
ar
X

iv
:1

30
6.

30
46

v1
  [

m
at

h.
C

T
]  

13
 J

un
 2

01
3

SPLITTING OF OPERADS AND ROTA-BAXTER OPERATORS ON OPERADS

JUN PEI, CHENGMING BAI, AND LI GUO

Abstract. This paper establishes a uniform procedure to split the operations in any algebraic op-
erad, generalizing previous known notions of splitting algebraic structures from the dendriform
algebra of Loday that splits the associative operation to the successors that split any binary op-
erad. Examples are provided for variousn-associative algebras,n-Lie algebras,A∞ algebras and
L∞ algebras. Further, the concept of a Rota-Baxter operator, first showing its importance in the
associative and Lie algebra context and then generalized toany binary operads, is generalized to
arbitrary operads. The classical links from the Rota-Baxter associative algebra to the dendriform
algebra and its numerous generalizations are further generalized and unified as the link from the
Rota-Baxter operator on an operad to the splitting of the operad. Finally, the remarkable fact that
any dendriform algebra can be recovered from a relative Rota-Baxter operator is generalized to the
context of operads with the generalized notion of a relativeRota-Baxter operator for any operad.
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1. Introduction

Dendriform (di)algebra [33] is a module with two binary operations whose sum is associative,
thus giving a two-part splitting of the associativity. Thisconcept was introduced by Loday in
the late 1990s with motivation from periodicity in algebraic K-theory. Several years later, Loday
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and Ronco [36] introduced the concept of a tridendriform algebra (previous called dendriform
trialgebra) from their study of algebraic topology. It is a module with three binary operations
whose sum is associative, thus giving a three-part splitting of the associativity. Subsequently,
quite a few similar algebraic structures were introduced, such as the quadi-algebra [2] and ennea
algebra [30]. The notion of splitting of associativity was introduced by Loday [35] to describe
this phenomena in general for the associative operation (see also [18, 28]).

The splitting of the associativity turns out be important both in theory and application. The
free objects for dendriform and tridendriform algebras equipped the planar binary trees and pla-
nar trees with a natural Hopf algebraic structure which is closely related to the Connes-Kreimer
Hopf algebra of rooted trees from their study of quantum fieldtheory. A similar two-part and
three-part splittings of the Lie operation are found to be respectively the pre-Lie algebra predat-
ing dendriform algebra with broad connections [29, 46, 20, 12] and the PostLie algebra from
operadic study [45] with applications to integrable systems [4]. Further, a two-part and three-part
splittings of the associative commutative operation give the Zinbiel algebra [33] and commutative
tridendriform algebra [47] respectively. The free objects in the categories of these two algebras
are respectively the shuffle algebras and quasi-shuffle algebras, thus providing algebraic charac-
terization of these two important algebras say in the study of multiple zeta values [23, 26, 27, 34].

Analogues of the dendriform algebra and tridendriform algebra for the Jordan algebra, alter-
native algebra and Poisson algebra have also been obtained [1, 7, 24, 32, 40]. To put all these
constructions in one framework, the concepts of a disuccesor and a trisuccessor were introduced
in [3], giving two-part and three-part splittings of any binary operad, relating them to the Manin
black product [45] and the Rota-Baxter operator on a binary operad [9, 23, 41].

There are important algebraic structures (operads) beyondthe binary ones, such as the various
n-associative and Lie algebras, theA∞ algebra [43] and L∞ algebra [10, 11, 22, 37, 38]. It can
be expected that splittings of these operads will also show their importance as in the binary case.
In fact, theDend∞ algebra [37, 47] and thePL∞ algebra [14] have been defined that should be
suitable splittings of theA∞ algebra and theL∞ algebra. Structures have also arisen recently that
resemble a two-part splitting for the 3-Lie algebra [6]. Instead of discovering such structures
one at a time in an ad hoc manner and with elaborating experiments, it is desirable from the
theoretical and application perspective to establish a general framework for the splittings of all
operads, generalizing the approach for binary operads in [3]. This is the purpose of this paper. In
fact, we generalize [3] in two directions. In one direction, we generalize the arity of the operads
under consideration from binary to any (uniform or mixed arities). In the other direction, for a
given arity or arity combination, we introduce the concept of a configuration to give a uniform
treatment of different splitting patterns that include the bisuccessor and trisuccessor in [3] as two
special cases. This avoids repetitive arguments and paves the way for understanding the other
splittings of the associativity beyond the dendriform and tridendriform algebras.

The Rota-Baxter operator which has played important role inbroad areas in mathematics and
physics [9, 13, 16, 23, 41] naturally gives rise to splittings of various algebraic structures through
its action on these structures, providing interesting examples and motivation for the splittings.
This is the case for associative algebras, giving the dendriform and tridendriform algebras, for
Lie algebras, giving the pre-Lie and PostLie algebras, and more generally for binary operads,
giving bisuccessors and trisuccessors [3]. Going in the opposite direction, any dendriform and
tridendriform algebras can be recovered in this fashion by ageneralization of Rota-Baxter opera-
tors, called relative Rota-Baxter operators [5, 44]. We generalize these results to algebras of any
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operads. In order to do this, we generalize the concepts of a Rota-Baxter operator and a relative
Rota-Baxter operator to the context of an operad.

The following is an outline of the paper. In Section2, we define the splitting of labeled trees
from a given splitting pattern called a configuration. Through the tree description of operads,
splittings of operads are defined. In Section3, examples of splittings of operads are provided
for various associativen-algebras andn-Lie algebras, theA∞ algebra and theL∞ algebra. In
Section4, we show that a splitting of an operad indeed satisfies the same splitting property for
the operations of the given operad as in the previous known cases of splittings (successors) [3],
thus justifying the name of the concept of splitting. Functorial properties of the splitting process
are also studied. In Section5, the concept of a Rota-Baxter operator on an operad is definedwith
respect to a configuration. It is shown that a Rota-Baxter operator action on an operad induces
a splitting of the operad. To address the question of whetherany splitting of an operad can be
derived from some action of Rota-Baxter type, the concept ofa relative Rota-Baxter operator (also
called anO-operator or a generalized Rota-Baxter operator in specialcases considered before)
was introduced. It is shown that, as in the case of associative algebras, any algebra of a splitting
of an operad comes from the action of a relative Rota-Baxter operator on an algebra of the original
operad.

2. Splittings of operads

In this section, we extend splittings of binary operads introduced in [3] to arbitrary operads. To
handle the different splitting patterns of a given operad, we define in Section 2.1 the notion of a
configuration for a splitting. Since operads can be represented by trees, for each configuration, we
define a splitting of labeled trees which is then applied to define similar splitting for nonsymmetric
operads and (symmetric) operads.

2.1. Splittings of planar trees. We recall some basic notions on trees and operads. For more
details see [3, 37].

2.1.1. Labeled trees.

Definition 2.1. (a) LetT denote the set of planar reduced rooted trees together with the trivial

tree . If t ∈ T hasn leaves, we callt ann-tree. The trivial tree has one leaf.

(b) LetΩ be a set. By adecorated treewe mean a treet of T together with a decoration on
the vertices oft by elements ofΩ and a decoration on the leaves oft by distinct positive
integers. Lett(Ω) denote the set of decorated trees oft and denote

T(Ω) :=
∐

t∈T

t(Ω).

If τ ∈ t(Ω) for ann-treet, we callτ a labeledn-tree.
(c) Forτ ∈ T(Ω), we let Vin(τ) (resp. Lin(τ)) denote the set (resp. ordered set) of labels of

the vertices (resp. leaves) ofτ.
(d) Let τ ∈ T(Ω) with |Lin(τ)| > 1 be a labeled tree fromt ∈ T. Then there exists an integer

m such thatt can be written uniquely as the graftingt1 ∨ t2 ∨ · · · ∨ tm of treest1, t2, · · · tm.
Correspondingly, letτ = ω(τ1 ∨ τ2 ∨ · · · ∨ τm) denote the unique decomposition ofτ as a
grafting ofτ1, · · · , τm in T(Ω) alongω ∈ Ω.
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For a treet and an arity graded vector spaceV =
⊕
n≥1

Vn, we define

t[V] :=
⊗

v∈Vin(t)

V|In(v)|,

where In(v) denotes the incoming edges ofv, labeled by 1, · · · , |In(v)| from the left to the right.
Then the free nonsymmetric operadTns(V) on V is given by the vector space

Tns(V) :=
⊕

t∈T

t[V].

A basisV of V induces a basist(V) of t[V] and a basisT(V) ofTns(V). Consequently any element
of t[V] can be represented as a linear combination of elements int(V).

2.1.2. Configurations and splittings of labeled trees.For each integern ≥ 1, denote [n] =
{1, 2, · · · , n}.

Definition 2.2. (a) For any 1≤ m≤ n, let N(n,m) denote the set of all nonempty subsets of [n]
with at mostm elements. In particular,

N(n,1) := An := {{1}, {2}, · · · , {n}}, N(n,n) := Bn := {J ⊆ [n] | J , ∅}.

(b) Let τ ∈ T(Ω) and∅ , J ⊆ Lin(τ). For ω ∈ Vin(τ), let τω denote the subtree ofτ with
root ω and letτω = ω (σ1 ∨ · · · ∨ σℓ) be the decomposition ofτω as the grafting of
decorated branches ofτω . Denote

(1) J ⊓ ω := J ⊓ (ω ; τ) := {i ∈ In(ω ) | J ∩ Lin(τi) , ∅} ⊆ [ℓ].

To get use the notationJ ⊓ ω , consider the case when Lin(τ) = [3]. There are three suchτ’s.
Thenω ∈ Vin(τ) can have arity 2 or 3. If|Vin(ω)| = 3, thenτω = τ andJ ⊓ ω = J for each
∅ , J ⊆ [3]. If |Vin(ω)| = 2, thenω can appear inτ in four locations denotedωi, 1 ≤ i ≤ 4:

τ = ω1(1∨ ω2(2∨ 3)), τ = ω3(ω4(1∨ 2)∨ 3).

For J = 2, we have

J ⊓ ω1 = {2}, J ⊓ ω2 = {1}, J ⊓ ω3 = {1}, J⊓ ω4 = {2}.

For J = {1, 3}, we have

J ⊓ ω1 = {1, 2}, J⊓ ω2 = {2}, J ⊓ ω3 = {1, 2}, J⊓ ω4 = {1}.

Definition 2.3. (a) A configuration is a sequenceC = (Cn)n≥1 with Cn ⊆ Bn such that for
any J ∈ Cn, decoratedn-treeτ and ω ∈ Vin(τ), we haveJ ⊓ ω ∈ C|In(ω )| whenever
J ⊓ ω , ∅.

(b) For a configurationC = (Cn), define 1≤ p(C) ≤ ∞ by

(2) p(C) := sup{n |Cn = Bn},

if it exists, called theindex of C.
(c) A configurationC = (Cn) is calledS-invariant if CSn

n ⊆ Cn, n ≥ 1.

From the computations before Definition2.2, we find that{2} ∈ C3 implies {1}, {2} ∈ C2 and
{1, 3} ∈ C3 implies{1}, {2}, {1, 2} ∈ C2.

It is easy to see that if theS-invariantCn contains a subset ofp elements, thenCn contains all
the subsets of [n] with p elements.
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Example 2.4. (a) Any configuration has indexn ≥ 1. An important example of configuration
with index 1 isA := (An).

(b) The sequenceC = (Cn) with

Cn =

{
Bn, 1 ≤ n ≤ m,
N(n,m), n > m.

is anS-invariant configuration with indexm. The configurationB := (Bn) has index∞.
(c) The sequence withCn = {[n]} is anS-invariant configuration with no index. It is called

thetrivial ( S-invariant) configuration .
(d) For any fixedm ≥ 1, the sequence withCn = {[n]}, n ≥ m, Cn = {[n], {1}, {2}, · · · , {n}},

n < m, is anS-invariant configuration.

Definition 2.5. Let V =
⊕
n≥1

Vn be an arity graded vector space with basisV =
∐

n≥1Vn andC be

a configuration.

(a) Define an arity graded vector spaceCSp(V) by

(3) CSp(V)n = Vn ⊗


⊕

I∈Cn

keI

 ,

where we denote (ω ⊗ eI ) by
(
ω

eI

)
for ω ∈ Vn. Then

{(
ω

eI

) ∣∣∣∣ ω ∈ Vn, n ≥ 1, I ∈ Cn

}
is a

basis ofCSp(V)n.
(b) For a labeledn-treeτ in T(V), defineCSp(τ), also denoted byCSp∅(τ), in Tns(CSp(V)) by

• CSp( ) = ,

• whenn ≥ 2, CSp(τ) is obtained by replacing each decorationω ∈ Vin(τ) ∩ Vℓ by(
ω

∗

)
:=

(
ω

∗C

)
=

∑
I∈Cℓ

(
ω

eI

)
.

We extend this definition toTns(V) by linearity.

Definition 2.6. Let V =
⊕
n≥1

Vn be an arity graded vector space with basisV =
∐

n≥1Vn and

let C be a configuration. Letτ ∈ T(V) be a labeledn-tree and letJ ∈ C|Lin(τ)|. The splitting
with configuration C (or C-splitting in short)CSpJ(τ) of τ with respect toJ is an element of
Tns(CSp(V)) defined by induction onn := |Lin(τ)| as follows:

• CSpJ( ) = ;

• assume thatCSpJ(τ) have been defined forτ with |Lin(τ)| ≤ k for a k ≥ 1. Then, for a
labeled (k+1)-treeτ ∈ T(V) with its decompositionτ = ω(τ1∨τ2∨ · · ·∨τℓ) andω ∈ Vℓ,
denoteI := J ⊓ τ ∈ Cℓ defined in Eq. (1) and define

CSpJ(τ) :=
(
ω

eI

)
(∨ℓi=1 CSpJ∩Lin(τi )(τi)) =

(
ω

eI

)
( CSpJ∩Lin(τ1)(τ1) ∨ · · · ∨ CSpJ∩Lin(τℓ)(τℓ) ),

using the notationCSp∅(τ) = CSp(τ) from the previous definition.

We single out two important splittings that specialize to the two classical examples of splittings,
namely the bisuccessor and the trisuccessor [3] in the case of binary operads.

Definition 2.7. With the notation in Definition2.2, theA-splitting (resp.B-splitting) is called
thearity-splitting (resp.power-splitting).
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Remark 2.8. For a binary treeτ, the arity-splittingASpJ(τ) and power-splittingBSpJ(τ) are the
bisuccessor and trisuccessor ofτ in [3] respectively. For the trivial configurationC = ([n]), we
haveCSpJ(τ) =

(
τ

e[ |Lin(τ)|]

)
resulting in no splittings, justifying the term “trivial”.

We next give an explicit description of theC-splitting.

Proposition 2.9. Let V =
⊕
n≥1

Vn be an arity graded vector space with basisV =
∐

n≥1Vn and

C be a configuration. Letτ be inT(V) and J∈ C|Lin(τ)|. With the notations in Definition2.3, the
C-splittingCSpJ(τ) is obtained by relabeling each vertexω ∈ Vℓ of τ by

(
ω

eI

)
if I := J ⊓ ω , ∅

and by
(
ω

∗C

)
:=

∑

I∈Cℓ

(
ω

eI

)
if J ⊓ ω = ∅.

Proof. The proof follows from an induction on|Lin(τ)|. �

Example 2.10. (a) For the configurationA, we have

CSp{x2}



x1 x2 x3 x4 x5 x6

ω1 ω2

ω3

❦❦❦❦❦❦❦❦❦❦

❊❊❊❊❊❊❊❊❊❊❊
❦❦❦❦❦❦❦❦❦❦

❊❊❊ ②②②
✴✴ ✎✎



=

x1 x2 x3 x4 x5 x6

(
ω1

e1

) (
ω2

∗
A

)

(
ω3

e2

)

OO

♥♥♥♥♥♥♥♥♥

OO

❂❂❂❂❂❂❂❂❂❂❂❂
♥♥♥♥♥♥♥♥♥

aa❇❇❇ ⑤⑤⑤
✰✰✰ ✓✓✓

=

x1 x2 x3 x4 x5 x6

(
ω1

e1

) (
ω2

e1

)

(
ω3

e2

)
♥♥♥♥♥♥♥♥♥

❂❂❂❂❂❂❂❂❂❂❂❂
♥♥♥♥♥♥♥♥♥

❇❇❇ ⑤⑤⑤
✰✰✰ ✓✓✓

+

x1 x2 x3 x4 x5 x6

(
ω1

e1

) (
ω2

e2

)

(
ω3

e2

)
♥♥♥♥♥♥♥♥♥

❂❂❂❂❂❂❂❂❂❂❂❂
♥♥♥♥♥♥♥♥♥

❇❇❇ ⑤⑤⑤
✰✰✰ ✓✓✓

(b) For a configurationC = (Cn) with index≥ 3 (for example forC = B), we have

CSp{x1,x2,x4}



x1 x2 x3 x4 x5 x6

ω1 ω2

ω3

✐✐✐✐✐✐✐✐✐✐✐

❊❊❊❊❊❊❊❊❊❊❊
✐✐✐✐✐✐✐✐✐✐✐

❊❊❊ ②②②
✸✸✸ ☛☛☛



=

x1 x2 x3 x4 x5 x6

(
ω1

e{1,3}

) (
ω2

∗
C

)

(
ω3

e{1,2}

)

OO

♥♥♥♥♥♥♥♥♥

OO

^^❂❂❂❂❂❂❂❂❂❂❂ ♥♥♥♥♥♥♥♥♥

aa❇❇ ==⑤⑤
✰✰✰ ✓✓✓

where
(
ω

∗
C

)
=

∑
I∈C2

eI .

2.2. Splittings of nonsymmetric operads and (symmetric) operads. We now give the splitting
of an operad with a given splitting configuration, starting with the nonsymmetric case.
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2.2.1. The nonsymmetric case.Let V =
⊕
n≥1

Vn be an arity graded vector space with basisV =
∐

n≥1Vn.

(a) An element

r :=
r∑

i=1

ciτi , ci ∈ k, τi ∈ T(V),

in Tns(V) is calledhomogeneousif L in(τi) are the same for 1≤ i ≤ r. Then denote
Lin(r) = Lin(τi) for any 1≤ i ≤ r.

(b) A collection of elements

rs :=
r∑

i=1

cs,iτs,i , cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s≤ k, k ≥ 1,

in Tns(V) is calledlocally homogenousif each elementrs, 1 ≤ s≤ k, is homogeneous.

Definition 2.11. LetP = Tns(V)/(R) be a nonsymmetric operad whereV is an arity graded vector
space with a basisV andR⊆ Tns(V) is a subset of locally homogeneous elements:

(4) rs =

∑

i

cs,iτs,i ∈ Tns(V) , cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s≤ k.

Let C = (Cn) be a configuration. TheC-splitting of P is defined to be the operad

CSp(P) = T (CSp(V))/(CSp(R))

where the space of relations is generated by

CSp(R) :=

CSpJ(rs) =
∑

i

cs,iCSpJ(τs,i)
∣∣∣ J ∈ C|Lin(τs,i )|, 1 ≤ s≤ k

 .

2.2.2. The symmetric case.Let V =
⊕
n≥1

V(n) be anS-module with a linear basisV =
∐

n≥1V(n)

such thatV(n) is invariant under the action ofSn. For any finite setX of cardinalityn, define the
coinvariant space

V(X) :=


⊕

f :[n]→X

V(n)


Sn

,

where the sum is over all the bijections from [n] := {1, 2, . . . , n} to X and where the symmetric
group acts diagonally.

Let T denote the set of isomorphism classes of reduced trees [37, Appendix C]. Fort ∈ T,
define the treewise tensorS-module associated tot, explicitly given by

t[V] :=
⊗

v∈Vin(t)

V(In(v)) ,

see [37, Section 5.5.1]. Then the free operadT (V) on anS-moduleV is given by theS-module

T (V) :=
⊕

t∈T

t[V] .

Each treet in T can be represented by a planar treet in T by choosing a total order on the set of
inputs of each vertex oft. Further,t[V] � t[V] [25, Section 2.8]. Fixing such a choicet for each
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t ∈ T gives a subsetR ⊆ T in bijection withT. Then we have

T (V) �
⊕

t∈R

t[V] ,

allowing us to use the notations in the nonsymmetric case.

Definition 2.12. LetP = T (V)/(R) be an operad whereV =
⊕
n≥1

V(n) is anS-module with a linear

basisV =
∐

n≥1V(n) that is invariant under the action ofSn and where the space of relations (R)
is generated, as anS-module, by a setR of locally homogeneous elements

(5) rs :=
∑

i

cs,iτs,i, cs,i ∈ k, τs,i ∈
⋃

t∈R

t(V), 1 ≤ s≤ k.

Let C be anS-invariant configuration. TheC-splitting of P is defined to be the operad

CSp(P) = T (CSp(V))/(CSp(R))

where theSn-action onCSp(V)(n) = V(n) ⊗ (
⊕

I∈Cn
keI ) is given by

(
ω

eI

)σ
:=

(
ω σ

eσ(I )

)
, ω ∈ V(n), σ(I ) = {σ(i) | i ∈ I }

and the space of relations (CSp(R)) is generated, as anS-module, by

CSp(R) :=

CSpJ(rs) =
∑

i

cs,iCSpJ(τs,i)
∣∣∣ J ∈ C|Lin(τs,i )|, 1 ≤ s≤ k

 .

By Remark2.8, we have

Proposition 2.13.WhenP is a (symmetric or nonsymmetric) binary operad, the arity and power
splitting ofP is the disuccessor and the trisuccessor ofP respectively.

3. Examples of splittings of operads

We now give some examples of splittings of operads, first in the nonsymmetric case in Sec-
tion 3.1 and then in the general case in Section3.2. We will focus on the arity- and power-
splittings. But note that there are other splittings, for example from the configurations in Exam-
ple2.4. See§3.1.1.

3.1. Examples of splittings of nonsymmetric operads.We start with the dendriform algebras
which is the origin of all the splitting constructions. We then consider then-ary generalizations.
We finally show that the operadDD∞ defined in [37, 47] is the arity splitting of the operadA∞ [43].

3.1.1. Dendriform operads revisited.Recall that the tridendriform algebra of Loday and Ronco
[36] is defined by three bilinear operations{≺,≻, ·} satisfying the following relations:

(x ≺ y) ≺ z= x ≺ (y ∗ z), (x ≻ y) ≺ z= x ≻ (y ≺ z), (x ∗ y) ≻ z= x ≻ (y ≻ z),(6)

(x · y) ≺ z= x · (y ≺ z), (x ≺ y) · z= x · (y ≻ z), (x ≻ y) · z= x ≻ (y · z),(7)

(x · y) · z= x · (y · z).(8)

where∗ =≺ + ≻ +·. The dendriform algebra of Loday [33] is defined by two bilinear operations
{≺,≻} satisfying the relations in Eq. (6), where∗ =≺ + ≻. It is easy to check that the correspond-
ing nonsymmetric operad Dend (resp. TriDend) is the arity-splitting (resp. power-splitting) of
the nonsymmetric operadAsof associative algebras. LetC = (Cn) be a configuration with index
2. Then aCSp(As)-algebra, is a vector spaceA with three bilinear operations{≺,≻, ·} satisfying
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the relations in Eqs. (6) and (7), where∗ =≺ + ≻ +·, thus gives a splitting ofAsbetweenDend
andTriDend.

3.1.2. Dendriform n-operads.There is no uniquen-arity generalization of the associative algebra
for n ≥ 3. Recall that apartially associative n-algebra [22] is a vector space with ann-ary
operation such that the signed sum of the ordered product of 2n− 1 elements is zero, that is,

(9)
n−1∑

i=0

(−1)i(n−1)(x1, · · · , xi, (xi+1, · · · , xi+n), xi+n+1, · · · , x2n−1) = 0.

Whenn = 2, this reduces to the classical associativity (x1x2)x3 − x1(x2x3) = 0. For the case when
n = 3, the partial associativity is

((x1, x2, x3), x4, x5) + (x1, (x2, x3, x4), x5) + (x1, x2, (x3, x4, x5)) = 0.

A vector space with ann-ary operation is called an(totally) associativen-algebra [10, 22] if
the ordered product of 2n−1 elements does not depend on the position of the parentheses, that is,

(x1 · · · (xi , · · · , xi+n−1), · · · , x2n−1) = (x1, · · · , (xj , · · · , xj−n+1), · · · , x2n−1)

whenever 1≤ i < j ≤ n. Whenn = 2, this also reduces to the classical associativity. For thecase
whenn = 3, we have

((x1, x2, x3), x4, x5) = (x1, (x2, x3, x4), x5) = (x1, x2, (x3, x4, x5)).

Proposition 3.1.Let PAs3 be the nonsymmetric operad of the partially associative3-algebra with
productω = (·, ·, ·). Then anASp(PAs3)-algebra, called apartially dendriform 3-algebra, is a
vector space A with three trilinear operationsտ, ↑,ր such that

տ (տ (x1, x2, x3), x4, x5)+տ (x1, ∗(x2, x3, x4), x5)+տ (x1, x2, ∗(x3, x4, x5)) = 0,

տ (↑ (x1, x2, x3), x4, x5)+ ↑ (x1,տ (x2, x3, x4), x5)+ ↑ (x1, x2, ∗(x3, x4, x5)) = 0,

տ (ր (x1, x2, x3), x4, x5)+ ↑ (x1, ↑ (x2, x3, x4), x5)+ր (x1, x2,տ (x3, x4, x5)) = 0,

↑ (∗(x1, x2, x3), x4, x5)+ ↑ (x1,ր (x2, x3, x4), x5)+ր (x1, x2, ↑ (x3, x4, x5)) = 0,

ր (∗(x1, x2, x3), x4, x5)+ր (x1, ∗(x2, x3, x4), x5)+ր (x1, x2,ր (x3, x4, x5)) = 0.

Here we have used the notation∗ =տ + ↑ +ր.

Proof. Let r denote the relation in Eq. (9). By Proposition2.1.2, we have

ASpx1
(r) =

{(
ω

e1

)
(
(
ω

e1

)
(x1, x2, x3), x4, x5) +

(
ω

e1

)
(x1,

(
ω

∗

)
(x2, x3, x4), x5) +

(
ω

e1

)
(x1, x2,

(
ω

∗

)
(x3, x4, x5))

}
;

ASpx2
(r) =

{(
ω

e1

)
(
(
ω

e2

)
(x1, x2, x3), x4, x5) +

(
ω

e2

)
(x1,

(
ω

e1

)
(x2, x3, x4), x5) +

(
ω

e2

)
(x1, x2,

(
ω

∗

)
(x3, x4, x5))

}
;

ASpx3
(r) =

{(
ω

e1

)
(
(
ω

e3

)
(x1, x2, x3), x4, x5) +

(
ω

e2

)
(x1,

(
ω

e2

)
(x2, x3, x4), x5) +

(
ω

e3

)
(x1, x2,

(
ω

e1

)
(x3, x4, x5))

}
;

ASpx4
(r) =

{(
ω

e2

)
(
(
ω

∗

)
(x1, x2, x3), x4, x5) +

(
ω

e2

)
(x1,

(
ω

e3

)
(x2, x3, x4), x5) +

(
ω

e3

)
(x1, x2,

(
ω

e2

)
(x3, x4, x5))

}
;

ASpx5
(r) =

{(
ω

e3

)
(
(
ω

∗

)
(x1, x2, x3), x4, x5) +

(
ω

e3

)
(x1,

(
ω

∗

)
(x2, x3, x4), x5) +

(
ω

e3

)
(x1, x2,

(
ω

e3

)
(x3, x4, x5))

}
.

Then abbreviatingտ=
(
ω

e1

)
, ↑=

(
ω

e2

)
,ր=

(
ω

e3

)
, we obtain the relations in the proposition. �

Similarly, on the level of operads, we have
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Proposition 3.2. Let TAs3 be the nonsymmetric operad of the totally associative3-algebra with
productω = (·, ·, ·). Then the operadASp(TAs3), called thetotally dendriform 3-operad, has
its arity graded space V concentrated in V3 = k{տ, ↑,ր} and its relation space generated by

տ ◦(տ ⊗id ⊗ id)− տ ◦(id ⊗ ∗ ⊗ id), տ ◦(տ ⊗id ⊗ id)− տ ◦(id ⊗ id ⊗ ∗),

տ ◦(↑ ⊗id ⊗ id)− ↑ ◦(id⊗ տ ⊗id), տ ◦(↑ ⊗id ⊗ id)− ↑ ◦(id ⊗ id ⊗ ∗),

տ ◦(ր ⊗id ⊗ id)− ↑ ◦(id⊗ ↑ ⊗id), տ ◦(ր ⊗id ⊗ id)− ր ◦(id ⊗ id⊗ տ),

↑ ◦(∗ ⊗ id ⊗ id)− ↑ ◦(id⊗ ր ⊗id), ↑ ◦(∗ ⊗ id ⊗ id)− ր ◦(id ⊗ id⊗ ↑),

ր ◦(∗ ⊗ id ⊗ id)− ր ◦(id ⊗ ∗ ⊗ id), ր ◦(∗ ⊗ id ⊗ id)− ր ◦(id ⊗ id⊗ ր).

Here we have used the notation∗ =տ + ↑ +ր.

Furthermore, we can similarly use the arity-splitting of partially or totally associativen-algebra
and give the notions of “partially or totally dendriformn-algebra”. We can also consider the
power-splitting of the partially and totally associativen-algebra and give suitable extensions of
tridendriform algebra in the context ofn-algebras.

3.1.3. The operad Dend∞ as the arity splitting of the operad A∞. An A∞-algebra (orAss∞-
algebra) [37, 43] is defined by Stasheff and has important applications in string theory. It has
ann-ary generating operationωn for everyn ≥ 1 that satisfy the relations

ω1 ◦ ω1 = 0,

∂(ωn) =
∑

n = p+ q+ r
k = p+ 1+ r
k > 1, q > 1

(−1)p+qrωk ◦ (id⊗p ⊗ ωq ⊗ id⊗r), n ≥ 2,(10)

where∂(ωn) := ω1 ◦ωn − (−1)n−2ωn ◦
(
(ω1, id, · · · , id)+ · · · + (id, · · · , id, ω1)

)
andk = p+ 1+ r.

A Dend∞-algebra [37, §13.6.13] hasn n-ary generating operationsωn,i, 1 ≤ i ≤ n, for each
n ≥ 2, that satisfy the relations

ω1,1 ◦ ω1,1 = 0,

∂(ωn,i) =
∑

(p,q,r,ℓ, j)

(−1)p+qrωp+1+r,ℓ(id
⊗p ⊗ ωq, j ⊗ id⊗r),(11)

where, for fixedn andi, the sum is extended to all the quintuples (p, q, r, ℓ, j) satisfying

p ≥ 0, q ≥ 2, r ≥ 0, p+ q+ r = n, 1 ≤ ℓ ≤ p+ 1+ r, 1 ≤ j ≤ q

and the condition 

i = q+ ℓ − 1, when 1≤ p+ 1 ≤ ℓ − 1,
i = ℓ − 1+ j, whenp+ 1 = ℓ,
i = ℓ, whenℓ + 1 ≤ p+ 1.

Note that the last condition is equivalent to


ℓ = i − q+ 1, whenp+ q+ 1 ≤ i ≤ n,
j = i − p, ℓ = p+ 1, whenp+ 1 ≤ i ≤ p+ q,
ℓ = i, 1 ≤ i ≤ p.

For fixedn andi ∈ [n], by the definition of the arity-splitting and the abbreviationωn,i :=
(
ωn

ei

)
, we

have

ASpi(∂(ωn)) = ω1,1 ◦ ωn,i − (−1)n−2ωn,i ◦
(
(ω1,1, id, · · · , id) + · · · + (id, · · · , id, ω1,1)

)
= ∂(ωn,i).
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Also for any given triplep, q, r, we have

ASpi

(
ωk ◦ (id⊗p ⊗ ωq ⊗ id⊗r)

)
=



ωk,i ◦ (id⊗p ⊗ ωq,∗ ⊗ id⊗r), 1 ≤ i ≤ p,
ωk,p+1 ◦ (id⊗p ⊗ ωq,i−p ⊗ id⊗r), p+ 1 ≤ i ≤ p+ q,
ωk,i−q+1 ◦ (id⊗p ⊗ ωq,∗ ⊗ id⊗r), p+ q+ 1 ≤ i ≤ n,

whereωq,∗ =

q∑

j=1

ωq, j. Thus Eq. (11) is justASp applied to Eq. (10) and we obtain

Proposition 3.3.ASp(A∞) = Dend∞.

3.2. Examples of splittings of symmetric operads.We give some examples of splittings of
(symmetric) operads. First note that

ASp(Lie) = BSu(Lie) = pre-Lie, BSp(Lie) = TSu(Lie) = PostLie.

We next focus on operads that are not binary.

3.2.1. n-Lie operads.Recall that a 3-Lie algebra is a vector space with a trilinearskew-symmetric
operation [·, ·, ·] satisfies the 3-Jacobi identity:

(12) [[x1, x2, x3], x4, x5] = [[ x1, x4, x5], x2, x3] + [x1, [x2, x4, x5], x3] + [x1, x2, [x3, x4, x5]] .

Let 3-Lie be the operad of the 3-Lie algebra with productω = [·, ·, ·]. Let r denote the homogenous
element from the 3-Jacobi identity from Eq. (12). Then we have

ASpx1
(r) =

(
ω

e1

) ((
ω

e1

)
(x1, x2, x3), x4, x5

)
−

(
ω

e1

) ((
ω

e1

)
(x1, x4, x5), x2, x3

)

−
(
ω

e1

) (
x1,

(
ω

∗

)
(x2, x4, x5), x3

)
−

(
ω

e1

) (
x1, x2,

(
ω

∗

)
(x3, x4, x5)

)
,

ASpx4
(r) =

(
ω

e2

) ((
ω

∗

)
(x1, x2, x3), x4, x5

)
−

(
ω

e1

) ((
ω

e2

)
(x1, x4, x5), x2, x3

)

−
(
ω

e2

) (
x1,

(
ω

e2

)
(x2, x4, x5), x3

)
−

(
ω

e3

) (
x1, x2,

(
ω

e2

)
(x3, x4, x5)

)
.

Similar computations apply toASpx2
,ASpx3

andASpx5
. However these relations can also be

obtained from the relations ofASpx1
andASpx4

by a permutation of the variables. Replace the

operation
(
ω

e1

)
by {·, ·, ·}. The group actions

(
ω

e1

)(23)
=

(
ω(23)

e1

)
= −

(
ω

e1

)
,

show that{·, ·, ·} satisfies the local-skew symmetry relation. Furthermore

(
ω

e2

)(12)
= −

(
ω

e1

)
,

(
ω

e3

)(13)
= −

(
ω

e1

)
.

Since the arity-splitting (that is, bisuccessor)ASp(Lie) of the operadLie of the Lie algebra is the
operad of the pre-Lie algebra, it is natural to useASp(3-Lie) to give the the following definition.

Definition 3.4. A 3-pre-Lie algebra is a vector spaceA with a trilinear map{·, ·, ·} : A⊗3 −→ A
such that

(13) {x1, x2, x3} = −{x1, x3, x2},

{{x1, x2, x3}, x4, x5} = {{x1, x4, x5}, x2, x3} + {x1,©{x2, x4, x5}, x3} + {x1, x2,©{x3, x4, x5}},(14)
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{x4,©{x1, x2, x3}, x5} = {{x4, x1, x5}, x2, x3} + {{x4, x2, x5}, x3, x1} + {{x4, x3, x5}, x1, x2},(15)

where©{x, y, z} = {x, y, z} + {y, z, x} + {z, x, y}.

In general, ann-Lie algebra is a vector space over a fieldk endowed with ann-ary multi-linear
skew-symmetric operation [·, · · · , ·] satisfying then-Jacobi identity

(16) [[x1, · · · , xn], xn+1, · · · , x2n−1] =
n∑

i=1

[x1, · · · , [xi , xn+1, · · · , x2n−1], · · · , xn].

Computing the arity-splitting ofn-Lie and replacing the operation
(
ω

e1

)
by {·, · · · , ·}, we have

Definition 3.5. An n-pre-Lie algebra is a vector spaceA with an-linear map{·, · · · , ·} : A⊗n −→

A such that

{x1, x2, · · · , xn} = sgn(σ){x1, xσ(2), xσ(3), · · · , xσ(n)},whereσ ∈ Sn andσ(1) = 1,(17)

{{x1, · · · , xn}, xn+1, · · · , x2n−1} = {{x1, xn+1, · · · , x2n−1}, x2, · · · , xn}

+

n∑

i=2

{x1, · · · ,©{xi, xn+1, · · · , x2n−1}, · · · , xn},(18)

{xn+1,©{x1, · · · , xn}, xn+2, · · · , x2n−1}

= (−1)(1+i)(n+1−i)
n∑

i=1

{{xn+1, xi , xn+2, · · · , x2n−1}, xi+1, xi+2, · · · , xn, x1, x2, · · · , xi−1},(19)

where©{x1, x2, · · · , xn} = (−1)(1+i)(n+1−i)
n∑

i=1

{xi , xi+1, xi+2, · · · , xn, x1, x2, · · · , xi−1}.

In fact, there is another case of 3-ary operation that is closely related to 3-Lie algebras. A
generalized Lie algebra of order 3 or Lie-3 algebra[10, 11, 22] is a vector spaceA together
with a trilinear skew-symmetric operation [·, ·, ·] such that

[[ x1, x2, x3], x4, x5] − [[ x1, x2, x4], x3, x5] + [[ x1, x3, x4], x2, x5] − [[ x2, x3, x4], x1, x5]

+[[ x1, x2, x5], x3, x4] + [[ x3, x4, x5], x1, x2] − [[ x1, x3, x5], x2, x4] − [[ x2, x4, x5], x1, x3]

+[[ x1, x4, x5], x2, x3] + [[ x2, x3, x5], x1, x4] = 0.

It is known [11] that a 3-Lie algebra is a generalized Lie algebra of order 3.

Remark 3.6. For ann-algebraA and its operationω, the commutator ofA is
∑

σ∈Sn

sgn(σ)ω(xσ(1), · · · , xσ(i), · · · , xσ(n)).

A partially associative 3-algebraA is a 3-Lie admissible algebra, more precisely, the commutator
of A makesA into a generalized Lie algebra of order 3 [22].

Similarly to the 3-Lie algebra, we use the arity-splitting of the generalized Lie algebra of order
3 to give the following notion:

Definition 3.7. A generalized pre-Lie algebra of order3 is a vector spaceA with a trilinear
map{·, ·, ·} : A⊗3 −→ A such that

(20) {x1, x2, x3} = −{x1, x3, x2},
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{{x1, x2, x3}, x4, x5} = {{x1, x2, x4}, x3, x5} − {{x1, x2, x5}, x3, x4} − {{x1, x3, x4}, x2, x5}

+ {{x1, x3, x5}, x2, x4} − {{x1, x4, x5}, x2, x3} − {x1,©{x2, x3, x4}, x5}(21)

+ {x1,©{x2, x3, x5}, x4} − {x1,©{x2, x4, x5}, x3} + {x1,©{x3, x4, x5}, x2}

where©{x, y, z} = {x, y, z} + {y, z, x} + {z, x, y}.

Proposition 3.8. Define the local commutator of a partially associative3-algebra A by

{x, y, z} = (x, y, z) − (x, z, y).

Then(A, {·, ·, ·}) is a generalized pre-Lie algebra of order3.

Proof. The proof is a straightforward computation. �

See Proposition4.10for the relationship between the 3-pre-Lie algebra and generalized pre-Lie
algebra of order 3.

3.2.2. The operad PL∞ as the arity splitting of the operad L∞. An L∞-algebra (or Lie∞-algebra)
[31, 37]on a graded vector space L with a system{mn | n ≥ 1} of linear mapsmn : L⊗n −→ L with
deg(mn) = n− 2 that are antisymmetric in the sense that

mn(xσ(1), · · · , xσ(n)) = sgn(σ)mn(x1, · · · , xn), for all σ ∈ Sn, x1, · · · , xn ∈ L,

and satisfy the following generalized form of the Jacobi identity:

(22) RL :=
∑

i+ j=n+1

∑

σ∈S hi,n−i

ǫ(σ, v̄)mj(mi(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n)) = 0.

HereS hi,n−i ⊆ Sn is the set of (i, n− i)-shuffles.
A PL∞ (or pre-Lie∞-algebra) [15] on a graded vector spaceV is a system of linear maps

ℓn : V ⊗ Sn(V) −→ V of degreeℓn = n− 1, n ≥ 1, that satisfy
∑

i+ j=n

∑

σ∈S hi,n−i

ǫ(σ, v̄)ℓ j(ℓi(v0 ⊗ vσ(1), · · · , vσ(i)), vσ(i+1), · · · , vσ(n))

+(−1)|v0||ℓi |
∑

i+ j=n, j≥1

∑

σ∈S h1,i,n−i−1

ǫ(σ, v̄)ℓ j(v0 ⊗ ℓi(vσ(1), · · · , vσ(i+1)), vσ(i+2), · · · , vσ(n)) = 0,(23)

whereS(V) =
⊕

n≥0 Sn(V) is the graded symmetric algebra generated byV and ǫ(σ, v̄) is the
Koszul sign.

We next relatePL∞ to ASp(L∞). For anyn ≥ 1, use the abbreviationmn,i =

(
mn

ei

)
. By the

Sn-action on
(
mn

ei

)
, we have

mn,1(x1, xσ(2), xσ(3), · · · , xσ(n)) = sgn(σ)mn,1(x1, x2, · · · , xn), σ ∈ Sn, σ(1) = 1,

and thusmn,1 can be regarded as a linear map fromV ⊗ Sn−1(V) to V.
For i , 1, we have

mn,i = sgn((1i))m(1i)
n,1 = −m(1i)

n,1 .

Fixedn and 1≤ i ≤ n− 1, there are|S hi,n−i | = Ci
n (i, n− i)-shuffles. These shuffles can be divided

into two subsets:

(a) S h1
i,n−i := {σ ∈ S hi,n−i | σ(1) = 1}, |S h1

i,n−i | = Ci−1
n−1;

(b) S h2
i,n−i := {σ ∈ S hi,n−i | σ(i + 1) = 1}, |S h2

i,n−i | = Ci
n−1.



14 JUN PEI, CHENGMING BAI, AND LI GUO

For eachσ ∈ S h1
i,n−i, we have

ASpx1

(
mj(mi(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

)
= mj,1(mi,1(x1, xσ(2) · · · , xσ(i)), xσ(i+1), · · · , xσ(n)).

Then we have ∑

σ∈S h1i,n−i

ǫ(σ, v̄)mj,1(mi,1(x1, xσ(2) · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

=

∑

σ∈S hi−1,n−i

ǫ(σ, v̄)mj,1(mi,1(x1, xσ(2) · · · , xσ(i)), xσ(i+1), · · · , xσ(n)),

whereS hi−1,n−i is regarded as the set of (i − 1, n− i)-shuffles on the set of{2, · · · , n}.
For eachσ ∈ S h2

i,n−i, we have

ASpx1

(
mj(mi(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

)
= mj,2(mi,⋆(xσ(1), · · · , xσ(i)), x1, xσ(i+2), · · · , xσ(n)),

wheremi,⋆ =
∑i

s=1 mi,s. We also have

mj,2(mi,s(xσ(1), · · · , xσ(i)), x1, xσ(i+2), · · · , xσ(n))

= (−1)|x1||mi,s|mj,1(x1,mi,s(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n)),

and (−1)|x1||mi,s| = (−1)|x1||mi,1| where

mi,s(y1, y2, · · · , yi) = (−1)s−1mi,1(ys, y1, y2, · · · , ys−1, ys+1, ys+2, · · · , yi).

Thus we obtain
mi,⋆(y1, y2, · · · , yi) =

∑

τ∈S h1,i−1

ǫ(τ, v̄)mi,1(yτ(1), · · · , yτ(i)).

Lemma 3.9. The map

Γ : S hi,n−i × S h1,i−1 −→ S h1,i−1,n−i , Γ
(
σ, τ

)
( j) =

{
σ(τ( j)), 1 ≤ j ≤ i,
σ( j), j ≥ i + 1,

is a bijection.

Proof. This map is injective since ifΓ(σ, τ) = Γ(σ′, τ′), thenσ( j) = σ′( j) for j ≥ i + 1 which
implies thatσ = σ′ and thenτ = τ′. Then the map must be a bijection since the cardinality of the
domain and codomain are the same. �

By Lemma3.9, we have

∑

σ∈S h2i,n−i

ǫ(σ, v̄)mj,1(x1,mi,⋆(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n))

=

∑

σ∈S h2i,n−i

∑

τ∈S h1,i−1

ǫ(σ, v̄)ǫ(τ, v̄)mj,1(x1,mi,1(xσ(τ(1)), · · · , xσ(τ(i))), xσ(i+2), · · · , xσ(n))

=

∑

σ∈S h1,i−1,n−i−1

ǫ(σ, v̄)mj,1(x1,mi,1(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n)).

Then we have

ASpx1

( ∑

σ∈S hi,n−i

ǫ(σ, v̄)mj(mi(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))
)
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=

∑

σ∈S h1i,n−i

ǫ(σ, v̄)mj,1(mi,1(x1, xσ(2), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

+

∑

σ∈S h2i,n−i

ǫ(σ, v̄)mj,1(x1,mi,⋆(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n))

=

∑

σ∈S hi−1,n−i

ǫ(σ, v̄)mj,1(mi,1(x1, xσ(2), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

+(−1)|x1||mi,1|
∑

σ∈S h1,i−1,n−i−1

ǫ(σ, v̄)mj,1(x1,mi,1(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n))

=

∑

σ∈S hi−1,n−i

ǫ(σ, v̄)ℓn−i(ℓi−1(x1, xσ(2), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

+(−1)|x1||ℓi−1|
∑

σ∈S h1,i−1,n−i−1

ǫ(σ, v̄)ℓn−i(x1, ℓi−1(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n)),

where the last equation is obtained by replacingmi,1 with ℓi−1 andmj,1 with ℓ j−1 = ℓn+1−i−1 = ℓn−i

and j ≥ 1. Hence, forRL defined in Eq. (22), we have

ASpx1
(RL) =

∑

i+ j=n+1

∑

σ∈S hi−1,n−i

ǫ(σ, v̄)ℓn−i(ℓi−1(x1, xσ(2), · · · , xσ(i)), xσ(i+1), · · · , xσ(n))

+(−1)|x1 ||ℓi−1|
∑

i+ j=n+1, j≥1

∑

σ∈S h1,i−1,n−i−1

ǫ(σ, v̄)ℓn−i(x1, ℓi−1(xσ(1), · · · , xσ(i)), xσ(i+2), · · · , xσ(n))

=

∑

s+t=n−1

∑

σ∈S hs,(n−1)−s

ǫ(σ, v̄)ℓt(ℓs(x1, xσ(2), · · · , xσ(s), xσ(s+1)), xσ(s+2), · · · , xσ(n))

+(−1)|x1 ||ℓs|
∑

s+t=n−1,t≥1

∑

σ∈S h1,s,(n−1)−s−1

ǫ(σ, v̄)ℓt(x1, ℓs(xσ(1), · · · , xσ(s+1)), xσ(s+3), · · · , xσ(n)).

This agrees with the relations ofPL∞ in Eq. (23). Note thatASpxp
(RL), 2 ≤ p ≤ n can be obtained

fromASpx1
(RL) by a permutation of variables. Therefore, we have

Proposition 3.10.ASp(L∞) = PL∞.

4. The splitting property and functorial property

In this section we prove the splitting property ofC-splitting of an operad and thus justify the
termC-splitting. We also prove that the process ofC-splitting is compatible with some morphisms
between operads.

4.1. The splitting property. We recall the following splitting property of the dendriform algebra
that is simple yet fundamental in motivating all the subsequent studies of dendriform type or
Loday algebras.

Proposition 4.1. [33] Let (A,≺,≻) be a dendriform algebra. Then the operation on A defined by
x ∗ y := x ≺ y+ x ≻ y is associative.

On the operad level, this is interpreted as an operad morphism

(24) Asso→ Dend, ∗ 7→≺ + ≻,

from the operadAssoof the associative algebra to the operadDendof the dendriform algebra.
It is in this sense that the operations≺ and≻ give a splitting of the associative product∗. This
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property has been generalized to many binary operads over the years and then eventually to all
binary operads [3]. We will further generalize this property to theC-splitting of any operad.

Lemma 4.2. Let V =
⊕
n≥1

Vn be an arity graded vector space with basisV =
∐

n≥1Vn and letC

be eitherA or the trivial configuration in Example2.4. For a labeled planar n-treeτ ∈ T(V), we
have the following equation inT(V):∑

J∈C|Lin(τ)|

CSpJ(τ) = CSp(τ).(25)

Proof. It is obvious that Eq. (25) holds whenC is the trivial configuration. So we only need to
prove Eq. (25) by induction on|Lin(τ)| for the configurationA = (An). When|Lin(τ)| = 1, we
have ∑

x∈Lin(τ)

ASpx(τ) = τ = ASp(τ).

Now assume that Eq. (25) holds for allτ ∈ T(V) with Lin(τ) ≤ n − 1, n > 1, and consider an
n-treeτ in T(V). Sinceτ = ω(τ1∨τ2∨· · ·∨τℓ) for some integerℓ andω ∈ V(ℓ), by the definition
of theC-splitting of a planar tree and the induction hypothesis, wehave∑

x∈Lin(τ)

ASpx(τ)

=

ℓ∑

i=1

∑

x∈Lin(τi )

(
ω

ei

)
(ASp(τ1) ∨ · · · ∨ ASp(τi−1) ∨ASpx(τi) ∨ASp(τi+1) ∨ · · · ∨ ASp(τℓ))

=

ℓ∑

i=1

(
ω

ei

)
(ASp(τ1) ∨ · · · ∨ ASp(τi−1) ∨

( ∑

x∈Lin(τi )

ASpx(τi)
)
∨ASp(τi+1) ∨ · · · ∨ ASp(τℓ))

=

(
ω

∗

)
(ASp(τ1) ∨ · · · ∨ ASp(τi−1) ∨ASp(τi) ∨ASp(τi+1) ∨ · · · ∨ ASp(τℓ))

= ASp(τ).

This completes the induction. �

Proposition 4.3. Let C be anS-invariant configuration of index m (see Eq. (2)). Then for any
labeled planar treeτ ∈ T(V) with Lin(τ) ≤ m, we have

(26)
∑

J∈C|Lin(τ)|

CSpJ(τ) = CSp(τ).

Especially, when m= ∞ (the power-splitting case), Eq. (26) holds for all labeled planar trees.

Proof. We prove by induction on|Lin(τ)| for |Lin(τ)| ≤ m. ThenCSpJ(τ) = BSpJ(τ) andCSp(τ) =
BSp(τ). When|Lin(τ)| = 1, by definition we have∑

x∈Lin(τ)

BSpx(τ) = τ = BSp(τ).

Now assume that Eq. (26) holds for allτ ∈ T(V) with Lin(τ) ≤ n − 1 for an 1< n ≤ m and
consider ann-treeτ in T(V). Let τ = ω(τ1 ∨ τ2 ∨ · · · ∨ τℓ) for some integerℓ andω ∈ V(ℓ). Let
Lin(τ) = {1, 2, · · · , n} and Lin(τp) = {kp−1+1, · · · , kp} with the convention thatk0 = 0 andkℓ = n.
Define a map

ϕ : B|Lin(τ)| = {J | ∅ , J ⊆ Lin(τ)} −→ Bℓ, ϕ(J) = J ⊓ ω.
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Since for eachI = {i1, i2, · · · , i t}, the image of{ki1, ki2, · · · , kit} ∈ B|Lin(τ)| underϕ is I , we see that
ϕ is surjective and

⊔
I∈Bℓ ϕ

−1(I ) = B|Lin(τ)|. Thus

∑

J∈B|Lin(τ)|

BSp(τ) =
∑

I∈Bℓ

∑

J∈ϕ−1(I)

(
ω

eI

)
( BSpJ∩Lin(τ1)(τ1) ∨ · · · ∨ BSpJ∩Lin(τℓ)(τℓ) ).

For a fixedI = {i1, i2, · · · , i t}, we have

(27) ϕ−1(I ) = {J ⊆ Lin(τ) | J = Ji1 ⊔ Ji2 ⊔ · · · ∪ Jit , ∅ , Ji j ⊆ Lin(τi j ), 1 ≤ j ≤ t}

which is in bijection with{∅ , Ji j ⊆ Lin(τi j )} × · · · × {∅ , Ji j ⊆ Lin(τi j )}. Thus by the induction
hypothesis, we have
∑

J∈ϕ−1(I)

(
ω

eI

)
( BSpJ∩Lin(τ1)(τ1) ∨ · · · ∨ BSpJ∩Lin(τℓ)(τℓ) )

=

∑

J∈ϕ−1(I)

(
ω

eI

)
( BSp(τ1) ∨ · · · ∨ BSp(τi1−1) ∨ BSpJ∩Lin(τi1)(τi1) ∨ BSp(τi1+1) ∨ · · · ∨ BSp(τi2−1) ∨

BSpJ∩Lin(τi2)(τi2) ∨ BSp(τi2+1) ∨ · · · ∨ BSp(τit−1) ∨ BSpJ∩Lin(τit )
(τit ) ∨ BSp(τit+1) ∨ · · · ∨ BSp(τℓ) )

=

(
ω

eI

)
 BSp(τ1) ∨ · · · ∨ BSp(τi1−1) ∨

∑

∅,Jj1⊆Lin(τi1)

BSpJj1
(τi1) ∨ BSp(τi1+1)

∨ · · · ∨ BSp(τi2−1) ∨
∑

∅,Jj2⊆Lin(τi2)

BSpJj2
(τi2) ∨ BSp(τi2+1)

∨ · · · ∨ BSp(τit−1) ∨
∑

∅,Jjt⊆Lin(τit )

BSpJjt
(τit ) ∨ BSp(τit+1) ∨ · · · ∨ BSp(τℓ)



=

(
ω

eI

)
( BSp(τ1) ∨ · · · ∨ BSp(τℓ) ).

Hence ∑

J∈B|Lin(τ)|

BSp(τ) =
∑

I∈Bℓ

(
ω

eI

)
( BSp(τ1) ∨ · · · ∨ BSp(τℓ) ) = BSp(τ),

completing the induction. �

Corollary 4.4. LetP = T (V)/(R) be an operad with locally homogeneous relations

R= {rs :=
∑

i

cs,iτs,i , cs,i ∈ k, τs,i ∈
⋃

t∈R

t(V), 1 ≤ s≤ k}.

LetC be a configuration with index m. Ifmax{|Lin(rs)|}s ≤ m, then
∑

J∈C|Lin(rs)|

CSpJ(rs) = CSp(rs), 1 ≤ i ≤ k.

The following result gives the precise meaning of splittingan operad, generalizing the splitting
property of the associativity in Eq. (24) [33] and the splitting of a binary operad in [3]. For an
operadQ = T(W)/(RQ), let iW : W→ P(W) andpW : T(W) → Q denote the natural injection and
projection.

Theorem 4.5.LetP = T(V)/(R) be an operad.
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(a) The linear map

(28) αV : V → ASp(V), ω 7−→
(
ω

∗

)
, ω ∈ V(n), n ≥ 1,

(
ω

∗

)
:=

∑

i∈[n]

(
ω

{ei }

)
,

induces a unique operad morphismαP : P −→ ASp(P) in the sense thatαP ◦ pV ◦ iV =
pASp(V) ◦ iASp(V) ◦ αV, that is, the following diagram commutes.

V

αV

��

iV // T (V)
pV // P

αP

��
ASp(V)

iASp(V) // T (ASp(V))
pASp(V) // ASp(P)

(b) LetC be a configuration with index m and supposemax{|Lin(rs)|}s ≤ m. Then the linear
map

(29) γV : V → CSp(V), ω 7−→
(
ω

⋆

)
, ω ∈ V(n), n ≥ 1,

(
ω

⋆

)
:=

∑

∅,I⊆[n]

(
ω

eI

)
,

induces a unique operad morphismγP : P −→ CSp(P) in the above sense.
(c) LetC be a configuration with index m and supposemax{|Lin(rs)|}s ≤ m. Then the linear

map

(30) ω 7−→
(
ω

e[n]

)
, ω ∈ V(n), n ≥ 1,

induces a unique operad morphism fromP to CSp(P) in the above sense.

Proof. We assume thatR is given by Eq. (5).
(a) By the universal property of the free operadT (V) on theS-moduleV, theS-module morphism
iASp(V) ◦ αV : V → T (ASp(V)) induces a unique operad morphism ¯αV : T (V) → T (ASp(V))
such that ¯αV ◦ iV = iASp(V) ◦ αV.

By Lemma4.2, Eq. (25) holds. Hence we have
∑

i

cs,iASp(τs,i) =
∑

i

∑

x∈Lin(τs,i )

cs,iASpx(τs,i), 1 ≤ s≤ k.

SinceLs := Lin(τs,i) does not depend oni, we have

∑

i

cs,iASp(τs,i) =
∑

x∈Ls

ASpx


∑

i

cs,iτs,i

 = 0, 1 ≤ s≤ k.

Therefore, (ASp(R)) ⊆ ker(ᾱV). Thus there is a unique operad morphismαP : P = T (V)/(R) →
ASp(P) := T (ASp(V))/(ASp(R)) such thatαP ◦ pV = pASp(V) ◦ ᾱV.We then haveαP ◦ pV ◦ iV =
pASp(V) ◦ iASp(V) ◦ αV.

Suppose thatα′
P

: P → ASp(P) is another operad morphism such thatpASp(V) ◦ iASp(V) ◦ αV =

pASp(V) ◦ ᾱV ◦ iV. By the universal property of the free operadT (V), we obtainα′
P
◦ pV = pASp(V) ◦

ᾱ = αP ◦ pV. SincepV is surjective, we obtainα′
P
= αP. This proves the uniqueness ofαP.

(b) The proof is similar to the proof of Item (a). The linear mapγ : V → CSp(V) extends uniquely
to γ̄V : T(V)→ T(CSp(V)). By Corollary4.4we have

∑

i

cs,iCSp(τs,i) =
∑

i

∑

I∈C|Lin(rs)|

cs,iCSpI (τs,i), 1 ≤ s≤ k.
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SinceLs := Lin(τs,i) does not depend oni, we have

∑

i

cs,iCSp(τs,i) =
∑

I∈Ls

CSpI


∑

i

cs,iτs,i

 = 0, 1 ≤ s≤ k.

Therefore (CSp(R)) ⊆ ker(γ̄V) and then the rest of the proof follows.

(c) It is easy to see that the linear map defined in Eq. (30) is Sn-equivariant. So it induces a
morphism of operads fromT (V) toCSp(P). Moreover, by the definition ofC-splitting, we have

∑

i

cs,iCSpLin(τs,i )(τs,i) = 0, 1 ≤ s≤ k.

Note that the labeled treeCSpLin(τs,i )(τs,i) is obtained by replacing the label of each vertex ofτs,i,

sayω ∈ V(n) by
(
ω

e[n]

)
. Hence the conclusion follows. �

Corollary 4.6. If the index ofC is∞ (that is we take the power-splitting), then (b) and (c) hold
for any operad.

If we takeP to be the operad of partially or totally associative 3-algebras, 3-Lie algebra or
generalized Lie algebra of order 3, then we obtain the following results:

Corollary 4.7. (a) Let (A,տ, ↑,ր) be a partially (resp. totally) dendriform3-algebra. Then
the operation

(31) ∗ :=տ + ↑ +ր

makes A into a partially (resp. totally) associative3-algebra.
(b) Let (A, {·, ·, ·}) be a3-pre-Lie algebra (resp. generalized pre-Lie algebra of order 3). Then

the operation

(32) [x, y, z] := {x, y, z} + {y, z, x} + {z, x, y}

gives a3-Lie (resp. generalized Lie algebra of order3) structure on A. The commutator
of 3-pre-Lie algebra (resp. generalized pre-Lie algebra of order 3) is a 3-Lie algebra
(resp. generalized Lie algebra of order3) with the structure given by2[x, y, z].

4.2. Compatibility of splittings. We prove the functorial property of taking splittings.

Theorem 4.8. Let η : P −→ Q be an operad morphism. Thenη induces an operad morphism
CSp(η) : ASp(P) −→ ASp(Q) such that

(33) η ◦ αP = ASp(η) ◦ αQ,

for the mapsαP andαQ in Theorem4.5.

A similar statement holds forBSp(η) : BSp(P) −→ BSp(Q).

Proof. We take the generatingS-modulesV,W of P = T(V)/(RP) andQ = T(W)/(RQ) to be the
S-modules ofP andQ respectively. The operad morphismη defines a family ofSn-equivalent
maps ˜ηn : V(n) = P(n) −→W(n) = Q(n). Define a chain mapθ : ASp(V) −→ ASp(W) by

θn : ASp(V)(n) −→ ASp(W)(n)
(
ω

eI

)
7−→

(
ηn(ω)

eI

)
, ω ∈ V(n), I ∈ Cn.
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We use the following diagram to keep track of the maps that we will use below.

ASp(V) T(ASp(V)) ASp(P)

V T(V) P

W T(W) Q

ASp(W) T(ASp(W)) ASp(Q)

iASp(V) //
pASp(V) //

αV

dd❏❏❏❏❏❏ iV // pV //

η

��

ᾱV
OO

iW // pW //

η̄
��

η
��

θ

�� iASp(W) //
pASp(W) //

ASp(η)

��

αP

::tttttt

αQ
$$❏❏

❏❏❏
❏

αW

zztt
tt
t

θ̄

"" ᾱW��

(34)

It follows from the fact thatη is an operad morphism and the universal property ofT(V) that
(η̄(RP)) ⊆ (RQ). On the other hand, for any treeτ ∈ T(V) andJ ∈ C|Lin(τ)|, we haveASpJ(η̄(τ)) =
θ̄(ASpJ(τ)). Therefore, (̄θ(ASp(RP))) = (ASp(η̄(RP))) ⊆ (ASp(RQ)). Then there exists a mor-
phismASp(η) : ASp(P) −→ ASp(Q) such thatASp(η) ◦ pASp(V) = pASp(W) ◦ θ̄. Further, by
the universal property ofT(V), we get the commutativity of the leftmost trapezoid. In summary,
all quadrilaterals in the Diagram (34) are commutative except the rightmost trapezoid which is
precisely Eq. (33). To prove it, by the surjectivity ofpV and the universal property ofT(V), we
only need to proveη ◦ αP ◦ pV ◦ iV = ASp(η) ◦ αQ ◦ pV ◦ iV. This follows from a diagram chase
by the commutativity of the other quadrilaterals of the Diagram (34). �

From the morphism in Remark3.6, we obtain

Corollary 4.9. We have the following commutative diagram.

(35) Partially dendriform 3-algebra
Eq. (31) //

��

Partially associative 3-algebra

Remark3.6
��

Generalized pre-Lie algebra of order 3
Eq. (32) // Generalized Lie algebra of order 3

where the left vertical map is defined by

{x, y, z} =տ (x, y, z)+ ↑ (x, y, z)+ր (x, y, z) − (տ (x, z, y)+ ↑ (x, z, y)+ր (x, z, y))

for a partially dendriform3-algebra(A,տ, ↑,ր).

Diagram (35) can be regarded as a generalization in the context of 3-algebras of the diagram
[14].

Dendriform algebra //

��

Associative algebra

��
Pre-Lie algebra // Lie algebra

Proposition 4.10.Any3-pre-Lie algebra is a generalized pre-Lie algebra of order3.

Proof. This follows from Theorem4.8 since any 3-Lie algebra is a generalized Lie algebra of
order 3. �

The following results relate different splittings of an operad together.
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Proposition 4.11. LetP = T (V)/(R) be an operad,C andC′ be twoS-invariant configurations
such thatCn ⊆ C

′
n for each n. Then there is a morphism of operads fromC′Sp(P) to CSp(P) that

extends the linear map defined by

(36)
(
ω

eI

)
7→

(
ω

eI

)
,

(
ω

eJ

)
7→ 0, ω ∈ V(n), n ≥ 2, I ∈ S′n ∩Cn, J ∈ S′n\Cn.

Proof. Let R be given by Eq. (5). The linear map defined by Eq. (36) is Sn-equivariant. Hence it

induces a morphism of operadsϕ : C′Sp(P)→ CSp(P), andϕ
((
ω

⋆

))
=

(
ω

∗

)
, where

(
ω

⋆

)
=

∑
I∈S′

|ω|

(
ω

eI

)
,

(
ω

∗

)
=

∑
I∈C|ω|

(
ω

eI

)
. Then, we have

ϕ(C′SpI (τs,i)) = CSpI (τs,i) , for all I ∈ I ∈ S′n ∩Cn

and
ϕ(C′SpJ(τs,i)) = 0 , for all J ∈ S′n\Cn .

�

If we takeP to be the operad of partially associativen-algebras, then we obtain the following
results:

Corollary 4.12. (a) Let(A, ❅■ ,✻,�✒, ❅■✻,❅■�✒, ✻�✒, ❅■✻�✒ ) be a partially tridendriform3-algebra.
If the operations❅■✻,❅■�✒, ✻�✒, ❅■✻�✒ are trivial, then(A, ❅■ ,✻,�✒ ) becomes a partially den-
driform 3-algebra.

(b) Let (A, ❅■ ,✻,�✒ ) be a partially dendriform3-algebra. Then(A, ❅■ ,✻,�✒ , 0, 0, 0, 0) car-
ries a partially tridendriform3-algebra structure, where 0 denotes the trivial operation.

5. Splittings of operads, Rota-Baxter operators on operads and relative Rota-Baxter
operators

In this section we establish the relationship between theC-splitting of an operad on one hand
and the actions of a Rota-Baxter operator on the operad on theother. For this purpose, we gener-
alize the concept of a Rota-Baxter operator [9, 16, 23, 41] from binary operads to general operads.
By generalizing the concept of a relative Rota-Baxter operator (previously called anO-operator)
from the binary case to the general case, we further show thatanyC-splitting of an operad can be
recovered, on the level of algebras for an operad, by a relative Rota-Baxter operator.

5.1. Splittings and Rota-Baxter operators on operads.We define the Rota-Baxter operator
on an operad, together with a configuration. As preparation,we first consider it on the level of
algebras.

Definition 5.1. Let n ≥ 1 and letC be anSn-invariant subset ofBn (={∅ , J ⊆ [n]}). Let
(A, 〈, · · · , 〉) be ann-algebra consisting of a moduleA over a commutative ringk and ann-ary
operation

〈, · · · , 〉 : A⊗n −→ A.
A C-Rota-Baxter operator of weightλ on (A, 〈, · · · , 〉) is a linear mapP : A −→ A such that

(37) 〈P(x1), · · · ,P(xn)〉 = P


∑

I∈C

λ|I |−1〈P̄(x1), · · · , P̄(xi), · · · , P̄(xn))〉

 ,

where P̄(xi) =

{
xi i ∈ I
P(xi) i < I

for all x1, x2, · · · , xn ∈ A. Then A is called aC-Rota-Baxter

n-algebra of weightλ.
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Remark 5.2. For anyn-ary algebra, whenC = An(= {i ∈ [n]}), aC-Rota-Baxter operator is just
an usual Rota-Baxter operator of weight zero; whenC = Bn, aC-Rota-Baxter operator is just the
usual Rota-Baxter operator of weightλ [8].

We next consider the action of Rota-Baxter operators on the level of operads.

Definition 5.3. Let V be anS-module withV(1) = k id andC be anS-invariant configuration.

(a) LetVP denote theS-module withVP(1) = k P,P , id, andVP(n) = V(n), n ≥ 2, whereP
is a symbol. LetT (VP) be the free operad generated byVP.

(b) Define anS-moduleCSp(V) with CSp(V)(n) = V(n) ⊗
(⊕

I∈Cn
keI

)
as in Eq. (3). Let

P⊗n,I denote then-th tensor power ofP but with the component fromI replaced by the
identity map. Define a linear map of graded vector spaces fromCSp(V) to VP by the
correspondence:

ξ :
(
ω

eI

)
7→ ω ◦ P⊗n,I , for all ω ∈ V(n), I ∈ Cn,

where◦ is the operadic composition. By the universal property of the free operad,ξ
induces a homomorphism of operads that we still denote byξ:

ξ : T (CSp(V))→ T (VP).

(c) LetP = T (V)/(RP) be an operad defined by theS-moduleV and relationsRP. Let

(38) CRBP(n) :=

ω ◦ P⊗n −
∑

I∈Cn

P ◦ ω ◦ P⊗n,I
∣∣∣∣ ω ∈ V(n)

 .

Define theoperad ofC-Rota-BaxterP-algebrasby

CRB(P) := T (VP)/(RP,CRBP).

We first prove a lemma relatingC-splitting andC-Rota-Baxter operators of weight one.

Lemma 5.4. Let P = T (V)/(RP) be an operad andC be anS-invariant configuration. Let
τ ∈ T(V) with Lin(τ) = n.

(a) We have

(39) P ◦ ξ( CSp(τ) ) ≡ τ ◦ P⊗n mod (RP,CRBP).

(b) For J ∈ Cn, we have

(40) ξ(CSpJ(τ)) ≡ τ ◦ (P⊗n,J) mod (RP,CRBP) .

Proof. (a). We prove by induction on|Lin(τ)| ≥ 1. When|Lin(τ)| = 1, τ is the tree with one leaf
standing for the identity map. Then we haveξ( CSp(τ) ) = τ andP ◦ ξ( CSp(τ) ) = P = τ ◦ P,
as needed. Assume that the claim has been proved forτ with |Lin(τ)| ≤ k and consider aτ with
|Lin(τ)| = k + 1. Then from the decompositionτ = ω(τ1 ∨ τ2 ∨ · · · ∨ τℓ), we haveCSp(τ) =(
ω

⋆

)
(CSp(τ1) ∨ CSp(τ2) ∨ · · · ∨ CSp(τℓ)) where

(
ω

⋆

)
=

∑
I∈Cℓ

(
ω

I

)
. Thus we have

P ◦ ξ( CSp(τ) ) = P ◦ ξ
((
ω

⋆

)
( CSp(τ1) ∨ CSp(τ2) ∨ · · · CSp(τℓ) )

)
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= P ◦ ξ


∑

I∈Cℓ

(
ω

eI

)
( CSp(τ1) ∨ CSp(τ2) ∨ · · · ∨ CSp(τℓ) )



= P ◦ ω ◦
∑

I∈Cℓ

(P⊗n,I ◦ (ξ( CSp(τ1)) ⊗ ξ( CSp(τ2)) ⊗ · · · ⊗ ξ( CSp(τℓ))))

≡ ω ◦ ((P ◦ ξ( CSp(τ1))) ⊗ (P ◦ ξ( CSp(τ2))) ⊗ · · · ⊗ (P ◦ ξ( CSp(τℓ))))

mod (RP,CRBP) (by Eq. (38)

≡ ω ◦ ((τ1 ◦ P⊗|Lin(τ1)|) ⊗ (τ2 ◦ P⊗|Lin(τ2)|) ⊗ · · · ⊗ (τℓ ◦ P⊗|Lin(τℓ)|))

(by induction hypothesis)

= ω ◦ (τ1 ⊗ τ2 ⊗ · · · ⊗ τℓ) ◦ P⊗(k+1)

= ω ◦ (τ1 ∨ τ2 ∨ · · · τℓ) ◦ P⊗(k+1)

= τ ◦ P⊗(k+1),

completing the induction.
(b). We again prove by induction on|Lin(τ)|. If |Lin(τ)| = 1, then 1 is the only leaf label of
τ and {1} ∈ C1. Thus we haveξ(CSp{1}(τ)) = id = τ ◦ (P⊗1,{1}), as needed. Assume that the
claim has been proved for allτ with |Lin(τ)| ≤ k and consider aτ with |Lin(τ)| = k + 1. Write
τ = ω(τ1 ∨ τ2 ∨ · · · ∨ τℓ). Let J ∈ Ck+1 andI = {i1, i2, · · · , is} = {i | 1 ≤ i ≤ ℓ, J ∩ Lin(τi) , ∅}. It
follows from the definition of the configuration with indexm thatI ∈ Cℓ andJ∩Lin(τi) ∈ C|Lin(τi )|.
Then we have

ξ(CSpJ(τ)) = ξ
((
ω

eI

)
(∨ℓi=1CSpJ∩Lin(τi )(τi))

)

= ω ◦


ℓ⊕

i=1

(τi ◦ P⊗|Lin(τi )|,J∩Lin(τi ))



(by induction hypothesis and Item (a))

≡ ω ◦ (τ1 ∨ · · · ∨ τℓ) ◦ P|Lin(τ)|,J mod (RP,CRBP)

= τ ◦ P⊗(k+1),J.

This completes the induction. �

The next result establishes the link between Rota-Baxter operator and splitting that unifies the
previous known results [1, 2, 3, 4, 7, 17, 24, 30, 32, 40] in this direction.

Theorem 5.5. (a) Let P be an operad andC be anS-invariant configuration. There is a
morphism of operads

CSp(P) −→ CRB(P),

which extends the mapξ given in Definition5.3.
(b) Let A be aP-algebra. Let P: A → A be aC-Rota-Baxter operator. Then the following

operations make A into aCSp(P)-algebra:
(
ω

eI

)
(x1, x2, · · · , xn) := ω ◦ P⊗,I (x1, x2, · · · , xn), for all x1, x2, · · · , xn ∈ A, ω ∈ P(n), I ∈ Cn.

Proof. The second statement is just the interpretation of the first statement on the level of algebras.
So we just need to prove the first statement. LetRCSp(P) be the relation space ofCSp(P). By defini-
tion, the relations ofCSp(P) are generated byCSpJ(r) for locally homogeneousr =

∑
i ciτi ∈ RP
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andJ ∈ C|Lin(τi )|. By Eqs.(39) and (40), we have

ξ


∑

i

ciCSpJ(τi)

 =
∑

i

ciξ(CSpJ(τi)) ≡
∑

i

ciτi ◦ P⊗n,J ≡


∑

i

ciτi

 ◦ P⊗n,J mod (RP,CRBP).

Henceξ(RCSp(P)) ⊆ (RP,CRBP) andξ induces a morphism of operads

ξ̄ : CSp(P) −→ CRB(P).

This proves the first statement. �

When we takeP to be the operad of the 3-associative algebra or 3-Lie algebra, we obtain the
following results.

Corollary 5.6. (a) Let (A, (·, ·, ·),P) be a Rota-Baxter totally (resp. partially) associative 3-
algebra of weight zero. Define three new operations onA by

տ (x, y, z) = (x,P(y),P(z)), ↑ (x, y, z) = (P(x), y,P(z)), ր (x, y, z) = (P(x),P(y), z).

Then (A, (·, ·, ·)) is a totally (resp. partially) dendriform 3-algebra.
(b) Let (L, [·, ·, ·],P) be a Rota-Baxter 3-Lie algebra (resp. generalized Lie algebra of order

3) of weight zero. Define a new operation onL by

{x, y, z} = [x,P(y),P(z)].

Then (L, {·, ·, ·}) is a 3-pre-Lie algebra (resp. generalized pre-Lie algebraof order 3).

5.2. Splittings and relative Rota-Baxter operators. We generalize the concepts of a module
and a relative Rota-Baxter operator [5]. For simplicity, we also assume that the weight of a
relativeC-Rota-Baxter operator is one. As remarked above, this stillinclude the case of weight 0
with a suitable choice of the configurationC (namely whenC = A).

To motivate our general definition of modules for aP-algebra whereP is any operad, we recall
that anA-bimoduleM for an associative algebraA can be equivalently defined to be an abelian
groupM together with two actionsℓ1, ℓ2 : A⊗ M → M of A such that the binary operation· on
A⊕ M defined by

(a,m) · (b, n) := (ab, ℓ1(a)n+ ℓ2(b)m), a, b ∈ A, n,m∈ M,

turnsA⊕ M into an associative algebra.

Definition 5.7. Let P = T(V)/(R) be an operad defined by anS-moduleV =
⊕
n≥1

Vn with basis

V =
⊕
n≥1
Vn and by relationsR. Let A be aP-algebra andC be anS-invariant configuration.

(a) LetU be ak-module. For eachω ∈ V, denote the arity ofω by |ω|. Suppose there are
linear maps

lωI : A⊗(|ω|−|I |) ⊗ U⊗|I | → U, I = {i1 < · · · < i t} ∈ C|ω|,

such thatA⊕ U is turned into aP-algebra by defining the operationsω̃ on A⊕ U by:

ω̃((x1, u1), · · · , (x|ω|, u|ω|))

:=
(
ω(x1, · · · , x|ω|),

∑

I∈C|ω|

lωI (x1, · · · , xi1−1, xi1+1, · · · , xit−1, xit+1, · · · , x|ω|)(ui1, ui2, · · · , uit)
)
,(41)

for all ω ∈ V, xj ∈ A andu j ∈ U, 1 ≤ j ≤ |ω|. ThenU = (U, {lωI |ω ∈ V, I ∈ C|ω|}) is
called aC-module for theP-algebra A or simply anA-C-module.
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(b) Let U = (U, {lωI |ω ∈ V, I ∈ C|ω|}) be anA-C-module. A linear mapα : U −→ A is called
a relative C-Rota-Baxter operator (of weight one) on theA-C-moduleU if

ω(α(u1), α(u2), · · · , α(u|ω|))

=

∑

I∈C|ω|

α
(
lωI (α(u1), · · · , α(ui1−1), α(ui1+1), · · · , α(uit−1), α(uit+1), · · · , α(u|ω|))(ui1, ui2, · · · , uit)

)
,

for all ω ∈ V andxj ∈ A, u j ∈ U, whereI = {i1, i2, · · · , i t} with i1 < i2 < · · · < i t.

To simplify the notations we will use the following abbreviations. Fork-modulesX,Y, linear
operatorα : X→ Y, vectors~x = (x1, · · · , xn) ∈ Xn, ~y = (y1, · · · , yn) ∈ Yn andI = {i1 < · · · < i t} ⊆
[n], denote

~xI := (x1, · · · , xi1−1, xi1+1, · · · , xit−1, xit+1, · · · , xn),

I~x := (xi1, · · · , xit),

~xI y := (x1, · · · , xi1−1, yi1, xi1+1, · · · , xit−1, yit , xit+1, · · · , xn),(42)

(~x, ~y) := ((x1, y1), · · · , (xn, yn)) ∈ (X ⊕ Y)n,

(~x, 0) := ((x1, 0), · · · , (xn, 0)) ∈ (X ⊕ Y)n,

(α(~x)) := (α(x1), · · · , α(xn)).

Thus in the above definition, we have

ω̃(~x, ~u) =

ω(~x),
∑

I∈C|ω|

lωI (~xI )(I~u)

 , ω(α(~u)) =
∑

I∈C|ω|

α(lωI (α(~u)I )(I~u)).

Example 5.8.With the same notation as in Definition5.7, aC-Rota-Baxter operator of weight one
onA is a relativeC-Rota-Baxter operator of weight one on theC-module (A, {lωI |ω ∈ V, I ∈ C|ω|}),
where with the notation in Eq. (42), define

lωI (~xI )(I~u) := ω( ~xI u)

for all ω ∈ V, xj ∈ A, 1 ≤ j ≤ |ω|, I ∈ C|ω| andI = {i1, · · · , i t} with i1 < i2 < · · · < i t.

Proposition 5.9. Let A be aP-algebra,C be anS-invariant configuration and U= (U, {lωI |ω ∈
V, I ∈ C|ω|}) be an A-C-module.

(a) If C = A and takeℓωI = 0 when |I | > 1, then U is the usual module in the context of
generalP-algebra[39, 42].

(b) If C = B, then U has aP-algebra structure.

Proof. (a) is clear from the definition.

(b) By the definition of anA-C-module and letx1 = x2 = · · · = x|ω| = 0 in Eq.(41), the operations
ωU(~u) := lω[|ω|](1k)(~u) makeU into aP-algebra. �

Lemma 5.10. Let (U, {lωI |ω ∈ V, I ∈ C|ω|}) be an A-C-module,α : U −→ A be a linear map.
Defineα′ : A⊕ U −→ A⊕ U by

(43) α′(x, u) := (α(u), 0).

Thenα is a relativeC-Rota-Baxter operator of weight one if and only ifα′ is a C-Rota-Baxter
operator of weight one on theP-algebra A⊕ U.
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Proof. Since (U, {lωI |ω ∈ V, I ∈ C|ω|}) is anA-C-module, by definition,A ⊕ U has aP-algebra
structure by the operations̃ω,ω ∈ V.
α : U → A is aC-relative Rota-Baxter operator of weight one means

ω(α(~u)) =
∑

I∈C|ω|

α
(
lωI

(
α(~u)I

)
(I~u)

)
.

while α′ : A⊕ U → A⊕ U is aC-Rota-Baxter operator of weight one means

ω̃(α′(~x, ~u)) = α′


∑

I∈C|ω|

ω̃(α′(~x, ~u)I (~x, ~u))

 = α
′


∑

I∈C|ω|

ω̃((α(~u), 0)I (~x, ~u))



= α′


∑

I∈C|ω|

(ω̃(α(~u)I ~x, 0I ~u))

 = α
′


∑

I∈C|ω|

ω(α(~u)I ~x),
∑

J∈C|ω|

lωJ ((α(~u)I , ~x)J)(J (0I ~u))



=


∑

I∈C|ω|

∑

J∈C|ω|

α
(
lωJ ((α(~u)I , ~x)J)(J (0I ~u))

)
, 0

 .

If I , J, there exists 0-tuples in the vectorJ (0I ~u), sincelωJ is multilinear, then we have

lωJ ((α(~u)I , ~x)J)(J (0I ~u)) = 0

and it is easy to see that
∑

I∈C|ω|

∑

J∈C|ω|

α
(
lωJ ((α(~u)I , ~x)J)(J (0I ~u))

)
=

∑

I∈C|ω|

lωI α
(
α(~u)I )(I~u).

Henceα is a relativeC-Rota-Baxter operator of weight one on moduleU if and only if α′ is a
C-Rota-Baxter operator of weight one onA⊕ U. �

We have the following generalization of Theorem5.5.

Theorem 5.11.LetP = T(V)/(R) be an operad defined by anS-module V=
⊕
n≥1

Vn with basis

V =
⊕
≥1
Vn and by relations R. LetC be anS-invariant configuration. Let A be aP-algebra

and (U, {lωI |ω ∈ V, I ∈ C|ω|}) be an A-C-module. Letα : U −→ A be a relativeC-Rota-Baxter
operator of weight one on the A-C-module U. Forω ∈ V and I ∈ C|ω|, define

(44)
(
ω

eI

)
(~u) := lωI

(
α(~u)I )(I~u),

for ui ∈ U, I ∈ C|ω| and I = {i1, · · · , i t} with i1 < i2 < · · · < i t. Then
(
U,

{(
ω

eI

) ∣∣∣∣ω ∈ V, I ∈ C|ω|
})

is aCSp(P)-algebra. Moreover, when the splitting is arity-splittingor power-splitting, there is a
P-algebra structure on U given by

(
ω

⋆

)
=

∑

I∈C|ω|

(
ω

eI

)
, ω ∈ V,

andα is a homomorphism ofP-algebras.
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Proof. Let α be a relativeC-Rota-Baxter operator of weight one. By Lemma5.10, α′ in Eq. (43)
is a Rota-Baxter operator of weight one onA⊕U. It follows from Theorem5.5that the operations

(
ω̃

eI

)
((~x, ~u)) := ω̃ ◦ α′⊗|ω|,I ((~x, ~u)), ω ∈ V, I ∈ C|ω|

makeA⊕ U into aCSp(P)-algebra. Furthermore, we have

ω̃ ◦ α′⊗|ω|,I ((~x, ~u)) = ω̃((α(~u), 0)I )(I (~x, ~u)) = (ω(α(~u)I ~x),
(
ω

eI

)
(~u)).

Obviously,U := {(0, v) | v ∈ U} is a sub-CSp(P)-algebra of ofA⊕ U. By transporting of struc-
tures, we obtain anCSp(P)-algebra structure onU. This is precisely the one defined in Eq. (44).
The last statement of the theorem follows from a direct computation using Proposition4.5.(a). �

The following result gives an inverse of Theorem5.5, in the sense that anyASp(P) orBSp(P)-
algebra can be derived from a relativeC-Rota-Baxter operator of weight one. See [5, 44] for the
case of dendriform algebra and tridendriform algebra.

Theorem 5.12.LetP = F (V)/(R) be as defined in Theorem5.11andC be the configuration with

index1 or ∞. Let A be a givenCSp(P)-algebra with operations
{(
ω

eI

) ∣∣∣∣ω ∈ V, I ∈ C|ω|
}
. For all

~x ∈ A|ω|, I = {i1 < · · · < i t} ∈ C|ω|, define

lωI ((~x)I )(I ~x) =
(
ω

eI

)
(~x).

Then(A, {lωI |ω ∈ V, I ∈ C|ω|}) is aC-module for theP-algebra(A,V⋆), where

V⋆ =
{ (
ω

⋆

)
:=

∑

I∈C|ω|

(
ω

eI

) ∣∣∣ω ∈ V
}
.

Further, the identity linear mapid : A → A is a relative Rota-Baxter operator of weight one
for theP-algebra (A,V⋆) associated to theC-module(A, {lωI |ω ∈ V, I ∈ C|ω|}). Finally the
CSp(P)-algebra from theP-algebra(A,V⋆) obtained from the relative Rota-Baxter operatorid

by Theorem5.11is precisely
(
A,

{(
ω

eI

) ∣∣∣∣ω ∈ V, I ∈ C|ω|
})

.

Proof. By Proposition4.5, (A,V⋆) is aP-algebra. Forω ∈ V, define an operation onA⊕ A by
(̃
ω

⋆

)
(~x, ~u) :=

((
ω

⋆

)
(~x),

∑

I∈C|ω|

(
ω

eI

)
(~xI ~u))

)
.

For τ ∈
⋃

t∈R t(V), let τ denote the redecoration ofτ with each vertexω of τ being replaced by
(
ω

⋆

)
. Also let τ̃ denote the redecoration ofτ with each vertexω of τ being replaced bỹ

(
ω

⋆

)
. Let

Lin(τ) = [n]. We claim that

(45) τ̃(~x, ~u) =

τ(~x),
∑

I∈C|Lin(τ)|

CSpI (τ)(~xI ~u)

 .

We prove Eq.(45) by induction on|Lin(τ)| ≥ 1. When|Lin(τ)| = 1, τ is the tree with one leaf
standing for the identity map. Then we haveτ̃(x1+u1) = x1+u1 = τ(x1)+CSp{1}(τ)(u1). Assume
that the claim has been proved forτ with |Lin(τ)| ≤ n − 1 wheren ≥ 2 and consider aτ with
|Lin(τ)| = n. In the decompositionτ = ω(τ1 ∨ τ2 ∨ · · · ∨ τℓ), denote the corolla withℓ leaves by

Tℓ. Let Lin(τp) = {kp−1 + 1, · · · , kp} and
−→
xp
= (xkp−1+1, xkp−1+2, · · · , xkp) with the convention that

k0 = 0 andkℓ = n+ 1.
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Let H(p,i) be any element ofC|Lin(τp)|,
−→
up
= (ukp−1+1, ukp−1+2, · · · , ukp). Then

−→
xp

H(p,i)
−→
up
=

(
xkp−1+1, · · · , xhi1−1, uhi1, xhi1+1, · · · , xhiai−1, uhiai

, xhiai+1, · · · , xkp

)
.

DenoteUp =

∑

H(p,i)∈C|Lin(τp)|

CSpH(p,i)(τp)
−→
xp

H(p,i)
−→
up. For anyI ∈ Cn, there exists someq such thatI is

of the form I = I j1 ⊔ · · · ⊔ I jq with I jb := I ∩ Lin(τ jb) = {hb1 < · · · < hbab}, 1 ≤ b ≤ q. By the

definition of configuration, there existH( jb,i0) ∈ C|Lin(τ jb)| such thatI jb
~u = H( jb,i0)

−→
u jb. Conversely,

for any choice ofJ ⊆ Cℓ with J = { j1 < j2 < · · · < jq} and H( jb,i0) ∈ C|Lin(τ jb)|, there exists

∅ , I jb ⊆ Lin(τ jb), 1 ≤ b ≤ q such thatI jb
~u = H( jb,i0)

−→
u jb, we obtain∅ , I := I j1 ⊔ · · · ⊔ I jq ∈ Cn.

Then we have

τ̃(~x, ~u) =
(̃
ω

⋆

) (
τ̃1(
−→
x1,
−→
u1), · · · , τ̃ℓ(

−→
xℓ,
−→
uℓ)

)
(by the definition of ˜τ)

=

(̃
ω

⋆

)(
(τ1(
−→
x1),U1), · · · , (τℓ(

−→
xℓ),Uℓ)

)
(by the induction hypothesis)

=

((
ω

⋆

)(
τ1(
−→
x1), · · · , τℓ(

−→
xℓ)

)
,
∑

J∈Cℓ

(
ω

eJ

)(
τ1(
−→
x1), · · · , τ j1−1(

−−−→
xj1−1),U j1, τ j1+1(

−−−−→
xkj1+1),

· · · , τ jq−1(
−−−→
xkjq−1),U jq, τ jq+1(

−−−−→
xkjq+1), · · · , τℓ(

−→
xℓ)

)) (
by the definition of

(̃
ω

⋆

))

=

((
ω

⋆

)(
τ1(
−→
x1), · · · , τℓ(

−→
xℓ)

)
,
∑

J∈Cℓ

CSpJ(Tℓ)
(
τ1(
−→
x1), · · · , τ j1−1(

−−−→
xj1−1),U j1, τ j1+1(

−−−−→
xkj1+1),

· · · , τ jq−1(
−−−→
xkjq−1),U jq, τ jq+1(

−−−−→
xkjq+1), · · · , τℓ(

−→
xℓ)

))

=

τ(~x),
∑

I∈C|Lin(τ)|

CSpI (τ)(~xI~u)

 .

LetP = F (V)(R) with Rgiven by Eq. (5), that is

rs :=
∑

i

cs,iτs,i, cs,i ∈ k, τs,i ∈
⋃

t∈R

t(V), 1 ≤ s≤ k.

Recall thatA is aCSp(P)-algebra with the operations
{(
ω

eI

) ∣∣∣∣ω ∈ V, I ∈ C|ω|
}

and (A,V⋆) is aP-

algebra. DenotẽV⋆ :=
{(̃
ω

⋆

)
| ω ∈ V

}
.

For a given 1≤ s≤ k, by Lemma4.2, Corollary4.6and the definition of̃
(
ω

⋆

)
, we have

r̃s(~x, ~u) =
∑

i

cs,i
(̃
τs,i(~x, ~u)

)
=

∑

i

cs,i

τs,i(~x),
∑

I∈Cn

CSpI (τs,i)(~xI ~u)

 =
r s(~x),

∑

I∈Cn

CSpI (rs)(~xI~u)



which is (0, 0) since (A,V⋆) is aP-algebra andA is aCSp(P)-algebra. Thus (A ⊕ A, Ṽ⋆) is a
P-algebra. Hence (A, {lωI |ω ∈ V, I ∈ C|ω|}) is anA-C-module for theP-algebra (A,V⋆).
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Further the linear map id : (A, {lωI |ω ∈ V, I ∈ C|ω|}) → (A,V⋆) is a relativeC-Rota-Baxter
operator of weight one since

(
ω

⋆

)
(id(~x)) =

(
ω

⋆

)
(~x) =

∑

I∈C|ω|

(
ω

eI

)
(~x) = id

( ∑

I∈C|ω|

lωI
(
id(~xI ))(I ~x)

)
.

The last statement of the theorem follows from the definitionof lωI in the theorem. �
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