
ON KAN-INJECTIVITY OF LOCALES AND SPACES

MARGARIDA CARVALHO AND LURDES SOUSA

Abstract. In the category Top0 of T0-spaces and continuous maps, embeddings are just

those morphisms with respect to which the Sierpiński space is Kan-injective, and the Kan-

injective hull of the Sierpiński space is the category of continuous lattices and maps pre-

serving directed suprema and arbitrary infima. In the category Loc of locales and localic

maps, we give an analogous characterization of flat embeddings; more generally, we char-

acterize n-flat embeddings, for each cardinal n, as those morphisms with respect to which a

certain finite subcategory is Kan-injective. As a consequence, we obtain similar characteri-

zations of the n-flat embeddings in the category Top0, and we show that several well-known

subcategories of Loc and Top0 are Kan-injective hulls of finite subcategories. Moreover, we

show that there is a subcategory of spatial locales whose Kan-injective hull is the entire

category Loc.

1. Introduction

Two well-known important facts on injectivity are the characterization of the continu-
ous lattices as the spaces injective with respect to the embeddings in the category Top0 of
T0-spaces ([27]), and the characterization of the stably locally compact locales as the lo-
cales injective with respect to the flat embeddings in the category Loc of locales ([16, 18]).
In [7, 8] Escardó pointed out that in many examples, including the above two, more than
injectivity, we have Kan-injectivity (see also [10, 9]). In an order-enriched category, we
say that an object A is left Kan-injective with respect to a morphism h : X → Y if every
morphism f : X → A has a left Kan extension along h, denoted by f /h, and moreover,
(f /h)h = f . In [5] we extended the concept of Kan-injectivity to morphisms: a morphism
is left Kan-injective with respect to h if it preserves left Kan extensions along h. This
way (left) Kan-injectivity plays for KZ-monads (i.e., Kock-Zöberlein monads [21, 34], also
called lax idempotent monads) the same role as orthogonality plays for idempotent mon-
ads, that is, Kan-injectivity may be regarded as a “lax” generalization of orthogonality.
Indeed, in [5] and [3] several well-known results on orthogonality were recaptured in
this more general environment in the scope of order-enriched categories. In particular,
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in [3] we gave an answer to the Kan-injective Subcategory Problem resembling the one of
Freyd and Kelly [11] to the Orthogonal Subcategory Problem.

In this paper we concentrate on Kan-injectivity in the category Loc of locales and lo-
calic maps, and in the category Top0 of T0 topological spaces and continuous maps. We
show that embeddings, dense embeddings and flat embeddings may be characterized
by means of a finite category via Kan-injectivity, both in Loc and in Top0. More gener-
ally, this is shown for n-flat embeddings, for every cardinal n (with “2-flat” meaning just
“flat”). That characterization of n-flat embeddings allows us to prove that several inter-
esting subcategories of Loc and Top0 are Kan-injective hulls of finite subcategories. In
particular, this applies to the subcategory of stably locally compact locales (with suitable
morphisms) in Loc, and to the subcategory of continuous lattices (with suitable mor-
phisms) in Top0. Moreover, we obtain the category Loc, and also the category Sob of
sober spaces, expressed as the union of an increasing chain of Kan-injective hulls of finite
subcategories, which moreover, are KZ-monadic subcategories. In Loc, the objects of all
these finite subcategories are spatial, and, as a consequence, Loc is the Kan-injective hull
of a subcategory of spatial locales.

In [4], Bernard Banaschewski studied a general form of projectivity in the category of
frames called K-flat projectivity. Kan-injectivity of locales with respect to n-flat embed-
dings is a particular case of K-flat projectivity of frames (see Remark 4.4.1).

2. Preliminaries on Kan-injectivity

In this section we recall the general notions and results on Kan-injectivity in order-
enriched categories, needed in the subsequent study on locales and spaces (cf. [5, 3]).

Let Pos be the category of partially ordered sets and monotone maps. A category X is
said to be enriched in Pos, or just order-enriched, if every hom-set X(X,Y ) of all morphisms
from X to Y is endowed with a partial order such that, for every pair of morphisms
f ,g : X → Y , and morphisms h : Z → X and k : Y →W , the inequality f ≤ g implies that
f h ≤ gh and kf ≤ kg. A functor F : X→ Y between order-enriched categories is said to
be locally monotone, or order-enriched, if the inequality f ≤ g implies that Ff ≤ Fg for all
morphisms f and g with common domain and codomain.

Definition 2.1. 1. Given an object A and a morphism h : X → Y in an order-enriched
category we say that A is left Kan-injective with respect to h if, for every morphism f : X→
A,

(i) f admits a left Kan-extension along h, that is, the set of all morphisms s : Y → A

such that f ≤ sh has an infimum, which we denote by f /h; and
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(ii) (f /h)h = f .

X
h //

f
��

Y

f /hxxqqq
qqq

qqq
qqq

qq

A

A morphism g : A→ B is said to be left Kan-injective with respect to h if the objects A and
B are so, and g satisfies the equality g(f /h) = (gf )/h for every f : X→ A.

2. If in (i) we replace “f ≤ sh” with “f ≥ sh” and “infimum” with “supremum” we
obtain the right Kan-injectivity concept.

Of course, if we reverse the order of the hom-sets of an order-enriched category, we get
a new order-enriched category, and left Kan-injectivity in the former category becomes
right Kan-injectivity in the latter, and vice-versa.

Along the paper we are going to work with left Kan-injectivity and we often omit the
word “left”.

In an order-enriched category a pair of morphisms X
r // Y
l

oo is said to be an adjoint

pair, written l ⊣ r : X → Y , if idY ≤ rl and lr ≤ idX , being r the right adjoint and l the left
adjoint. (We recall that r and l are mutually uniquely determined.) If, moreover, l is a
retraction, then it satisfies the equality lr = idX . Indeed, let s : X→ Y be a right inverse of
l; then lr = lrls ≥ ls = idX , and this, combined with lr ≤ idX , gives lr = idX . When this is
the case, we shall call l a left adjoint retraction. Analogously, we shall use the expressions
right adjoint retraction and left (or right) adjoint section with the obvious meaning.

Remark 2.2. We recall from Kock [21] and Escardó [7, 8] that a KZ-monad over an order-
enriched category X is a monad whose functor F : X→ X is locally monotone and whose
unit η fulfils the condition

(1) FηX ≤ ηFX , for all X ∈ X.

Moreover, the structure map of each Eilenberg-Moore algebra of a KZ-monad is adjoint
to the unit. More precisely, for X ∈ X and α : FX→ X, the pair (X, α) is an algebra if and
only if we have an adjunction α ⊣ ηX with αηX = idX , that is, ηX is a right adjoint section;
further, if it is the case, α = idX/ηX .

Consequently, every object X of X is the structure of at most one Eilenberg-Moore
algebra of the monad. Thus, categories of algebras of these monads can be seen, up to
isomorphism of categories, as subcategories of X. These subcategories are said to be KZ-
monadic ([3]).

In an order-enriched category X, given a subcategory A, we write

AKInj
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to denote the class of all morphisms of X with respect to which all objects and all mor-
phisms of A are left Kan-injective. And, given a class H of morphisms of X, taking all
objects and morphisms which are left Kan-injective with respect toH we obtain a subcat-
egory, designated by

KInj(H)

and said to be a Kan-injective subcategory.
This way, (left) Kan-injectivity gives rise to a Galois connection between subcategories

and classes of morphisms of X. Thus, given a subcategory A of X, the subcategory
KInj(AKInj) is the smallest Kan-injective subcategory of X containing A. It will be called
the Kan-injective hull of A and denoted by

K(A).

The next theorem and proposition characterize KZ-monadic subcategories A and the
corresponding class AKInj. First we need the following definitions:

Definitions 2.3. 1. A subcategory A of an order-enriched category X is said to be closed
under left adjoint retractions if, for every commutative diagram in X of the form

A
f

//

x
��

B

y
��

X
g

// Y

with x and y left adjoint retractions (as defined before Remark 2.2), if f ∈ A then also
g ∈A.

2. Given a locally monotone functor F : X → Y, we call a morphism f : X → Y an F-
embedding if Ff is a left adjoint section in Y, i.e., if there is a morphism (Ff )∗ : FY → FX

with (Ff )∗Ff = idFX and Ff (Ff )∗ ≤ idFY .

Theorem 2.4. ([5]) LetA be a subcategory of the order-enriched categoryX. Then the following
statements are equivalent:

(a) A is a KZ-monadic subcategory of X.
(b) A is a reflective subcategory of X closed under left adjoint retractions, whose reflector

functor F and unit η satisfy the conditions:
(i) A = KInj({ηX |X ∈ X}), and
(ii) for every morphism f : FX→ A in A, (f ηX)/ηX = f .

Remark 2.5. The condition (ii) above may be equivalently replaced with the following
one: for every pair of morphisms f ,g : FX→ A with f in A, f ηX ≤ gηX implies f ≤ g.

Remark 2.6. In particular, Theorem 2.4 shows that every KZ-monadic subcategory is a
Kan-injective subcategory, that is, of the form KInj(H), for some class H of morphisms.
In [3] the authors present conditions on the base category under which the converse is
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true for all sets H. The particular case of ordinary categories, enriched with the order
equality, is then the solution for the Orthogonal Subcategory Problem given in [11, 19]
(see also [1]).

Proposition 2.7. ([5]) LetA be a KZ-monadic subcategory of X with F : X→A and I :A→ X

the reflector and inclusion functors, respectively. Then,

AKInj = {f ∈ X |f is an F-embedding} = {f ∈ X |f is an IF-embedding},

and A =K(A).

We prove here another property of Kan-injectivity, which will be useful in the last
section.

Proposition 2.8. Let F ⊣ G : A→ X be an adjunction of locally monotone functors between
order-enriched categories. Then, given a morphism h ofX, an objectA (respectively, a morphism
f ) of A is Kan-injective with respect to Fh in A if and only if GA (respectively, Gf ) is Kan-
injective with respect to h in X.

Remark. Before proving the proposition, we point out that, given the adjunction F ⊣ G :
A→ X between order-enriched categories, the local monotonicity of the functors G and
F is equivalent to the following condition for all pairs of morphisms f ,g : FX→ A, where
η is the unit:

(2) Gf · ηX ≤ Gg · ηX ⇔ f ≤ g.

Indeed, if G and F are locally monotone, one of the implications of (2) is obvious; and
the less obvious one follows easily, since, given f ,g : FX → A with Gf · ηX ≤ Gg · ηX ,
then, using the counit ε of the adjunction, we have εA · FGf · FηX ≤ εA · FGg · FηX , thus
f ·εFX ·FηX ≤ g ·εFX ·FηX , that is, f ≤ g. Conversely, assuming that condition (2) is satisfied,
given f ,g : X → Y in X with f ≤ g, we have ηY f ≤ ηY g, that is, GFf · ηX ≤ GFg · ηX , thus
Ff ≤ Fg. Moreover, given f ,g : A → B in A with f ≤ g, then f εA ≤ gεA, and, using
condition (2), Gf ·GεA · ηGA ≤ Gg ·GεA · ηGA, that is, Gf ≤ Gg.

Proof. Let GA be Kan-injective with respect to h : X → Y . In order to prove that A is
Kan-injective with respect to Fh, consider a morphism u : FX → A. By hypothesis, there
exists (Gu ·ηX)/h. Let ū be the unique morphism with Gū ·ηY = (Gu ·ηX)/h. We show that
u/Fh = ū.

X
h //

ηX
��

Y

ηY
�� (Gu·ηX )/h

��

GFX
GFh //

Gu ))SSS
SSSS

SSSS
SSSS

SSS
GFY

Gū

##G
GG

GG
GG

G

GA
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The equality ūFh = u follows from the fact that we have G(ū · Fh) · ηX = Gū · ηY · h =
((Gu · ηX)/h) · h = Gu · ηX . Let now s : FY → A be a morphism satisfying the inequality
u ≤ sFh. Then, by (2), Gu ·ηX ≤ Gs ·GFh ·ηX = Gs ·ηY ·h, and thus (Gu ·ηX)/h ≤ Gs ·ηY , that
is, Gū · ηY ≤ Gs · ηY ; using property (2) again, ū ≤ s. Now it is easy to show the property
also for morphisms: for f : A→ B with Gf Kan-injective with respect to h, we will have
G(f ū)ηY = Gf ·Gū ·ηY = Gf · ((Gu · ηX)/h) = (G(f u) · ηX)/h) = Gf u ·ηY , then f ū = f u, that
is, f (u/Fh) = (f u)/Fh.

Conversely, letA be Kan-injective with respect to Fh, consider a morphismw : X→ GA,
and let w : FX → A be the unique morphism such that Gw · ηX = w. We show that w/h =
G(w/Fh)ηY . Indeed, G(w/Fh)ηY h = G(w/Fh) ·GFh · ηX = Gw · ηX = w; and, if s : Y → GA

satisfies the inequality w ≤ sh, then, for s = Gs · ηY , we have Gw · ηX ≤ Gs · ηY · h = Gs ·
GFh · ηX = G(s ·Fh) · ηX , and, thus, w ≤ sFh. It follows that w/Fh ≤ s, hence G(w/Fh) · ηY ≤
Gs · ηY = s. Again the property for morphisms easily follows. �

Remark 2.9. We will also use the notion of Kan-projectivity, dual of the one of Kan-
injectivity. Namely, in an order-enriched category X, an object A is right Kan-projective
with respect to a morphism h : X→ Y if, for every morphism f : A→ Y there is a (unique)
morphism

f

h
: A→ X

such that

(i) if s : A→ X is a morphism with f ≥ hs, then f
h ≥ s;

(ii) h fh = f .

And a morphism g : A→ B is said to be right Kan-projective with respect to h if the objects
A and B are so, and g satisfies the equality f g

h = f
h g for every f : B→ Y .

Reversing the order we obtain left Kan-projectivity.

3. n-flat embeddings in Loc

We recall that a frame is a complete lattice satisfying the infinite distributive law

a∧ (∨B) = ∨{a∧ b |b ∈ B}

for all its elements a and subsets B. And a frame homomorphism between frames is a
map preserving all joins and all finite meets. We denote the category of frames and frame
homomorphisms by Frm. Its opposite category is the category Loc of locales and localic
maps. Thus the objects of Loc, known as locales, are just the frames. The morphisms of
Loc, the localic maps, may be seen as infima-preserving maps f : L → M such that the
corresponding left-adjoint f ∗ : M → L preserves finite meets ([17], [25]). We recall that
the fact that f preserves arbitrary meets implies that it has a left adjoint defined by

f ∗(y) = ∧{x ∈ L |y ≤ f (x)}
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and f ∗ preserves arbitrary joins. Analogously, every frame homomorphism f has a right
adjoint which preserves arbitrary meets.

Let us consider the categories Frm and Loc order-enriched via the pointwise order, that
is, in both cases, for f ,g : X→ Y , f ≤ g iff f (x) ≤ g(x), x ∈ X. Then, for f ,g : X→ Y taken
in Frm, we have that

(3) f ≤ g in Frm iff f∗ ≥ g∗ in Loc

and, analogously, for f ,g : X→ Y taken in Loc,

(4) f ≤ g in Loc iff f ∗ ≥ g∗ in Frm.

Indeed, if f and g lie in Loc with f (x) ≤ g(x), x ∈ X, then, for every y ∈ Y ,

g∗(y) = ∧{x ∈ X |y ≤ g(x)} ≤ ∧{x ∈ X |y ≤ f (x)} = f ∗(y).

Similarly, we conclude (3). As a consequence, an adjoint pair f ⊣ g in Frm gives rise to the
adjoint pair f∗ ⊣ g∗ in Loc, and vice-versa.

It is easy to see that left Kan-injectivity in Loc translates into right Kan-projectivity
in Frm. More precisely, a frame A is right Kan-projective in Frm with respect to a frame
homomorphism h : X→ Y iff A is left Kan-injective in Loc with respect to the localic map
h∗ : Y → X. And the existence of g

h for g : A→ Y implies that g∗/h∗ exists in Loc and is
given by the formula

(5) g∗/h∗ =
(g
h

)
∗
.

Analogously, if A is a locale left Kan-injective with respect to a localic map h : X → Y ,
then A is right Kan-projective with respect to h∗ in Frm and it holds the formula

(6)
g∗

h∗
= (g/h)∗.

Terminology 3.1. From now on we proceed with just the terminologies Kan-projectivity
in Frm and Kan-injectivity in Loc, referring, in the former case, to right Kan-projectivity,
and, in the latter one, to left Kan-injectivity.

A localic map f : L→M is said to be an embedding if it is one-to-one. This is equivalent
to its left-adjoint f ∗ : M → L being a surjection, and also equivalent to f satisfying the
equality f ∗f = idL. Embeddings are precisely the extremal monomorphisms of Loc ([17],
[25]).

Definition 3.2. For every cardinal n ≥ 1, an embedding g : L → M in Loc is said to be
n-flat provided that it preserves suprema of families of cardinality less or equal than n.

Remark 3.3. A 1-flat embedding is an embedding which preserves the least element, that
is, a dense embedding. The 2-flat embeddings are the usual flat embeddings, that is, those
embeddings which preserve finite joins (see [17]).
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Remark 3.4. The category Frm is a subcategory of the category SLat of meet-semilattices
and homomorphisms, and the forgetful functor from Frm to SLat has a left adjoint

D : SLat→ Frm.

It sends every semilattice L to the frame DL of all lower sets of L ordered by inclusion,
that is, the elements of DL are all subsetsW of L with

W =↓W = {x ∈ L |x ≤ w for some w ∈W };

and, given a morphism f : L → M of SLat, (Df )(U ) =↓ f [U ] for all U ∈ DL. For every
L ∈ SLat, the corresponding universal morphism dL : L→DL is defined by

dL(x) =↓ x = {y ∈ L |y ≤ x}, x ∈ L;

and, given f : L→M in SLat withM in Frm, the unique frame homomorphism f̄ : DL→
M with f̄ dL = f is defined by f̄ (U ) =

∨
f [U ]. Moreover, Frm is a KZ-monadic subcategory

of SLat via the reflector functor D. This follows from [4], and can also be easily shown
by using (b) of Theorem 2.4. Indeed, (i) and (ii) are immediately seen; in addition, given
a commutative square as in Definition 2.3, lying in SLat and with f in Frm, it is easy to
see that the semilattice X has suprema given by the formula

∨
i∈I ai = x (

∨
i∈I x∗(ai)), and

analogously for Y ; using this fact, it follows easily that Frm is closed under left adjoint
retractions in SLat.

Also the forgetful functor from SLat to the category Set of sets and maps has a left
adjoint S : Set→ SLat. It sends every set X to the set of all finite subsets of X equipped
with the partial order given by A ≤ B iff A ⊇ B.

Consequently, given a set X, the free frame generated by X may be constructed as
follows ([17, 25]):

First we form the free meet-semilattice SX generated by X. The free frame generated
by X, denoted FX, is precisely D(SX). The corresponding universal map ηX : X → FX is
then defined by

ηX(x) =↓ {x} = {W ∈ SX |W ≤SX {x}} = {W ∈ SX | {x} ⊆W }
= {W ⊆ X |W is finite and x ∈W }.

Notation 3.5. Let n be any cardinal looked just as a set. In the following,

Fn

denotes the free frame generated by n. In particular, we put F0 = (0 < 1) and F1 = (0 < d <
1).

Next we characterize the embeddings of Loc via Kan-injectivity.

Proposition 3.6. In Loc, a localic map h is an embedding if and only if the three-element chain
is Kan-injective with respect to h, if and only if every finite chain is Kan-injective with respect
to h.
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Proof. Let F1 = (0 < d < 1) be Kan-injective with respect to h : X → Y in Loc. We want to
show that h is one-to-one. For every x ∈ X, let gx : X→ F1 be the localic map given by

gx(z) =


1, if z = 1;
d, if 0 , x ≤ z , 1;
0, otherwise.

Then there exists the localic map gx/h : Y → F1. For x and x′ in X with x , x′, assume,
without loss of generality, that x � x′. Then gx(x) , gx(x′) and, since gx = (gx/h)h, we
conclude that h(x) , h(x′).

We prove now that every finite chain is Kan-injective with respect to all embeddings.
We are going to work in the category Frm. Thus we want to show that finite chains are
Kan-projective with respect to the frame homomorphisms h : X→ Y for which h∗ : Y → X

satisfies the equality hh∗ = idY . Indeed, let A be a finite chain and let h : X → Y be a
surjection in Frm. Let f : A→ Y be a morphism of Frm. We are going to show that the
morphism f

h : A→ X exists and is defined by:

(7)
f

h
(a) = (h∗f )(a), if a , 0, and

f

h
(0) = 0.

We recall that the right adjoint of the morphism h is given by h∗(y) =
∨
h−1(↓ y), where

↓ y = {z ∈ Y |z ≤ y}. The function f
h defined as above is monotonous, because

a ≤ a′ ⇒ ↓ f (a) ⊆↓ f (a′)
⇒ ∨h−1(↓ f (a)) ≤ ∨h−1(↓ f (a′)).

Since A is a finite chain, we conclude that fh preserves all the meets and non-empty joins;
by definition it also preserves the empty joins. So it is a morphism of Frm. It is now easy
to see that fh defined as in (7) satisfies (i) and (ii) of Remark 2.9. �

Remark 3.7. Let L be a meet-semilattice and let DL be the frame of its lower sets ordered
by inclusion (as described in Remark 3.4). Then, for every lower setW ∈DL, we have that
W =↓W =

∪
a∈W ↓ a, where ↓ a = {b ∈ L |b ≤ a}. Consider the set

(8) L = {↓ a |a ∈ L}.

Then every W ∈ DL may be expressed as a supremum in DL as follows: W =
∨
{A ∈

L |A ≤ W }. In particular, given a set X, the free frame generated by X has the property
that every W ∈ FX can be expressed as a supremum of elements of SX, where SX is the
meet-semilattice generated by X and SX is defined as in (8):

(9) W =
∨
{A ∈ SX |A ≤W }.

In order to point out another feature of the free frame FX, observe that, for every
x ∈ X, {x} is an element of the semilattice SX and the element ↓ {x} of FX is defined by
↓ {x} = {A ∈ SX |x ∈ A}. The elements {x} of SX are clearly immediate predecessors of the
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greatest element 1SX , and, consequently, in the frame FX, the supremum
∨
x∈X ↓ {x} is an

immediate predecessor of 1FX , indeed the only one.

Notation 3.8. For every cardinal n, we denote by s the (unique) predecessor of 1Fn :

(10) s =
∨
k∈n
↓ {k}.

In F0 = (0 < 1) this element s is just 0, and in F1 = (0 < d < 1) it is precisely d.
We are going to consider the localic map

fn : Fn→ F1

defined by fn(1) = 1, fn(s) = d, and fn(x) = 0 for x , 1, s. In particular, f0(0) = d and f1 is
the identity map.

For every cardinal n ≥ 1, let
Dn

denote the category whose objects are F0, F1 and Fn, and whose morphisms, besides the
identities, are f0 and fn. Of course, since f1 coincides with the identity, D1 has just a
non-identity morphism, which is f0.

In Proposition 3.6 we characterized the embeddings of Loc in terms of Kan-injectivity
of F1. In the next proposition and theorem we characterize dense embeddings and n-flat
embeddings by means of Kan-injectivity.

Proposition 3.9. Dense embeddings in Loc are precisely the localic maps with respect to which
the morphism f0 is Kan-injective.

Proof. From Proposition 3.6 we already know that the localic maps with respect to which
F0 and F1 are Kan-injective are precisely the embeddings. Now we prove that an em-
bedding h : X → Y is dense iff f0 is Kan-injective with respect to it. We know that f0 is
Kan-injective with respect to h in Loc iff f ∗0 is Kan-projective with respect to h∗ in Frm,
that is, iff, for every frame homomorphism g : F0→ X, the lower triangle of the diagram

X Y
h∗oo

F0

g

OO

g
h∗

88pppppppppppppp
F1

gf ∗0
h∗

OO

f ∗0

oo

is commutative. Since we are dealing with frame homomorphisms, which preserve the
least and greatest elements, we just need to prove that the equality

gf ∗0
h∗

(d) =
g

h∗
f ∗0 (d)

holds iff h is dense, i.e., iff h(0) = 0. Indeed, by using formula (7) of the proof of Propo-
sition 3.6 for morphisms f whose domain is a finite chain, and using the preservation of
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the least element by the frame homomorphisms g and g
h∗ , we have that:

(11)
gf ∗0
h∗

(d) = hgf ∗0 (d) = hg(
∧

f −10 (↑ d)) = h(g(0)) = h(0)

and

(12)
g

h∗
f ∗0 (d) =

g

h∗
(0) = 0.

Then f0 is Kan-injective with respect to h if and only if the right-hand sides of the equa-
tions (11) and (12) are equal, that is, iff h(0)=0. �

Theorem 3.10. For every cardinal n ≥ 1, n-flat embeddings in Loc are precisely the localic
maps with respect to which f0 and fn are Kan-injective.

Proof. In order to show that Fn is Kan-injective with respect to n-flat embeddings, we
work in Frm: we prove that Fn is Kan-projective with respect to frame homomorphisms
h : X→ Y whose right adjoint h∗ fulfils hh∗ = idY and preserves unions of families indexed
by k ≤ n.

Let then h : X → Y be of that form, and let g : Fn→ Y be a frame homomorphism. We
show that h∗g is a frame homomorphism. (Moreover, it will be clear from the proof that
the same is true for any g : Fi → Y with i < n.) This will guarantee that

(13)
g

h
= h∗g,

since we have that h(h∗g) = g, and hs ≤ g ⇒ h∗hs ≤ h∗g ⇒ s ≤ h∗g.
In order to show that h∗g is indeed a frame homomorphism, we observe that it pre-

serves finite meets because h∗ is a right adjoint and g is a frame homomorphism. And h∗g
preserves the least element because h∗ is dense. Moreover, by hypothesis, h∗g preserves
suprema of every set of cardinality no greater than n. We are to prove that the same is
true for arbitrary suprema. Let then {Wt : t ∈ T } be a subset of Fn, and let us consider the
subset of Fn given by Sn = {↓ a |a ∈ Sn}, which is defined by departing from the semilattice
Sn accordingly to formula (8) of Remark 3.7. Following formula (9), we know that, for
every t ∈ T ,Wt =

∨
{A ∈ Sn : A ≤Wt}. Then, we have that

(h∗g)(
∨
t∈T

Wt) = (h∗g)(
∨
t∈T

(
∨
{A ∈ Sn : A ≤Wt}))

= (h∗g)(
∨
{A ∈ Sn : A ≤Wt for some t ∈ T }).

The cardinality of Sn, which is equal to the one of Sn, is finite if n is so, and it is equal
to n if n is infinite. Consequently, we know that h∗ preserves suprema of g[M], for every
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M ⊆ Sn. Therefore, using also the fact that g is a morphism of Frm, we have:

(h∗g)(
∨
t∈T

Wt) = h∗(
∨
{g(A) : A ∈ Sn and A ≤Wt for some t ∈ T })

=
∨
{(h∗g)(A) : A ∈ Sn and A ≤Wt for some t ∈ T }

=
∨

(
∪
t∈T
{(h∗g)(A) : A ∈ Sn and A ≤Wt})

=
∨
t∈T

(
∨
{(h∗g)(A) : A ∈ Sn and A ≤Wt})

=
∨
t∈T

(h∗g)(
∨
{A ∈ Sn : A ≤Wt})

=
∨
t∈T

(h∗g)(Wt).

Consequently, given an n-flat embedding m : X → Y in Loc, and a localic map l : X → Fi
with i ≤ n, using the formula (5) and the equality (13), we have

(14) l/m =
(
l∗

m∗

)
∗
= ((m∗)∗l

∗)∗ = (ml∗)∗ = lm∗

with lm∗ a localic map. In order to verify that fn is Kan-injective with respect to m : X→
Y , it suffices now to use (14) applied to l and fnl:

fn(l/m) = fn(lm∗) = (fnl)m∗ = (fnl)/m.

Conversely, let fn be Kan-injective with respect to the embedding m : X → Y in Loc;
equivalently, f ∗n is Kan-projective with respect to m∗ : Y → X in Frm. We already know
from the above proposition that m preserves the supremum of the empty family. We
want to prove that m preserves suprema of non-empty n-indexed families. For that, let
{xk |k ∈ n} be a set of elements of X. Define a map p : n → X by putting p(k) = xk. Let
ηn : n→ Fn be the universal map given by ηn(k) =↓ {k} (see Remark 3.4). Then there is a
unique frame homomorphism g : Fn→ X such that gηn = p; in particular, g(↓ {k}) = xk for
every k ∈ n, and then, g(s) = g (

∨
k∈n ↓ {k}) =

∨
k∈nxk.

By hypothesis, there exist the morphisms g
m∗ and

gf ∗n
m∗ in Frm, and, moreover, they satisfy

the equality
gf ∗n
m∗

=
g

m∗
f ∗n .

In particular,

(15)
gf ∗n
m∗

(d) =
g

m∗
f ∗n (d).
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On one hand, taking into account that f ∗n (d) =
∧
{z ∈ Fn |d ≤ fn(z)} = s, and the formula (7)

obtained in the proof of Proposition 3.6, we have:

(16)
gf ∗n
m∗

(d) =mgf ∗n (d) =mg(s) =m

∨
k∈n

xk

 .
Since idY ≤mm∗ and m∗

g
m∗ = g, then

g
m∗ ≤mm

∗ g
m∗ =mg. Thus, using also the fact that g

m∗ is
a frame homomorphism, we obtain, on the other hand, that

(17)
g

m∗
f ∗n (d) =

g

m∗
(s) =

g

m∗

∨
k∈n
↓ {k}

 =∨
k∈n

g

m∗
(↓ {k}) ≤

∨
k∈n

m (g(↓ {k})) =
∨
k∈n

m(xk).

From (15), (16) and (17), we obtain m
(∨
k∈n
xk

)
≤

∨
k∈n
m(xk). As the other inequality trivially

holds, we conclude that m
(∨
k∈n
xk

)
=

∨
k∈n
m(xk). �

Remark 3.11. In the proof of the above theorem we saw that the locale Fn is Kan-injective
with respect to n-flat embeddings. More than that, it is Kan-injective with respect to all
embeddings. In other words, every free frame is Kan-projective with respect to quotients
in Frm. Indeed, let D : SLat → Frm and S : Set → SLat be the functors described in
Remark 3.4. Given a quotient h : X → Y in Frm and a frame homomorphism g : Fn→ Y ,
it is easy to see that the morphism g

h is the frame homomorphism ĝ : Fn = DSn → X

with h∗gdSn = ĝdSn, where dSn is the universal morphism from Sn to Frm. Indeed, the
equality hĝ = g follows from the equalities hĝdSn = hh∗gdSn = gdSn, and, given a frame
homomorphism s : Fn → X with hs ≤ g, then we have sdSn ≤ h∗hsdSn ≤ h∗gdSn = ĝdSn.
Thus, since the reflection is of KZ type, as observed in Remark 3.4, it follows that s ≤ ĝ
(see Theorem 2.4 and Remark 2.5).

Remark 3.12. It is well known that there is a contravariant functor Ω from Top to Frm

sending every space X to the frame ΩX of its open subsets and every continuous map
f : X→ Y to the frame homomorphism f −1 :ΩY →ΩX. This functor, seen as a covariant
one, may be defined as the functor

Lc : Top→ Loc

sending every continuous map f : X → Y to the right-adjoint (f−1)∗ : ΩX → ΩY of f −1 :
ΩY →ΩX, thus (f−1)∗(H) =

∪
{V ∈ΩY : f −1(V ) ⊆ H}, H ∈ΩX. Moreover, a locale is said

to be spatial if it is isomorphic to the frame ΩX for some space X.
The union of all subcategories Dn defined in Notation 3.8 is a subcategory

D

of Loc. The categoryD is made of spatial locales, since the lower sets of a meet-semilattice
L form a topology over the underlying set of L. Furthermore, as a consequence of Theorem
3.10, we have the following:
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Corollary 3.13. The Kan-injective hull of D in Loc is the entire category Loc.

Proof. Let us denote by En the class of all n-flat embeddings, and by EC the class of all
completely flat embeddings, that is, embeddings that preserve arbitrary suprema. Then,
using the fact that the operators KInj and KInj(−) establish a Galois connection between
subcategories and classes of morphisms, we have:

DKInj =

∪
n≥1

Dn

KInj =∩
n≥1

D
KInj
n =

∩
n≥1

En = EC .

A completely flat morphism f : X → Y of Loc is a frame homomorphism, thus f∗ also
belongs to Loc. As a consequence, it follows that, if f is, moreover, an embedding, that
is, f∗f = id, then all locales and all localic maps are Kan-injective with respect to f : for
every g : X→ A in Loc, g/f = gf∗. Therefore,

K(D) = KInj
(
DKInj

)
= KInj(EC) = Loc.

�

4. The categories Locn

In this section we study the Kan-injective hulls in Loc of the subcategories Dn of the
last section. In particular, we will see that the Kan-injective hull of Dn is precisely the
Eilenberg-Moore category of a KZ-monad Gn : Loc→ Loc. For that, we are going to use
some results of [4], as explained in the following remark.

Remark 4.1. Let D : SLat→ Frm be the reflector functor already described in Remark 3.4.

1. Banaschewski [4] considered subcategoriesK of the category SLat obtained as follows:
Let

(SA)A∈SLat

be a family where, for every object A, SA is a subset of the power-set of A, satisfying the
following conditions:

(a) {a∧ t | t ∈ P } ∈ SA, for every a ∈ A and every P ∈ SA.
(b) for every morphism f : A→ B of SLat and every P ∈ SA, f [P ] ∈ SB.
The corresponding category

K

is then constituted by the objects A of SLat such that for every P ∈ SA, ∨P exists and
a∧(∨P ) = ∨{a∧t | t ∈ P }, and by the morphisms f : A→ B of SLat such that f (∨P ) = ∨f [P ],
P ∈ SA.

For a subcategoryK obtained this way, Banaschewski proved that Frm is reflective inK

with every reflection ηA : A→ RA being given by

RA = {U ∈DA | (P ⊆U and P ∈ SA)⇒∨P ∈U }, and ηA(a) =↓ a, a ∈ A.
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For every morphism f : A→ L in K, with L ∈ Frm, the unique morphism f : RA→ L such
that f ηA = f is defined by f (U ) = ∨f [U ]. The counit is thus given by εL(U ) = ∨U , U ∈ RL.

This reflection induces then a comonad in Frm whose functor part is the composition
of the inclusion of Frm into SLat with the reflector functor R, and this comonad is of KZ
type ([4]).

2. For every cardinal n, let
(SnA)A∈SLat

be the family defined by:

S0A = ∅; and
SnA = {P ⊆ A |card(P ) ≤ n}, for n ≥ 1.

It is easy to see that Sn satisfies the conditions described for S above. Let us denote
the corresponding subcategory K and its reflector in Frm by Kn and Rn, respectively. For
n = 0,K0 is just SLat, and, for n ≥ 1, it consists of all objectsA andmorphisms f : A→ B of
SLat such that, for all a ∈ A and P ⊆ Awith card(P ) ≤ n, ∨P exists, a∧(∨P ) =

∨
{a∧t | t ∈ P },

and f [∨P ] = ∨f [P ]. The comonad over Frm induced by the reflector

Rn :Kn→ Frm

is precisely Hn = (Hn, ε,δ), defined as follows:
The functor

Hn : Frm→ Frm

sends each frame L to the frame

HnL = {U ∈DL | (P ⊆U, card(P ) ≤ n)⇒∨P ∈U }

ordered by inclusion. Moreover, for each frame homomorphism f : L→M, Hnf : HnL→
HnM is defined by

Hnf (U ) =
∨
{↓ f (u) |u ∈U }, U ∈HnL.

The counit ε is given, for every L ∈ Frm and U ∈HnL, by

εL(U ) = ∨U.

The comultiplication δ : Hn→ HnHn is given, for every L ∈ Frm and U ∈ HnU , by δL(U ) =∨
{↓HnL (↓L u) |u ∈U }.
Moreover, this comonad is of KZ type, more precisely, it satisfies the inequalities

(18) εHnX ≤HnεX , X ∈ Frm.

Notation 4.2. 1. By duality, the comonad Hn yields a monad in Loc; let

Gn : Loc→ Loc
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be its corresponding functor; thus, for every localic map f , Gnf = (Hnf ∗)∗. The unit of
the monad Gn over Loc is given by εopX = (εX)∗. As a consequence of the inequalities (18),
taking into account that the order of the morphisms is reversed in the passage from Frm

to Loc, we obtain the inequalities

ε
op
HnX
≥Hop

n ε
op
X

in Loc. These inequalities mean that this monad is of KZ type (see 2.2.) Accordingly, our
Gn-embeddings are going to be those localic maps f : X→ Y such thatGnf is a left adjoint
section, i.e., it has a right adjoint (Gnf )∗ in Loc with (Gnf )∗Gnf = idGnX (see Proposition
2.7).

2. Aiming to give a characterization of the subcategories KInj(En) of Loc for E0 the class
of embeddings and En (with n ≥ 1) the class of n-flat embeddings, let us consider, for
every cardinal n and every frame L, the binary relation defined in the underlying set of L
as follows:

x ▹n a⇔ (∀U ∈HnL, a ≤ ∨U ⇒ x ∈U ).

This kind of relation was possibly used for the first time by Raney in [26], and Ba-
naschewski [4] considered a generalization of it which encompasses all comonads in-
duced by a reflector R :K→ Frm of the type mentioned in Remark 4.1.

We denote by
Locn

the subcategory of Loc whose objects are the locales L that satisfy the following condi-
tions:

(i) For every a ∈ L, a =
∨
x▹na

x,

(ii) Given x,y,a ∈ L, if x ▹n a and x ▹n b then x ▹n a∧ b,
(iii) 1L ▹n 1L;

and whose morphisms are all the localic maps f with a left adjoint f ∗ that preserves the
relation “▹n”.

Remark 4.3. The objects of the category Loc2 are precisely the stably locally compact
locales and, moreover, they are spatial and coincide with the (left adjoint) retracts of
coherent locales ([16], [18]). A localic map between coherent locales belongs to Loc2 iff
it is a coherent morphism in the sense of [17]. From Theorem 2.4, it follows that Loc2
is precisely the closure under left adjoint retractions, on objects and on morphisms, of
the category of coherent locales and coherent localic maps. Furthermore, by Theorem 4.5
below and Proposition 2.7, the flat embeddings coincide with Loc

KInj
2 , that is, they form

the largest class of localic maps with respect to which Loc2 is Kan-injective.

Remark 4.4. 1. From general properties of the reflector R : K → Frm of Remark 4.1
proved in [4], we know that the Eilenberg-Moore coalgebras of the KZ-comonad Hn are
precisely those frames which satisfy the three conditions (i)-(iii) of Notation 4.2.2, and
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also precisely those frames which are Kan-projective with respect to n-flat surjections
(that is, with respect to the frame homomorphisms f whose right adjoint f∗ is an n-flat
embedding in Loc). In other words, a locale is Kan-injective with respect to the n-flat
embeddings iff it is an object of Locn. Indeed Kan-injectivity of locales with respect to
n-flat embeddings coincides, in the dual context, with Kn-flat projectivity of frames in
the sense of [4], where Kn is defined as in Remark 4.1.2.

In the next theorem we complete the characterization of the Eilenberg-Moore category
of the monad Gn over Loc by describing also its morphisms.

2. We observe that, as it follows from Remark 2.2, by duality, the structure map of an
Eilenberg-Moore coalgebra (L, l) of the comonad Hn is left adjoint to εL, where ε is the
counit of the comonad Hn; thus we have that lεL ≤ idHnL and εLl = idL. Moreover, as it
was proved in [4], l is defined by

(19) l(a) =
∨
x▹na

↓ x, a ∈ L,

and the binary relation ▹n is characterized by

(20) a ▹n b ⇔↓ a ⊆ l(b), a,b ∈ L.

Theorem 4.5. The Eilenberg-Moore category of the KZ-monad Gn is Locn. Moreover, Loc0 is
the Kan-injective hull of F1, and Locn is the Kan-injective hull of Dn, for n ≥ 1.

Proof. We already know from Notation 4.2 that Gn yields a KZ-monad. Next we verify
that the embeddings are precisely the G0-embedings and, for n ≥ 1, n-flat embeddings
are precisely the Gn-embeddings (see Definition 2.3.2 and Proposition 2.7).

If f : X → Y is an embedding in Loc then it is a morphism of K0 = SLat (see Re-
mark 4.1.2) such that the frame homomorphism f ∗ satisfies the equality f ∗f = idX . If,
moreover, f is n-flat, f is a morphism of Kn. The functor Rn :Kn→ Frm is locally mono-
tone, then it preserves adjoint pairs and left inverses, that is, Rnf ∗ ⊣ Rnf in Frm and
Rnf

∗Rnf = id. This implies that (Rnf ∗)∗ ⊣ (Rnf )∗ in Loc and (Rnf )∗ (Rnf
∗)∗ = idGnX ; equiv-

alently, taking into account that Gnf = (Hnf ∗)∗ = (Rnf ∗)∗, we have that Gnf ⊣ (Rnf )∗ in Loc

and (Rnf )∗ Gnf = idGnX , that is, f is a Gn-embedding.
Conversely, assume that f : X→ Y is a localic map such that (Gnf )∗ ∈ Loc and (Gnf )∗Gnf =

idGnX . Then we conclude that the map (Rnf ∗)∗, which coincides with Gnf , lies in Kn and
satisfies the equality Rnf ∗ (Rnf ∗)∗ = idRnX . Let η and ε be the unit and counit relative to
the reflector functor Rn : Frm→Kn. Then, we have, on one hand,

(21) f ∗(εY ((Gnf )ηX) = f
∗(εY (Rnf

∗)∗ηX) = εX(Rnf
∗)(Rnf

∗)∗ηX = εXηX = idX ;

and, on the other hand,

(εY ((Gnf )ηX)f
∗ = (εY (Rnf

∗)∗ηX)f
∗ = εY (Rnf

∗)∗Rnf
∗ηY ≥ εY ηY = idY .
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We conclude that f ∗ ⊣ εY (Gnf )ηX , that is, f = εY (Gnf )ηX ; since the threemorphisms of the
last composition belong toKn, so do f , thus it preserves unions of k-indexed families, for
k ≤ n, i.e., f is n-flat. The equality (21) assures that f ∗f = idX , that is, f is an embedding.

In order to complete the proof of the theorem, we have to show that the category Locn

is the Eilenberg-Moore category of the monad Gn. For objects the assertion immediately
follows from [4], as we have said in Remark 4.4. It remains to prove that the morphisms of
Locn are precisely the localic maps f such that f ∗ preserves the binary relation ▹n. Equiv-
alently, we show that the morphisms of the category of the Eilenberg-Moore coalgebras
of the comonad Hn are the frame homomorphisms that preserve the relation ▹n.

Let (L, l) and (M,m) be two coalgebras and let f : L→M be a morphism of coalgebras,
i.e., we have the equality (Hnf )l =mf . To conclude that f preserves the relation “▹n”, let
a,b ∈ L be such that a ▹n b. Then we have:

a ▹n b ⇒↓ a ⊆ l(b) by (20)
⇒ (Hnf )(↓ a) ⊆ (Hnf )(l(b)) because Hnf is a frame homomorphism
⇒↓ f (a) ⊆mf (b) since (Hnf )(↓ a) =

∨
{↓ f (z) |z ≤ a} =↓ f (a)

⇒ f (a) ▹n f (b) by (20).

Conversely, suppose that f : L→M is a frame homomorphism whose right adjoint f∗
is a morphism of Locn. Then there are morphisms l and m such that (L, l) and (M,m) are
coalgebras; we want to show that (Hnf )l = mf . We know that εLl = id and mεM ≤ id (see
Remark 4.4.2); moreover, since ε is a natural transformation, εMHnf = f εL. Thus, we
have that

mf =mf εLl =mεM(Hnf )l ≤ (Hnf )l.

To show that also (Hnf )l ≤mf , let a ∈ L. Then, we have that

(Hnf )(l(a)) = (Hnf )(
∨
x▹na
↓ x), by (19)

=
∨
x▹na

(Hnf )(↓ x), because Hnf is a frame homomorphism

=
∨
x▹na
↓ f (x).

For x ∈ L satisfying x ▹n a, we have f (x) ▹n f (a), because f preserves the relation ▹n; thus,
(Hnf )(l(a)) ≤

∨
f (x)▹nf (a) ↓ f (x) ≤

∨
y▹nf (a) ↓ y, that is, taking into account the characteriza-

tion of the coalgebra structure maps given in (19), (Hnf )(l(a)) ≤m(f (a)) in HnM. �

Remark 4.6. From the above theorem it follows that Loc is the union of an increasing
chain of KZ-monadic subcategories that are Kan-injective hulls of finite subcategories.
Indeed, we know that Locn = KInj(En), where, for every n ≥ 1, En is the class of n-flat
embeddings, and E0 is the class of embeddings; since m ≤ n clearly implies Em ⊇ En, it
follows that Locm = KInj(Em) ⊆ KInj(En) = Locn.

Recall that a cardinal n is said to be regular if it cannot be expressed as the union of a
family of sets of cardinality less than n indexed by a set of cardinality also less then n.
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Thus the only finite regular cardinals are 0, 1 and 2. If n and m are cardinals with m < n

and n regular, then the category Locm is strictly contained in the category Locn. Indeed,
taking into account that, by Theorems 4.5 and 2.4, En = Loc

KInj
n , it suffices to show that

Em , En. For m = 0 < 1, take the non dense embedding from the chain (0 < 1) to the chain
(0 < d < 1) which sends 0 to d and 1 to 1. For m = 1 < 2, take the embedding h : A→ B

where A is the diamond consisting of the elements a and b, its meet a ∧ b = 0 and its
join a∨ b = 1, B is the five-element frame with elements a, b, the meet a∧ b = 0, the join
a∨ b = s and the greatest element 1, and h is defined by h(x) = x for all x ∈ A. Thus h is
dense but not flat. For m < n with n an infinite regular cardinal, let h : n + 1→ n + 2 be
the embedding from n+1 = {0,1, . . . ,n} to n+2 = {0,1, . . . ,n,n+1}, both equipped with the
usual order, defined by h(k) = k if k < n and h(n) = n+1 . Then h is clearly m-flat but it is
not n-flat, because h (

∨
k∈n k) = h(n) = n+1 but

∨
k∈nh(k) =

∨
k∈n k = n.

5. Kan-injectivity in Top0

The study of full reflective subcategories, and the reflective hull of full subcategories, in
categories of topological spaces, and in particular in the category Top0, is a lively realm of
research, see for instance, [24, 13, 15, 23, 29]. In the last section we have just seen that Loc
is the union of an increasing chain of KZ-monadic subcategories which are Kan-injective
hulls, and then also KZ-monadic hulls, of finite subcategories. In this section we will use
the results on Loc to show that an analogous situation occurs in the full subcategory Sob

of Top0 of all sober spaces.
We recall that the specialization order is the partial order between the points of a T0

topological space defined by x ≤ y iff every open set which contains x also contains y. We
are going to regard the category Top0 as an order-enriched category by considering the
dual of this order pointwisely: given morphisms f , g : X → Y , we put f ≤ g if f −1(G) ⊇
g−1(G) for all open sets G of Y .

In the following, whenwe speak of Kan-injectivity in Top0, we refer to left Kan-injectivity.

Example 5.1. Let f : X → Y be an embedding in Top0 and let S denote the Sierpiński
space. For every open set U of X, and χU : X → S the characteristic map, we have that
χU /f = χ(f−1)∗(U ) ([5]).

Remark 5.2. Let
Lc : Top0→ Loc

be the restriction of the functor Lc described in Remark 3.12 to Top0. Then Lc is locally
monotone, because f ≤ g in Top0 implies that f −1 ≥ g−1 in Frm, so (f −1)∗ ≤ (g−1)∗, that is,
Lc(f ) ≤ Lc(g) in Loc. We also recall that its right adjoint

Σ : Loc→ Top0

sends every locale A to the topological space ΣA consisting of the pair (pt(A), φ), where
pt(A) is the set of all frame homomorphisms p : A → Lc(1) � F0 and φ is the topology
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formed by the sets φ(a) = {p ∈ pt(A) |p(a) = 1}. The functor Σ is also locally monotone
as we show next. For that, recall that the counit ε of the adjunction Lc ⊣ Σ behaves
as follows: for every f : Lc(X) → A, the unique morphism f̄ : X → ΣA of Top0 with

εALc(f̄ ) = f is given by f̄ (x) = ( A
f∗ // Lc(X)

Lc(x)
// Lc(1) ), where the map x : 1 → X

sends the element of the singleton 1 to the element x of X. Thus, in order to verify
that Σ is locally monotone, it suffices to show that for every pair f ,g : Lc(X) → A with
f ≤ g in Loc, we have f̄ ≤ ḡ in Top0. Let then f and g satisfy those conditions, that is,
f ∗ ≥ g∗ in Frm. Hence, for every x ∈ X, Lc(x)f ∗ ≥ Lc(x)g∗ in Frm. Consequently, for every
a ∈ A, the equality Lc(x)g∗(a) = 1 implies Lc(x)f ∗(a) = 1. In other words, Lc(x)g∗ ∈ φ(a)
implies Lc(x)f ∗ ∈ φ(a). Since the topology of ΣA is formed by all sets φ(a), we have that,
concerning the dual of the specialization order, Lc(x)f ∗ ≤ Lc(x)g∗ for all x ∈ X. That is,
f̄ ≤ ḡ, as desired. In conclusion,

Lc ⊣ Σ : Loc→ Top0

yields an adjunction with both functors locally monotone. Moreover, as it is well known,
this adjunction induces an equivalence of categories between the full subcategory SpLoc

of Loc of all spatial spaces and the full subcategory Sob of Top0 of all sober spaces.
Let us recall that a filter ψ in ΩX is completely prime if, for every family (Ui)i∈I of open

sets of X, the fact that
∪
i∈I
Ui ∈ ψ implies that ψ contains some of the sets Ui . We recall

that the functor Σ : Loc→ Top0 may also be defined, up to isomorphism, by looking at ΣL
as the space whose points are the completely prime filters in L and whose open sets are
the sets Σa, a ∈ L, with Σa consisting of all completely prime filters containing a.

Remark 5.3. We recall here the definition of the filter monad T = (T ,η,µ) over Top0.
For every object X, TX is the set of all filters in ΩX equipped with the topology gener-

ated by the sets
�U = {ψ ∈ TX |U ∈ ψ}, U ∈ΩX.

For every morphism f : X→ Y ,

T f (ψ) = {V ∈ΩY | f −1(V ) ∈ ψ}, ψ ∈ TX.

The unit η and the multiplication µ are defined pointwisely by

ηX(x) = {U ∈ΩX | x ∈U } and µX(ψ) = {U ∈ΩX | �U ∈ ψ}.

The filter monad T was studied by Day [6] and Wyler [33], who showed that the
Eilenberg-Moore category of this monad is the category ContI of all continuous lattices
and maps preserving all directed suprema and all infima (relative to the specialization
order). Escardó [7, 8] observed that the filter monad is indeed a KZ-monad, and the
T -embeddings are precisely the embeddings.
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Besides the filter monad T, Escardó and Flagg also analysed some submonads of the
monad T ([7, 8, 10]). Namely they considered the proper filter monad and the prime
filter monad. Here we are going to pay attention to the n-filter monad for every n ≥ 1,
according to the following definition.

Definition 5.4. Given a space X, a filter ψ in ΩX is said to be n-prime provided that,
for every family (Ui)i∈k of members of ψ with card(k) ≤ n, if

∪
i∈k
Ui belongs to ψ then Uj

belongs to ψ for some j.

Remark 5.5. If in the above definition we put n = 1 we obtain the definition of proper
filter, that is, a filter not containing the empty set: just consider card(k) = 0. If we put
n = 2 then we obtain the definition of prime filter.

As it was shown in [8, 10], if, in Remark 5.3, we replace “filter” by “proper filter”,
or by “prime filter”, we obtain also KZ-monads, the proper filter monad and the prime
filter monad, respectively. Moreover, in the same manner we have the KZ-monad of the
completely prime filters.

Notation 5.6. For n ≥ 1 and X ∈ Top0, let TnX be the set of all n-prime filters on ΩX with
the topology generated by the sets �U = {ψ ∈ TnX | U ∈ ψ}, U ∈ ΩX. By defining the
functor

Tn : Top0→ Top0

and the natural transformations ηn and µn exactly as we defined, in Remark 5.3, T , η
and µ, but considering always just n-prime filters instead of filters, we still obtain a KZ-
monad. This is figured out in an entirely analogous way to what was done in [10] for
n = 1,2, and is used in Theorem 5.9 below. Moreover, by imitating the techniques used
in [10] for n = 1,2, we conclude that the corresponding Tn-embeddings are precisely the
n-flat embeddings, which we define next. First, let us recall that, as it is easy to see, a
morphism h : X → Y is an embedding of Top0 iff the morphism Lc(h) =

(
h−1

)
∗
, already

described in Remark 3.12, is an embedding in Loc (see [17]).

Definition 5.7. In Top0, a morphism h : X → Y is said to be an n-flat embedding if the
morphism Lc(h) is an n-flat embedding in Loc.

Notation 5.8. For every cardinal n, the image under Σ of the subcategory Dn described
in Notation 3.8 is a subcategory of Top0, let us denote it by An,

An = Σ[Dn].

In particular, A1 is, up to isomorphism, the subcategory of Top0 whose only non identity
morphism is the inclusion g0 : {0} → S, where S is the Sierpiński space {0,1} with {1}
the only nontrivial open set. We obtain A2, up to isomorphism, by adding to A0 the
morphism g2 : A2→ S, where A2 = {a,b,0,1} with the topology generated by {1}, {a,1} and
{b,1}, and g2 sends all elements of A2 except 0 to 1.
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In [5] we described dense embeddings and flat embeddings in terms of Kan-injectivity
concerning a finite subcategory. In the following we obtain a similar characterization of
n-embeddings, for every cardinal n, as a consequence of Theorem 3.10. Moreover, we use
this characterization to obtain a tower of KZ-monadic subcategories of Top0 whose union
is the full subcategory of sober spaces.

Theorem 5.9. In Top0, for every cardinal n ≥ 1, the class of n-flat embeddings is precisely
A

KInj
n , and the Kan-injective hull of An is the Eilenberg-Moore category of the KZ-monad Tn.

Moreover, the union of the chain of KZ-monadic subcategories K(An) is the category Sob.

Proof. As we have shown in Remark 5.2, the two functors of the adjunction Lc ⊣ Σ : Loc→
Top0 are locally monotone. Then, from Proposition 2.8, we know that, for every cardinal
n, Σfn is (left) Kan-injective with respect to a morphism h : X → Y in Top0 if and only if
fn is Kan-injective with respect to Lc(h) in Loc. Consequently, it follows from Theorem
3.10 that AKInj

n is indeed the class of n-flat embeddings.
But n-flat embeddings coincide also with Tn-embeddings (see Notation 5.6). Then, by

Proposition 2.7, the Eilenberg-Moore category of the KZ-monadTn is KInj(Tn-embeddings) =
KInj

(
A

KInj
n

)
=K(An).

It remains to show that the category Sob is the union of the categories K(An). As ob-
served in [10], Sob is the Eilenberg-Moore category of the KZ-monad T̄ = ΣLc of com-
pletely prime filters; and the T̄ -embeddings are the completely flat embeddings, i.e.,
those embeddings for which Lc(g) = (g−1)∗ preserves arbitrary unions. Thus, from Propo-
sition 2.7, it follows that Sob = KInj(C) for C the class of all completely flat embeddings.
It is clear that every completely flat embedding is n-flat for every n. Then the inclusion
of the categories K(An) in Sob follows.

In order to show that Sob ⊆ K(An) for some n, let X be a sober space, and let ΩX
have cardinality n. We show that X ∈ K(An). Indeed, given any union ∪i∈IAi of open
sets of X, there is some J ⊆ I such that card(J) ≤ n and, for every i ∈ I , Ai = Aj for
some j ∈ J , in particular, ∪j∈JAj = ∪i∈IAi . Consequently any n-prime filter of X is also
completely prime. But then ΣLc(X) = TnX. Since X is sober, the map λX : X → ΣLc(X),
where λ is the unit of the adjunction Lc ⊣ Σ, is a homeomorphism. Being K(An) closed
under isomorphisms in Top0, we conclude that X ∈ K(An). It remains to show that every
continuous map between sober spaces belongs to K(An) for some n. Let f : Z → W be
a morphism in Sob. Let n = max{card(Ω(Z)), card(Ω(W ))}. Then both Z and W belong
to K(An), and λZ and λW are isomorphisms. Then f = η−1Y (Tnf )η

−1
X and, since K(An) is

closed under isomorphisms, it contains f . �

Corollary 5.10. Sob is the Kan-injective hull of the union of all categories An both in Top0

and in Sob.

Proof. The union of all subcategoriesAn is also a category, and it is contained in Sob (since
the image of Σ is contained in Sob). Let us denote it by A. Then, in Top0, denoting the
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class of all completely flat embeddings by C, we have

AKInj =

 ∪
n∈Card

An

KInj = ∩
n∈Card

A
KInj
n = C.

But we know that Sob is the Eilenberg-Moore category of the completely prime filter
monad T̄, being the completely flat embeddings the corresponding T̄-embeddings. Con-
sequently, by Proposition 2.7, Sob =K(A).

Also the Kan-injective hull of A in Sob is Sob as we show now. We use the index Sob

to specify that we are working in the category Sob; otherwise we are referring to Top0.
Indeed, since Sob is full in Top0 we have that KInjSob(A

KInjSob) = KInj(AKInjSob) ∩ Sob.

Then, sinceK(A) = KInj(AKInj) = Sob, andAKInjSob ⊆AKInj, we obtain the desired equality:

Sob =K(A)∩Sob ⊆ KInj(AKInjSob)∩Sob = KInjSob(A
KInjSob) =KSob(A).

�

Remark 5.11. The fact that K(A1) and K(A2) are precisely the categories of Eilenberg-
Moore algebras of the proper filter monad and the prime filter monad, respectively, was
proved in [5]. However, there the morphism f0 of A1, used to characterize the dense em-
beddings, was different; moreover, this morphismwas wrongly missing in the description
of the category A2.

Remark 5.12. Let ScottDI be the category of Scott domains and functions which pre-
serve directed suprema and non-empty infima, which is a subcategory of Top0 via the
Scott topology ([12]). This category was proved to be the Eilenberg-Moore category of the
proper filter monad by Wyler [33]. Thus K(A1) = ScottDI.

The Eilenberg-Moore category of the prime filter monadwas characterized by Simmons
[28] and Wyler [32], it is the subcategory SComp of Top0 of all stably compact spaces
and stably continuous maps. That is, the objects of SComp are those spaces which are
sober, locally compact and whose family of all saturated compacts is closed under finite
intersections, and the morphisms are the continuous maps such that for every pair of
open sets U and V and a compact set K with U ⊆ K ⊆ V in Y , there exists some compact
K ′ in X fulfilling f −1(U ) ⊆ K ′ ⊆ f −1(V ). From the above theorem, K(A2) = SComp. In
[14] Hofmann gave a characterization of the Eilenberg-Moore category for every monad
Tn, which generalizes the one of SComp described in Remark 5.12.

We also recall from [5] that the Kan-injective hull of the Sierpiński space is the cate-
gory ContI of continuous lattices and maps that preserve directed suprema and arbitrary
infima.
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[10] M. H. Escardó and R. C. Flagg, Semantic domains, injective spaces and monads, Electron. Notes

Theor. Comput. Sci. 20 (1999).

[11] P. J. Freyd and G. M. Kelly, Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972),

169–191.

[12] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, A Compendium
of Continuous Lattices, Springer-Verlag, Berlin-New York, 1980.
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