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SPLITTING OF OPERADS AND ROTA-BAXTER OPERATORS ON OPERADS
JUN PEI, CHENGMING BAI, AND LI GUO

AsstracT. This paper establishes a uniform procedure to split theatioms in any algebraic op-
erad, generalizing previous known notions of splittingedligaic structures from the dendriform
algebra of Loday that splits the associative operation ¢osticcessors that split any binary op-
erad. Examples are provided for variaugissociative algebras;Lie algebrasA., algebras and
L. algebras. Further, the concept of a Rota-Baxter operatst,sthowing its importance in the
associative and Lie algebra context and then generalizadyidinary operads, is generalized to
arbitrary operads. The classical links from the Rota-Baagsociative algebra to the dendriform
algebra and its numerous generalizations are further gined and unified as the link from the
Rota-Baxter operator on an operad to the splitting of theagheFinally, the remarkable fact that
any dendriform algebra can be recovered from a relative-Batder operator is generalized to the
context of operads with the generalized notion of a reldRuéa-Baxter operator for any operad.
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1. INTRODUCTION

Dendriform (di)algebrad3d] is a module with two binary operations whose sum is assweiat
thus giving a two-part splitting of the associativity. Thigncept was introduced by Loday in
the late 1990s with motivation from periodicity in algelur&i-theory. Several years later, Loday
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and Ronco 36] introduced the concept of a tridendriform algebra (presgicalled dendriform
trialgebra) from their study of algebraic topology. It is @dale with three binary operations
whose sum is associative, thus giving a three-part sggittihthe associativity. Subsequently,
quite a few similar algebraic structures were introducadhsas the quadi-algebra][and ennea
algebra B0]. The notion of splitting of associativity was introduceg boday [35] to describe
this phenomena in general for the associative operati@alse [L8, 28)).

The splitting of the associativity turns out be importanthom theory and application. The
free objects for dendriform and tridendriform algebrasipped the planar binary trees and pla-
nar trees with a natural Hopf algebraic structure whichasely related to the Connes-Kreimer
Hopf algebra of rooted trees from their study of quantum ftekebry. A similar two-part and
three-part splittings of the Lie operation are found to Ispestively the pre-Lie algebra predat-
ing dendriform algebra with broad connectio29,[46, 20, 12] and the PostLie algebra from
operadic study45] with applications to integrable system§.[Further, a two-part and three-part
splittings of the associative commutative operation gieeZinbiel algebraj3] and commutative
tridendriform algebra47] respectively. The free objects in the categories of thegsealgebras
are respectively the sKie algebras and quasi-dfie algebras, thus providing algebraic charac-
terization of these two important algebras say in the stddydtiple zeta valuesq3, 26, 27, 34).

Analogues of the dendriform algebra and tridendriform ltggor the Jordan algebra, alter-
native algebra and Poisson algebra have also been obtdinéd?y, 32, 40]. To put all these
constructions in one framework, the concepts of a disucaasb a trisuccessor were introduced
in [3], giving two-part and three-part splittings of any binagesad, relating them to the Manin
black product{5] and the Rota-Baxter operator on a binary opefa@$, 41].

There are important algebraic structures (operads) begmnbinary ones, such as the various
n-associative and Lie algebras, tAg algebra §3] and L., algebra [0, 11, 22, 37, 3§]. It can
be expected that splittings of these operads will also sheiv importance as in the binary case.
In fact, theDend, algebra B7, 47] and thePL,, algebra 4] have been defined that should be
suitable splittings of thé,,, algebra and thé,, algebra. Structures have also arisen recently that
resemble a two-part splitting for the 3-Lie algebf. [ Instead of discovering such structures
one at a time in an ad hoc manner and with elaborating expetené is desirable from the
theoretical and application perspective to establish @igriramework for the splittings of all
operads, generalizing the approach for binary operad3.if his is the purpose of this paper. In
fact, we generalize3] in two directions. In one direction, we generalize theyaot the operads
under consideration from binary to any (uniform or mixedieas). In the other direction, for a
given arity or arity combination, we introduce the concefpa @onfiguration to give a uniform
treatment of dferent splitting patterns that include the bisuccessor asaiccessor inj] as two
special cases. This avoids repetitive arguments and pheesay for understanding the other
splittings of the associativity beyond the dendriform amdieindriform algebras.

The Rota-Baxter operator which has played important roleraad areas in mathematics and
physics P, 13, 16, 23, 41] naturally gives rise to splittings of various algebraiwstures through
its action on these structures, providing interesting gdamand motivation for the splittings.
This is the case for associative algebras, giving the deardriand tridendriform algebras, for
Lie algebras, giving the pre-Lie and PostLie algebras, andengenerally for binary operads,
giving bisuccessors and trisuccessdls [Going in the opposite direction, any dendriform and
tridendriform algebras can be recovered in this fashion greeralization of Rota-Baxter opera-
tors, called relative Rota-Baxter operatass44]. We generalize these results to algebras of any
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operads. In order to do this, we generalize the concepts ota Baxter operator and a relative
Rota-Baxter operator to the context of an operad.

The following is an outline of the paper. In Sectidnwe define the splitting of labeled trees
from a given splitting pattern called a configuration. Thybuhe tree description of operads,
splittings of operads are defined. In Secti§nexamples of splittings of operads are provided
for various associative-algebras anadh-Lie algebras, thé\,, algebra and thé., algebra. In
Section4, we show that a splitting of an operad indeed satisfies the sgolitting property for
the operations of the given operad as in the previous knowescaf splittings (successors],
thus justifying the name of the concept of splitting. Fumietigproperties of the splitting process
are also studied. In Sectidnthe concept of a Rota-Baxter operator on an operad is defiited
respect to a configuration. It is shown that a Rota-Baxteraipe action on an operad induces
a splitting of the operad. To address the question of whethgrsplitting of an operad can be
derived from some action of Rota-Baxter type, the conceptrefative Rota-Baxter operator (also
called anO-operator or a generalized Rota-Baxter operator in speesgs considered before)
was introduced. It is shown that, as in the case of assoeiatgebras, any algebra of a splitting
of an operad comes from the action of a relative Rota-Baxierator on an algebra of the original
operad.

2. SPLITTINGS OF OPERADS

In this section, we extend splittings of binary operadodtrced in B] to arbitrary operads. To
handle the dferent splitting patterns of a given operad, we define in 8e¢il the notion of a
configuration for a splitting. Since operads can be reptesdny trees, for each configuration, we
define a splitting of labeled trees which is then applied fomeesimilar splitting for nonsymmetric
operads and (symmetric) operads.

2.1. Splittings of planar trees. We recall some basic notions on trees and operads. For more
details seed, 37].

2.1.1. Labeled trees.

Definition 2.1. () LetT denote the set of planar reduced rooted trees togetherheitinivial
tree | . If t € T hasn leaves, we call ann-tree. The trivial tree| has one leaf.

(b) LetQ be a set. By alecorated treewe mean a treeof T together with a decoration on
the vertices ot by elements of2 and a decoration on the leavestdfy distinct positive
integers. Let(Q2) denote the set of decorated tree$ ahd denote

T(Q) = | Q).
teT

If € t(Q) for ann-treet, we callr alabeledn-tree.

(c) Fort € T(QQ), we let Vin(r) (resp. Lin(r)) denote the set (resp. ordered set) of labels of
the vertices (resp. leaves) of

(d) Letr € T(Q) with |Lin(7)] > 1 be a labeled tree frome T. Then there exists an integer
m such that can be written uniquely as the graftibgv t, Vv - - - V t,, of treesty, to, - - - t,.
Correspondingly, let = w(ry vV 12 V - - - V 1) denote the unique decompositionods a
grafting ofry, -+ , 7 in T(Q) along w € Q.
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For a tree and an arity graded vector spa¢e= &P V,,, we define
n>1

t[V] := ® Viinw)s
veVin(t)

where h(v) denotes the incoming edges\gflabeled by 1-- -, [In(v)| from the left to the right.
Then the free nonsymmetric operad(V) onV is given by the vector space

TodV) = (D V.

teT

A basisV of Vinduces a basigV) of t[V] and a basi§ (V) of 7,s(V). Consequently any element
of t[V] can be represented as a linear combination of elemen¢d/in

2.1.2. Configurations and splittings of labeled tredsor each integen > 1, denote fif =
{,2,---,n}.

Definition 2.2. (a) Forany 1< m< n, let N, m denote the set of all nonempty subsetsigf [
with at mostm elements. In particular,

N(n,l) = An = {{1}’{2}’ T ’{n}}’ N(n,n) = Bn = {‘] c [n] | J# @}

(b) Letr € T7(QQ) and® # J C Lin(r). For w € Vin(7), letr, denote the subtree afwith
root w and letr, = w(oy VvV --- Vv 0y) be the decomposition af,, as the grafting of
decorated branches of,. Denote

Q) JNnw:=Jn(w;7):={i€ln(w)|InLin(r) £ 0} C [{].

To get use the notatiohm w, consider the case wheriri(r) = [3]. There are three suctis.
Thenw € Vin(r) can have arity 2 or 3. IVin(w)| = 3, thenr, = randJn » = Jfor each
0 # J C[3]. If Vin(w)| = 2, thenw can appear imr in four locations denoted;, 1 <i < 4:

T=wi(1Vwy(2V3), 7=ws3(wslV2)V3).
ForJ = 2, we have
JNw; =1{2},IMw, ={1},INws ={1}, INws = {2}.
ForJ = {1, 3}, we have
JMNow;={1,2},INw,=1{2},IMNwsz =1{1,2},IMws = {1}.
Definition 2.3. (a) A configuration is a sequenc€ = (Cp)n»1 With C, C B, such that for
anyJ € C,, decoratech-treer and w € Vin(r), we havel M w € Cyn,) Whenever

Jrw #0.
(b) For a configuratio® = (C,), define 1< p(C) < « by

(2) p(C) = sudn|Cy = By},
if it exists, called thendex of C.
(c) A configurationC = (C,,) is calledS-invariant if C;" € Cn,n > 1.

From the computations before Definitia@n2, we find that{2} € C; implies{1}, {2} € C, and
{1, 3} € Cz implies{1}, {2}, {1, 2} € C,.

It is easy to see that if th&-invariantC,, contains a subset qf elements, the, contains all
the subsets off] with p elements.
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Example 2.4.  (a) Any configuration has index> 1. An important example of configuration
with index 1 isA := (An).
(b) The sequence = (C,)) with
c _[Bw ls<nzm
n— N(n,m), n>m

Is anS-invariant configuration with indewn. The configuratior8 := (B,) has indexwo.
(c) The sequence witG,, = {[n]} is anS-invariant configuration with no index. It is called

thetrivial ( S-invariant) configuration.
(d) For any fixedm > 1, the sequence wit8,, = {[n]}, n > m, C, = {[n],{1},{2},---,{n}},
n < m, is anS-invariant configuration.
Definition 2.5. LetV = B V, be an arity graded vector space with bagis- [[,., V, andC be

n>1

a configuration.
(a) Define an arity graded vector spacsp(V) by

(3) CSPW)n = Va ® (@ ka),
1eCy
where we denoted) ® &) by (;") for w € V,. Then{(;)‘ weV,nx1le Cn} is a
basis ofCSpV);.
(b) For alabeled-treer in T(V), defineCSp(r), also denoted bgSp,(7), in 7n(CSpV)) by
e CSp() = I,

e whenn > 2, CSp(r) is obtained by replacing each decoratiene Vin(r) NV, by
()= () = Ziec (2]

*

We extend this definition t@,s(V) by linearity.
Definition 2.6. Let V = BV, be an arity graded vector space with badls= [[.; V» and

n>1

let C be a configuration. Let € T(V) be a labeled-tree and let) € Cyiy). The splitting
with configuration C (or C-splitting in short) CSp,;(7) of T with respect toJ is an element of

Tas(CSpV)) defined by induction on := |Lin(7)| as follows:

e CSpy(1) =1

e assume tha€Sp,(r) have been defined farwith |Lin(7)| < k for ak > 1. Then, for a
labeled k+ 1)-treer € T(V) with its decomposition = w(r1 V1 V- V1,) andw € V,,
denotel := Jn 1 € C, defined in Eq. {) and define

CSpy(7) = (;U)(V'igzl CSPyrLin(Ti)) = (;U)( CSPinting)(T1) V= V CSPyLingy (Te) )
using the notatio®@Sp,(r) = CSp(r) from the previous definition.

We single out two important splittings that specialize ®tivo classical examples of splittings,
namely the bisuccessor and the trisucces3jan[the case of binary operads.

Definition 2.7. With the notation in Definitior2.2, the A-splitting (resp. B-splitting) is called
thearity-splitting (resp.power-splitting).
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Remark 2.8. For a binary tree, the arity-splittingASp,;(7) and power-splittingdSp,(r) are the
bisuccessor and trisuccessormah [3] respectively. For the trivial configuratiap = ([n]), we

haveCSp,(7) = (enu:(r)u) resulting in no splittings, justifying the term “trivial”.

We next give an explicit description of tkigsplitting.

Proposition 2.9. Let V = &P V,, be an arity graded vector space with basis= [[.; V» and
n>1

C be a configuration. Let be inT(V) and Je Cy iy With the notations in Definitio.3, the
C-splitting CSp; () is obtained by relabeling each vertexe V', of by( ) ifl =JNw+#0

and by(:;) = ; (;’) ifJrw =0. )

59%

Proof. The proof follows from an induction ojin(7)|. |

Example 2.10.  (a) For the configuratiorfl, we have

X1 X X3 X4 X5 X X1 X X3 X4 X5 X

S RN BN
Xo 1 2 = w2
} | / il (*«)

X1 X X3 X4 X5 X X1 X X3 X4 X5 X
s \ | \ / Y(M )” \ /
Px. %, xa) w1 w2 = 9(1,13) t:z
a|)3/ A /(c)

where(:’) = > €.

4 1eCy

2.2. Splittings of nonsymmetric operads and (symmetric) operad. We now give the splitting
of an operad with a given splitting configuration, startinggfvthe nonsymmetric case.
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2.2.1. The nonsymmetric cas¢etV = P V, be an arity graded vector space with basis=

n>1
Unzl (Vn-
(@) An element

r
r= ZCiTi, Ci€k,Ti€‘T((V),
i=1

in 7,s(V) is calledhomogeneousf Lin(r;) are the same for X i < r. Then denote
Lin(r) = Lin(r;) forany 1<i <r.
(b) A collection of elements

r
rs::chiTSi, CSiEK,TSiGT(W),lSSSk,kZl,
i=1
in 7,s(V) is calledlocally homogenousf each elementg, 1 < s < k, is homogeneous.

Definition 2.11. Let P = 7,4(V)/(R) be a nonsymmetric operad whares an arity graded vector
space with a basi$’ andR C 7,4(V) is a subset of locally homogeneous elements:

(4) re= ) Catsi €TndV), Coi€k, 74 € T(V), 1<s<k
i

LetC = (C,)) be a configuration. Theé-splitting of # is defined to be the operad

CSpfP) = 7(CSpV))/(CSPR))
where the space of relations is generated by

CSpR) = {CSpJ(rs) = Z CsiCSp)(7s) | J € Clingg), 1 <8< k} .
i

2.2.2. The symmetric case.etV = 5 V(n) be anS-module with a linear basi¥’ = [[,,.1 V(n)
n>1

such thatV(n) is invariant under the action &f,. For any finite seX of cardinalityn, define the
coinvariant space

b

V(X) ::[ & v

f:[n]-X

Sn
where the sum is over all the bijections fronj [= {1,2,...,n} to X and where the symmetric
group acts diagonally.

Let T denote the set of isomorphism classes of reduced tesAppendix C]. Fort € T,
define the treewise tensffrmodule associated tpexplicitly given by

V] := (X) V(In() .
veVin(t)
see B7, Section 5.5.1]. Then the free operadV) on anS-moduleV is given by theS-module
T(V) = P vl.
teT

Each tree in T can be represented by a planar tréeJ by choosing a total order on the set of
inputs of each vertex daf Furthert[V] = t[V] [25, Section 2.8]. Fixing such a choitdor each
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t € T gives a subsek C T in bijection withT. Then we have
T(V) = P tv],
teR
allowing us to use the notations in the nonsymmetric case.
Definition 2.12. Let® = 7 (V)/(R) be an operad whei = & V(n) is anS-module with a linear

n>1

basisV = [[,.1 V(n) that is invariant under the action 8f and where the space of relatiorfd (
is generated, as éitmodule, by a seR of locally homogeneous elements

(5) s = chiTgi, Csi € k’Tsi € Ut((V), l1<s<k
i

teR
Let C be anS-invariant configuration. Th€-splitting of # is defined to be the operad

CSpP) = 7(CSpV))/(CSPR)
where theS,-action onCSpV)(n) = V(n) ® (EBIGCn ke) is given by
(;’)“ = (;)) weVm), o()={c@)]iel)
and the space of relation€$pR)) is generated, as éitmodule, by

CSpR) = {CSpJ(rs) = Z CsiCSp)(7s) | J € Clingg), 1 <8< k} .
i

By Remark2.8, we have

Proposition 2.13. When® is a (symmetric or nonsymmetric) binary operad, the aritgl power
splitting of P is the disuccessor and the trisuccessofatspectively.

3. EXAMPLES OF SPLITTINGS OF OPERADS

We now give some examples of splittings of operads, first enrtbnsymmetric case in Sec-
tion 3.1 and then in the general case in SectibA. We will focus on the arity- and power-
splittings. But note that there are other splittings, foample from the configurations in Exam-
ple2.4. See§3.1.1

3.1. Examples of splittings of nonsymmetric operads.We start with the dendriform algebras
which is the origin of all the splitting constructions. Weethconsider the-ary generalizations.
We finally show that the operdaD,, defined in B7, 47] is the arity splitting of the operaél,, [43].

3.1.1. Dendriform operads revisitedRecall that the tridendriform algebra of Loday and Ronco
[36] is defined by three bilinear operatiofis, >, -} satisfying the following relations:

(6) (X<y)<z=x<({y=*2, (X>y)<z=x>(y<2, (X=xy)>z=Xx>(y>2,

(7) (x-y)<z=x-(y<2, (X<Vy):-z=x-(y>2, (X>y)-z=x>(y-2),

(8) (x-y)-z=x-(y- 2.

wherex =< + > +-. The dendriform algebra of Loda$J] is defined by two bilinear operations
{<, >} satisfying the relations in Eq6), wherex =< + >. It is easy to check that the correspond-
ing nonsymmetric operad Dend (resp. TriDend) is the aitittgrg (resp. power-splitting) of

the nonsymmetric operafls of associative algebras. Lét= (C,) be a configuration with index
2. Then aCSp(A9-algebra, is a vector spaéewith three bilinear operations, >, -} satisfying
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the relations in Egs.6) and (7), wherex =< + > +-, thus gives a splitting oAs betweenDend
andTriDend

3.1.2. Dendriform n-operads.There is no unique-arity generalization of the associative algebra
for n > 3. Recall that gartially associative n-algebra [22] is a vector space with an-ary
operation such that the signed sum of the ordered product efl2elements is zero, that is,

(9) Z(_l)i(n_l)(xl, Y Xi’ (Xi+l’ Y Xi+ﬂ)a Xi+ﬂ+1’ RS X2ﬂ—1) = O

Whenn = 2, this reduces to the classical associatividyx§)xs — X;(Xox3) = 0. For the case when
n = 3, the partial associativity is
(X1, X2, X3), Xa, X5) + (X1, (X, X3, Xa), X5) + (X1, X2, (X3, X4, X5)) = 0
A vector space with an-ary operation is called aftotally) associativen-algebra[10, 27] if
the ordered product ofr2- 1 elements does not depend on the position of the parenthiatss,
(Xl Tt (Xh Tt Xi+n—l), Tt X2ﬂ—1) = (Xl’ Y (Xj’ Y Xj—ﬂ+1)’ Y X2n—l)
whenever I<i < j < n. Whenn = 2, this also reduces to the classical associativity. FocHse
whenn = 3, we have
((Xe, %25 X3), X4, X5) = (X1, (X2, X3, Xa), X5) = (X1, X2, (X3, Xa, X5))-

Proposition 3.1. Let PAs be the nonsymmetric operad of the partially associa@radgebra with
productw = (-, -,-). Then anASpPAs)-algebra, called goartially dendriform 3-algebra, is a
vector space A with three trilinear operatioRs, T, ,/ such that
(N (X, X2, %), Xa, X6)+ "\ (Xa, (X2, X3, Xa), X6)+ "\ (X1, X2, *(X3, X4, X5)) = O,
(T (X1, X2, X3), Xa, X5)+ T (X1, N\ (X2, X3, X4), X6)+ T (X1, X2, *(X3, X4, Xs)) = O,
N7 (Xe, X2, X3), X4, X5)+ T (X, T (X2, X3, Xa), X5)+ 7 (X1, X2, "\ (X3, X4, X5)) = O,
T (+ (X1, X2, X3), X4, X5)+ T (X1, 7 (X2, X3, Xa), X5)+ 7 (X1, X2, T (X3, X4, Xs)) = O,
/" ((X1, X2, X3), Xa, X5)+ /7 (X1, *(X2, X3, X4), Xs)+ /" (X1, X2, /" (X3, X4, X)) = O
Here we have used the notatier=\\_ + T + .

Proof. Let r denote the relation in Eq9). By Propositior2.1.2, we have
AR, () = ()20 e X0 X 46) + (200 ()0 X Y01, 36) + ()0 Y ()0 X0 360}

*

AP = {[2)(2)00 X, 36D, X %) + ()00 (2] X Xa) 36D + (2], e (] X X6
AP = {(2)(2)0 X 101 X X6) + ()05 (2] 0k X 30, X6) + ()06 e ()0 3 X6
AP = {[2)(2)0 X X0 X 16) + ()00 (2] X, 300, 36) + (2] X (2] X X6
AP = {[2)(¢)0 X X0 X 16) + ()00 ()0 Yo, ), %)+ ()00 Yo (2] X0, 36D}

Then abbreviating. = (éi) 1= (2;) = (;’3) we obtain the relations in the proposition. O

Similarly, on the level of operads, we have
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Proposition 3.2. Let TAs be the nonsymmetric operad of the totally associadhedgebra with
productw = (-,-,-). Then the operadASp(TAs), called thetotally dendriform 3-operad, has
its arity graded space V concentrated ig ¥ k{\, T, ,/} and its relation space generated by

No(N\ eideid)- N o(ild® +*®id), N o(\ ®id®id)- "\ o(id®id® *),
N o(T id®id)- T o(ide N\ ®id), N o(T ®id®id)— T o(id® id ® =),
N o( ®id®id)- T o(id® T ®id), N o/ ®id®id)- / o(id®id® \),
To(x®id®id)- 7 o(id® /" ®id), To(x®id®id)—  o(id®id® 1),
S o(x®id®id)- /M o(id®«®id), o(x®id®id)- / o(ild®id® ).
Here we have used the notatier="\_ + T + .
Furthermore, we can similarly use the arity-splitting oftizly or totally associative-algebra
and give the notions of “partially or totally dendriformalgebra”. We can also consider the

power-splitting of the partially and totally associatialgebra and give suitable extensions of
tridendriform algebra in the context ofalgebras.

3.1.3. The operad Dend as the arity splitting of the operad A An A.-algebra (orAss.-
algebra) B7, 43 is defined by Stasleand has important applications in string theory. It has
ann-ary generating operatian, for everyn > 1 that satisfy the relations

w1 owi =0,
(10) Awn) = Z (1P wy o (iId®P ® wq ®id®), n> 2,
n=p+q+r
k=p+1l+r
k>1q>1

whered(wy) := w1 0 wy — (=1)" 2wy o (w1, id, - -+ ,id) +-- -+ (id, - - - ,id, w1)) andk = p+ 1 +.
A Dend,-algebra B7, §13.6.13] has n-ary generating operations,;j,1 < i < n, for each
n > 2, that satisfy the relations

w11°0W11 = 0,

(11) Nwn) = ), (1P Y wpa (id® @ wg; @1d™),
(p.g.r.6.J)
where, for fixedh andi, the sum is extended to all the quintuplesd, r, ¢, j) satisfying

P>0,0>2,r>0,p+g+r=nl1<f<p+1+r,1<j<q

%z

and the condition
g+¢-1 whenl<p+1<¢-1,

{—1+]j, whenp+1=2¢,

L, whenf{+1<p+ 1
Note that the last condition is equivalent to
(=i-qg+1, whenp+qg+1<i<n,
j=i—-p,l=p+1 whenp+1<i<p+aq,
=1, 1<i<p

For fixedn andi € [n], by the definition of the arity-splitting and the abbrewisitw,; := (“;) we
have
ASP(O(wn)) = w11 © wnj — (1) 2wnj o (wi1,id, -+ ,id) + -+ + (id, - - - ,id, w11)) = A(wn;).
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Also for any given triplep, g, r, we have

wyi o (I0°P ® wq. ® id®"), 1<i<p,
ASP(wk 0 (Id®°P ® wq®id®)) = ¢ Wips1 0 (IA*P @ wqi_p ®IA®), p+1<i<p+q,
wii—q+1 © (0P ® wq. ®1d®"), p+q+1<i<n,

q
wherewg,, = Z wqj. Thus Eq. (1) is just ASp applied to Eq.10) and we obtain
j=1

Proposition 3.3. ASp(A..) = Dend..

3.2. Examples of splittings of symmetric operads.We give some examples of splittings of
(symmetric) operads. First note that

ASp(Lie) = BSu(Lie) = pre-Lie, BSp(Lie) = TSu(Lie) = PostLie
We next focus on operads that are not binary.

3.2.1. n-Lie operads.Recall that a 3-Lie algebra is a vector space with a trilis&aw-symmetric
operation {, -, -] satisfies the 3-Jacobi identity:
(12) X1, %2, Xa], X4, X5] = [[ X1, X4, X6], X2, Xa] + [X1, [X2, Xa, Xs], Xa] + [X1, X, [X3, Xa, X&]].

Let 3-Lie be the operad of the 3-Lie algebra with product [, -, -]. Letr denote the homogenous
element from the 3-Jacobi identity from EG2J. Then we have

A1) = (2)((4)0xe e X0 X0 36) = ) ()00 X 36) 30 )
() (xl, ()02 X4 %), x3) (&) (xl, Xa, (¢)%a. Xe. x5)) :
AP = (2)([“)0w 1230 %8, 36) = (2) {(£)00 30360, %o, x6)

_(:2) (xl, (;"2)(&, X4, X5), Xs) - (;’3) (xl, Xo, (;)(xg, Xa, XS)) _

Similar computations apply t#1Sp,,, ASp,, and ASp,.. However these relations can also be
obtained from the relations ofiSp, andASp,, by a permutation of the variables. Replace the

operatior(g’l) by {-,-,-}. The group actions

& =) =2

show that-, -, -} satisfies the local-skew symmetry relation. Furthermore

7=k (=)

Since the arity-splitting (that is, bisuccess@tpp(Lie) of the operad.ie of the Lie algebra is the
operad of the pre-Lie algebra, it is natural to B8p(3-Lie) to give the the following definition.

Definition 3.4. A 3-pre-Lie algebrais a vector spacé with a trilinear mapg(-, -, -} : A — A
such that

(13) {X1, Xo, X3} = —{X1, X3, Xo},

(14) {{X1, X2, X3}, Xa, X5} = {{X1, X4, X5}, X2, Xa} + {X1, Of X2, Xa, Xs}, X3} + {X1, X2, Of X3, X4, Xs}},
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(15) (x4, Ofxa, X2, X3}, Xs} = {{Xa, X1, X5}, Xo, Xa} + {{Xa, X2, X5}, X3, X1} + {{Xa, X3, X}, X1, %o},
whereOf(Xx, Y,z = {X,Y,2Z} + {V, Z X} + {Z X, ¥}.

In general, am-Lie algebrais a vector space over a figdkdendowed with am-ary multi-linear
skew-symmetric operation, | - - , -] satisfying then-Jacobi identity

n
(16) [[Xl’ ,Xn], Xnels e ’X2ﬂ—1] = Z[Xl’ ’[Xi’ Xnels ot ,X2n—l],"' ,Xn]
i=1

Computing the arity-splitting ofi-Lie and replacing the operatinéei“li) by{,---,-}, we have
Definition 3.5. An n-pre-Lie algebrais a vector spacé with an-linear mag(-,--- ,-} : A*" —
A such that

(A7) XX %) = SONE)XL Xo(2), Xr(@), > Xo(ny ) Whereo € Sp ando(1) = 1,
{{Xl’ Tt Xl"l}? Xneds t 00 s X2I’l—1} = {{Xl’ Xnls o0 s X2n—1}, X,y Xl"l}

n
(18) £ X O Xoets++ Xane1h -+ Xl
i=2

{Xn+1, OlX1, -+, Xn}y X2, -+ 5 Xon-1}

n
(19) = (_1)(1+I)(n+1_l) Z{{XFHJ.’ Xis Xne2, * 00 X2I’l—1}? Xit1, Xi+2, =+ 5 Xn, X1, Xo, 00+, Xi—l}’
i=1

n
whereO{x, Xo, -+, X} = (=1 D N 00, X1, X2, Xy X, Yoo, Xial
i=1

In fact, there is another case of 3-ary operation that isetyoselated to 3-Lie algebras. A
generalized Lie algebra of order 3 or Lie-3 algebra[10, 11, 22] is a vector spacé together
with a trilinear skew-symmetric operation | -] such that
[[X1, X2, Xa], Xa, Xs] — [ X1, X2, Xa], X3, Xs] + [ X1, X3, Xa], X2, X5] = [ X2, X3, Xa], X1, Xe]
+[[ Xl, X2’ X5]’ X3’ X4] + [[ X33 X43 X5]’ Xl3 X2] - [[ X13 X33 X5], XZ, X4] - [[ XZ’ X4’ X5]’ Xl3 X3]
+[[ X1, X4, Xs], X2, Xa] + [ X2, X3, Xs], X1, Xa] = O.

It is known [11] that a 3-Lie algebra is a generalized Lie algebra of order 3.

Remark 3.6. For ann-algebraA and its operatiow, the commutator oA is

Z SANE)wW(Xr(2)s - =+ > Xor(iys = * 5 Xor(n))-

€S

A partially associative 3-algebrais a 3-Lie admissible algebra, more precisely, the comroutat
of AmakesA into a generalized Lie algebra of orderZ].

Similarly to the 3-Lie algebra, we use the arity-splittifglue generalized Lie algebra of order
3 to give the following notion:

Definition 3.7. A generalized pre-Lie algebra of order3 is a vector spacé with a trilinear
mapf{-, -, -} : A% — A such that

(20) {X1, Xo, X3} = —{X1, X3, Xo},
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{{Xl’ X2, X4}’ X3, X5} - {{Xla X2, X5}’ X3, X4} - {{Xl’ X3, X4}’ X2, X5}
{{Xl’ X3, X5}’ X2, X4} - {{Xl’ X4, XS}? X2, X3} - {Xl? O{XZ’ X3, X4}’ X5}
+ {Xl’ O{XZ’ X3, X5}’ X4} - {Xl’ O{XZa X4, X5}’ X3} + {Xl’ O{X?n X4, X5}’ XZ}

whereO{x.y,Z} = {X.y, Z} +{y,Z X} + {Z X, ¥}

Proposition 3.8. Define the local commutator of a partially associatBalgebra A by
Xy.zt=(xY,2 - (X 2Y).

Then(A, {-,-,-}) is a generalized pre-Lie algebra of ordar

{{Xl’ X2, X3}’ X4, X5}
(21)

+

Proof. The proof is a straightforward computation. O

See Propositiod.10for the relationship between the 3-pre-Lie algebra and igdized pre-Lie
algebra of order 3.

3.2.2. The operad PL, as the arity splitting of the operad.J. An L..-algebra(or Lie,-algebra)
[31, 37]on a graded vector space L with a systgm | n > 1} of linear mapsn, : L®*" — L with
degfn,) = n— 2 that are antisymmetric in the sense that

Mh(Xo (1), *** 5 Xo() = SGNO)Mn(Xe, - -+, %),  forall o € S, xq, -+, X0 €L,
and satisfy the following generalized form of the Jacobnittg:
(22) R = Z Z (o, VIM(Mi(Xor1)s * + * > Xor(i))s Xor(i+1)s * * * » Xor(n)) = O.
i+j=n+1o0eShn

HereSh,; C S, is the set ofi;n — i)-shufies.
A PL,, (or pre-Lie,-algebra) [15] on a graded vector spadé is a system of linear maps
tn V@ S"(V) — Vof degreef, = n—1,n > 1, that satisfy

Z Z e(, V)E(6i(Vo @ Viray, * * * 5 Vir(i)) Virin1)s = =+ » Ver(n))

i+j=noeShn_

(23)  +(—1)olldl Z Z €(o, V)E(Vo ® €i(Vorays * + + 5 Ver(in))s Ver(ie2)s ==+ 5 Vor(y) = O,
i+j=n,j>1oeShni-1
whereS(V) =
Koszul sign.
We next relatePL,, to ASp(L.). For anyn > 1, use the abbreviatiom,; = (’;‘*) By the

S"(V) is the graded symmetric algebra generated/bgnd e(o, V) is the

n>0

Sp-action on(";), we have

M 1(X1, Xo(2)> Xo@)s - =+ > X)) = SGNO)My 1(X1, Xo, -+, Xn), 0 € Sp,07(1) = 1,

and thusm,; can be regarded as a linear map frer S™1(V) to V.
Fori # 1, we have _ _
My = sgn((D)m;;) = -7,

Fixednand 1<i < n-1, there aréSh,;| = C'. (i,n—i)-shufles. These sHies can be divided
into two subsets:

(@ SH, ={oeShyilo@)=1, ISH,|=C3;

(b) St ={oeShpiloli+1)=1, [SK_I=Ci,.
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For eachr € Stf, ;, we have

ASP, (M (M (Xo(@)s - -+ » Xo(i))s Xertiad)s = * > X)) = Mi2(M1(X1, Xo2) - -+ 5 Xor(i))s Xerfind)s = * > Xor(n))-
Then we have
Z 6(0',\_/)mj,1(m,1(X1, Xor@2) """ > Xo(i))s Xor(i+1)s " "+ » Xer(n))
O—ESI’ﬂn—i

= Z 6(0',\_/)mj,1(m,1(X1, Xor@) "+ > Xo(i))s Xori+1)s * "+ » Xer(n))s

oeSh_1ni

whereSh_, . is regarded as the set of{ 1, n — i)-shufles on the set o2, - - - , n}.
For eachr € SH, ;, we have

ASP, (M (M Xy, * ++ 5 Xoiy)s Xertivd)s ** > X)) = Mi2(Mx (Xor()s * ** > Xori))s X1s Xori42) ** * » X))
wherem, = YL, m . We also have
M 2(Ms(Xo2)s **+ 5 Xori))s Xt Xeri+2)** * > Xor(ry)
= (=DM Imy g (Xg, M s(Xor)s * > Xor))s Xorie2)s =+ » Xorf)s
and C1)aims = (—1)almal where
MoV Y2, W) = (F1) 7 Ma(Ys, Vi, Y2, o+ Vo1, Vs, Ysuzs =5 Y-

Thus we obtain
M (Y1, Yo, -+, i) = Z e(t, VIM 1 (Yz), -+ » Yei))-

TeShj_1
Lemma 3.9. The map

I':ShpixShj-1 — Shjini, T(o1)()) = { Zg)(,j)), }: ijfilf,’

is a bijection.

Proof. This map is injective since if (o, 7) = I'(0”, '), theno(j) = o’(j) for j > i + 1 which
implies thato- = ¢ and thernr = /. Then the map must be a bijection since the cardinality of the
domain and codomain are the same. O

By Lemma3.9, we have

Z (o, VIM; 1 (X, M (Xor@)s 5 Xor(i))s Xer(i2)s * * * > Xor(n)
(J'GSI’]’:Wi

= Z Z (o, V)e(T, V)M 1(X1, M1 (Xo(z@))s * *+ > Xor(e(i)))s Xoris2)s = = * » Xer(r)
oeS I'f:n_i T€Shi1

Z €(o, V)M 1(Xt, M1 (Xo@y « 5 Xor(i))s Xorin2)s =+ > Xor(r))-

oeShi-1ni-1

Then we have

ASp, ( Z (o, VMM (Xor(1)s * + * > Xor(i))s Xor(i+1)s * * * 5 Xor(n)))

oeShni
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Z (o, VIM;1(M (X1, Xo2) * 5 Xor(i))s Xer(ind)s =+ * > Xer(r)
a'EShl,nii

+ Z €(o, VIM; 1 (X, M (Xor(1)s 5 Xor(i))s Xer(i2)s * * * > Xor(n)
a'ESffnii

= Z (o, V)M 1 (M 1(X1, Xr2)s =+ 5 Xor(iy)s Xor(i+2)s * = * > Xor(n))

oeSh_1ni

+(—1)|Xl”m’l| Z (o, V)M 1 (X1, M1 (Xoays =+ 5 Xor(i))s Xorin2)s ==+ > Xor(r))

oeShj-1n-i-1

= Z €(o, V)i (Gima(Xas X (2)s =+ 5 Xor(i))s Xor(i+1)s * * * > Xor(n))

oeShoini
+(—1)alli- Z €(o, V)i (X1, Cima(Xor(a)s = =+ 5 Xori))s Xor(i+2)s * * * s Xor(n))s
oeShj_1ni1
where the last equation is obtained by replacimg with £;_; andm;, with £;_1 = €nya-i-1 = €
andj > 1. Hence, folR_ defined in Eq.Z2), we have

ASp, (R) Z Z €(a, V)ni(Gima (X Xo(2)s =+ 5 Xo(i))s Xor(i+1)> * * * 5 Xor(n))

i+j=n+10eSh_1n

+(~1)ralli- Z Z €(o, V)i (X1, Gima(Xor(2)s =+ 5 Xor(i))s Xor(i+2)s = * > Xor(n))

i+j=n+1,j>1 0eShi_1ni-1

Z (o, V)G (Ls(Xas Xr(2)s * * + > Xor(s)> Xer(s+1))s Xor(s+2)s * * * 5 Xor(n))

stt=n-1oceShyn_1)-s
+(=1ylel Z Z (o, V)G (Xa, Cs(Xor(1)s  + + » Xor(st1))s Xor(s3)s = * * > Xer(r))-
s+t=n-1t>1 ceSh gn-1)-s1
This agrees with the relations BL,, in Eq. (23). Note that?(Sg(p(RL), 2 < p < ncan be obtained
from ASp, (R.) by a permutation of variables. Therefore, we have

Proposition 3.10. ASp(L.) = PL..

4. THE SPLITTING PROPERTY AND FUNCTORIAL PROPERTY

In this section we prove the splitting property @fsplitting of an operad and thus justify the
termC-splitting. We also prove that the proceses$plitting is compatible with some morphisms
between operads.

4.1. The splitting property. We recall the following splitting property of the dendrifoalgebra
that is simple yet fundamental in motivating all the subssqstudies of dendriform type or
Loday algebras.

Proposition 4.1. [33] Let (A, <, >) be a dendriform algebra. Then the operation on A defined by
X*Y =X <Y+ X>Yisassociative.

On the operad level, this is interpreted as an operad marphis
(24) Asso— Dend < + >,

from the operadAssoof the associative algebra to the opefaeind of the dendriform algebra.
It is in this sense that the operatiorsand> give a splitting of the associative product This
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property has been generalized to many binary operads oggretirs and then eventually to all
binary operadsd]. We will further generalize this property to tiigsplitting of any operad.

Lemma 4.2. Let V = &P V, be an arity graded vector space with bagis= [[,.; V, and letC
n>1

be eitherA or the trivial configuration in Exampl&.4. For a labeled planar n-tree € T7(V), we
have the following equation f(V):

(25) > CsSp(r) = CSpb).

JeClLin()

Proof. It is obvious that Eq.45) holds whenC is the trivial configuration. So we only need to
prove Eqg. £5) by induction onjLin(7)| for the configurationA = (A,). When|Lin(7)| = 1, we
have
> ASp() =T = ASpG).

xeLin(r)
Now assume that Eq.26) holds for allr € T(V) with Lin(r) < n—1,n > 1, and consider an
n-treer in 7(V). Sincer = w(r1 V1,2 V- --V1,) for some integef andw € V(¢), by the definition
of theC-splitting of a planar tree and the induction hypothesishaee

> ASp()

xeLin(t)

¢

- Z Z (g)( ASPr1) V- VASP(ri1) V ASP(Ti) V ASP(is1) V - - V ASP(ry))
i=1 xeLin(rj)
¢

D[4 ASPE) V- v ASPE) V(D ASPLT)) V ASPE) V -+ V ASPE)

i=1 xeLin(t;)
= (*)(ASPlry) v -+ v ASP(ri-1) V ASPE) V ASPGier) V -+ V ASP(ro))
= ASp[).
This completes the induction. O

Proposition 4.3. Let C be anS-invariant configuration of index m (see E®)). Then for any
labeled planar treer € T7(V) with Lin(7) < m, we have

(26) > Csp(r) = CSpe).

J€CiLing)
Especially, when m oo (the power-splitting case), Eq2) holds for all labeled planar trees.

Proof. We prove by induction ofin(7)| for [Lin(7)] < m. ThenCSp,;(r) = BSp,(r) andCSp() =
BSp(r). When|Lin(7)| = 1, by definition we have

D BSpr) = T = BSp().
xeLin(t)
Now assume that Eq.26) holds for allz € T(V) with Lin(r) < n—1foran 1< n < mand
consider am-treet in T(V). Lett = w(r1 V12 V - - - V 7,) for some integef andw € V({). Let
Lin(r) ={1,2,---,n}and Lin(rp) = {kp-1 + 1, - - - , Kp} with the convention tha, = 0 andk, = n.
Define a map
¢ Biing =310+ JC Lin(r)} — B;, ¢(J)=JMNw.



SPLITTING OF OPERADS AND ROTA-BAXTER OPERATORS ON OPERADS 71

Since for each = {iy,ip,--- , i}, the image ofk,, ki, - - , Kk} € Brin underg is |, we see that
¢ is surjective and J;g, ¢ (1) = ByLiny- Thus

D, BP0 = D D () BSPuiney () V-V BSPytingey (7)) )-

J&BiLin(r), 1€Br Jep1(1)
For a fixedl = {iq,io,---,it}, we have
(27) e (N =P clin@)|JI=J,uu---Ul,0# J, cLin(ri),1<j<t
which is in bijection with{® # J, C Lin(r;)} X --- x {0 # J;; € Lin(z;,)}. Thus by the induction
hypothesis, we have
2 (£ BSPrninge @) V -V BSPytingey (7))
Jep~(1)

= D (&) BSPe) V- v BSP(ri1) V BSPyntingey)(ia) V BSP(rize) V -+ V BSPlrip-) V
Jep™1(1)

BSPyrLingr,) (Ti2) V BSP(ize1) V - -+ V BSP(i-1) V BSPyriing,) (Ti) V BSPEi1) V - - vV BSp(re) )

)| BSPE) V-V BSPEi) v Y BSPy (7i) V BSP(ri)

@ 0=+J;, cLin(zi,)
VeV BSP(ri,1) V Z BSp,, (7i,) V BSP(ri,-1)

0+3;,cLin(ri,)

Ve VBSPE)V ) BSPy(ni) V BSPia) V-V BSP)

0+3;,cLin(zi,)

= (;’)( BSp(r1) V-V BSplre) ).

Hence
D, BSpE) = ) (J)(BSPE) V-V BSph) ) = BSPR),
JeBLin() leBy
completing the induction. O

Corollary 4.4. LetP = 7 (V)/(R) be an operad with locally homogeneous relations
R={rs:= ZCS,iTS,i’ Csi € k,Ts,i € Ut((V), 1<s<k.
i teR
LetC be a configuration with index m. thax|Lin(rs)|}s < m, then
CSpy(rs) =CSpls), 1<i<k

JeCiLingre)

The following result gives the precise meaning of splitamgoperad, generalizing the splitting
property of the associativity in Eq24) [33] and the splitting of a binary operad ][ For an
operad? = T(W)/(Ry), letiw : W — P(W) andpyw : T(W) — Q denote the natural injection and
projection.

Theorem 4.5. Let® = T(V)/(R) be an operad.
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(@) The linear map

(28) ay V- ASPY), wr— (w) weVn),n=1, (w) = Ie%;] ({g})’

induces a unique operad morphism : P — ASp(P) in the sense thaty o py o iy =
Paspw) © laspy) © v, thatis, the following diagram commutes.

Vv v T(V) b P
ASPY) — " T(ASPV)) - ASPE)
(b) LetC be a configuration with index m and suppasax|Lin(rs)|}s < m. Then the linear
map
(29) w iV o CSpV), wr— (w) weVn),n>1, (w) = Z (;J)

0#1c[n]

induces a unique operad morphisg : $ — CSp(P) in the above sense.
(c) LetC be a configuration with index m and suppaesaX|Lin(rs)|}s < m. Then the linear
map

(30) w — (qﬂ:]), weVn),n>1,
induces a unique operad morphism frghto CSp(P) in the above sense.

Proof. We assume tha is given by Eq. 9).
(a) By the universal property of the free opefa@Vv) on theS-moduleV, theS-module morphism
iaspw) © @y © V — T(ASpV)) induces a unique operad morphiam : 7 (V) — 7 (ASpV))
such thatyy o iy = iaspy) © @v.

By Lemma4.2, Eq. 25) holds. Hence we have

Z CsiASP(rsi) = Z Z CsiASP (i), 1 < s< k.
i i xeLin(rs;)

SinceLs := Lin(ts;) does not depend dnwe have

Z Csi ASP(rsi) = Z?{Sg( (Z Cs,iTs,i] =0, 1l<s<k

Xelg

Therefore, ASpR)) € ker(@y). Thus there is a unique operad morphiggm: £ = 7 (V)/(R) —
ASPP) := T (ASpV))/(ASpR)) such thatrp o py = pPaspy) © @v. We then haverp o py o iy =
Paspw) © laspy) © av.

Suppose thaty, : £ — ASp(P) is another operad morphism such thatyy) © i aspy) © av =
Paspw) © av o iv. By the universal property of the free operadV), we obtainyy, o py = Paspy) ©
@ = ayp o py. Sincepy is surjective, we obtain;, = ap. This proves the uniqueness®f.

(b) The proof is similar to the proof of Itena). The linear map : V — CSp{V) extends uniquely
toyy : T(V) = T(CSp)). By Corollary4.4we have

D, CiCSPes) = ), >, siCSP(rs). 1< s<k

i 1€CiLingrg)l
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SinceLs := Lin(ts;) does not depend dnwe have

Z CsiCSp(rsi) = ZCSQ (Z Cs,iTs,i) =0, 1l<s<k

leLg
Therefore CSpR)) < ker(yy) and then the rest of the proof follows.

(c) It is easy to see that the linear map defined in B4) (s S,-equivariant. So it induces a
morphism of operads from (V) to CSp{P). Moreover, by the definition a-splitting, we have

Z CsiCSHin(TSi)(Tsi) = O, 1 <s< k.
i

Note that the labeled tre&€Sp .. ,(7si) is obtained by replacing the label of each vertexgf
say w € V(n) by (e[‘”]). Hence the conclusion follows. |
Corollary 4.6. If the index ofC is oo (that is we take the power-splitting), then) @nd €) hold
for any operad.

If we take® to be the operad of partially or totally associative 3-algsb 3-Lie algebra or
generalized Lie algebra of order 3, then we obtain the fahgwesults:

Corollary 4.7. (a) Let(A,\, T, /) be a partially (resp. totally) dendriforr@-algebra. Then
the operation

(31) =N+ T+

makes A into a partially (resp. totally) associati¥«algebra.
(b) Let(A,{-,-,}) be a3-pre-Lie algebra (resp. generalized pre-Lie algebra ofed). Then
the operation

(32) Xy.Z :={Xy,Z +{y, z X} + {z X, Y}

gives a3-Lie (resp. generalized Lie algebra of ord@y structure on A. The commutator
of 3-pre-Lie algebra (resp. generalized pre-Lie algebra ofen@®) is a 3-Lie algebra
(resp. generalized Lie algebra of ord8y with the structure given bg[x,y, Z].

4.2. Compatibility of splittings. We prove the functorial property of taking splittings.

Theorem 4.8.Letn : # — Q be an operad morphism. Theninduces an operad morphism
CSpf) : ASpP) — ASpR) such that

(33) no ap = ASPQ) o aq,
for the mapsrp andag in Theoremt.5.

A similar statement holds fa8Sp() : BSpP) — BSpQ).

Proof. We take the generatingrmodulesV, W of £ = T(V)/(Rp) andQ = T(W)/(Rg) to be the
S-modules of andQ respectively. The operad morphisjrdefines a family ofS,-equivalent
mapsiy, : V(n) = P(n) — W(n) = Q(n). Define a chain magp : ASpV) — ASpW) by

bn - ASPV)(N) —  ASPW)(n)

©) — (") wevmleC,
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We use the following diagram to keep track of the maps that lause below.

PAspw)

ASPW) Y g(ASpY)) ASPEP)
ay i 1\ av ap
R v v T(V) il P =
(34) 0 l n - <9_ l n l n ASply)
aw W . T(W) - Q «,
/ i ASpW) ¢§W PAspw) \f
ASPW) : T(ASPW)) - ASPQR)

It follows from the fact that; is an operad morphism and the universal property@®f) that
(1(Rp)) € (Rg). On the other hand, for any tree= T(V) andJ € Cyin¢y, We haveASp(n(7)) =
O(ASPy(7)). Therefore, §ASPRy))) = (ASPH(Re))) C (ASPRe)). Then there exists a mor-
phismASpf) : ASpP) — ASpQ) such thatASpe) o paspw) = Paspw) © 6. Further, by
the universal property df(V), we get the commutativity of the leftmost trapezoid. In soany,

all quadrilaterals in the Diagran34) are commutative except the rightmost trapezoid which is
precisely Eq. §3). To prove it, by the surjectivity opy and the universal property 6f(V), we
only need to prove o ap o py o iy = ASpP[) o ag © pv o iy. This follows from a diagram chase
by the commutativity of the other quadrilaterals of the D&g (34). O

From the morphism in Remark 6, we obtain

Corollary 4.9. We have the following commutative diagram.

(35) Partially dendriform 3-algebra F4 O Partially associative 3-algebra

l lRemarkS.G

Generalized pre-Lie algebra of orde& Generalized Lie algebra of order 3

where the left vertical map is defined by
XY, =N (%Y,0+T(XY.D+ 7 (XY, D) = (\ (X z2y)+ T (XxzYy)+ 7 (X 2Y))
for a partially dendriform3-algebra(A, N\, T, /).

Diagram (@35) can be regarded as a generalization in the context of 3»adgef the diagram
[14].

Dendriform algebra——— Associative algebra

| !

Pre-Lie algebra Lie algebra

Proposition 4.10. Any 3-pre-Lie algebra is a generalized pre-Lie algebra of or@er

Proof. This follows from Theorem}.8 since any 3-Lie algebra is a generalized Lie algebra of
order 3. O

The following results relate fferent splittings of an operad together.
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Proposition 4.11.LetP = 7(V)/(R) be an operadC andC’ be twoS-invariant configurations
such thatC, c Cj, for each n. Then there is a morphism of operads f@®p) to CSpP) that
extends the linear map defined by

(36) (w) - (w) (w) —0, weV(n),n>21eS,NnCy,JeS,\Cn

€ € €
Proof. Let R be given by Eq.%). The linear map defined by E€) is S,-equivariant. Hence it

induces amorphism of operals C'Sp(P) — CSp(P), ande (%)) = (¢), where*) = S, (%),
(f) = 2iecy, (;’) Then, we have

o(C'Sp(1si)) =CSp(tsi), foralll el € S, NC,

and
0(C'Spy(tsi)) =0, forallJ e S;\C, .
|

If we take® to be the operad of partially associativ@lgebras, then we obtain the following
results:

Corollary 4.12.  (a) Let(A, . b, NV, ") be a partially tridendrifornB-algebra.
If the operations™t N\, 17, "V are trivial, then(A, ™\ .,t,.”) becomes a partially den-
driform 3-algebra.

(b) Let(A, ™\ ,t,) be a partially dendrifornB-algebra. Ther(A, ™. ,t,.”,0,0,0,0) car-
ries a partially tridendriform3-algebra structure, where 0 denotes the trivial operation.

5. SLITTINGS OF OPERADS, ROTA-BAXTER OPERATORS ON OPERADS AND RELATIVE RoTA-BAXTER
OPERATORS

In this section we establish the relationship betweerCisplitting of an operad on one hand
and the actions of a Rota-Baxter operator on the operad autliee. For this purpose, we gener-
alize the concept of a Rota-Baxter operaf@ri[6, 23, 41] from binary operads to general operads.
By generalizing the concept of a relative Rota-Baxter ojper@reviously called a®-operator)
from the binary case to the general case, we further shovattyat-splitting of an operad can be
recovered, on the level of algebras for an operad, by avel&ota-Baxter operator.

5.1. Splittings and Rota-Baxter operators on operads.We define the Rota-Baxter operator
on an operad, together with a configuration. As preparati@nfirst consider it on the level of
algebras.

Definition 5.1. Let n > 1 and letC be anSy-invariant subset 0B, (={0 # J C [n]}). Let
(A, (,---,)) be ann-algebra consisting of a moduke over a commutative ringg and ann-ary
operation

Gore ) T AR — A
A C-Rota-Baxter operator of weightion (A, (,--- ,)) is a linear mag® : A— Asuch that

leC
where F_>(xi) = { é(xi) : Z : for all X, %, -+, X, € A. ThenA is called aC-Rota-Baxter

n-algebra of weight .
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Remark 5.2. For anyn-ary algebra, whe@ = A,(= {i € [n]}), aC-Rota-Baxter operator is just
an usual Rota-Baxter operator of weight zero; wlena B,,, a C-Rota-Baxter operator is just the
usual Rota-Baxter operator of weigh{g].

We next consider the action of Rota-Baxter operators onetie bf operads.

Definition 5.3. LetV be anS-module withV(1) = k id andC be anS-invariant configuration.
(a) LetVp denote thes-module withVp(1) = k P, P # id, andVp(n) = V(n),n > 2, whereP
is a symbol. Let (Vp) be the free operad generated\gy
(b) Define ans-moduleCSp(V) with CSp)(n) = V(n) ® (P, ke) as in Eq. B). Let
Pen! denote then-th tensor power of but with the component from replaced by the
identity map. Define a linear map of graded vector spaces &€&m(/) to Vp by the
correspondence:

£ (;’)&—)a)OP@”", forall w € V(n), |¢€C,,

whereo is the operadic composition. By the universal property @& fitee operad¢
induces a homomorphism of operads that we still denotg by

&:7(CSpV)) = 7 (Vp).
(c) Let®P = 7 (V)/(Rp) be an operad defined by tBemoduleV and relationdRp. Let

(38) CRBp(n) := {w o P®”_Zpowop®n,l

w € V(n)}.
1eCp
Define theoperad of C-Rota-Baxter P-algebrasby
CRB(P) := 7 (Vp)/(Rp, CRByp).
We first prove a lemma relating-splitting andC-Rota-Baxter operators of weight one.

Lemma 5.4. Let? = 7(V)/(Rp) be an operad and@> be anS-invariant configuration. Let
7 € T(V) with Lin(r) = n.
(a) We have

(39) Po&(CSp)) =70 P mod (Re, CRBp).

(b) For J € C,,, we have
(40) £CSpy(r) = 7o (P*™) mod (Ry,CRB).

Proof. (a). We prove by induction ofLin(7)| > 1. When|Lin(7)| = 1, 7 is the tree with one leaf
standing for the identity map. Then we ha{(eCSp@) ) = randP o £(CSph) ) = P =10 P,
as needed. Assume that the claim has been provedvidth [Lin(7)| < k and consider a with
ILin(7)] = k+ 1. Then from the decomposition= w(ry V 7, V --- V 17,), we haveCSp@) =

(‘:)(CSp(Tl) V CSp(ro) V --- vV CSplry)) Where(‘;’) = > (‘;’) Thus we have

| GC[

Po£(CSPE)) = Pog((4)(CSpr) v CSpera) v -+ CSper))
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Po&| > (¢)(CSPera) v CSptra) v -+ v CSP(re) )

|EC[

= Powo ) (P™ o (£(CSp(r)) @ £(CSPr2) @ -+ ® E(CSP))))

|€C/

wo ((Po&(CSp(r1))) ® (P o &(CSp(ra))) @ - -+ ® (P o £(CSp(re))))
mod (Rr, CRBp) (by Eq. B9)

W o ((Tl o P®|Lin(‘rl)|) ® (TZ o P®|Lin(‘rz)|) ® - ® (Tt’ o P®|Lin(‘r[)|))

(by induction hypothesis)

= wo(M®T®- - ®1,) o PEKD

= wo(ryV1aV---14)0 pek+l)

- 10 P®(k+1),

completing the induction.

(b). We again prove by induction ghin(7)|. If |lLin(r)] = 1, then 1 is the only leaf label of
7 and{1} € C;. Thus we have(CSp,(r)) = id = 7 o (P**), as needed. Assume that the
claim has been proved for atlwith |Lin(7)| < k and consider a with |Lin(7)| = k+ 1. Write
T=w(ry V1oV - V1) Letd € Cyqandl = {iy,ip,---,igt={i|1<i <, InLin(r) #0}. It
follows from the definition of the configuration with indexthatl € C, andJNLin(r;) € Cin¢,)-
Then we have

CSPM) = &([2)VACSPrn()
{
- wo (i o P®|Lin(ri)|,JmLin(ri))]
5
(by induction hypothesis and Itera)j
= wo(ryV--- V1) oP"OY mod (R, CRBp)
— 1o pekid
This completes the induction. O

The next result establishes the link between Rota-Baxteradpr and splitting that unifies the
previous known resultsl| 2, 3, 4, 7, 17, 24, 30, 32, 40] in this direction.

Theorem 5.5. (a) Let# be an operad and@ be anS-invariant configuration. There is a
morphism of operads

CSpP) — CRB(P),
which extends the mapgiven in Definitiorb.3.

(b) Let A be aP-algebra. Let P. A —» A be aC-Rota-Baxter operator. Then the following
operations make A into @SpP)-algebra:

()0 %) 1= w o PP (X, %), forall Xu, X, -, % € Aw € P(N), ] € Co.
Proof. The second statement is just the interpretation of the fagtment on the level of algebras.

So we just need to prove the first statement.R&},) be the relation space 6fSpP). By defini-
tion, the relations o£Sp(P) are generated bgSp,(r) for locally homogeneous= }; ¢t € Rp
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andJ € Cin)- By Egs.G9) and ¢0), we have

§(Z CiCSpJ(Ti)) = Z Gé(CSpy(Ti)) = Z Crio PP = (Z CiTi) o P mod (Rr, CRBp).

Hence#(Respe)) € (Rp, CRBp) and¢ induces a morphism of operads
£ CSpP) — CRB(P).
This proves the first statement. m|

When we takeP to be the operad of the 3-associative algebra or 3-Lie atgete obtain the
following results.

Corollary 5.6. (@) Let A, (-, -, ), P) be a Rota-Baxter totally (resp. partially) associative 3-
algebra of weight zero. Define three new operations duy

N (xY.2 = (xP(Y).P@). T((xVy.2=(PX.y.P@). ./ (xVy.2 = (P(X).P(y).2.

Then A, (-, -,-)) is a totally (resp. partially) dendriform 3-algebra.
(b) Let (L,[-,-, ], P) be a Rota-Baxter 3-Lie algebra (resp. generalized Liebayef order
3) of weight zero. Define a new operation biy

%,z =[x P(y), P(2)].
Then (,{-,-,-}) is a 3-pre-Lie algebra (resp. generalized pre-Lie algebmader 3).

5.2. Splittings and relative Rota-Baxter operators. We generalize the concepts of a module
and a relative Rota-Baxter operatdl.[ For simplicity, we also assume that the weight of a
relativeC-Rota-Baxter operator is one. As remarked above, thisistilide the case of weight O
with a suitable choice of the configuratioh(namely wherC = A).

To motivate our general definition of modules foPaalgebra wheré is any operad, we recall
that anA-bimoduleM for an associative algebracan be equivalently defined to be an abelian
groupM together with two actiong,, ¢, : A®@ M — M of A such that the binary operatiomon
A& M defined by

(@ m)- (b,n) = (ab,{1(@)n + L(b)m), a,beAnme M,
turnsA & M into an associative algebra.
Definition 5.7. Let # = T(V)/(R) be an operad defined by &amoduleV = &b V, with basis

n>1

YV = & V, and by relation®R. Let A be aP-algebra and be anS-invariant configuration.

n>1
(a) LetU be ak-module. For eaclky € V, denote the arity ofv by |w|. Suppose there are
linear maps

o AR @ Uoll 5 U, | = (iy <--- < it} € Cups
such thatA @ U is turned into @P-algebra by defining the operatioason A& U by:
a((Xl’ ul)’ ) (Xiwl’ ulwl))

(41) = ((J)(Xl, R Xlu)l)’ Z |‘|U(X1’ ) Xil—l’ Xi1+1’ ) Xit—l? Xit+1’ ) chul)(uil’ ui2’ Tt uit))’
|ECM
forallw € V,x; € Aandu; € U,1 < j < |w|l. ThenU = (U, {I{|w € V,I € Cy}) is
called aC-module for the P-algebra A or simply anA-C-module.
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(b) LetU = (U, {I?|w € V, | € C}) be anA-C-module. A linear map : U — Ais called
arelative C-Rota-Baxter operator (of weight one) on thé\-C-moduleU if
w(a(uy), a(Wp), -, &(U))
= > e, e(Uy 1), @Uiea), -+ @(Ui1), @(Uia), -+ 5 @(U)) (Ui, Ui+ 5 U)),

|€C‘w‘
forall w € V andx; € A u; € U, wherel = {iq, o, -, i Withiy <ix <--- <1y
To simplify the notations we will use the following abbretans. Fork-modulesX, Y, linear

operatorx : X — Y, vectorsX = (Xg,-- -, %) € X, ¥=(Y1,---,¥n) € Yandl ={i; <--- <iy} C
[n], denote

)?I = (Xl’ ) Xil—l’ Xi1+l’ ) Xit—l’ Xi1+l3 ) Xn),
X = (g %),
(42) Xry = (Xl’ ) Xil—l? Yil, Xi1+l’ Tt Xit—l’ yit? Xit+1’ Tt Xn),

XY = (%Y1, - (X% Yn) € (X Y)",
(X0) = ((x,0),---, (X, 0)) e (X®Y)",
(@(X) = (a(X),- - ,a(X)).

Thus in the above definition, we have

. ole@) = ) ol (e@)(d).

|€C‘w‘

B(%, 1) = (w(%), )G

| €C|w|

Example 5.8.With the same notation as in Definitién7, aC-Rota-Baxter operator of weight one
onAis arelativeC-Rota-Baxter operator of weight one on thanodule A, {I{’ |w € V, 1 € C,}),
where with the notation in Eq49), define

I7(X) (W) = w(xu)
foralweV,x;e A 1< j<|wl,l €eCyandl ={is, -, i withi; <ix <--- <liy.
Proposition 5.9. Let A be aP-algebra,C be anS-invariant configuration and U= (U, {I{’|w €
V,I € C,}) be an A€-module.

(@) If C = A and takef” = 0 when|l| > 1, then U is the usual module in the context of
generalP-algebra[39, 47].
(b) If C = B, then U has &-algebra structure.

Proof. (@) is clear from the definition.
(b) By the definition of anA-C-module and lek; = x, = --- = X, = 0in Eq.¢@1), the operations
wy(0) = Ifrw”(lk)(ti) makeU into a®-algebra. O

Lemma 5.10. Let (U,{I{ |w € V,I € Cy}) be an A€-module,a : U — A be a linear map.
Definea’ : Ao U — Ao U by

43) a’ (%, u) := (a(u),0).

Thena is a relativeC-Rota-Baxter operator of weight one if and onlyifis a C-Rota-Baxter
operator of weight one on the-algebra A@ U.
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Proof. Since U, {I{’|w € V,| € C}) is anA-C-module, by definitionA® U has aP-algebra
structure by the operationg w € V.
a : U — Ais aC-relative Rota-Baxter operator of weight one means

w(a(l) = Z (1P (e () (10)).

| €C|w|

whilea’ : Ao U —» Aa@ U is aC-Rota-Baxter operator of weight one means

~

w(a/ (X 0))

Il
IS

D, B/ (X ) (% a») = ( 2, l(a(d), 0) (% a»]

1€Cy 1eCiy)

~

= | ), @@ X0 cf»]:a'[Zw(a(tol R, > 15(@r, %5)G (O a»}

|€C|w| |€C‘w‘ J€C|w|

( Z Z @ (ltj)((a(l:m s X)J)(J (OI lj))) ’ O) .

|€C|w| JECM
If I # J, there exists O-tuples in the vectp(0; t), sincel? is multilinear, then we have
15(((0)1, %) (0 ) = 0

and it is easy to see that

>0 a(5(@@r, Q)G O M) = Y Ia(e(@)( o).

I EC|UJ| J€C|w| | Ec‘w‘

Hencex is a relativeC-Rota-Baxter operator of weight one on modulef and only if o’ is a
C-Rota-Baxter operator of weight one &re U. |

We have the following generalization of Theoréns.

Theorem 5.11.Let® = T(V)/(R) be an operad defined by &imodule V= & V, with basis

n>1

YV = 5V, and by relations R. Le€ be anS-invariant configuration. Let A be ®-algebra

>1
and(U, {I{’|w € V,1l € Cy}) be an AC-module. Letr : U — A be a relativeC-Rota-Baxter
operator of weight one on the &module U. Forw € V and | € C,, define

(44) (&)@ == 17 (@) ).

forueU,l eCyandl={iy---,ifwithip <i, <--- <i;. Then

(u, {(g) eV c,w|})

is aCSpP)-algebra. Moreover, when the splitting is arity-splitting power-splitting, there is a
P-algebra structure on U given by

()= (e) wev.

|€C‘w‘

anda is a homomorphism ¢-algebras.



SPLITTING OF OPERADS AND ROTA-BAXTER OPERATORS ON OPERADS 72

Proof. Let a be a relativeC-Rota-Baxter operator of weight one. By Lemfag, o’ in Eq. (43)
is a Rota-Baxter operator of weight oneAsU. It follows from Theoren®.5that the operations

( )((z ) = @o (R U), weV,1eCy

€
makeA & U into aCSpP)-algebra. Furthermore, we have

@ o @M ((X ) = &((e(d), 0))( (X 1)) = (wle(T) ), (;" )(U))-

Obviously,U := {(0,V) | v € U} is a sub&Sp(P)-algebra of ofA @ U. By transporting of struc-
tures, we obtain a@Sp(P)-algebra structure od. This is precisely the one defined in E44].
The last statement of the theorem follows from a direct cawmpan using Propositioa.5.(a). O

The following result gives an inverse of Theorérm, in the sense that aiSp) or BSpP)-
algebra can be derived from a relatiWeRota-Baxter operator of weight one. Ség44] for the
case of dendriform algebra and tridendriform algebra.

Theorem 5.12.LetP = F(V)/(R) be as defined in TheoremllandC be the configuration with
index1 or co. Let A be a givereSp(P)-algebra with operation:{(;") ‘ weV,le C|w|}. For all

Re AUl ={i; <--- <iy) € C, define

(NG = (2)9.
Then(A {l{ |w € V,1 € C}) is aC-module for theP-algebra(A, V,), where

Ve={()= L Qe

Further, the identity linear majd : A — A is a relative Rota-Baxter operator of weight one
for the P-algebra (A, V,) associated to th€-module(A, {I{’|w € V,1 € C}). Finally the
CSp(P)-algebra from theP-algebra(A, V,) obtained from the relative Rota-Baxter operatdr

by Theoren®.11is precisel;(A, {(;’) ’ weV,le C|w|}).

Proof. By Proposition4.5, (A, V,) is aP-algebra. Fow € V, define an operation oA® A by

(o = ({200 2, [a)ex )

€C|u,|
Fort € Ux t(V), letT denote the redecoration ofwith each vertexw of = being replaced by

(‘:) Also letT denote the redecoration ofwith each vertexv of v being replaced b{/j) Let
Lin(r) = [n]. We claim that

(45) X0 =7, >, CSpEX )|,
1€CiLingi

We prove Eg45) by induction onLin(7)| > 1. When|Lin(7)| = 1, 7 is the tree with one leaf
standing for the identity map. Then we hav(g; + u;) = X3 + U = 7(X1) + CSpy,(7)(U1). Assume
that the claim has been proved fomwith |Lin(7)] < n— 1 wheren > 2 and consider a with
ILin(7)| = n. In the decompositiom = w(r1 V 12 V - - - V 1/), denote the corolla witli leaves by
Te. LetLin(rp) = {kp-1 +1,--- L ko) andx? = (X115 Xy 1420 » Xk,) With the convention that
ko = 0andk, = n+ 1.
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Let H(PD be any element o in:,), ub = (Ui, y+1, Uiy 442 -+ » U,). Then

X1H(p’i)aﬁ = (ka_1+1’ Tt Xhil—l’ uhil’ Xhi1+1’ Tt Xhiai—l’ uhiai s Xhiai+1’ ) ka)

Denotell, = Z CSm(p,i)(Tp);ﬁH(p,i>Uﬁ. For anyl € C,, there exists somg such that is
HPDEC Lin(rp)
of the forml = I, L --- U I, with I, := I nLin(z},) = {hp < -+ < hpg,},1 < b < q. By the

definition of configuration, there exigtslo ¢ CiLin(ry,)l such thanjbd = JipioU®. Conversely,
for any choice of) ¢ C, with J = {j; < jo < --+ < jq} andHU0 ¢ C|L.n(7jb)|, there exists

0 # 1j, € Lin(rj,),1 < b < gsuch thaj U= H(Jb.())ulb we obtaind # | :=1j, u---ulj, € Cy.
Then we have

—> - - —
(X0 = ()( xt, uh) ",?g(X[,U[)) (by the definition ofr)

( ) (T1(Xl) Uy), - (?[(;}), ;) (by the induction hypothesis)

(“:)@(x o E ()Y (;;)(a(?l), a0 1, 70 (57),

JEC/

i, 1(ijq ), qu,TJqH(XTqﬁ),... ,?[(;)"))) (by the definition o@)

((‘;’)(ﬂ(xl), T, Y CSTAF0R Ty s (0, 2, Ty (),

JEC[

T (), 2y, i1 (), 7, (0)

(?(X), D, CSamx co].

1€CiLing)

Let® = 7 (V)(R) with Rgiven by Eq. b), that is

rS = ZCSJTSJ’ CS,i (S k’TS,i € Ut((V), 1 <S< k
i

teR
Recall thatA is aCSp(P)-algebra with the operatior{ég) ’ weV,le C|a,|} and @, V,) is aP-
algebra. Denotd/, := {(‘;’) lw e (V}.

For a given 1< s < k, by Lemma4.2, Corollary4.6 and the definition ot’), we have

T = ) (X ) = ) e ((X) 2., CSn(rs)(% co] = (rsm 2,CSR(r(x a)]

1eCp 1eCp

which is (Q0) since A, V,) is aP-algebra andA is aCSp(P)-algebra. ThusA & A,(T/*) is a
P-algebra. HenceX {l{’ |w € V, | € C}) is anA-C-module for theP-algebra A, V).
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Further the linear map id A {l{’|w € V,I € Cy,}) — (A V,) is a relativeC-Rota-Baxter
operator of weight one since

i) = (00 = 3 (£)e0 = 3 1)) )

|ECM |€C|u,|
The last statement of the theorem follows from the definitibly in the theorem. m
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