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BOHR COMPACTIFICATIONS OF

ALGEBRAS AND STRUCTURES

B.A. DAVEY, M. HAVIAR, AND H.A. PRIESTLEY

Abstract. This paper provides a unifying framework for a range of categor-
ical constructions characterised by universal mapping properties, within the
realm of compactifications of discrete structures. Some classic examples fit
within this broad picture: the Bohr compactification of an abelian group via
Pontryagin duality, the zero-dimensional Bohr compactification of a semilat-
tice, and the Nachbin order-compactification of an ordered set.

The notion of a natural extension functor is extended to suitable categories
of structures and such a functor is shown to yield a reflection into an associated
category of topological structures. Our principal results address reconciliation
of the natural extension with the Bohr compactification or its zero-dimensional
variant. In certain cases the natural extension functor and a Bohr compact-
ification functor are the same; in others the functors have different codomains
but may agree on all objects. Coincidence in the stronger sense occurs in the
zero-dimensional setting precisely when the domain is a category of structures
whose associated topological prevariety is standard. It occurs, in the weaker
sense only, for the class of ordered sets and, as we show, also for infinitely
many classes of ordered structures.

Coincidence results aid understanding of Bohr-type compactifications, which
are defined abstractly. Ideas from natural duality theory lead to an explicit
description of the natural extension which is particularly amenable for any
prevariety of algebras with a finite, dualisable, generator. Examples of such
classes—often varieties—are plentiful and varied, and in many cases the asso-
ciated topological prevariety is standard.

1. Introduction

Our purpose is to bring within a common framework a range of apparently
rather disparate universal constructions. In all cases the objects constructed are
topological structures and the construction is performed by applying the left adjoint
to a functor which forgets the topology. Constructions of this type arise widely in
algebra and in topology, under various guises. Specific examples include

• the Bohr compactification of an abelian group [34];
• the Bohr compactification of a unital meet semilattice [33];
• the Stone–Čech compactification of a set;
• the Nachbin order-compactification of an ordered set [41, 7].
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Here the categories on which the left adjoint functors act have as objects a suitable
class either of algebras or of relational structures.

The Bohr compactification is best known, and first received attention, in the
context of topological abelian groups. Somewhat later, the ideas were extended to
semigroups, semilattices and rings by Holm [34], suggesting that a theory of Bohr
compactifications could be developed for algebraic structures more widely. This
was taken forward by Hart and Kunen [32]. However they work with an algebraic
first-order language, so that the discrete structures of their title are less general than
those we shall consider. (It is immaterial whether one chooses overtly to include the
discrete topology or, as we shall do, suppress it.) The Bohr construction comes in
two distinct flavours, depending on whether one seeks a reflection into a category of
topological structures which has objects which carry a compact Hausdorff topology
or one in which the objects are compact and zero-dimensional. These functors are
customarily denoted, respectively, by b and b0.

Bohr compactifications may be considered alongside other generic constructions
one may perform on suitable classes:

• Bohr compactifications and zero-dimensional Bohr compactifications, of alge-
braic structures, as studied in [32];

• the natural extension of an algebra in any internally residually finite prevariety,
abbreviated IRF-prevariety, that is, a class of the form ISP(M), where M is a
set of finite algebras of common signature [17];

• the profinite completion of an algebra in a residually finite variety or more gen-
erally an IRF-prevariety, in general and in particular cases (see [43, 5, 18, 25]
and references therein);

• the canonical extension of an algebra in a finitely generated variety of lattice-
based algebras (see [25] and references therein).

In each of these cases we start from a category A of algebras and consider a cat-
egory B of topological structures in which each object has a topology-free reduct
in A and we have a functor F: A → B which is left adjoint to the functor from B

to A which forgets the topology. The constructions differ in their scope (that is, in
the conditions on the domain categoryA on which they operate) and in the manner
in which they are customarily formulated. Where the same category A supports
more than one of the constructions, the codomain category B may vary. In some
instances existence is initially established abstractly; in others, and for the natural
extension in particular, a concrete description is presented at the outset, or can be
derived. A recurrent theme however is that the constructions can be characterised
by an appropriate universal mapping property.

Our presentation of an overarching framework for compactifications of Bohr type
relies on widening the scope of the natural extension construction. We consider
prevarieties of the form A = ISP(M), where M is a set of structures and each
M ∈ M has an associated compact Hausdorff topology T that is compatible with the
structure; we call such a class a compactly-topologisable prevariety, or CT-prevariety
for short. We then define the associated topological prevariety AT := IScP(MT),
where MT = {MT | M ∈ M } and MT denotes M endowed with the topology T.
We make both A and AT into categories in the obvious way (see Sections 2 and 3
for more details). Frequently we shall present theoretical results only for the case
|M| = 1; this simplifies the presentation and covers the specific classes we target in
this paper.
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A natural extension functor nA exists on any CT-prevarietyA and so is available
in particular on all four of the categories in our initial list: abelian groups, unital
meet semilattices, sets, and ordered sets. We demonstrate in Section 3 that many
of the good features of the natural extension revealed in [17] extend to the wider
setting: most notably we have a well-defined functor which is a reflection and so acts
as the left adjoint to the forgetful functor from AT into A. (We note, by contrast,
that the profinite completion construction cannot be expected to extend beyond
the setting of IRF-prevarieties of algebras.) The natural extension construction
has an important virtue. The formalism of traditional natural duality theory, as
presented in the text of Clark and Davey [8], enables an explicit description to be
given in general of nA(A), for A in an IRF-prevariety A of algebras, and in a more
refined and amenable form, for classes which admit a natural duality [17]. Drawing
similarly on duality theory ideas that extend to IRF-prevarieties of structures [16]
and to certain CT-prevarieties of structures [20], we are able explicitly to describe
natural extensions in the wider setting, though there are impediments: structures
must not contain partial operations and, for prevarieties with infinite generators,
the results we obtain are less complete than those for IRF-prevarieties.

The Bohr compactification functor b on a prevarietyA of structures (as presented
in Section 2) maps A into the category A

ct of compact topological structures with
non-topological reduct in A and is left adjoint to the natural forgetful functor.
The zero-dimensional Bohr compactification functor b0 is defined similarly, with
A

ct replaced by the category A
Bt of Boolean topological structures with reduct

in A. Thus a Bohr compactification has an abstract characterisation, and so is
hard to describe explicitly. It is therefore advantageous to know when it coincides
with the more readily accessible natural extension. In Section 4 we elucidate the
relationship between the natural extension functor nA on a class A of structures
and the functor b and, when the objects of AT are zero-dimensional, the functor b0;
see Proposition 4.1. The situation is illustrated in Figure 1; each of the functors is
left adjoint to the corresponding forgetful functor.

A

A
BtAT A

ct

nA
b0

b

Figure 1. The functors nA, b0 and b (in the case that AT ⊆ A
Bt)

The coincidence results we present are a core constituent of the paper. They are
of two types. Strong coincidence occurs when the functors under consideration can
be shown to have the same codomain, from which it follows that the functors are
identical, having the same domain, codomain and values. Weak coincidence arises
when the codomain categories are different but the image of the functor into the
larger of the categories lies in the smaller one: for example, if b0 maps A into AT ,
then b0(A) = nA(A), for all A ∈ A, and hence b0 and nA coincide except for their
codomains.
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Given an IRF-prevarietyA, strong coincidence of b0 and nA occurs exactly when
the associated topological prevariety AT is standard. The notion of a standard

topological prevariety has received considerable attention in its own right [10, 9, 12,
11, 26, 35]. This literature enables us to present an extensive list of IRF-prevarieties
of algebras (all of which are in fact varieties) for which the zero-dimensional Bohr
compactification coincides strongly with the natural extension and can thereby be
explicitly described with the aid of known dualities (see Theorems 5.2 and 5.3). We
also consider briefly, with examples, new notions of standardness appropriate to a
CT-prevariety which has an infinite generator.

We can draw on two famous examples from the literature to highlight instances
of non-coincidence which arise in different ways. The IRF-prevariety S of unital
meet semilattices is standard, so that strong coincidence occurs for nS and b0.
However weak coincidence of b0 and b fails; see Theorem 4.4. Now consider the
IRF-prevariety P of ordered sets. Here standardness fails (see Example 4.3) and
strong coincidences are ruled out. However weak coincidence of b (the Nachbin
order compactification functor) and nP does occur, and so, even though they have
three different codomains, the functors b, b0 and nP take the same values on A: so
b(Y) = b0(Y) = nA(Y), for each ordered set Y; see Proposition 6.4. Building on
this example, Theorem 6.8 supplies a countably infinite family of IRF-prevarietiesX
of ordered structures exhibiting the same behaviours as does P. Underpinning our
discovery of these prevarieties is the method of topology-swapping, originating in
[19] and applied in Section 6 to the description of natural extensions in linked pairs
of categories; see Corollary 6.2.

We should issue a reassurance that readers of this paper are not assumed to
have a working knowledge of natural duality theory. As we have indicated, our
key tools for identifying zero-dimensional Bohr compactifications are the natural
extension construction and the notion of a standard topological prevariety. These
tools are an adjunct to, rather than a part of, duality theory and our presentation
of the theory we require is self-contained. We do however refer to the literature for
results concerning dualisability or otherwise of particular classes of structures, and
for details of particular dualities, where these exist.

We conclude this introduction by stressing that our objective is to analyse in a
uniform manner compactifications in a range of specific categories. Our focus is very
different from that of the treatment of universal constructions within an abstract
categorical framework, as presented in such sources as [38] or [1]. Our account, by
contrast, does have some affinity with the free-wheeling introduction to universal
constructions in algebra and topology given, in textbook style, by Bergman [4], in
particular Section 3.17.

2. The Bohr compactification of a structure

The Bohr compactification has a honourable place in the theory of topological
groups, and has important connections with harmonic analysis and almost periodic
functions. For background on the construction in this context, and on its applica-
tions, see for example [34, 27]. The ideas were extended to certain other classes
of algebras with compatible topology; see for example [34], and the wide-ranging
survey by Hart and Kunen [32]. We warn once again, however, that the term
‘structure’ is used in a narrower sense in [32] than in the present paper. In the for-
mer the setting is provided by a first-order language L with operation symbols and
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equality but without other relation symbols; the authors suggest that the theory
would be ‘a little messier’ if L were to include predicates (see [32, 2.1 and 2.3.13]).
This is in sharp contrast to our treatment. We work in a context that encompasses
algebraic structures, purely relational structures, and hybrid structures within a
common framework. We will consider the Bohr compactification of these more gen-
eral structures and connect it, where possible, to the natural extension. Hart and
Kunen make no a priori assumption that the classes of structures with which they
deal are varieties or prevarieties, though this is the case with their most significant
examples.

Within the theory of compactifications of topological algebras, or of more general
types of topological structures, an important special case arises when one restricts
to the situation in which the objects being compactified carry the discrete topology,
or equivalently no topology. This is the case on which we shall exclusively focus.
In most of our examples, the Bohr compactifications will be zero-dimensional.

We recall that a topological space X is said to be zero-dimensional if it has
a basis of clopen sets. This is a convenient point at which to draw attention to
the alternative formulations of the concept of zero-dimensionality in the context of
compact spaces. A compact Hausdorff space X is zero-dimensional if and only if
it is a Boolean space in the sense that the clopen sets separate the points (that is,
if it is totally disconnected). For brevity we shall usually adopt the term Boolean
space subsequently.

Our task in this section is to set up the definition of the Bohr compactification,
in either variant, in the context of structures. First we need to specify precisely
what we mean by a (topological) structure.

Definition 2.1. A structure A = 〈A;GA, HA, RA〉 is a set A equipped with a
set GA of finitary total operations, a set HA of finitary partial operations and a
set RA of finitary relations. If HA is empty we refer to A as a total structure, if
both GA and HA are empty we refer to A as a purely relational structure and if
both HA and RA are empty we refer to A as an algebra. A structure with topology

A = 〈A;GA, HA, RA,TA〉 is simply a structure equipped with a topology T
A,

and A♭ := 〈A;GA, HA, RA〉 will denote its underlying structure. We say that the
topology is compatible with the underlying structure if the relations in RA and the
domains of the partial operations in HA are topologically closed and the operations
in GA and the partial operations in HA are continuous; when this holds we refer to
A = 〈A;GA, HA, RA,TA〉 as a topological structure (of signature (G,H,R)). Given
a structure M with a compatible topology T, we denote by MT the topological
structure obtained by endowing M with the topology T. We shall sometimes use
a superscript T rather than a subscript to avoid bracketing; for example, we write
MT

1 rather than (M1)T .

Our principal concern will be with total structures, but we do not disallow partial
operations until this is necessary. A class of structures will always be converted
into a category by adding all homomorphisms as morphisms of the category, and
similarly, for a class of structures with topology, the morphisms of the corresponding
category will be the continuous homomorphisms.

Definition 2.2. Assume thatA is a class of structures. Then we may consider both
the category A

ct of compact Hausdorff topological structures having A-reducts
and its full subcategory A

Bt consisting of those compact topological structures
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whose topology is zero-dimensional. The Bohr compactification ofA, denoted b(A),
is required to be a member of Act into which A embeds as a structure, via an
embedding we denote by ιA, with the property that the closed substructure of
b(A) generated by ιA(A) is b(A) itself. If the signature of the structures includes
no partial operations, so H = ∅, then we simply require ιA(A) to be topologically
dense in b(A). The compact topological structure b(A) is required to satisfy, and is
uniquely determined, up to a A

ct-isomorphism, by the following universal mapping
property:

given any compact Hausdorff structureB ∈ A
ct and anyA-morphism

g : A → B♭, there exists a unique Act-morphism h : b(A) → B such
that h ◦ ιA = g.

Replacing ‘Hausdorff’ by ‘zero-dimensional’ and b(A) by b0(A) throughout, so
working within the realm of Boolean-topological structures, we obtain the zero-

dimensional Bohr compactification b0(A) ofA. (Henceforth all compact topological
spaces will be assumed to be Hausdorff.)

It is a very simple exercise to check that the (zero-dimensional) Bohr compact-
ification is uniquely determined and that the specification in terms of a universal
mapping property agrees with that given in [32]. If A is closed under forming
substructures, then, in the universal mapping property, the A

ct-morphism h is
uniquely determined by g, for all A-morphisms g, if and only if the closed sub-
structure of b(A) generated by ιA(A) is b(A) itself—the argument is completely
standard, using only the universal mapping property and the fact that an equaliser
of two continuous homomorphisms forms a closed substructure.

Thus for A ∈ A both b(A) and b0(A) are indeed defined and are characterised
by their respective universal mapping properties. If it happens that b(A) is in fact a
Boolean-topological structure, then b(A) = b0(A), since b(A) satisfies the universal
property characterising b0(A). Of course, the universal mapping properties defining

b(A) and b0(A) say precisely that b : A → A
ct and b0 : A → A

Bt are reflections,
that is, they are left adjoint functors to the natural forgetful functors, provided
b(A) and b0(A) exist, for all A ∈ A.

3. The natural extension of a structure

In this section we introduce, in the context of CT-prevarieties of structures, the
natural extension which plays a central and unifying role in this paper. The theory
we shall present principally concerns categories of the two forms:

A = ISP(M) and AT = IScP(MT).

Here and below M is a set of structures of common signature; M is not required to
be finite (but in the examples we shall give M will contain only a single structure).
The prevariety A := ISP(M) generated by M is the class of isomorphic copies
of non-empty substructures of products of structures in M, where products are
structured coordinatewise. Extending the usage in [17, Section 2], if all of the
structures in M are finite we shall refer to the class A as an internally residually

finite prevariety (of structures) or IRF-prevariety for short. We shall assume that
each M in M has a fixed associated compact topology T that is compatible with
M and we denote the corresponding topological structure by MT . Let MT :=
{MT | M ∈ M }; then the topological prevariety AT := IScP(MT) generated by
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MT consists of isomorphic copies of non-empty topologically closed substructures
of products of members of MT .

Remark 3.1. If we prefer we may replace the class operator P by P+, thereby
excluding the empty indexed product. Similarly, we can allow the possibility of
including the empty structures in both A and AT by replacing S and Sc with the
operators S0 and S0c that include empty substructures (when the signature does
not include nullary operations). We have chosen one of the four possibilities as
our primary setting, but will have need of several of the others along the way. All
of the theory presented below carries over to the other three with trivial changes.
To avoid a proliferation of names, we shall refer to each of IScP(MT), IScP

+(MT),
IS

0
cP(MT) and IS

0
cP

+(MT) as the topological prevariety generated by MT as it will
always be clear from the context which is intended.

In the case of an IRF-prevariety ISP(M), each M ∈ M is finite and hence the
topology T associated with M is discrete and is the unique topology making MT

compact Hausdorff (in fact zero-dimensional). The objects in AT = IScP(MT) are

then Boolean-topological structures; hence AT ⊆ A
Bt.

Now let A be a CT-prevariety of structures, so A = ISP(M) for a set M of
structures in A each having an associated compatible compact topology. Let AT :=
IScP(MT) be the associated topological prevariety. We are ready to extend to CT-
prevarieties of structures the concept of a natural extension which was introduced
for IRF-prevarieties of algebras in [17, Section 3]. Let A ∈ A and define

XA := ·⋃{A(A,M) | M ∈ M }.

Further, let Yx := MT , for each M ∈ M and x ∈ A(A,M), that is, Yx is the
codomain M of the map x with the discrete topology T added. The homomorphism

e
A
: A →

∏{
Yx | x ∈ XA

}

given by evaluation, e
A
(a)(x) := x(a), for all a ∈ A and x ∈ XA, is an embedding

of structures since A ∈ ISP(M). We also observe that
∏{

Yx | x ∈ XA

}
∈ AT .

Definition 3.2. Let A = ISP(M) be a CT-prevariety of structures generated by a
set M of structures each with a fixed associated compact topology and let A ∈ A.
Then the topologically closed substructure generated by e

A
(A) in

∏
{Yx | x ∈ XA }

is said to be the natural extension nA(A) of A in AT (relative to MT).

We notice that, in the case of total structures, the natural extension nA(A)
coincides with the topological closure of e

A
(A) in

∏
{Yx | x ∈ XA }. For a CT-

prevariety of structures, A = ISP(M), we have constructed a map A 7→ nA(A)
from A into AT . Though this seems to depend upon the choice of the generat-
ing set M of structures for the prevariety A, we shall show later that nA(A) is
independent of the choice of the generating set M of the prevariety A in the case
of an IRF-prevariety. More generally, the natural extension on a CT-prevariety
A = ISP(M) is independent of the chosen generating set MT of the associated
topological prevariety (Corollary 3.9).

The map nA is defined on morphisms just as in [17]. Let u : A → B be a
morphism with A,B ∈ A. For y ∈ XB we have y ◦ u ∈ XA, and for each y ∈ XB

we have the map

uy :
∏

{Yx | x ∈ XA } → Yy
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defined by uy(f) := f(y ◦ u). Further, Yy = Yy◦u and uy (as the projection at
y ◦ u) is continuous. The map

û :
∏

{Yx | x ∈ XA } →
∏

{Yy | y ∈ XB }

is then defined as the natural product map, that is,

(û(f))(y) := uy(f) = f(y ◦ u), for f ∈
∏

{Yx | x ∈ XA } and y ∈ XB.

As each uy is continuous, û is continuous too. The following properties of û are
similar to those presented in [17, Lemma 3.1]. While the proof of the first one is
analogous to the proof in the case of algebras, the second one requires slightly more
careful definition chasing.

Lemma 3.3. Let u : A → B be a morphism with A,B ∈ A.

(i) û ◦ e
A
= e

B
◦ u, and consequently, û(e

A
(A)) ⊆ e

B
(B).

(ii) û(nA(A)) ⊆ nA(B).

Proof. To prove (i) we proceed as follows. Let a ∈ A. Then, for all y ∈ XB,

(û ◦ e
A
)(a)(y) = û(e

A
(a))(y) := uy(eA(a)) = e

A
(a)(y ◦ u)

= y(u(a)) = e
B
(u(a))(y) = (e

B
◦ u)(a)(y).

Hence û ◦ e
A
= e

B
◦ u, and it follows at once that û(e

A
(A)) ⊆ e

B
(B).

For (ii), we first note that, by (i),

e
A
(A) ⊆ û−1(û(e

A
(A))) ⊆ û−1(e

B
(B)) ⊆ û−1(nA(B)).

Since û−1(nA(B)) is a closed substructure of
∏
{Yx | x ∈ XA }, it follows that

nA(A) ⊆ û−1(nA(B)), and thus û(nA(A)) ⊆ û(û−1(nA(B))) ⊆ nA(B). �

For structures A,B ∈ A and a morphism u : A → B, we define a continuous
morphism nA(u) : nA(A) → nA(B) by nA(u) := û↾nA(A), and the first part of the
following proposition follows by a routine calculation. The second is a consequence
of Lemma 3.3 where ♭ : AT → A denotes the natural forgetful functor.

Proposition 3.4. (i) nA : A → AT is a well-defined functor.

(ii) e : idA → n♭
A

is a natural transformation, where n♭
A

:= (nA)♭ : A → A.

Lemma 3.5 below presents an alternative view of the natural extension of a
structure in the CT-prevariety A = ISP(M). We shall need this result shortly
in order to prove that the natural extension functor is a reflection. The lemma
extends to the setting of CT-prevarieties of structures an analogous result for IRF-
prevarieties of algebras given in [17].

We adopt the same notation as above. The product
∏{

Yx

∣∣ x ∈ XA

}
, the

codomain of the map e
A
, may be viewed as an iterated product

∏{ ∏
{ Yx

∣∣ x ∈ A(A,M)
} ∣∣ M ∈ M

}
.

We then write e
A
(a)(M)(x) = x(a), for any fixed a ∈ A and for M ∈ M and

x ∈ A(A,M), and refer to each e
A
(a) as a multisorted evaluation map. We have

e
A
: A →

∏{
M

A(A,M)
T

∣∣ M ∈ M
}
.

The set A(A,M) can be regarded as a closed subspace of the topological product
MA

T
, in which case we denote it by A(A,M)T . (Notice we are not claiming that

A(A,M)T ∈ AT ; in general it is not a substructure of MA
T
.) It now makes sense to
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consider the set C(A(A,M)T ,MT) of continuous maps from A(A,M)T into MT.
As the map

e
A
(a)(M) : A(A,M)T → MT

is continuous, for all M ∈ M, we can restrict the codomain of e
A
and write

e
A
: A →

∏{
C(A(A,M)T ,MT)

∣∣ M ∈ M
}
.

Lemma 3.5. Let A = ISP(M) be a CT-prevariety of structures and let A ∈ A.

Then the natural extension nA(A) is the closed substructure generated by e
A
(A)

within the product
∏{

C(A(A,M)T ,MT)
∣∣ M ∈ M

}
.

We can provide a quite explicit, if unwieldy, description of the elements of the
natural extension in the context of an IRF-prevariety of structures. This generalises
the description given by [17, Theorem 4.1] and is proved in the same way. We
present this in the single-sorted case (so that |M| = 1) since this covers our future
needs in this paper and simplifies the statement; a multi-sorted version could be
obtained, as in [17].

Proposition 3.6. Let M = 〈M ;G,R〉 be a finite total structure, let A := ISP(M),
let A belong to A, and let b : A(A,M) → M be a map. Then the following condi-

tions are equivalent:

(i) b belongs to nA(A), that is, b belongs to the topological closure of e
A
(A) in

M
A(A,M)
T

;

(ii) b is locally an evaluation, that is, for every finite subset Y of A(A,M), there
exists a ∈ A such that b(y) = y(a), for all y ∈ Y ;

(iii) b preserves every finitary relation on M that forms a substructure of the

appropriate power of M;

(iv) b preserves every finitary relation on M of the form

rF := { (x1(a), . . . , xn(a)) | a ∈ A },

where F = {x1, . . . , xn} is a finite subset of A(A,M).

We now revert to the assumption that A = ISP(M) is a CT-prevariety of struc-
tures. With the construction of the natural extension in place we are ready to move
on to establish its key properties.

We wish to prove that the natural extension functor is a reflection. To do this
we exploit the alternative description of the natural extension given in Lemma 3.5.
This theorem, proved for the algebra case in [17, Proposition 3.4], was not exploited
in that paper. Here, extended to structures and slightly rephrased, it will play an
important role (see Section 4). We note that the statement in Theorem 3.7(i) is
slightly stronger than asking for B♭ to be a retract of nA(B♭)♭ in A.

Theorem 3.7. Let A be a CT-prevariety of structures.

(i) For each B ∈ AT there exists a continuous homomorphism γ : nA(B♭) → B

with γ ◦ e
B

♭ = idB.
(ii) The natural extension functor nA : A → AT is a reflection of A into the (non-

full) subcategory AT. Specifically, for each A ∈ A, each B ∈ AT and every

homomorphism g : A → B♭, there exists a unique continuous homomorphism

h : nA(A) → B with h ◦ e
A
= g.



10 B.A. DAVEY, M. HAVIAR, AND H.A. PRIESTLEY

Proof. Consider (i). Let B ∈ AT and consider the natural map

c : B →
∏{

M
AT(B,MT)
T

∣∣ M ∈ M
}

given by c(b)(M)(x) := x(b),

for all b ∈ B and x ∈ AT(B,MT). Since B ∈ AT , the map c is a continuous
embedding. Let

π :
∏{

M
A(B♭,M)
T

∣∣ M ∈ M
}
→

∏{
M

AT(B,MT)
T

∣∣ M ∈ M
}

be the obvious projection. Clearly, π ◦ e
B

♭ = c and π maps e
B

♭(B) bijectively
to c(B). Since e

B
♭(B) ⊆ π−1(π(e

B
♭(B))) = π−1(c(B)), and since π−1(c(B)) is a

closed substructure of
∏{

M
A(B♭,M)
T

∣∣ M ∈ M
}
, we have nA(B♭) ⊆ π−1(c(B)),

whence π(nA(B♭)) ⊆ c(B).
Hence we can restrict both the domain and the codomain of π and define

ρ := π↾nA(B♭) : nA(B♭) → c(B).

Finally, define γ := c−1 ◦ ρ. Then we have

γ ◦ e
B

♭ = c−1 ◦ ρ ◦ e
B

♭ = c−1 ◦ c = idB,

completing the proof of (i).
Now consider (ii). We first prove the uniqueness of the continuous homomorph-

ism h. Assume that continuous homomorphisms h, h′ : nA(A) → B satisfy h ◦
e
A

= h′ ◦ e
A

= g. Then the equaliser Y := eq(h, h′) is a closed substructure of∏{
Yx

∣∣ x ∈ XA

}
containing eA(A) and hence Y = nA(A); it follows at once

that h = h′.
To prove the existence assertion, we apply (i) to find γ : nA(B♭) → B with

γ ◦ e
B

♭ = idB. Note that nA(g) : nA(A) → nA(B♭) is a continuous homomorphism
with nA(g) ◦ e

A
= e

B
♭ ◦ g. Now take h = γ ◦ nA(g). �

It is very easy to check that the definition of nA(A) requires only that A be
a structure of the appropriate signature. Proposition 3.4 and Theorem 3.7 then
show that nA provides a reflection functor from the category of all structures of
the appropriate type into AT .

The fact that Theorem 3.7 supplies a reflection has the following important
corollary.

Corollary 3.8. For each CT-prevariety of structures A, the functor nA : A → AT

is left adjoint to the functor ♭ : AT → A forgetting the topology.

Since the left adjoint to the forgetful functor is unique and depends only upon
A and the subcategory AT , we obtain the following important consequence for the
natural-extension perspective we adopt in the remainder of the paper.

Corollary 3.9.

(i) Let M and M
′ be sets consisting of structures each of which has a fixed asso-

ciated compact topology. Define A = ISP(M) and assume that IScP(MT) =
IScP(M

′
T). Then A = ISP(M′) and, for all A ∈ A, the natural extensions of

A relative to M and relative to M
′ agree.

(ii) Let A be an IRF-prevariety of structures. Then, for each A ∈ A, the natural

extension nA(A) of A is independent of the set M of finite structures chosen

to generate A.
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Proof. By Corollary 3.8, we only need to see that our assumptions guarantee that
ISP(M) = ISP(M′), so that the categories are not changed when we pass from M

to M
′. We have IScP(MT) = IScP(M

′
T
) by assumption. It follows that MT ⊆

IScP(M
′
T
), whence M ⊆ ISP(M′) and so ISP(M) ⊆ ISP(M′). By symmetry we

have the reverse inclusion and so ISP(M) = ISP(M′). This proves (i).
To prove (ii), it suffices to show that, if M and M

′ consist of finite struc-
tures, then ISP(M) = ISP(M′) implies that IScP(MT) = IScP(M

′
T). Assume

that ISP(M) = ISP(M′). Since the topologies involved are discrete, it follows
easily from this that MT ⊆ IScP(M

′
T
) and M

′
T
⊆ IScP(MT), whence IScP(MT) =

IScP(M
′
T). �

4. The Bohr compactification versus the natural extension:

the role of standardness

Our goal in this section is to compare Bohr compactifications to the natural
extension in situations where the latter is defined.

Consider until further notice the situation in which we have a CT-prevarietyA =
ISP(M) of structures and its associated topological prevariety AT = IScP(MT).
Note that we always have AT ⊆ A

ct, and if the topologies on the members of
M are Boolean, in particular if A is an IRF-prevariety, then we have AT ⊆ A

Bt.
Observe that it is the category AT that appears in Theorem 3.7, rather than either
of the potentially larger categories ABt and A

ct.
The Bohr compactification (in both zero-dimensional and compact Hausdorff

versions) and the natural extension of a structure are characterised by universal
mapping properties; Definition 2.2 and Theorem 3.7. Thus we have reflection func-
tors into three possibly different categories (see Figure 1):

• the natural extension functor, providing a reflection into AT ;
• the zero-dimensional Bohr compactification functor b0, giving a reflection into

the category A
Bt;

• the Bohr compactification functor b, giving a reflection into the category A
ct.

In each case the functor is uniquely determined by its characteristic universal map-
ping property. We recall from Section 1 that strong coincidence occurs when two
of the functors nA, b0 and b on A coincide because their codomains are the same,
and that weak coincidence arises when the codomain categories are different but
the image of the functor into the larger of the categories lies in the smaller one.
The following proposition is immediate.

Proposition 4.1. Let A = ISP(M) be a CT-prevariety of structures and define

AT := IScP(MT). Then the following statements hold.

(i) If AT = A
ct, then b(A) = nA(A) for each A ∈ A.

(ii) If AT = A
Bt, then b0(A) = nA(A) for each A ∈ A.

(iii) Let A ∈ A. Then

(a) b0(A) = nA(A) if and only if b0(A) ∈ AT;

(b) b(A) = b0(A) if and only if b(A) ∈ A
Bt.

Suppose thatA is such that we have an explicit description of each nA(A). Then
strong or weak coincidence of b0 with nA allows us to describe b0, and likewise with b

in place of b0. To exploit the above observations we need to know more about AT .
We are fortunate that a wealth of information is already available, or is easy to
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obtain, in the special case that most interests us: that in which M contains a single
structure M.

In the case that M is finite, the assumption AT = A
Bt in Proposition 4.1(ii) is

exactly the condition that the topological prevariety AT is standard, in the sense
that AT consists precisely of the structures which are Boolean-topological models
of the quasi-equations defining A. We then have the following theorem concerning
strong coincidence of b0 and nA.

Theorem 4.2. Let M be a finite structure, define A := ISP(M) and assume that

the associated topological prevariety AT := IScP(MT) is standard. Then, for ev-

ery A ∈ A, the zero-dimensional Bohr compactification b0(A) of the structure A

coincides with its natural extension nA(A).

Our linkage of standardness to the coincidence of structures characterised by uni-
versal mapping properties is new. However the notion of standardness has received
a lot of attention in its own right, principally in the case that M is an algebra,
but to a limited extent when M is a structure (we consider the latter case later).

The systematic study of standardness of a topological prevariety IS
0
cP

+(MT) was
initiated in [10, 9]. In these papers M is taken to be a finite structure (not neces-
sarily an algebra and not necessarily total). While the theory of standardness was

developed for topological prevarieties of the form IS
0
cP

+(MT), the results apply
with almost no change to all four settings described in Remark 3.1; in particular
they apply to the class IScP(MT) of interest here.

There are interesting and substantial results available ‘off-the-peg’ when M is a
finite algebra. Assume this, and assume moreover that ISP(M) = HSP(M) so that
ISP(M) is a variety. The principal general result of [9], the FDSC-HSP Theorem,
reveals that a rather natural algebraic condition ensures standardness of IScP(MT).
This property—having finitely determined syntactic congruences—holds in partic-
ular if HSP(M) has the more familiar property of having definable principal congru-
ences (see [9, Section 2] for the definitions and discussion, and [12, Theorem 2.13]
for an extension of the FDSC-HSP Theorem to total structures). In some cases
the FDSC condition will hold for an entire variety of algebras, and hence for its
finitely generated subvarieties; in others, in particular lattices, restriction to finite
generation is critical if FDSC is to hold. The FDSC-HSP Theorem implies that
the topological prevariety IScP(MT) is standard in each of the following cases: M
is a finite Boolean algebra, distributive lattice or implication algebra, or M is a
finite group, semigroup, ring, lattice, Ockham algebra, or unary algebra such that
HSP(M) = ISP(M). This catalogue is not exhaustive. For additional examples,
and verifications of the claims above, see [9, Section 6] and also [26]. We should
however warn that standardness is a subtle property in general, and can fail: there
exist finite algebras M for which IScP(MT) is not standard. An example is given
in [12, Example 4.3] in which M is a 10-element modular lattice. Further insight
into when and why standardness occurs is provided by [12, 11] and, for structures,
[16, Section 3]. On the positive side, then, Theorem 4.2 is rather widely applica-
ble. Moreover, in many cases when it is, we shall confirm below that the natural
extension has an appealingly simple description, so that the zero-dimensional Bohr
compactification does too.

We draw attention to a well-known instance of non-standardness in the context
of structures.
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Example 4.3. Consider the category of ordered sets, P = IS
0
P(2), and the associ-

ated topological prevarietyPT = IS
0
cP(2T) of Priestley spaces, where 2 = 〈{0, 1};6〉

is the two-element chain. Stralka [48] exhibited two examples of Boolean spaces with
a closed order relation that fail to be Priestley spaces, whence PT is non-standard.
(For further analysis of this phenomenon, see [6].)

We shall show in Proposition 6.4 that b0 and nP do coincide (in fact b coincides
with nP too). Here we have an instance of coincidence occurring in the weak sense
but not in the strong sense. We deduce that none of the examples witnessing non-
standardness of PT belongs to the image of the class P under b0 (or equivalently b).

It is not always the case that the Bohr compactification and its zero-dimensional
variant coincide in the weak sense. This was established for meet semilattices by
Hart and Kunen [32, Section 3.4], in particular [32, Corollary 3.4.13], drawing on
pioneering work by Lawson (see [32] and [29, Chapter VI] for references). We
present a proof which takes full advantage of the theory of continuous lattices, as
presented in a mature form in [29], as well as results we have to hand. Hart and
Kunen work with non-unital meet semilattices. For convenience we work with the
variety S of unital meet semilattices. When, as in [32], the unit 1 is not included
in the signature, one may pass to semilattices which do have 1; see [29, p. 452].

We shall draw on the Fundamental Theorem on Compact Totally Disconnected
Semilattices [29, Theorem VI-3.13]. In outline this asserts that the objects of SBt

are those compact topological unital meet semilattices that have small semilattices,
meaning that there exists a neighbourhood basis of subsemilattices at each point.
Moreover there is an isomorphism of categories between S

Bt and the category of al-
gebraic lattices equipped with the Lawson topology and with the Lawson-continuous
maps preserving 1 as morphisms; these morphisms can alternatively be described
as the maps which preserve arbitrary meets and directed joins.

Theorem 4.4. Let S be the class of unital meet semilattices. Then there exists A

in S such that b(A) 6= b0(A).

Proof. There exists a compact topological unital meet semilattice B which fails
to have small semilattices. See [29, VI-4.5] for the statement, and the definitions
and lemmas which precede it for the construction. Let A = B♭ so that A ∈ S.
Suppose for a contradiction that b(A) = b0(A). Then b(A) is a compact zero-
dimensional unital meet semilattice and hence is an algebraic lattice. Moreover,
b(A) = b0(A) = nS(A), by the standardness of ST .

By Theorem 3.7(i) there exists a continuous homomorphism γ : nS(B
♭) → B

such that γ ◦eA = idB. This implies that B is the image under a continuous homo-
morphism of a compact (totally disconnected) topological unital meet semilattice.
Since the domain of this map has small semilattices, the same is true of the image,
by [29, VI-3.5] (or by the specialisation of this result to the totally disconnected

case). It follows by the Fundamental Theorem [29, Theorem VI-3.13] that B ∈ S
Bt.

This provides the required contradiction. �

We now turn to the case in which M is an infinite structure and MT is a compact
topological structure.

Standardness has been studied almost exclusively in the case where A is a uni-
versal Horn class generated by its finite members. Nevertheless, by analogy, in the
case that MT is an infinite compact topological structure, it is natural to define
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A := ISP(M) and say that the topological prevariety AT := IScP(MT) is compact-

standard if AT = A
ct and is Boolean-standard if AT = A

Bt. Since AT ⊆ A
ct

always holds, it follows that AT is compact-standard precisely when every compact
topological structure whose non-topological reduct is in A can be embedded as a
topological structure into a power of MT . For example, the (highly non-trivial)
fact that every compact topological abelian group embeds into a power of the circle
group TT tells us that the topological prevariety IScP(TT) is the class of compact
topological abelian groups (see [45, C, p. 241]) and so is compact-standard. Simi-
larly, if T is a Boolean topology, then AT is Boolean-standard precisely when every
Boolean topological structure whose non-topological reduct is in A can be embed-
ded as a topological structure into a power of MT. We now give an example of a
Boolean-standard prevariety with infinite generator.

Example 4.5 (Semilattices with automorphism). We consider the variety of semi-
lattices with automorphism, as introduced by Ježek [37]; see [21, Section 8] for
further details. We let P have universe 2Z, the set of all functions from the integers
into the set 2 := {0, 1}. The meet operation is defined pointwise, relative to the
two-element semilattice 〈2;∧〉. We let s : Z → Z be the successor function given by
s(i) := i + 1, for all i ∈ Z and let 0 be the function on Z with constant value 0.
We add the shift operations f and f−1 to the signature, where f(a) = a ◦ s and
f−1(a) = a ◦ s−1 for a ∈ 2Z. Thus P = 〈{0, 1}Z;∧, f, f−1,0〉. Define A := ISP(P)
and let PT denote P equipped with the product topology obtained from the discrete
topology on {0, 1}. We claim that AT := IScP(PT) is Boolean-standard.

Consider a Boolean-topological algebra A having algebraic reduct in A. We
must show that A embeds into a power of PT via a continuous A-homomorphism.
The algebra A⊤, which denotes A with a top element ⊤ adjoined as a topologically
isolated point, has a semilattice reduct which is a unital meet semilattice. The
Fundamental Theorem for Compact Totally Disconnected Semilattices [29, Theo-
rem VI-3.13] tells us that A⊤ is an algebraic lattice and that its topology is the
Lawson topology. Extend f to A⊤ by letting f(⊤) = ⊤. Then f , so extended, is a
semilattice homomorphism of A⊤ preserving ⊤. We define a family of maps from
A⊤ into P indexed by the compact elements k (excluding ⊤) of A⊤ as follows:

hk(x)(i) = 1 ⇐⇒ f i(k) 6 x.

Then, for each fixed j ∈ Z, the set { x | hk(x)(j) = 1 } is equal to ↑f j(k). Now
note that because the extended maps f , f−1 and their iterates are semilattice au-
tomorphisms, and hence order-isomorphisms, of A⊤, the element f j(k) is compact
whenever k is. It follows from properties of the Lawson topology on an algebraic lat-
tice that each set { x | hk(x)(j) = 1 } is clopen in A⊤ (see for example [29, Exercise
III-1.4]). This proves that the inverse image under hk of each member of a clopen
subbasis in P is clopen in A⊤. Since ⊤ is an isolated point with h−1

k (⊤) = {⊤}, the
restriction hk↾A is a continuous map ofA into P. As shown in [37, Proposition 1.1],
each hk is an A-homomorphism.

To show that A embeds into a power of PT , it suffices to show that the maps hk

separate the points of A. Take a 
 b in A. Since A⊤ is an algebraic lattice, there

exists a compact element k 6= ⊤ of A⊤ with k 6 a and k 
 b. Then hk separates a
and b.

It follows that IScP(PT) is Boolean-standard, as claimed.

We now present the infinite-generator version of Theorem 4.2.
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Theorem 4.6. Let M be an infinite structure and let T be a compact topology on

M that is compatible with M. Define A = ISP(M) and AT := IScP(MT).

(i) If the topological prevariety AT is compact-standard, then, for every A ∈ A,

the Bohr compactification b(A) of the structure A coincides with its natural

extension nA(A).
(ii) If the topology T is Boolean, and the topological prevariety AT is Boolean-

standard, then, for every A ∈ A, the zero-dimensional Bohr compactification

b0(A) of the structure A coincides with its natural extension nA(A).

This is an opportune point at which to make some background comments on
topological prevarieties and their generating sets and to relate our exposition to an
aspect of that of Hart and Kunen [32, Section 2.6]. Our presentation of the natural
extension construction works with CT-prevarieties A = ISP(M), where usually
M has a single element though this is not essential. The ‘home’ of nA(A), for
eachA ∈ A, is then the topological prevariety IScP(MT). Our first comment is that
nA(A) is uniquely determined by MT. On the other hand, the universal property
characterising a Bohr compactification for a general class of algebras, C say, involves
all members of CBt or of Cct, as appropriate. This—and knowledge of Pontryagin
duality and of the duality for semilattices—encourages Hart and Kunen to introduce
the notion of adequacy of a subclass K of a class CT (of topological algebras): this
amounts to saying that the continuous homomorphisms from any element of CT

into structures in K separate points. They do not, however, pursue this idea
much further. We draw parallels here with the Boolean-topological version given
by Jackson [35, Lemma 2.2] of the classic Separation Theorem for quasivarieties
as recalled in [35, Lemma 2.1]. This separation result is elementary, but more
significantly [35] throws light on the standardness problem from the perspective of
topological residual bounds as compared to non-topological residual bounds and
presents some interesting examples in the context of IRF-prevarieties of finite type.

5. Describing the natural extension and Bohr compactifications: the

role of duality

Our principal objective in this section is to demonstrate that Bohr compactific-
ations can be concretely described for many classes A = ISP(M) of algebras and,
potentially, of structures. To this end we shall bring together two strands of theory.
The first of these strands comes from Section 4. There we revealed that, when A is
an IRF-prevariety, strong coincidence of b0 and nA is equivalent to standardness of
the associated topological prevariety AT (Theorem 4.2), and we gave an analogous
result when A is an infinitely generated CT-prevariety (Theorem 4.6). Our second
strand of theory concentrates on the description of the natural extension. We shall
exploit duality theory to refine the ‘brute force’ description supplied by Proposi-
tion 3.6: Theorem 5.2, drawing on Theorem 5.1, gives an amenable description
of the natural extension in case M is a finite total structure which is dualisable.
Theorem 5.3 presents a catalogue of classes of algebras to which Theorems 4.2
and 5.2 both apply, and for which thereby b0 can be explicitly described. The case
when M is infinite is more challenging, but Proposition 5.4 is noteworthy. It em-
braces all cases in which M, finite or infinite, is self-dualising and, in combination
with existing standardness results, sets in context known descriptions of the Bohr
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compactification b for abelian groups (via Pontryagin duality) and of b0 for semilat-
ices (via Hofmann–Mislove–Stralka duality). In this section we are concerned with
strong coincidence; in Section 6 our examples will focus on weak coincidence.

We preface our new results with a very brief introduction to natural dualities
for structures, as developed in [16], and follow this with a broad brush summary of
known dualisability results for algebras.

We shall have two structures on the same set M in play at the same time and it
is convenient to adapt our notation to reflect this. Let M1 = 〈M ;G1, H1, R1〉 and
M2 = 〈M ;G2, H2, R2〉 be structures on M . Let M2 be compatible with M1, mean-
ing that each (partial) operation in G2 (H2) is a homomorphism (where defined)
and each relation r ∈ R2 as well as the domain of each partial operation h ∈ H2

form substructures of appropriate powers of M1, and let T be a compact topology
on M that is compatible with M1. Let M

T

2 be the corresponding alter ego of M1,
that is, MT

2 is the structure with topology (M2)T obtained by adding the topology

T to M2. Finally, let A := ISP(M1) and XT := IS
0
cP

+(MT

2 ) be respectively the
prevariety of structures generated by M1 and the topological prevariety of struc-
tures with topology generated by MT

2 . In almost every case below, M is finite, in
which case XT consists of Boolean-topological structures.

Note that we have switched here from IScP(M
T
2 ) to IS

0
cP

+(MT
2 ). This is necessary

as in general the dual of a one-element structure can be empty, for example whenM1

is the two-element lattice with both bounds as nullary operations, and there might
be no structure with a one-element dual, for example when M1 is the two-element
lattice without nullary operations. If M2 has a total one-element substructure,
then the + has no effect and we will use IS

0
cP(M

T
2 ) instead.

There are well-defined contravariant hom-functors D: A → XT and E: XT → A

given on objects by

D(A) := A(A,M1) ≤ (MT

2 )
A and E(X) := XT(X,MT

2 ) ≤ MX
1 ,

for all A ∈ A and all X ∈ XT . The construction of A and XT guarantees that the
maps given by evaluation

e
A
: A → ED(A) and ε

X
: X → DE(X)

are embeddings. Then 〈D,E, e, ε〉 is a dual adjunction between A and XT . If, for
all A ∈ A, the map e

A
is an isomorphism, then MT

2 is said to yield a duality on
A or we say that MT

2 yields a duality between A and XT . Alternatively, we may
say that MT

2 dualises M1. Also MT
2 yields a full duality between A and XT if, in

addition, for all X ∈ XT , the map ε
X

is an isomorphism; then the functors D and
E give a dual equivalence between the categories A and XT .

The following theorem, as it applies to an IRF-prevariety of algebras, appears in
[17, Theorem 4.3]. The proof given in [17] extends immediately to total structures
but not to structures in general.

Theorem 5.1. Let M1 be a finite total structure. Assume that M2 is a structure

compatible with M1 and that the topological structure MT

2 acts as a dualising alter

ego for M1. Let A := ISP(M1), let A belong to A, and let b : A(A,M1) → M be

a map. Then b belongs to nA(A) if and only if b preserves the structure on M2.

When a duality for A is known, Theorem 5.1 describes the elements of nA(A),
which is defined topologically, in a way which is not overtly topological. But this
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description is defective: nA(A) is a topological structure and not merely a set.
Hence we seek a more categorical answer to the description problem.

Suppose we have compatible structures M1 and M2 on the same finite set
M and define A = ISP(M1), XT = IS

0
cP

+(MT

2 ) and hom-functors D: A → XT

and E: XT → A as above. We do not yet assume that we have a duality. The
compatibility relation between two structures is symmetric, so that M2 compatible
with M1 implies that M1 is compatible with M2. Thus we may swap the discrete
topology to the other side and repeat the construction using the alter ego MT

1 of
the structure M2 to obtain new categories AT := IScP(M

T

1 ) of Boolean-topological

structures and X := IS
0
P+(M2) of structures. Now the contravariant hom-functors

F: AT → X and G: X → AT are given by

F(A) := AT(A,MT

1 ) ≤ MA
2 and G(X) := X(X,M2) ≤ (MT

1 )
X .

We have maps given by evaluation e′
A
: A → GF(A) and ε′

X
: X → FG(X), for

all A ∈ AT and all X ∈ X, and we obtain a new dual adjunction 〈F,G, e′, ε′〉 be-
tweenAT andX. Then we refer to 〈D,E, e, ε〉 and 〈F,G, e′, ε′〉 as paired adjunctions

(see [19, p. 587]). If e′
A
: A → GF(A) is an isomorphism, for all A ∈ AT , then we

say that M2 yields a duality between AT and X. If, in addition, ε′
X
: X → FG(X)

is an isomorphism, for all X ∈ X, then we say that M2 yields a full duality between

AT and X.

A XT

AT X

D

E

nA
♭

F

G

nX
♭

Figure 2. Paired adjunctions

The following theorem extracts from [19, Theorem 2.3] only the assertions we
shall need. The generalisation from algebras to total structures is completely
straightforward.

Theorem 5.2. Let M1 be a finite total structure, let M2 be a structure compatible

with M1 and define A and XT as above. Of the following conditions, (2) and (3)
are equivalent and implied by (1).

(1) MT

2 yields a duality between A and XT;

(2) the outer square of Figure 2 commutes, that is, nA(A) = G(D(A)♭), for all

A ∈ A;

(3) nA(A) consists of all maps α : A(A,M1) → M that preserve the structure

on M2, for all A ∈ A.

We now give our promised summary of dualisability results, concentrating on
algebras rather than total structures more widely. We have to acknowledge that a
number of important varieties of algebras are not CT-prevarieties and cannot be
brought within the scope of natural duality theory. As Hart and Kunen show, Bohr
compactifications, abstractly defined, will exist for such varieties, but neither they,
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nor we, have machinery to access such compactifications concretely. The classes of
lattices, semigroups, and rings, in particular, fall under this heading. However all
these classes have interesting subvarieties which we may profitably consider.

We can draw on a very extensive literature for examples of finitely generated
prevarieties for which explicit dualities are known and for confirmation that others
fail to have a natural duality (see [8, 44] and the references therein). For the benefit
of those unfamiliar with this literature we give the briefest possible summary. We
initially consider a quasivariety A = ISP(M), where M is a finite algebra.

Two-element algebras. Taking M to be the 2-element algebra in the following
varieties (where HSP(M) = ISP(M)), we encompass important classic dualities:

• Stone duality for Boolean algebras;
• Priestley duality for distributive lattices, with or without bounds, depending

on whether bounds of M are included in the signature as nullary operations;
• Hofmann–Mislove–Stralka duality for (meet) semilattices, with or without

bounds.

Not all 2-element algebras are dualisable; the implication algebra 〈{0, 1};→〉 pro-
vides a classic example. The case |M| = 2 is fully analysed in [8, Section 10.7].

Lattices and lattice-based algebras. Assume that M is a lattice or has a lattice
reduct. Then M is dualisable and the alter ego can be taken to be purely relational,
with relations of arity no greater than 2. The situation in which M has a (bounded)
distributive lattice reduct has been thoroughly researched: very amenable dualities
have been found for many familiar varieties, assisted by the theory of optimal
dualities and by the piggyback method.

Semilattice-based algebras. In contrast to the lattice-based case, a semilattice-
based algebra may or may not be dualisable (see [21, 13]).

Groups and semigroups. Modulo an unpublished proof, the dualisable groups
have been classified. There is only fragmentary information on dualisability of
semigroups, which form a large and diverse class, with only certain subclasses (for
example bands) analysed in depth. (See [36] for a detailed discussion of dualisability
for both groups and semigroups.)

Commutative rings. Here we note the characterisation by Clark et al. [14] of
those finite commutative rings which are dualisable and of the amenable dualities
available in some particular cases.

Unary algebras. Such algebras exhibit very varied behaviour. Particularly for
small |M |, they have been comprehensively studied, most notably in [44], as path-
finder examples for general theory.

A miscellany of sporadic examples of dualisable finite algebras could be added to
the above list. Examples of dualisable finite structures which are not algebras can
be found in [16, 19, 20, 39]. Our focus in this section is on the finitely generated
case, but for completeness we draw attention to our recent paper [20] which provides
theory embracing the possibility of an infinite generator.

Let us now pull together threads from this section and the previous one to present
a theorem on zero-dimensional Bohr compactifications.
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Theorem 5.3. Let A = ISP(M1), where M1 is a finite algebra, with associated

topological prevariety AT = IScP(M
T

1 ). Assume that M1 is a lattice, or a dual-

isable semigroup, group, ring, or unary algebra, or any other dualisable algebra,

and assume that AT is standard. Let MT

2 be a dualising alter ego of M1. Then

(i) b0(A) = nA(A) for each A ∈ A, and hence

(ii) b0(A) is given by Theorem 5.2.

A small number of familiar examples fit into the scheme envisaged in Theorem 5.2
in a rather special way. Assume that we have a finite self-dualising structure M,
that is, MT acts as a dualising alter ego for the prevariety A = ISP(M). In
this situation we have a natural extension which has a particularly simple, indeed
perhaps deceptively simple, description. By Theorem 5.2, the natural extension
nA(A) is then just D(D(A)♭). Significantly, this description of the natural extension
via the iterated duality functor applies even if the self-dualising algebra is infinite;
but this requires a different argument (cf. [34, p. 36]).

Proposition 5.4. Let M be a structure (finite or infinite) and define A := ISP(M).
Assume that T is a compatible compact topology on M such that MT fully dual-

ises M. Then, for each A ∈ A, the natural extension nA(A) of A is isomorphic

to D(D(A)♭).

Proof. Let A ∈ A. The universal property (cf. Theorem 3.7) implies that every
homomorphism g : A → M has a unique lifting to a continuous homomorphism
h : nA(A) → MT such that h ◦ eA = g. Since M is self dualising, it follows easily
that D(A)♭ and E(nA(A)) are isomorphic as structures. AsM is fully self-dualising,
we conclude that nA(A) ∼= DE(nA(A)) ∼= D(D(A)♭). �

The following varieties are covered by Proposition 5.4.

• Meet semilattices with 1. In this case, Hofmann–Mislove–Stralka duality [33]
(or see [8, 4.4.7]) applies: here we have dual equivalences between

S = ISP(2) [∧-semilattices with 1],

ST = IScP(2T) [compact zero-dimensional ∧-semilattices with 1],

where 2 = 〈{0, 1};∧, 1〉. It is easy to see that, for S ∈ S, the natural extension
nS(S) can be identified with the repeated filter lattice Filt(Filt(S)), equipped
with the unique topology making it a member of ST , viz. the Lawson topology.
Discussion of the natural extension from this perspective is given in [31].

• Abelian groups of exponent n [8, Theorem 4.4.2]. Here we have a full
duality between the categories An = ISP(Zn) of abelian groups of exponent n

and A
n
T = IScP(ZT

n) of Boolean topological abelian groups of exponent n.
• Abelian groups. Pontryagin’s famous dual equivalence between the categories

A = ISP(T) of abelian groups andAT = IScP(TT) of compact topological abelian
groups was brought within the scope of natural duality theory from the beginning
[15, Theorem 4.1.1]. Here T is the circle group and T is the Euclidean topology.

• Semilattices with automorphism. The variety we considered in Example 4.5
is self-dualising [21, Theorem 8.2(3)].

In each of these examples, the dual category IScP(MT) is standard, or compact-
standard (in the case of abelian groups), or Boolean standard (in the case of semi-
lattices with automorphism). Thus, in each case we can combine Theorem 4.2 with
Proposition 5.4 to conclude that the Bohr compactification or zero-dimensional
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Bohr compactification of A is isomorphic to D(D(A)♭). This description is well
known in the case of abelian groups (see [34]) and the case of meet semilattices
with 1 (see [33, Theorem I-3.10 and Definition I-3.11]).

Further examples of the same type are: Boolean groups; meet semilattices with 0
and join-semilattices with 0 or with 1 (see [8, Table 10.2]); certain semilattice-based
algebras (see the Semilattice-Based Self-Duality Theorem 7.4 in [21]); and other
self-dualising situations in which the machinery of [20, Section 2] applies.

In traditional duality theory, one often encounters dual equivalences between
categories A and XT where one of A and X is a category of algebras and the other
is a category of structures which are often purely relational. We shall focus on Bohr
compactifications of purely relational structures in the next section. Here we wish
to highlight with some examples the way in which both operations and relations can
arise on each side in a duality. We shall consider ordered (but not lattice-ordered)
algebras M1 such that the dualising structure MT

2 is not an algebra. The theorem
below providing examples of such dualities comes, as usual, by observing that a
known theorem for algebras extends to total structures. The only proof that is
required is an instruction to read the old proof and note that it still works. (One
needs to know that the Preservation Lemma [44, 1.4.4] still holds, which it does
provided M1 has no partial operations.) The result for algebras can be found in
[44, 2.1.1].

Theorem 5.5. Let M1 = 〈M ;F,R〉 be a finite total structure that has binary homo-

morphisms ∨ and ∧ such that 〈M ;∨,∧〉 is a lattice. Then MT

2 := 〈M ;∨,∧, R2|M|,T〉
yields a duality on ISP(M1), where R2|M| is the set of 2|M |-ary relations compatible

with M1.

As an immediate corollary we get the following nice result.

Theorem 5.6 (Lattice Endomorphism Theorem [44, 2.1.2]). Endomorphisms and

compatible orders of finite lattices yield dualisable ordered unary algebras. More

precisely, let M = 〈M ;∨,∧〉 be a finite lattice, let F ⊆ End(M) and let 6 be an

order on M that is preserved by both ∨ and ∧. Then MT
2 := 〈M ;∨,∧, R2|M|,T〉

dualises M1 := 〈M ;F,6〉, where R2|M| is the set of 2|M |-ary relations compatible

with M1.

Example 5.7. Let M1 = 〈{0, 1, 2};u, d,6〉 be a unary algebra with u(0) = 1,
u(1) = u(2) = 2 and d(2) = 1, d(1) = d(0) = 0, enriched with either the usual
order 0 < 1 < 2, the uncertainty order 0 < 1 > 2 of Kleene algebra duality fame
or the order whose only proper comparability is 1 < 2 of Stone algebra duality
fame. Since each of these orders is compatible with the ∨ and ∧ of the three-
element lattice, the Lattice Endomorphism Theorem 5.6 tells us that the alter
ego MT

2 := 〈M ;∨,∧, R6,T〉 yields a duality on A = ISP(M1). By Theorem 5.1,
the natural extension nA(A) of an ordered algebra A ∈ A is simply described as
the algebra consisting of all {∨,∧} ∪ R6-preserving maps from A(A,M1) to M2.
We have not investigated whether the natural extension will provide a concrete
realisation of the zero-dimensional Bohr compactification in this case.

6. Natural extensions and Bohr compactifications: making use of

topology-swapping

We consider once again the scenario presented in Figure 2, retaining the notation
from Section 5. So assume that M1 = 〈M ;G1, R1〉 and M2 = 〈M ;G2, H2, R2〉 are
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compatible structures on the finite set M , with M1 total. We define

A = ISP(M1), XT = IS
0
cP

+(MT

2 ),

AT = IScP(M
T

1 ), X = IS
0
P(M2).

We set up the hom-functors D, E, F and G as before. Thus we envisage trying
to swap the topology from M2 to M1. We seek conditions under which we can
upgrade the statement of Theorem 5.2 so as to assert that both adjunctions are
dual equivalences. When this occurs we shall say we have paired full dualities.

We shall highlight two theorems which yield paired full dualities. The first is
the TopSwap Theorem for (total) structures. This was obtained for algebras in [19,
Theorem 2.4]. We preface its statement with a technical observation. We follow [19]
in indicating that it is only necessary that we have a duality, or full duality, at the
finite level (that is, on the full subcategory ofA consisting of the finite objects). For
the theorem as we shall apply it, we do not make use of the weakened assumptions.
But it would be disingenuous to exclude them: the core of the proof in [19], which
applies equally well to total structures, concerns what happens at the finite level,
with the lifting to the whole class relying solely on categorical generalities.

TopSwap Theorem for Structures 6.1. Let M1 be a finite total structure of

finite type, let M2 be a structure compatible with M1 and define the categories A,

AT, X and XT as above.

(1) If MT

2 yields a finite-level duality between A and XT, then M2 yields a duality

between AT and X.

(2) If MT
2 yields a finite-level full duality between A and XT, then the adjunction

〈F,G, e′, ε′〉 is a dual equivalence between the categories AT and X.

Combining the TopSwap Theorem for Structures with Theorem 5.2 we obtain
natural extensions in partnership in the manner described in the next result.

Corollary 6.2. Let M1 be a finite total structure of finite type, let M2 be a total

structure compatible with M1 and define the categories A, AT, X and XT as above.

Assume that MT

2 yields a full duality between A and XT. Then M2 yields a full

duality between AT and X and

(1) nA(A) = G(D(A)♭), for all A ∈ A and

nX(X) = D(G(X)♭), for all X ∈ X,

so that Figure 2 combines two commuting squares;

(2) nA(A) consists of all maps A(A,M1) → M that preserve the structure

on M2, for all A ∈ A;

(3) nX(X) consists of all maps X(X,M2) → M that preserve the structure

on M1, for all X ∈ X.

We warn that the requirement that M2 be a total structure means that topology-
swapping cannot be applied to obtain paired natural extensions in circumstances
where partial operations have to be included in a dualising alter ego MT

2 for M1 in
order to upgrade a duality to a full (in fact, a strong) duality (see [8, Chapter 3]), or
where partial operations are present in a dualising alter ego (as happens, for example
for dualisable commutative rings [14] and for dualisable non-abelian groups [46]).

We have seen that the natural extension provides a common framework for a
range of universal constructions on algebras and purely relational structures, so
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indicating that these do not relate to quite different worlds. But Corollary 6.2
gives us more. Not only does M2 yield a description of natural extensions in A,
but it also yields a duality on the categoryAT within which these natural extensions
live. Moreover a corresponding statement also holds for M1 and X.

We now present two examples of paired full dualities between categories of to-
tal structures. These examples show that certain famous compactifications arise
as paired natural extensions and that useful information stems from the linkage.
Here the natural extension functor is, or generalises, a Stone–Čech compactification
functor. In this setting, the functor is, or may be, defined as in Definition 3.2 above.

Example 6.3 (Boolean algebras and the Stone–Čech compactification). Here we
have a well-known classic. It arises from Stone duality between Boolean algebras
and Boolean spaces and its topology-swapped counterpart, the duality between sets
and Boolean-topological Boolean algebras. The categories involved are

B = ISP(2) [Boolean algebras], ZT = IS
0
cP(2T) [Boolean spaces],

BT = ISP(2T) [Boolean topological BAs], Z = IS
0
cP(2) [Sets],

where the generating objects are the unique two-element structures, with or with-
out topology as appropriate, in the categories concerned. Theorem 5.2 asserts that
the functor nB sends a Boolean algebra to the powerset of its dual space. For any
set Z, the Stone-Čech compactification βZ is well known to be zero-dimensional,
and so is a member of ZT. Therefore by Proposition 4.1 the Stone-Čech compactific-
ation alias the (zero-dimensional) Bohr compactification coincides with the natural
extension. Thus, we have

βZ = b(Z) = b0(Z) = nZ(Z).

Corollary 6.2 now tells us that βZ is the dual space of the powerset Boolean
algebra ℘(Z). Thus we may, should we so choose, regard our construction here as
a way to obtain the dual space of a powerset algebra. The relationship between the
dual of a powerset algebra and the Stone–Čech compactification is of course very
well known and can be obtained by a variety of methods different from ours; see
for example [40, Section 8.3], [28, pp. 230–232] or [47, 16.2.5].

We now consider the natural extension on the category P of ordered sets. We
may regard nP as a compactification functor on P, paralleling that of the Stone–
Čech compactification functor on sets. Compactifications of ordered sets, and more
generally of ordered topological spaces, has been extensively studied, following the
introduction by Nachbin of the order-compactification which now bears his name
[41]. This construction provides a reflection of P into the category of compact or-
dered spaces. LetY = 〈Y ;6〉 belong to P. Then the topological structure 〈Y ;6,T〉
is compact ordered (an alternative term is compact order-Hausdorff ) if T is compact
and 6 is closed in Y ×Y , from which it follows that the topology is Hausdorff. Thus
the Bohr compactification b(Y) coincides with the Nachbin order-compactification
of Y, which we shall denote by β6(Y). But more is true. In [7], Bezhanishvili and
Morandi study what they call Priestley order-compactifications for a suitable class
of ordered spaces, which includes those that are discretely topologised. Crucially
for our purposes they demonstrate that β6(Y) is a Priestley space for any Y ∈ P

[7, Corollary 4.7]; this result was also proved, by a different method, by Nailana
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[42]. As a consequence, Proposition 4.1 now provides the following noteworthy re-
sult. The topological prevariety IScP

+(2) of Priestley spaces is non-standard; recall
Example 4.3. Nevertheless weak coincidence does occur.

Proposition 6.4. For any ordered set Y,

β6(Y) = b(Y) = b0(Y) = nP(Y).

We now discuss the paired full dualities between PT (Priestley spaces) and D

(bounded distributive lattices) and the ramifications of this partnership.

Example 6.5 (Bounded distributive lattices and the Nachbin order-compactifi-
cation). Here we build on the partnership between Priestley duality for bounded
distributive lattices and the duality, due to Banaschewski [2], between ordered sets
and Boolean-topological bounded distributive lattices. Accounts of this partnership
are given in [19, Example 4.1] and [20, Section 4].

The categories involved are

D = ISP(2) [bounded DLs], PT = IS
0
cP(2T) [Priestley spaces],

DT = IScP(2T) [Bt bounded DLs], P = IS
0
P(2) [ordered sets];

once again the generators in the four cases are given by two-element objects in the
categories concerned. Corollary 6.2 tells us that the natural extension nD(L) of
a bounded distributive lattice L is the Boolean-topological lattice consisting of all
order-preserving maps from D(L,2) to 2. Moreover, for any Y ∈ P the set of
elements of nP(Y) consists of all lattice homomorphisms from P(Y,2) to 2.

There is more to be said about the Nachbin order-compactification, alias Bohr
compactification, in relation to duality. Drawing on Corollary 6.2, we see that for
any Y ∈ P we have nP(Y) = D(G(Y)♭) and for any L ∈ D we have nD(L) =
G(D(L)♭). The first of these gives immediately that, for any ordered set Y, the
Priestley dual space of an up-set lattice U(Y) is the Nachbin order compactification
β6(Y).

It is well known, and has been proved in various ways (see [5, 17, 25]), that for
a bounded distributive lattice L we have nD(L) ∼= proD(L) ∼= Lδ, where proD(L)
and Lδ denote respectively the profinite completion and the canonical extension
of L. It follows that the Priestley dual space of Lδ is β6(D(L)♭). This recaptures
[7, Corollary 5.4] (see also [5, Proposition 3.4]). Our proof is different from that in
[7] and separates the component parts of the argument in a transparent way.

The piggyback technique is a time-honoured way to find amenable natural du-
alities for prevarieties of algebras having reducts in dualisable prevarieties, in par-
ticular, in D or S (see [8, Chapter 7]). This technique has been extended and
refined in [20] so as to apply to CT-prevarieties. Moreover under a variety of condi-
tions, albeit stringent, the piggyback technique can be used directly to yield paired
full dualities: see the Two-for-one Piggyback Strong Duality Theorem, [20, Theo-
rem 3.8]. This result differs from Theorem 6.1 in several respects. As the name
implies, it produces paired dualities both of which are strong (strongness, as op-
posed to fullness, is not relevant in this paper but is important in other contexts).
The theorem is not a priori restricted to the finitely generated case, and even there
it bypasses the finite type restriction of the TopSwap Theorem. When applicable,
the specialisation to D-based prevarieties, [20, Theorem 4.5], yields paired dualities
very tightly tied to the paired dualities for the base categoriesD and P discussed in
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Example 6.5. We mention one particular application, to the variety O of Ockham
algebras [20, Theorem 4.6]. Here there are mutually compatible structures on the
infinite set M = {0, 1}N0, with M1 generating O and M2 carrying an order and an
operation which is order-reversing with respect to the order.

Over more than 30 years the variety of Ockham algebras and its finitely generated
subvarieties have provided a rich source of examples which have been influential in
driving forward the general theory of natural dualities. Below we consider paired
full dualities for certain very special prevarieties of O (in fact they are varieties,
as we confirm in Remark 6.9). Moving to the dual side we shall identify an in-
finite family of classes X which exhibit the same behaviour for compactifications
as does our hitherto isolated example P: weak coincidence of nX, b0 and b, with,
Stralka-fashion, the associated topological prevariety non-standard. Our purpose
is to demonstrate that such behaviour is not a rare phenomenon rather than to
investigate Ockham algebra varieties per se and we shall accordingly not attempt
to make our account self-contained, referring any interested reader to [8, 22], and
references therein, for background. In particular we shall make use of the well-
known restricted Priestley duality for Ockham algebras and its subvarieties; see for
example [30] and [8, Section 7.4]. The varieties we shall consider are covered by
[20, Theorem 4.6] but we shall sidestep this. The dualities can be found in [24,
Section 3] or in [22]; the latter provides the axiomatisations of the dual categories
which we shall crucially need.

In preparation for Theorem 6.8 we present some facts about prevarieties and
topological prevarieties whose objects have reducts in P and PT , respectively.

Lemma 6.6. (i) Let Y be an ordered set. Then β6(Y
∂) = β6(Y)∂ , where Y∂

denotes the order-theoretic dual of Y.

(ii) Let Y1,Y2 be ordered sets and f : Y1 → Y2 be a map which is order-

preserving (respectively, order-reversing). Then f has an extension to a map

f : β6(Y1) → β6(Y2) which is continuous and order-preserving (respectively,
order-reversing).

Proof. Consider (i). Let Y be an ordered set. From above, β6(Y) is the Priestley
dual space of the up-set lattice U(Y). Likewise, β6(Y

∂) is the dual space of U(Y∂),
which is order anti-isomorphic to U(Y), via the complementation map. Now use
the well-known fact about Priestley duality that, for any L ∈ D, we have D(L∂)
homeomorphic and order anti-isomorphic to D(L). Putting all this together we
obtain (β6(Y

∂))∂ = β6(Y) (up to order homeomorphism in PT). By uniqueness,
and then flipping the order, we deduce that β6(Y

∂) = (β6(Y))∂ .
The proof of (ii) is an almost immediate consequence of the fact that β6 is a

functor, with use being made of (i) when f is order-reversing. �

In the proof of the following lemma the claim concerning the lifting of atomic
formulas holds quite generally for total structures. For the application we shall make
of the lemma, the proof of the claim is entirely elementary as the atomic formulas
have a very simple form: g(x1) 6 h(x2) or g(x1) = h(x2), where x1, x2 ∈ {x, y}
with g and h in the monoid of self maps of M generated by F .

Lemma 6.7. Let M = 〈M ;F,6〉 where 〈M ;6〉 is a finite ordered set that is not an

antichain and F is a set of unary operations on M each of which is order-preserving

or order-reversing, and define X := IS
0
P(M) and XT := IS

0
cP(MT). Assume that

there is a set Σ of atomic formulas in the language of M such that a structure with
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topology X = 〈X ;F,6,T〉, with the same signature as M, belongs to XT if and only

if

(i) 〈X ;6,T〉 is a Priestley space,

(ii) for all f ∈ F , if f is order-preserving (respectively, order-reversing) on M,

then f is continuous and order-preserving (respectively, order-reversing) on X,

(iii) X satisfies σ, for all σ ∈ Σ.

Then b(X) = b0(X) = nX(X), for all X ∈ X.

Proof. Let X ∈ X and form the Nachbin order compactification Y := β6(X
▽),

where ▽ forgets the maps in F . This is a Priestley space. In addition, by Lemma 6.6,
each order-preserving (respectively, order-reversing) map f ∈ F on X has a unique
lifting to a continuous order-preserving (respectively, order-reversing) map, which
we also denote by f , on Y. It is an easy exercise to show that any atomic formula
holding onX also holds onY (since ιX▽(X▽) is dense inY, each g ∈ F is continuous
and 6 is closed). We have shown that Y enriched with f , for each f ∈ F , satisfies
(i)–(iii) and so belongs to XT , by our assumptions. We claim that this topological
structure serves as b(X).

Let Z ∈ X
ct and take a homomorphism g : X → Z♭. Then g▽ : X▽ → (Z♭)▽ lifts

uniquely to a Priestley space morphism h from β6(X
▽) = b(X▽) to Z▽. Since h

commutes with each f ∈ F when restricted to a dense subset, continuity guarantees
that h commutes with each f ∈ F on β6(X

▽). This yields the universal property

demanded of b(X). By Proposition 4.1(ii), since b(X) ∈ XT and XT ⊆ X
Bt, we

conclude that b(X) = b0(X) = nX(X). �

The topological prevarieties XT we shall consider in Theorem 6.8 are non-
standard. This follows from a very general, but unpublished, result concerning
ordered unary algebras [3]. Therefore Theorem 4.2 does not apply and hence we
need instead to exploit Lemma 6.7 in order to prove our theorem.

Theorem 6.8. There exists a countably infinite family M of finite pairwise non-

isomorphic subdirectly irreducible Ockham algebras such that each M1 ∈ M has the

following properties:

(1) there exists a total structure M2 = 〈M ;u,4〉, with 4 an order on M and

u : M → M an order-reversing map, such that M2 is compatible with M1

and MT

2 yields a full duality between A := ISP(M1) and IS
0
cP(M

T

2 );

(2) b(X) = b0(X) = nX(X), for all X in X := IS
0
P(M2).

Proof. (Outline) We use, without further detail, the restricted Priestley duality for
Ockham algebras under which each finite Ockham algebra corresponds to a finite
Ockham space, that is, a finite ordered set equipped with an order-reversing self-
map g. For all odd m ∈ N, let Dm be the Ockham space shown in Figure 3 and let
Sm be the corresponding Ockham algebra. Define M := {Sm | m odd }.

Consider a fixed M1 in our chosen family M. We take the alter ego M2 =
〈M ;u,4,T〉 supplied by [24, Theorem 3.7] in the simplified form described in [22,
Theorem 5.4]. By [22, Theorem 5.7], if M1 = Sm, then a structure X = 〈X ;u,4〉
belongs to IS

0
cP(M

T

2 ) if and only if

(i) 〈X ;4,T〉 is a Priestley space,
(ii) X satisfies x 4 y =⇒ u(x) = u(y), and
(iii) X satisfies x 4 um(x).
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Dm (m odd)

0

1
2 3

· · ·
m

Figure 3. The Ockham space Dm

Since (ii) says that u is both order-preserving and order-reversing and (iii) is an
atomic formula, it follows immediately from Lemma 6.7 that (2) holds. �

Remark 6.9. We may also ask whether coincidence occurs for the classes ISP(M1),
with M1 in our chosen family M. Each M1 ∈ M has the property that A :=
ISP(M1) is a variety (see [19, Example 4.6]) or [24, p. 183]). As A satisfies
FDSC, the corresponding topological prevariety IScP(M

T

1 ) is standard by [9, Exam-
ple 5.9]—see the discussion following Theorem 4.2 above. Consequently, b0(A) =
nA(A), for all A ∈ A, by Theorem 4.2.

We note that the first element, S1, in our sequence of varieties is the much-
studied variety of Stone algebras.
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