoid. In this paper, we do not pursue
properties of the Bose-Mesner algebra and Terwilliger algebras of schemoids while
one might expect the study of such algebras from categorical representation theory
points of view. Though we shall need a generalization of the closed subsets of
association schemes when defining subobjects, quotients, limits and colimits in the
context of association schemoids, this article does not address the issue.

As mentioned in [20] by Ponomarenko and Zieschang, association schemes are
investigated from three different points of view: as algebras, purely structure theo-
retically (Jordan-Holder theory, Sylow theory), and as geometries (distance-regular
graphs, designs). Similarly, association schemoids may be studied relying on com-
binatorial way, categorical representation theory and homotopy theory for small
categories [22] I7]. In fact, the diagram (6.1) of categories and functors enables
us to expect that schemoids bring us considerable interests containing association
schemes and that the study of the new subjects paves the way for homotopical and
categorical consideration of such generalized groups.

As one of further investigations on schemoids, we intend to discuss a (co)fibration
category structure [4] on an appropriate category of schemoids. In particular, it is
important to consider (co)cylinder objects explicitly in the category in developing
a homotopical classification of schemoids. Moreover, the notion of (co)limits in
a category may give us a new construction of schemoids and hence association
schemes. These are issues in our forthcoming paper.

2. ASSOCIATION SCHEMOIDS

We begin by recalling the definition of the association scheme. Let X be a finite
set and S a partition of X x X, namely a subset of the power set 25X*X  which
contains a partition of the subset 1y := {(z,z) | * € X} as a subset. Assume
further that for each g € S, the subset ¢* := {(y,z) | (x,y) € ¢} is in S. Then the
pair (X,9) is called a coherent configuration if for all e, f,g € S, there exists an
integer p{ such that for any (z,2) € g

piy =ty e X |[(z,y) €eand (y,2) € f}.

Observe that p? 7 is independent of the choice of (z,z) € g. By definition, a coherent
configuration (X,S) is an association scheme if S contains the subset 1x as an
element.

Let K be a group acting a finite set X. Then K act on the set X x X diagonally.
We see that the set Sk of G-orbits of X x X gives rise to a coherent configuration
(X, Sk). It is readily seen that (X, Sk) is an association scheme if and only if the
action of K on X is transitive.

For an association scheme (X,S), the pair (z,y) € X x X is regarded as an
edge between vertices x and y. Then the scheme (X, 5) is considered as a directed
complete graph and hence a small category; see Example (ii) below for more
details. With this in mind, we generalize the notion of association schemes from a
categorical point of view.
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Definition 2.1. Let C be a small category; that is, the class of the objects of
the category C is a set. Let S := {07}icr be a partition of the set mor(C) of all
morphisms in C. We call the pair (C,S) a quasi-schemoid if the set S satisfies the
concatenation axiom. This means that for a triple o, 7, u € S and for any morphisms
f, gin u, as a set
(mh )71 (f) = () " o),

where #_ : 7 1(u) — pis the map defined to be the restriction of the concatenation
map Tgr : 0 Xopc)y T — mor(C).

For 0,7 and p € S, we have a diagram which explains the condition above

(2.1) (Tor) " (1) O Xop(e) T ———>T

| P |

Tt t
p————— > mor(C) o—7F—> 0b(C).

If the set (w2 )~1(f) is finite, then we speak of the number p#_ := f(7% )~1(f) as
the structure constant.

Definition 2.2. A quasi-schemoid (C, S) is an association schemoid (schemoid for
short) if the following conditions (i) and (ii) hold.
(i) For any o € S and the set .J := I ¢ opcyHome (z, 2), if cNJ # ¢, then o C J.
(ii) There exists a contravariant functor 7' : C — C such that T? = idc and

ot :={T(f)| f e}
is in the set S for any 0 € S. We denote by (C,S,T) the association schemoid
together with such a functor 7.

Let Jo denote the subset {1, | x € 0b(C)} of the set of morphisms of a category
C. We call a (quasi-)schemoid unital if « C Jp for any a € S with a N Jy # ¢.
We define morphisms between (quasi-)schemoids.

Definition 2.3. (i) Let (C, S) and (€, S’) be quasi-schemoids. A functor F': C — &
is a morphism of quasi-schemoids if for any ¢ in S, F(o) C 7 for some 7 in S’. We
then write F : (C,S) — (£,5’) for the morphism. By abuse of notation, we may
write F(o) = 7 if F((¢) C 7 for a morphism F of schemoids.

(ii) Let (C,S,T) and (€,5",T") be association schemoids. If a morphism F' from
(C,S) to (€,5") satisfies the condition that F'T = T'F, then we call such a functor
F a morphism of association schemoids and denote it by F : (C,S,T) — (€,5",T").

Let C be a small category and K a commutative ring with unit. We here recall
the category algebra KC of C which is defined to be the free K-module generated by
the morphisms of the category C. The product of morphisms a and 3 as elements
of KC is defined by

aof if a and § are composable
af =
0 otherwise.

Let (C,S) be a quasi-schemoid with mor(C) finite. Then for any ¢ and 7 in S,

we have an equality
Q9O =D (> w

s€o ter HES uep
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in the category algebra KC of C. This enables one to obtain a subalgebra K(C, S)
of KC generated by the elements (3, s) for all o € S. We refer to the subalgebra
K(C, S) as the schemoid algebra of (C,S). Observe that the algebra K(C, S) is not
unital in general even if C is finite. The following lemma shows the significance of
the unitality of a (quasi-)schemoid.

Lemma 2.4. Let (C,S) be a quasi-schemoid whose underlying category C is finite.
Then (C,S) is unital if and only if so is the schemoid algebra K(C, S).

Proof. Assume that K(C,S5) is unital. We write }° . oyc)la = 22 ai(X e, 9),
where «; € K and o; € S. Then for any © € 0ob(C), there exists a unique index i
such that 1, € 0; and a; = 1. If the element o; of S contains a morphism s which
is not the identity 1, for some y € 0b(C), then the right hand side of the equality
has s as a term, which is a contradiction. The converse is immediate. ([l

We are aware that the schemoid algebra is a generalization of the Bose-Mesner
algebra associated with an association scheme; see Example[2.0] (ii) below for details.
We may call the schemoid algebra the Bose-Mesner algebra of the given quasi-
schemoid.

Suppose that the underlying category C of a quasi-schemoid (C, S) has a terminal
object e. By definition, for any object x of C, there exists exactly only one morphism
(e,z) from z to e. For any o € S, we define an element E, of the category algebra
KC by E, = Z(e’x)eg 1,. We refer to the subalgebra T'(e) of KC generated by
K(C,S) and elements E, for 0 € S as the Terwilliger algebra of (C,S). Since
Y ves Eo = seop(c) Llas it follows that T'(e) is unital if C is finite.

Remark 2.5. (i) The schemoid algebra of an quasi-schemoid (C, S) can be defined
provided fo < oo for each o € S and for any 7 and p in S, the structure constant
pk_ is zero except for at most finite indexes u € S.

(ii) A functor F' : C — & induces an algebra map F : KC — K& if F is a
monomorphism on objects. However, a morphism F' : (C,S) — (£, H) of quasi-
association schemoids does not define naturally an algebra map between schemoid
algebras K(C, S) and K(C, E) even if F' induces an algebra map as mentioned above.
In Section [G] we shall discuss morphisms between quasi-schemoids which induce
algebra maps between the schemoid algebras.

Ezample 2.6. (i) A (possibly infinite) group G gives rise to an association schemoid
(G,G,T), where G = {{g} | g € G} and T(g) = g'. The schemoid algebra
K(G, é) is nothing but the group ring KG.

(ii) For an association scheme (X, S), we define an association schemoid j(X, S)
by the triple (C, U, T) for which 0b(C) = X, Home(y, z) = {(z,y)} C X x X, U = S,
T(x) =« and T'(z,y) = (y, ), where the composite of morphisms (z, z) and (z,y)
is defined by (z,2) o (z,y) = (2,y)-

The schemoid algebra of j(X,S) is indeed the ordinary Bose-Mesner algebra of
the association scheme (X, S). Moreover, we see that the Terwilliger algebra T'(e)
of j(X,S) is the Terwilliger algebra of (X, .S) introduced originally in [2I]. Observe
that every object of j(X, S) is a terminal one because j(X, S) is a directed complete
graph.

(ili) Let G be a group. Define a subset Gy of G x G for f € G by Gy =
{(k,1) | k=1 = f}. Then we have an association scheme S(G) = (G, [G], T), where
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[NG] ={G fN} rea. The same procedure permits us to obtain an association schemoid

S(H) = (H,S,T) for a groupoid H, where ob(H) = mor(H) and

{(h,g)} if t(h) =t(g)

Hom (g, h) =
H(g ) {@ otherwise.

In fact, we define the partition S = {G¢} remor(m) by Gr = {(k,0) | k711 = [},

T(f) = f for f in ob(H) and T((f,9)) = (g, f) for (f,g) € mor(H).

We define categories gASmd and ASmd to be the category of quasi-schemoids
and that of association schemoids, respectively. The forgetful functor k£ : ASmd —
qASmd is defined immediately.

Let Cat be the category of small categories. We recall that morphisms of Cat
are functors between small categories. Let Gpd be the category of possibly infinite
groupoids which is a full subcategory of Cat. For a functor F' € Homgpa(KC, H),
we define a morphism S(F) in Homasma(S(K), S(#)) by S(F)(f) = F(f) and
S(F)(f,g) = (F(f), F(g)) for f,g € mor(K). Then the correspondence gives rise
to a functor S( ) : Gpd — ASmd.

Let AS be the category of association schemes in the sense of Hanaki [I1]; that
is, its objects are association schemes and morphisms f : (X,S5) — (X', 5) are
maps which satisfy the condition that for any s € S, f(s) C s’ for some s’ € 5.
It is readily seen that the correspondence j defined in Example (ii) induces a
functor j : AS — ASmd.

We obtain many association schemoids from association schemes and groupoids
via the functors S and j; see Example [Z.14l As mentioned above, we have

Lemma 2.7. A schemoid in the image of the functor S or j is a groupoid whose
hom-set for any two objects consists of a single element.

The following examples are association (quasi-)schemoids which are in neither
of the images. A more systematic way to construct (quasi-)schemoids is described
in Sections 5 and 7.

Ezxample 2.8. We consider a group G a groupoid with single object. Then the triple
G* = (G,{G},T) is a schemoid with a contravariant functor T': G — G defined
by T(g9) = g~'. In view of Lemma 27 we see that the schemoid G* is in neither
the image of the functors j nor the image of S ()if 4G > 1.

Example 2.9. Let us consider a category C defined by the diagram

LCa .y O
Define a contravariant functor 7' on C by T'(z) = y and T'(y) = z. Then the
triple (C,S,T) is a unital schemoid, where S = {57, S2} with S; = {1,,1,} and
So = {f}. We can define another partition S’ by S’ = {57,5%,55} for which
St ={1.}, S5 ={1,} and S5 = {f}. Then (C,S’,T) is also a unital schemoid.

Example 2.10. Let C and D be categories. The join construction C * D with C
and D is a category given as follows. The set of objects is the disjoint union
0b(C) U ob(D). The set of morphisms consists of all elements of mor(C) U mor(D)
and wgp € Homeyp(a,b) for a € 0b(C) and b € ob(D). Observe that Home.p(a,b)
has exactly one element wg, and Home.p(b,a) = ¢ if a € 0b(C) and b € ob(D).
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The additional concatenation law is defined by aw.s = wer and wypB = wyp for
a € Homp(s,t) and 5 € Home (u, v).

Let (C,S) and (D, S’) be quasi-schemoids. We define a partition 3 of mor(C D)
by ¥ = SUS" U {{wab}}acob(c),peob(p)- It is readily seen that (C D, ¥) is a quasi-
schemoid.

Ezxample 2.11. Let G be a group and let C denote the category G * G°P obtained
by the join construction, namely a category with ob(C) = {z,y}, Home(z,z) = G,
Home (y,y) = G°P, Home (2, y) = {f} and Home(y, 2) = ¢. The diagram

J@x Ly e

denotes the category C. It is shown that T : C — C defined by T'(z) = y and
T(y) = z is a contravariant functor. Then we have a unital schemoid (C, S, T") with
the partition S defined by S = {S;}4ec U{S}, where S, = {g,¢°"} and Sy = {f}.

Observe that (C,S) is not isomorphic to the join (G* * G’*, %) of the schemoid
G*® and its copy G’ in the sense of Exmaple In fact, for any morphism F :
(G*xG'*,2) — (C, S) of quasi-schemoids, we see that F'(1g) = 1, and F(lg) = 1,,.
This implies that F({G}U{G'}) C S..

Ezxample 2.12. Let C be a category defined by the diagram

Luia Lz Tyitq
) O . O
................. Yi1 i Yit1
fi—lT fi\L fi+lT
gi—1 h;
................. Ti1 Ys Tipy
lo;_y 1y, lo;pa

We define subsets o and Jy of mor(C) by 0 = {gi, hi}tiez and Jo = {14, 1y, Yiez,
respectively. Then for any partition S of the form {c, Jy, 71 }1er of mor(C), the
triple (C, S, T) is a unital schemoid, where T'(x;) = y; and T'(y;) = =; for any ¢ € Z.

Ezxample 2.13. For [ > 1, let C} be a category defined by the diagram

aj
ag B
. / ] \y with oy = & = 5171;
T, o
see [6, (7.8)]. We define a partition S = {Si}i—0.1,2,3 of mor(C;) by S} = {cu, v},
S2 = {01}, S} ={e} and S? = {1,,1,,14,,1p,}. Define a contravariant functor

T:Cy— C;by T(a;) =b;, T(e) =e, T(oy) = 0; and T(B;) = . Then we obtain a
unital schemoid Cfy of the form

(U al U Sitosics: 7).
1<i<k 1<i<k

Ezample 2.14. Let (C;,S;,T;) be a schemoid. Then it is readily seen that the
product (I1,C;, 11;S;, I1;T;) is a schemoid. In particular an El-category of the form
Clx) X G*; that is, all endomorphisms are isomorphisms, is a schemoid for any group
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G. Moreover, for an association scheme (X,.S), we have a schemoid of the form
j(X,s) x G*, which is in neither the images of j nor the image of S( ) provided

1G > 1.
3. A CATEGORY OF ASSOCIATION SCHEMOIDS AND RELATED CATEGORIES

Let Gr be category of finite groups. With the funcotrs S (), j and k mentioned
in Section 2, we obtain a diagram of categories and functors

/\
S() v

(3.1) Gpd —" . ASmd —* > yASmd —— Cat.
i £ K
Gr—>U . As

Here U is the forgetful functor and, for a small category C, K defines a quasi-
schemoid K (C) = (C,S) with S = {{f}}femor(c)- It is readily seen that K is a
fully faithful functor and that UK = idcat. Observe that U o k o §( ) does not
coincide with the canonical faithful functor ¢ : Gpd — Cat. We emphasize that
the left-hand square is commutative.

Remark 3.1. (i) The functor j factors through the category of coherent configura-
tions, whose morphisms are defined by the same way as in AS.

(ii) We see that the functor K is the left adjoint of the forgetful functor U and that
the schemoid algebra of K(C) is the whole category algebra K(C).

Theorem 3.2. (i) The functors i and j are fully faithful embedding.
(ii) The functors S( ) and S( ) are faithful.

Proof. We prove the assertion (i). It is well known that ¢ is fully faithful. Let
(X,Sx) and (Y, Sy) be association schemes. It is readily seen that ¢ and j are
injective on the sets of objects. We prove that

j : HomAs((X, Sx), (Y, Sy)) — HomASmd(j(X, Sx),](Y, Sy))

is bijective. Let F' be a morphism from j(X,Sx) = (Cx,Ux,Tx) to j(Y,Sy) =
(Cy,Uy,Ty). Now we define a map ¢(F) : X — Y by ¢(F)(z) = F(z), where
reX = ob(j(X7 SX)). For each s € Uy, there exists a unique set ¢t of morphisms
in Uy such that F(s) C ¢t and F(s*) C ¢*. The map ¢(F) : Sx — Sy defined by
©(F)(s) =t fits into the commutative diagram

X x x 2 oy

l o(F) J’

Sx

where r is the map defined by r(x1,z2) = s for (z1,x2) € s. Moreover, we see that
 is the inverse of j. This completes the proof.
(ii) We prove that the map

S:=koS():Homgpa(K,H) — Homyasma(S(K), S(H))

is injective. To this end, a left inverse of S is constructed below.
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Let G : S(K) — S(#) be a morphism in ¢ASmd, namely a functor which gives
maps G : mor(K) — mor(H) and G : Homg . (f,9) — Homgq, (G(f),G(g)).

The hom-set of S(#) consists of a single element. Then we sce that G(f,g) =
(G(f), G(g))-

Claim 3.3. For an object f € 0bS(K) = mor(K), one has sG(f) = 5G(14(sy) and
tG(lt(f)) = tG(f)

Claim 3.4. For composable morphisms f : s(f) — t(f) and g : s(g) = t(f) — t(g)
in K, G(fg) = G(f)G(1lyq)) "' G(g).

Define a map () : Homgasma(S(K), S(H)) — Homgpa(K,H) by (G)(z) =

sG(1;) for € ob(K) and (G)(f) = G(lyp) *G(f) for f € Homg(x,y). Claim
implies that the composite

_ - G(f)
_—

(@) (f) : (G)(s(f)) = sG(Ls(p)) = sG(f) tG(f) = tG (L))

lG(ltm)fl

sG(Lyp) = (G)((f))

is well-defined. We then have (G)(1) = G(14a,)) 'G(1.) = Ligu,) =
Moreover, Claim [3.4] enables us to deduce that

(GG (9) = G(Li) " G())G (L)) T Glg) = G(Lis0))G(f9) = (G)(f9)-
Thus (G) : K — H is a functor for any G in Homyasma(S(K), S(H)) so that the

L&)

map ( ) is well-defined. Tt is readily seen that the composite U 0 S is the identity
map. N

Since the left-hand side in the diagram (3.1) is commutative and S( ) o is
faithful, it follows that so is S( ). This completes the proof. O

Proof of Claim 33 We can write (K, {Ks} femor(c)) and (H,{Hg}gemor(w)) for
§(IC) and §(H), respectively; see Example2.6] (iii). Since (f, f) and (14.5), L5(s)) are
in Ky, it follows that (G(f), G(f)) and (G(14(5)), G(14(s))) are in the same H; for
some | € morH. This yields that G(f) 'G(f) =1 = G(1y)) *G(15)) and hence

SG(f) = SG(ls(f)). We have tG(lt(f)) = tG(f) as G(lt(f),f) = (G(lt(f)),G(f)l):l

Proof of Claim[37). We observe that (1;),9) and (f, fg) are in K;. Then mor-
phisms (G(144)), G(9)) and (G(f),G(fg)) are in Hj, for some h € mor(H). This
implies that G(14,))"'G(9) = h = G(f)"'G(fg). We have the result. O

Let (¢ASmd), be the category of quasi-schemoids with base points; that is, an
object (C,S) in (¢ASmd), is a quasi-schemoid with C° a subset of 0b(C) and a
morphism F' : (C,S) — (€,T) preserves the sets of base points in the sense that
F(C°) C £°. For a groupoid G, the quas-schemoid S(G) = (G, S) is endowed with
base points G° = {12} zeob(g)- We define the category of schemoids (ASmd)o with
base points as well.

Corollary 3.5. The functor S : Gpd — (qASmd)g is fully faithful.
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Proof. We define a map () : Homgagma), (S(K), S(H)) — Homgpa(K, H) by the
same functor as () in the proof of Theorem B2 (ii). Since G(1,) is the identity map
for a morphism G : S(K) — S(H) in (¢ASmd)y, it follows that (G)(f) = G(f) for

any f € Homg(x,y). It turns out that the map () is the inverse of S. O

Remark 3.6. We have a commutative diagram

Hom asma), (5(K), S(H))

g(/) i/U

Homgpa (K, H) % Homgasma), (S(K), S(H)),

where U denotes the map induced by the forgetful functor. For any functor G in
Hom(4a8md), (S(K),S(H)) and for a morphism (f, g) in S(K), it follows that

GT((f,9)) = G((g, f)) = (G(9), G(f)) = TG((f,9))

and hence G is also in Hom(ASmd)D(S(IC),g(H)). This yields that the vertical
arrow U is a bijection.

4. THIN ASSOCIATION SCHEMOIDS

The goal of this section is to prove that the category of groupoids is equivalent to
the category of based thin association schemoids, which is a subcategory of ASmd.

A thin association schemoid defined below is a generalization of a thin coherent
configuration in the sense of Hanaki and Yoshikawa [12]. The results [I2] Theorem
12, Remark 16] assert that a connected finite groupoid is essentially identical with
a finite thin coherent configuration. We consider such a correspondence from a
categorical point of view.

Let (C,S,T) be an association schemoid. For o, 7 and p € S, we recall the
structure constant pt, = # (% )~' (f), where f € y; see Definition 211

Definition 4.1. (Compare the definition of a thin coherent configuration [12] Sec-
tion 3] ) A unital association schemoid (C, S, T) is called semi-thin if the following
two conditions hold.

() t{fe€o|s(f)=a}<1foranyoceS andx e obC).

(ii) The underlying category C is a groupoid with the contravariant functor T :
C — C defined by T(f) = f~ for f € mor(C).

Following Zieschang [23| 24] and Hanaki and Yoshikawa [12], we here fix the
notation used below. We define subsets Sy and Sp of S by Sy = {k € S| kNJ # ¢}
and Sp = {a € S| anJy # ¢}, respectively. For any o € S, write ox = {f € o |
s(f) =} and yo = {f € o | t(f) = y}, where z,y € 0b(C). For any a € Sy, we
write X, = {z € 0b(C) | 1, € a}. Let ,Sp be the subset of S defined by

aSﬁz{U€S|pga:pga:1}a
where «a, 5 € Sp.

To construct a functor from the category of semi-thin association schemoids to
the category of groupoids, we need some lemmas.

Lemma 4.2. (cf. [12| Lemma 1]) Let (C,S,T) be a unital association schemoid.
(i) For any o € S, there exists a unique element « in Sy such that pJ, = 1.
Moreover, pZ,, =0 if & € Sy and o/ # a.
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(ii) For any o € S, there exists a unique element (8 in Sy such that i, = 1.
Moreover, pg,, =0 if 3" € Sy and B # .

Lemma allows one to deduce that

Proof of Lemma[].2, We prove (i). The second assertion follows from the same
argument as in the proof of (i). Let f be a morphism in . Suppose that s(f) € X,.
If p7,, > 1, then there exists g € o such that s(g) € X, and go 15, = f. Since
g = golyy = f, we see that s(f) = s(g) € X4, which is a contradiction. This
yields that pZ, = 0 if s(f) ¢ X,.

It is readily seen that ob(C) = [],cg,
o € Sy such that s(f) € X,. This allows us to deduce that (f, 1)) € (Wga)_l(f)

and hence pZ, > 1. On the other hand, if (g,15,) € (Wga)_l(f), then g =
g o lyyg) = f. Therefore we have p7, = 1. g

X,. Then there exists a unique element

Lemma 4.3. Let (C,S,T) be a unital association schemoid satisfying the condition
(1) in Definition[{.1l If o € oS3, then

i (03) = {1 ifr € Xa,

0 otherwise.
Proof. By the definition of the subset ,Sg, we have the result. O

Lemma 4.4. Let (C,S,T) be a semi-thin association schemoid. For any o, 8, v €
So, 0 € oSg and T € gS,, there exists a unique element = p(r,0) i oSy such
that p#, = 1. Moreover, > =0 if i’ € S and i/ # p.

Proof. We show that there exists p € oS such that p#_ > 1. Let x be an element
in X,. In view of Lemma 3] we see that § (c2) = 1. Let f be the unique element
of ox; that is, ox = {f} and ¢(f) € B. Lemma [£3] implies that 7¢t(f) = {g} for
some g € 7. Then there is an exactly one element ;1 € S, such that go f € p.
Thus we have p¥ > 1.

We prove that p¥ < 1. Let 51, s2 € 0 and 1, t3 € 7 satisfying t;0s1 =t308; =
m € p. Since f(os(m)) = 1, it follows that s; = s2. On the other hand, we see
that {t1} = 7t(s1) = 7t(s2) = {t2} since #(7t(s1)) = #(7t(s2)) = 1. This yields that
t1 = to.

We show that u =vifp# =p¥ =1. Lettjos; =mg € pand tyose =ng €Ev
where s1, so € o and ty, to € 7. Since s; = tl_l o myq, it follows that pTe, = L
By the definition of the schemoid, we see that there exist t3 € 7 and ms € u such
that so = 3" o mz. We have s(t2) = t(s2) = t(t3"') = s(t3). Lemma A3 yields
that to = t3. This enables us to conclude that no = t5 055 = t5 0 (tgl o mg) =
ty oty omg = ms. Therefore uNv # ¢ and hence pu = v. O

Let (C,S,T) be a semi-thin schemoid. We define a category R(C,S,T) = G by
0b(G) = Sy and Homg(«, 5) = oS, where a, 8 € Sp. For ¢ € Homg(«, 5) and
7 € Homg(8,7), the composite is defined by 700 = u(7, o) using the same element
w as in Lemma [£.4]

Lemma 4.5. Let 0 € S, 7 € 3Sy, f € 0 and g € 7. If t(f) = s(g), then
gof€ErToo.
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Proof. If go f € p, then p#_ > 1. Lemma [L4] implies that pp =70 0. O

Proposition 4.6. E(C, S,T) is a category.

Proof. Let x € X, 0 € oS8, T € 354 and v € ,.S,. By Lemma 3] we see that
#(cz) = 1 and hence oz = {f} with f € mor(C). Moreover, we have 7(¢(f)) = {g}
with an appropriate morphism ¢ in C. LemmalLHimplies that ho(go f) € po(ro0)
and (hog)o f € (noT)oo. Since (no(roc))N((noT)o0c) # ¢, it follows that
wo(roo) = (not)oo.

For o € Sy, we see that a € S, = Homg (o, ). For o € Homg(a, 8), it follows
from Lemma that 8 o0 = 0 = 0 o . This completes the proof. ([

Proposition 4.7. The category }N%(C, S,T) is a groupoid.

Proof. Suppose that o is in Homg(a, 8). Lemma yields that 0* o 0 = o and
goo* = 3. We have 0~} = o*. O

Let stASmd denote a full subcategory of ASmd whose objects are semi-thin
association schemoids. We here construct a functor R( ) from stASmd to the
category Gpd of groupoids.

Let (C,S,T) be a semi-thin association schemoid. It follows from Proposition
47 that ﬁ(C, S,T) = G is a groupoid. Let F' be a morphism between semi-thin
association schemoids (C,S,T) and (C',S’,T’). By definition, for any o € S =
mor(G), there exists a unique element 7 € S' = mor(G’) such that F(o) C 7. Since
@ € [l eop(c){1a} for any a € So = 0b(G), there exists a unique element § € Sy =

0b(G') such that F(«) C 8. We then define a functor R : stASmd — Gpd by
R(F)(a) = 8 and R(F)(o) = 7.

Definition 4.8. A semi-thin association schemoid (C,S,T) is a thin association
schemoid with a subset V' of base points of ob(C) if

(ili) fHome (z, y) <1 for x, y € ob(C) and

(iv) the subset V' C 0b(C) satisfies the condition that for any connected compo-
nent C of 0b(C), §(C NV) =1 and the map ¢ : V — Sy defined by ¢(v) 3 1, is
bijective.

Let tASmd be the full subcategory of stASmd whose objects are thin associa-
tion schemoids. We have a commutative diagram of categories and functors

ASmd

50) stASmd

S(HR(O)
Gpd - tASmd.
R()

Remark 4.9. In [12], Hanaki and Yoshikawa give a procedure to make a groupoid
with a thin coherent configuration as an ingredient. The construction factors
through tASmd the category of thin association schemoids; see Remark B] (i).

Let (C,S,T) be a thin association schemoid with base points. We here define
functors @ : (C,S,T) — SR(C,S,T) and ¥ : SR(C,S,T) — (C,S,T). Moreover we
shall prove
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Proposition 4.10. Let (C,S,T) be a thin association schemoid with a set V of
base points. Then the functor ® : (C,S,T) — SR(C,S,T) is an isomorphism with
the inverse W. Moreover, ® preserves the sets of base points.

Thus we have the main result in this section.

Theorem 4.11. (¢f. [I1} Proposition 5.2]) The functor S( ) gives rise to an equiv-
alence between the category Gpd of groupoids and the category (tASmd)g of based

thin association schemoids. Moreover, the functor R( ) : (tASmd)y — Gpd is the
right adjoint for S() : Gpd — (tASmd),.

Proof. The results follow from Corollary 3.5 and Proposition .10 O

In order to define the functor ® mentioned above, we recall the condition (iii)
in Definition .8 Then for any object « € ob(C), we see that there are an exactly
one element v € V and a unique morphism p, in C such that Home(z,v) = {p,}.
Moreover, we choose the partition o, € S so that p, is in 0. Then define a functor
®:(C,S8,T)— SR(C,S,T) = (S5,{S4}ges,T") by ¥(x) = 0, for x € 0b(C) and

e— 1 .y
b \ / = (o’wo'z)
P Py
v

for f € mor(C). In order to define a functor from SR(C,S,T) to (C,S,T), we need
the following fact.

Claim 4.12. fp~}(8)o = 1.

Proof. Suppose that f, and g, are in ¢~ 1(8)o. There exists a unique partition

7 € S such that T(¢) C 7. Then f; ! and g;! are in 7. It follows that s(f; ') =

t(fy) = ¢ Y(B) = t(g9o) = s(g;'). The condition (i) in Definition F1] implies that

fot=97" O
We define a functor ¥ : SR(C, S, T) — (C,S,T) by ¥(c) = s(f,) and

o

o S(fr) —— (1)

V(o —tu1)= fa\* 4
oM B),

where t(0) = 8 and ¢~ 1(B) = 0.

(8

Proof of Proposition[{.10 By definition, it is readily seen that ® and ¥ are func-
tors. We prove that ¥ is an isomorphism of schemoids preserving the set of base
points.

For any object x in C, we see that U®(x) = ¥(0) = s(f,), where Home(z,v) =
{p}, p € o forsomev € V, o€ .53 and p~to = {f,}. Since 1, € S, it follows that
0 Y(B) = v. Claim LI yields that p = f, and hence s(f,) = .

Let o be an object in SR(C,S,T); that is, o € S. Then ®¥(c) = ®(s(f,)) = o
because f, € 0. .

Observe that (C,S,T) and SR(C, S,T) are thin. The condition (iii) in Definition
[4.8 enables us to conclude that the functors ¥® and ®¥ are identity on the set of
morphisms since so are on objects.
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We prove that & and ¥ preserve partitions. For any 0 € S, let f : * — y be
a morphism in ¢. Suppose that ®(f) = (0y,0:) and o;0, = 7. It follows from
Lemma4.5 that f = p;lpm € 7. Thus we see that 7 = o and hence ¥(o) C S,. By

—1
definition, we see that \If(o(’—)> T) = s(fg)fr—f; s(f+) . Suppose that 7* o 0 = p.

Then f7'f, € 7% 0 0 = p. Thus we have ¥(S,) C p.

In order to prove that ® preserves the set of base points, we take an element v
in V. Then it follows that Home(v,v) = {1,}, 1, € ¢(v) and hence ®(V') C Sp;
see Definition .81 The map ¢ : V. — Sy is a bijection by definition. We have
®(V) = Sp. This completes the proof. O

We conclude this section with an example of a semi-thin association shcemoid
(C,S,T) which is not isomorphic to SR(C, S, T).

Ezxample 4.13. Let I be a set with an element 1. For any i € I, let C; be a groupoid
of the form

fi
Ta; sz -T<—I> yi,D Ly
and C; the disjoint union of the categories C; over I. Define a partition S of
mor(Cr) by S = {0g,08,71, 72}, where o5 = {14, }ier, 05 = {1y, }ier, 71 = {fi}ier
and 73 = {g;}ier. Moreover, we define a contravariant functor T with 7% = 1c,
on C; by T(z;) = y; and T(g;) = fi- Then (C;,S,T) is a schemoid. A direct
computation shows that R(Cy,S,T) = C; for any I but SC; = (Cy,S,T) if and
only if 7 = 2. In fact, (C;, S, T) is not thin if §7 > 2; see (iv) in Definition 8

5. EXTENSIONS OF SCHEMOIDS

In order to assert that the categories gASmd and ASmd are more fruitful, it is
important to construct (quasi-)schemoids systematically. This section contributes
to it. We begin with the definition of a linear extension of a small category in the
sense of Baues and Wirsching [6].

Let F(C) be the category of factorizations in C; that is, the objects are the
morphisms in C and morphisms f — g are the pairs (a, §) for which diagram

t(f) ———t(g)

7] o

() =——— s(9)

commutes. The composition is defined by (o/, 8) o (o, 8) = (¢, B5).

Definition 5.1. ([6, (2.2) Definition]) Let C and & be small categories. Let
D : F(C) — K-Mod denote a natural system, namely a functor from F(C) to
the category of K-modules. We say that

D, —=¢&3¢C

is a linear extension if (a), (b) and (c) hold:

(a) € and C have the same objects and ¢ is a full functor which is the identity
on objects.

(b) For each morphism f : A — B in C, the abelian group Dy acts transitively
and effectively on the subset ¢~ !(f) of morphisms in £&. We write fo + « for the
action of « € Dy on fo € ¢ (f).
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(c) The action satisfies the linear distributivity law:

(fo+a)(go + B) = fogo + [+ 9",
where f. = D(f,1) and g* = D(1,9).

We give a linear extension a schemoid structure under appropriate assumptions.
Proposition 5.2. Let Dy — & % C be a linear extension of C. Let (C,S) be a
quasi-schemoid. Assume further that for any morphism f in C, the homomorphism
J* and f. are invertible and that D1, , = D1, for any o € S and f,g € o.

Then £ admits a unique quasi-schemoid structure for which q is a morphism of
quasi-schemoids and injective on the partition of mor(E).

We call such a morphism ¢ in Proposition a proper morphism.

Remark 5.3. Let C be a quasi-schemoid. If C has a connected groupoid struc-
ture, for example objects in j(AS) and connected objects in S(Gpd), then all the
assumptions in Theorem and in Theorem below are satisfied.

Lemma 5.4. Let q : (&, §) — (C,S) be a proper morphism of quasi-schemoids if
and only if S ={q""(0)}oes-
Proof. Tt is immediate. ]

Proof of Proposition[5.2. Let H be a partition of mor(€) defined by the sets ¢~ (o)
for o € S. We prove that H satisfies the concatenation axiom in Definition 2.1
Consider a commutative diagram

_ _ D ——1, _ q _ C
q 1(T) Xeq 1(M)<—7TTH (q 1(0))—>7T7'u 1(0)%T><Cﬂ

) l
P P—)
where 7, and 7, are the maps defined by the concatenation of morphisms and 77,

and 7/7:/‘7# denote the restrictions of 7, and 7, respectively. We take a morphism

0 € ¢ (f) for each f. Let + : Dy x Dy — Dy denote the sum on Dy. For any
%+ in ¢ (o), we define maps between sets

(72)71(f) x (+) {1} <—T> (7)1 +7)

0(fi, fi> 0, ) (7 = ()7 + (f) " e f7 + ((fi)+)7'B) and
R+ f]+8) = (a(f)a(f]), v+ (f5) (), ((f)+)B),

0

where u® is an element in Dy which is uniquely determined by the equality f? o
fjO = fO + u°% We see that 6 is a bijection with inverse £. Moreover, we have
(+)"Yy} =2 Dy = Dy, for any v since, by assumption, f. : D1, — Dy is
invertible for f € o. The assumption that Dy, , = Di_, for any f,g € o implies
that the cardinal number of (+)~'{y} does depend on only the choice of o € S.
This enables us to conclude that (£, H) is a quasi-schemoid. It is immediate that
q is a proper morphism.

The uniqueness of the schemoid structure on £ follows from Lemma [5.4l This
completes the proof. (I
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Let C be a small category. Let 7 : F'(C) — C° x C denote the natural functors

[6, (1.16)] defined by 7(f) = (s(f),£()) for f € ob(F(C)) and (a,B) = (B, a)
for (e, B) € mor(F(C)). Let p : C°? x C — C be the obvious forgetful functor.
Proposition and its proof deduce the following result.

Theorem 5.5. Let H : C — K-Mod be a functor and D the natural system induced
by H, namely D = n*p*H. Let Dy — £ 2 C be a linear extension. Suppose that
(C,S,T) is an association schemoid whose underlying category C is a connected
groupoid with T(f) =1 for f € mor(C). Then the quasi-schemoid (&, §) defined
in Proposition [5.2 admits a schemoid structure for which £ is a groupoid with

T(f) f L and q is a morphism of association schemoids. Moreover for o, and

q(o)

a(m)q(p) for some g and hence any g.

in S one has p7,, = §Dgp

A linear extension Dy — & -5 C in Proposition [5.2 or Theorem is called a
schemoid extension of (C,S).
We prove Theorem by using the following lemma.

Lemma 5.6. Let A be a normalized cocycle in F?(C; D); see [5, (1.9) Theorem].
With the same assumption as in Theorem[5.3, one has f.A(f~Y, f) = f*A(f, f71).

Proof. We see that

0= (6A)(f7f71af):f*A(filaf)_A(lvf)+A(fa1)_f*A(fafil)'

Observe that A(1,g9) = 0 = A(g,1) because A is normalized cocycle. This com-
pletes the proof. O

Proof of Theorem [543, We verify that for the partition H the condition (i) in Def-
inition 2.2 holds. Slnce q is the identity map on objects, it follows that

qil(HyeobcHomc(y,y)) = ,copsHome (x, ) =: J.

We see that for ¢~ (c) € H, if g7 (0) N J # ¢, then o N 1L, cpcHome(y,y) # .
Thus o C Il,ecpcHome(y,y) as C is a quasi-schemoid. This yields that ¢~ (o) C J.

Without loss of generality, we assume that (g, 8)o (f, @) = (gf, —A(g, ) + g« +
f*B) for morphisms (f, ) and (g, 8) in £, where A is a normalized cocycle; see [5]
(1.9) Theorem] and the proof of [6, (2.3) Theorem]. Observe that D = 7*p* D)y
and hence f* = id. We then have (f,a) o (1,0) = (f,a) = (1,0) o (f,«). For an
element (f, «), we define

(f,a) =48 = (L (f) (—a+ AL 7).
Then we see that
(fa)o(f7H8) = (ff =AU+ AT (et A )+ () )
= (1,0) and that
U =AUS )+t D (—a+ A 7))

= ( ’ (f lvf) + (f_l)*A(fvf_l)) = (150)
The last equality follows from Lemma B B

We define a natural transformation T : £ — £ by T( f) = f~1. Then it follows

that 7T is a contravariant fEnctor and T2 = id. It is readily seen that T'q = qT and
hence ¢~ (o)* :={T(f) | f € ¢ (o)} = ¢ (6*). We have the result. O

(f~1B)o(f,a)
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We recall the definition of an equivalence between linear extensions. Two linear

extensions Dy — £ %5 C and Dy — & & C are equivalent if there exists an
isomorphism ¢ : € = & of categories with ¢’e = ¢ and with e(fo+a) =c(fo) +a
for fo € mor(€) and a € D,; see [6, page 193]. A linear extension £ % C is split
if there exists a functor s : C — &£ such that gs = 1.

For an Z-module M, we define a natural system M : F(C) — Z-Mod, which is
so-called the trivial representation, by M(x) = M and M(f) = idys for € ob(C)
and f € mor(C). Then the Baues-Wirsching cohomology Hpyy, (C, D) is defined by

Hpw (C, D) = Extpunc(r(c) z-Mod) (£, D).
Originally, the Baues-Wirsching cohomology is defined by using a cochain complex;
see [6l (1.4) Definition]. The result [6 (4.4) Theorem]| allows us to obtain the
extension functor description mentioned above.

A functor F : C — Z-Mod induces a natural system 7n*p*F : F(C) — Z-Mod.
Then we see that the cohomology H*(C, F') := Extgunc(c k-Moa) (£, F) is isomorphic
to the Baues-Wirsching cohomology Hpy, (C,m*p*F); see [0, (8.5) Theorem|. In
particular, for the trivial representation Z, we have Hpy (C,Z) = H*(C,Z) =
H*(BC;Z), where the last one is the singular cohomology of the classifying space
of C.

The result [0, (2.3) Theorem] implies that the second Baues-Wirsching cohomol-
ogy classifies linear extensions over a small category. Thus Proposition [5.2] enables
us to deduce the following result.

Theorem 5.7. Let (C,S) be a quasi-schemoid and D : F(C) — Z-Mod a natural
system for which f. and f* are invertible for any f € mor(C) and D1,y = D1,
for any o € S and f,g € 0. Then the Baues-Wirsching cohomology Hzy, (C; D)
classifies schemoid extensions of the form Dy — & 2 C with q proper.

Let (X, S) be an association scheme. Since the underlying category of j(X,S)
is a directed complete graph, we see that the category is equivalent to the trivial
category e, namely the category consisting of one object and one morphism. It is
immediate that Hj, (e; D) = 0 for * > 0 and any natural system D on e. Then
the result [6] (2.3) Theorem] deduces the following corollary.

Corollary 5.8. Every schemoid extension of j(X,S) is split.

Ezample 5.9. Theorem [5.7] asserts that the classification of schemoid extensions is
reduced in turn to that of extensions of the underlying category. We here comment
on such linear extensions of categories.

Let M be an abelian group and G a finite group. Let M : C x G — Z-Mod denote
the trivial representation of C x G. We also write M for the induced representation
m*p*M : F(C x G) — Z-Mod. Suppose that the classifying space BC is contractible
and that C is finite. For example the classifying space of the underlying category D
of Ci) in Example 2.13]is contractible because D has the initial object. Then every

linear extension M, — & L ex@Gis isomorphic to a linear extension of the form

M, -CxK X4 ¢ % G which is induced by some extension M — K % G of the
group G. In fact, since C and G are finite, it follows that B(CxG) = BC x BG. Then
we see that H%y,, (C x Gy M) = H?*(BC x BG; M) = H?(BG; M). More precisely,
linear extensions of C x G associated with the natural system M is classified by the
group homology H?(G; M).
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Ezample 5.10. Let (X,S) be an association scheme. The same argument as in
Example [5.9] enables us to deduce that there exists a non-split schemoid extension
of j(X,S) x (Z x Z)* while j(X, S) and the first extension j(X,S) x (Z)*® have no
non-split schemoid extension; see Example2.14l On the other hand, the first exten-
sion j(X,S) x (Z/2)* has only one non-trivial extension since H?(B(Z/2);Z/2) =
H2(RP>;7,/2) = 7,/2.

6. BASIC SCHEMOIDS AND ADMISSIBLE MORPHISMS

We introduce a subcategory B of the category of quasi-schemoids for which the
correspondence sending each object in B to the schemoid algebra is a well-defined
functor to the category of (possibly nonunital) algebras.

Definition 6.1. (cf. Definition AI]) A unital quasi-schemoid (C, S) is basic if the
underlying category C is a groupoid.

Every coherent configuration is considered as a complete graph and hence it is a
basic association schemoid. In general, a morphism of schemes does not induce a ho-
momorphism between their Bose-Mesner algebras. To overcome this inconvenience,
French [9] has introduced the notion of admissible morphisms in the category AS
of association schemes. Generalizing the notion, we introduce admissible maps in
the category ¢ASmd.

Definition 6.2. A morphism ¢ : (C,S) — (D, T) of quasi-schemoids is admissible
if for any x € 0b(C), 0 € S and g € ¢(o) with t(g) = ¢(x), there exists a morphism
f € o such that ¢(f) = = and ¢(f) = g.

N |+ }oes(o)
o(x)

n¢ morphisms x
Lemma 6.3. The composite of any two admissible morphisms is admissible.

For elements o and 7 of a quasi-schemoid S over an category C, we define a
subset o7 of the power set 2™°"€) by o7 = {u € S | p#, > 1}. The notion of the
closed subset of an association scheme is generalized to that of schemoids by the
natural way. However, as mentioned in the Introduction, we do not deal with such
generalized one in this paper.

Lemma 6.4. If 7 € ¢(p)p(m) for some m and p in S, then T € ¢(5).

The proofs of Lemmas and [6.4] proceed verbatim as in those of [0l Lemmas
3.3, 4.1]. Two lemmas below are rewritten versions of [9, Lemmas 3.11 and 6.3].

Lemma 6.5. Let ¢ : (C,S) — (D,T) be an admissible morphism from a finite
quasi-schemoid, whose underlying category is a groupoid, to a basic schemoid. Then
for any o € S, there exists a positive integer ng such that for any x € ob(C) and

g € ¢(0) with t(g) = ¢(x),
t(o~ " (9) Nao) =nf.
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Proof. We define a subset Ker¢ of 27(€) by
Kerp ={k € S| ¢(k) C a C Jy for some a € T}.

Since the morphism ¢ is admissible, by definition, there exists a morphism f in C
such that t(f) = = and ¢(f) = ¢g. We define a subset Uy, of mor(C) by

Us = {f"| (u, f) € m1(f) for some u € x}.

Observe that for any element f’ in Uy, an element u above is determined uniquely
by f and f’ if any because C is a groupoid. The usual argument deduces that

¢ tg)Nao = U U..

rEKerg

Moreover, it follows that U, N U, = ¢ if k # x’. Thus we have §(¢~*(g) N xo) =
ZHeKer P gU,. It is immediate that the cardinal of the set U, is not depend on the
choice of f and is only depend on x € Ker ¢. The sum in the right-hand side is
nothing but the integer n we require. This completes the proof. O

Lemma 6.6. (¢f. [9 Lemma 6.3]) Let ¢ : (C,S) — (D, T) be the same admissible
morphism as in Lemmal6.3. Then for any m,p € S and 7 € T, one has

Y DTS = Dmysp)ieny-
o:p(o)=T1

Proof. The proof proceeds along the same line as that of the proof of [9, Corollary
6.3]. In order to obtain the result, it suffices to show that the equality holds when
7 = ¢(v) for some v € S. This follows from Lemma We choose f € v and
write g = ¢(f). We define a subset 2y of p by

Q0 = {f € p| 5(&(F)) = 5(6(£)), 1(#") = t({) for some f' €  with (x)},
where () denotes the condition that s(f') = t(f) and ¢(ff) = g.

°
° tf lg@ﬁ(l’)
f/k; M

¢(z)

For any f in Q, there exists o € S such that f'f isin 0. We see that (b(f’fN) € ¢(v)
by definition and hence ¢(c) = ¢(v). On the other hand, Lemma [6.5 enables us to
deduce that for any o € S with ¢(0) = ¢(v), there exist ng elements a in ¢(g) Nzo,
where z = s(f). For each of these choices of a, there exist nJ, elements fe p such

that fis in Q. We then conclude that
1 = Z n;'rpni.
oE€S:p(0)=¢(v)
Write 2 = w;(lw)d)(p) (g9). By the definition of the structure constant, we see that

1 = pigz))d)(p). Define a map 6 : Qo — 5 by 0(f) = (¢(f), 6(f)"1g). The
definitions of the integers n% and n? yield that 0~ ((a, 8)) = ngng for any (a, 5) €

Q. It turns out that

D PRt = i = ninfi = i nins.
o:p(o)=T1
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we have the result. O

Lemma [6.6] enables to us to prove the following proposition with the same argu-
ment as in the proof of [9, Corollary 6.4].

Proposition 6.7. Let (D,T) and (C,S) be a finite basic schemoid and a finite
quasi-schemoid whose underlying category is a groupoid, respectively. Let ¢ : (C,S) —
(D, T) be an admissible morphism. Then the function K(¢) : K(C,S) — K(D,T)
defined by K(¢)(sx) = nfﬁs(b(w) is an algebra homomorphism, where s, = Zpeﬂp.
Remark 6.8. Let (C, S) be a quasi-schemoid which satisfies the following condition.
(P) : For any o, 7 and p in S, there exists at most one solution of the equation
fog=hwith f € 0, g € 7 and h € p if any two of f, g and h are given.

Then we can prove Lemmas and without assuming that C is a groupoid.

Thus, Proposition [6.7] remains valid if (C,.S) satisfies the condition (P) instead of
assuming that C is groupoid.

We define a category B to be the subcategory of ¢ASmd consisting of finite basic
schemoids and admissible morphisms. Let Alg denote the category of (possibly
nonunital) algebras. Then we have the following theorem.

Theorem 6.9. The function defined in Proposition [6.7] gives rise to a well-defined
functor K(=) : B — Alg.

Proof. This follows from the same argument as in the proof of [9, Corollary 6.6]. O

Lemma 6.10. Let S( ) : Gpd — ASmd and k : ASmd — gASmd be the
functors described in Section 2. For any morphism F': H — G in Gpd which is
injective on ob(H), ¢ := S(F): S(H) — S(G) is admissible.

Proof. We write (H,S,T) and (G, S',T") for S(H) and S(G). We choose an object
f in S(H), namely a morphism in H, o, € S and (u,v) € ¢(o) with u = ¢(f) =
(S(F))(f) = F(f). Suppose that ¢(cs) C o) = {(w,2) | w 'z = k} for some
k € mor(G). Then we see that v = uk. It follows from the definition of S(F)
that F'(h) = ¢(h) = k. Since uk = F(f)F(h), it follows from the injectivity of the
functor F' on the objects that f and h is composable; that is, t(h) = s(f). We have
o(f, fh) = (F(f),F(f)F(h)) = (u,v). This completes the proof. O

A schemoid extension gives an admissible morphism. More precisely, we have
the following result.

Proposition 6.11. Let (€, s, TV) be the schemoid extension described in Theorem

whose underlying linear extension is of the form Dy — & 4 C. Then the proper
map q is admissible. Moreover, one has nl = $D, for any g € q(o) if C is basic;
see Lemma [G.0.

Proof. The result follows from the definition of a linear extension. O

Remark 6.12. Let (£, 5,T) be the same schemoid extension as in Theorem 5.5l We
see that (£,5,T) is not in the category B in general. In fact, the extension is unital
if and only if D, is trivial for any g € mor(C). However, Proposition [6.7] allows one

to obtain the algebra map K(q) : K(£,S) — K(C,S) provided C is a finite basic
schemoid and Dy is a finite abelian group for any g € mor(C).
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Corollary 6.13. Under the same assumption as in Remarkl[6.12, the algebra map
K(q) : K(£,S) = K(C, S) is an isomorphism if and only if the characteristic ch(K)
of K does not divide §Dy for any g € mor(C). In particular, if ch(K) divides D,
for some g, then K(q) is trivial.

Proof. The fact that K(q)(sx) = ndsyr) = §Dg5q(r) and Theorem yield the
result. g

We here summarize categories mentioned above and the functors between them
together with related categories. Let S be a wide subcategory of AS in the sense
of French [9] and A : § — Alg denote the functor defined in [9, Corollary 6.4]. Let
Top and Set®” denote the category of topological spaces and that of simplicial
sets, respectively. Let Gpd’ be the subcategory of Gpd cousisting of the same
objects and morphisms (functors) which are injective on the set of objects; see
Lemma Then we have a commutative diagram
(6.1)

R U N() S«()
Gpd "=_ (tASmd)) ——— > ASmd LA gASmd Cat Set®” Top

¢ 50) K e ||
T 50)

Gpd’ B " KO
ZT S() ‘ J(tAs)g T \\
Gr— e (1AS)y = AS Alg,

sO) S

where dots arrows denote the assignments in the objects but not functors and verti-
cal arrows are fully faithful functors defined by restricting the functor j to the source
categories; see Theorem The arrows N( ) and ¢ denote the functors induced
by the nerve construction and the categorification (categorical realization)[10], re-
spectively; see also [22]. Moreover, | | and S, ( ) are the realization functor and the
functor induced by the singular simplex construction, respectively. Observe that,
for the functors in two parallel lines, the lower arrow denotes the left adjoint for
the upper one and that the functor K is fully faithful as mentioned in Section 3.
In a strict sense, the functor S( ) : Gpd’ — B and the correspondence K( ) from
qASmd to Alg should be restricted to the full subcategory of finite groupoids and
to that of finite quasi-schemoids, respectively.
We conclude this section with an important remark.

Remark 6.14. Let (X,S) be an association scheme. Let & and &£ denote the
trivial and non-trivial extensions of j(X, S) x (Z/2)* in Example 510, respectively.
Corollary implies that

K(&) = K (&) 2 K(j(X, 9) x (2/2)*) 2 K(X, S).

as algebras if ch(K) # 2, where the last one denotes the Bose-Mesner algebra of
the association scheme (X,S). We see that the schemoids j(X,S) x (Z/2)® and
j(X,S) are not equivalent as a category; see Example 510l This implies that there
exist schemoids whose Bose-Mesner algebras are isomorphic to each other but not
the underlying categories.
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7. HOW TO CONSTRUCT (QUASI-)SCHEMOIDS

In this section, we explain a way to construct a (quasi-)schemoid thickening a
given association scheme.

Let Z = (z;) be a square matrix of natural numbers. We call the matrix
Z transitive if z;;,2;, > 1, then 2z, > 1. Let C be a finite category; that is
fmor(C) < oco. We can consider ob(C) an ordered set {i};copc). We define a matrix
Z = (zij), which is referred to as the matrix of the category C, by z;; = fHome (i, j).
Observe that the matrix is transitive. We recall a result due to Berger and Leinster.

Lemma 7.1. [7l Lemma 4.1] Let Z be a transitive square matriz of natural numbers
whose diagonal entries are at least 2. Then Z is the matrixz of a category.

We will show that the category C constructed in the proof of Lemma [Z.I] can
be endowed with a quasi-schemoid structure under appropriate assumption. To see
this, we recall the construction of the category C. Let Z be an m x m matrix (zu)
For each pair (i,7) of objects such that z;; > 1, we choose an arrow ¢;; : i — j
with i # 1; for all i. Define the composite i % j > k by foa = ¢ if a # 1
and 8 # 1. Then we have a finite small category Cz. It is readily seen that Z is
the matrix of the category of C. We call the subset {¢s;}; jcon(c,) of mor(Cz) the
frame of Cz. The definition of the concatenation of morphisms in Cz above yields
the following lemma.

Lemma 7.2. In the category Cz, for a morphism o which is not in the frame
{bi;}ij of the category Cz, if uov =a, thenu=1 orv=1.

Proposition 7.3. Let F = {¢;;}i; be the frame of the small category Cz con-
structed above. Let 1 be the subsets {1i}icopc,)- Then for any partition {Qx}x of
the set mor(Cz)\(F U 1), the partition of mor(Cz)

X' = {{dij} 4,5 € 0b(Cz)} UTU{Qx}x
satisfies the concatenation axiom; see Definition[21l In consequence, (Cz,Y') is a
unital quasi-schemoid.

Proof. The intersection number piﬁfj }is valid because {¢i;} is a set of single ele-
ment. Write J = J\({¢s} U1). For L = @), J, the usual argument shows that
Py = 0 for any w,v € {{¢y} | 4,7} U{Qx}\UJ, pf, = 6ru = ply and pfy = 0. It
is readily seen that
1 { 1 ifu=1=w
Pyy =

0 otherwise
This completes the proof. O

Proposition 7.4. Let S be a partition of the frame {¢;;}i; of the finite cate-
gory Cz constructed above, namely {¢i}i; = [l,cqg0. Suppose that S satisfies
the concatenation aziom and that the condition (i) in Definition [22 for S holds.
Assume further that zy; = zyjy =: 2o for any o € S, ¢ij, ¢y € 0. We define
o= {¢f\j}¢ij60,k:1,..,zij_1 for o€ S. Then

»={1}usus

satisfies the concatenation axiom and hence the pair (Cz,X) is a unital quasi-
schemoid, where 1 = {1;}icopc,) and S = {0}ses,5¢-
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Proof. We first observe that for any f,g € mor(C), fog € [[,cg0 if f and g are
composable and f o g # 1, for some i. Moreover, it is immediate that if fog=1;
then f = g = 1;. Thus we have i) p}, = 1, ii) p, = 0 for u,v € SU S, iii) pf, = 0,
iv) p% = 657 = pZ,, v) pg, = 0 for u,v € SU S, vi) p. = 0 = p?,, vii) pg; = 0,
vili) pf- = 0 = pZ, and ix) p]. = dor = pZ;. The assumption on the entries z;;
enables us to obtain the following equality; see the figure below.

X) pip =07, (2 — 1),

xi) pf, = (zu — 1) - Pirs

xii) pfz = (2u — 1) - pf- - (2 — 1).

bij
[ ) [ )

E.

\

It is immediate that the condition (i) in Definition 2] holds for the partition X.
We have the result. g

Let (X, P = {P}i=0....s) be an association scheme with X = {1,...,m}, where

Py ={(i,i) | i € X}. Let R; denote the adjacency matrix associated with P; that
is, the (4, 7) entry R;(i,7) of Ry is defined by

Ri(i, ) :{

Thickening the given association scheme, we can obtain an association schemoids.

1 if (i,j) € A
0 otherwise

Theorem 7.5. With the same notation as above, for positive integers zg, ..., Zs, we
define an m x m matriz Z by

7Z = z9Ro + z1R1 + - - - + zsRs + diag(1, 1, ..., 1).

Let S = {o1}1=0,1,...s be a partition of the frame {¢;;}i; of the category Cz, where
o0 = {¢s | i = 1,...m} and o1 = {¢s; | (4,i) € P}. Then S satisfies the
concatenation aziom. In consequence, the pair (Cz, %) with ¥ defined in Proposition
is a unital quasi-schemoid. Moreover, if zg = -+ = zs, then (Cz,X) admits a
unital schemoid structure.

Proof. Since (X, P) is an association scheme, we see that S satisfies the concate-
nation axiom and that the condition (i) in Definition holds. Proposition [74]
implies that (Cz, ) is a unital quasi-schemoid.

Suppose that zg = --- = z,. For any objects 4, j, let M(4,7) be the subset of
mor(Cz) consisting of morphisms f which satisfies the condition that s(f) = 4,
t(f) = j and f # ¢;;. Then there exists a bijection 0 : M(i,5) — M(j,i). With
the bijection, we define a contravariant functor 7 : Cz — Cz with T? = 1¢, by
T(¢;j) = ¢j; and for f which is not in the frame, by T(f) = 0(f). We then have
an association schemoid (Cz, %, T). O

For an association scheme (X, P), we may write SC,, .. ,.(X, P) for the quasi-
schemoid (Cz,Y) constructed via the procedure in Theorem In what follows,
we denote by SC,(X, P) the induced association schemoid SC,, . .(X, P).

.....
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Proposition 7.6. Let (X, P) be an association scheme. With the same notation as
in Proposition [T4), we define a functor ® : SCs,. ... ..(X, P) = j(X, P) by ®(¢};) =
¢i; for any (bfj eSu §, where gb?j = ¢4 and X is considered as a directed complete
graph with ¢;;’s as edges provided ¢;; = 1;. Then ® is an admissible map in the
sense of Definition [6.2.

.....

Proof. The result follows from the construction of the quasi-schemoid (Cz,%). O

Remark 7.7. Under the same notation as in Proposition[l.4] we consider an equation
of the form ¢f; o ¢5 = ¢;;, where &’ = 0,1, ¢ = 0,1 and @Y = ¢im. For given
elements @5, and ¢;;, a solution ¢, y of the equation is exactly one in an element of

{1}, S or S. Moreover, we see that if the equation fog = }j has a solution, then
one of f and g should be the identity. This yields that the association schemoid
SC.(X, P) satisfies the condition (P) in Remark 6.8 if z =1 or 2.

Remark 7.8. Let ® : SC1(X, P) — j(X, P) be the admissible map in Proposition
Then the induced map K(®) : K(SC;(X, P)) — A(X, P) is not an isomor-
phism. In fact, we see that dim A(X, P) + 1 = dimK(SC; (X, P)).

Remark 7.9. We recall U : ¢ASmd — Cat the forgetful functor described in the
diagram (6.1). Then the classifying space BC of the category C = USC.(X, P) is
a contractible. To see this, we choose an object ¢ of C and consider the functor
m:C — e and ¢ : ®« — C, where e denotes the trivial category with the one
object * and ¢(*) = 4. It is immediate that 7 ot = 1,. We may define a natural
transformation 7 : com — 1¢ by (k) = ¢4, for k € ob(C). In fact, for any ¢7, : k — 1
in C, we see that

n(1) o (om)(¢m)) = dir 0 Li = $iu = diy © pik = biy © (k).
Then we see that B(m) o B(1) = 1pe and B(t) o B(w) ~ 1p¢. This implies that BC
is homotopy equivalent to the space of a point and hence to B(Uj(X, P)); see the
comments described before Corollary (.8 On the other hand, Remark [.§ states
that Kj(X,S) is not isomorphic to KSC; (X, P).

It is important to recall Corollary .13 and the results in Examples (.9 and
.10 In some case, a linear extension Dy — (C,S,T) - (X, P) gives rise to an
isomorphism K(q) : K(C,5) = Kj(X,P) = A(X, P) while the classifying space
B(U(C, S)) is not homotopy equivalent to B(Uj(X, P)).

The following theorem ensures that the construction in Theorem [[Hlis functorial.

Proposition 7.10. Let z be a positive integer. Then the correspondence sending
an association scheme (X, P) to the association schemoid SC,(X, P) gives rise to a
functor SC,() : AS — ASmd. Moreover, association schemes (X, P) and (X', P’)
are isomorphic if and only if so are schemoids SC,(X, P) and SC,(X', P').

Proof. Let {¢;;} and {4y, } be the frames of SC,(X, P) and of SC,(X', P’), respec-
tively. Let f : (X, P) — (X', P’) be a morphism of association schemes. With the
same notation as in Proposition [[.4] we define SC,(f)(¢7;) = N ofor A =0,..,z
if f(¢ij) = f(Yim), where ¢9; = ¢i; and ¢]), = 91, Then SC.( ) is a well-defined
functor. This yields the first part of the assertion. As for the latter half, the ”only if
part” is immediate. Suppose that F' : SC.(X, P) — SC.(X’, P’) is an isomorphism
of schemoids. Since F'(¢i;) = F(¢j;0¢:5) = F(¢;5)0F(¢;j), it follows from Lemma



ASSOCIATION SCHEMOIDS AND THEIR CATEGORIES 25

[[2 that F sends elements in the frame of SC, (X, P) to those of SC,(X’, P"). This
completes the proof. O

Ezample 7.11. Let H(2,2) be the Hamming scheme of type (2, 2); that is, H(2,2) =
({0,1}2,{Ty, T1,T>}), where T; denotes the set of the pair of words with the Ham-
ming metric i; see Section 8. Pictorially, we have

where white arrows from a vertex to itself, the black arrows and dots arrows are
in Ty, T1 and Ty, respectively. By applying Theorem [Z.5] we obtain an association
quasi-schemoid (Cz, X) constructed by the 4 x 4 matrix with data of the partition

no + 1 ni1 ni no
. 1
Z = noRo-+n1 Ry +ns Ry +diag(1,1,1,1) = Zi ”Onj no”j‘r . Zi
n2 ny ny ng + 1

The schemoid (Cz, ) can be represented by the picture

L
Xnoﬁ.$. ’\XX’ILO
o

1 v 1 Al
- XN2
Xniy XNy

"X_n2
¥ BN AN
X1ng ¢ o<——>0 7 Xng
lvf Xmny ~7

with 4 white identities.
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8. APPENDIX: A SCHEMOID AND A TOY MODEL FOR A NETWORK

In this section, we relate a schemoid with a toy model for a network.

Let F be a set of ¢ elements and X the product set F. Then we obtain the
Hamming scheme H(n,q) = (X, {Rk}k=1,...,n) which is one of crucial association
schemes; that is, with the Hamming metric d(z,y) = #{i | z; # v} for x = (x;)
and y = (v;), Ry is defined by Ry := {(z,y) € X x X | 9(z,y) = k}.

A main problem in coding theory is to estimate the maximal size of any subset
(code) C of X such that no two elements in C' have the Hamming metric less
than a given value. We here refer to elements in X as passwords. Though the
problem considering the maximal size of such a set originates in the study of error
correcting code, the importance of the problem also comes from other reason. In
fact, when an administrator distributes passwords among users, he or she should
need more passwords which are different from one another with appropriate large
metric. Someone of users might use a wrong password w which differs from correct
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one a little bit. If w is a password of another someone, that gives rise to an
inadvisable circumstance.

It is significant to mention that upper-bounds of the maximal size of such a code
are considered by using the Bose-Mesner algebra of an association scheme; see [g].

After determining a maximal code C, a system of a community begins to work.
We can consider the whole Hamming scheme or a code C' a complete graph with
passwords as vertices. If one changes the password to some other one along edges,
then directions would be needed. It is natural to regard such directed edges as
morphisms connecting the passwords (vertices, objects). Thus a categorical notion
appears in the system.

In order to explain such notion a little more, a toy model which an administrator
constructs is given here using undefined terminology. For vertices z, y and z in a
directed graph, the concatenation of directed edges (morphisms) (z,z) and (z,y)
is defined by (z,z) o (z,y) = (2,¥).

(z5x) (z,y)

(z,9)

The administrator might establish a rule which prohibits users from changing freely
the passwords via edges. If he or she only admits changes of the passwords through
odd number of directed edges, then the equality (z,z) o (z,y) = (z,y) above is
inconvenient. Thus a blow-up of the set of edges is needed. We attach some edges
to the graph as the diagram below.

(va)l (LE,y)1

(z,9)1

Here 0,1 € Z/2. Then a natural concatenation is given by

(1) (z,2)10 (@, 9)1 = (2,9)141 = (2,9)0 # (2, Y)1-

Using only the directed edges of the form (x, x)1, a system of a network that he or
she requires may be constructed. Indeed, such a system, which has both structures
of an association scheme and a small category, seems to be a schemoid. Observe
that the concatenation law () is realized in a linear extension of a category due
to Baues and Wirsching [6]. In fact, let &, be the extension in Remark 614 for
17 =0,1. Then we see that

(fia,a’)o(g,b,b") = (fog,a+bnAla,b)+a +1V),

where A(, ) :Z/2x7Z/2 — Z/2 is a 2-cycle defined by A(1,1) = 1 and A(s,t) =0
for (s,t) # (1,1).

The administrator might use the extension &) and morphisms of the form (x,0,1)
only to construct a system because (f,0,1)0(g,0,1) = (f0g,0,0) # (fog,0,1). If
he or she uses the extension & and morphisms of the same form (x,0, 1), then one
has (f,0,1)0(g,0,1) = (fog,A(1,1)+1+1)=(fog,0,1) and hence all users can
change their passwords freely.
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