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CATEGORICALLY PROPER HOMOMORPHISMS OF TOPOLOGICAL

GROUPS

WEI HE AND WALTER THOLEN

Dedicated to the memory of Horst Herrlich

Abstract. We extend the Dikranjan-Uspenskij notions of c-compact and h-complete
topological group to the morphism level, study the stability properties of the newly de-
fined types of maps, such as closure under direct products, and compare them with their
counterparts in topology. We assume Hausdorffness only when our proofs require us to
do so, which leads to new results and the affirmation of some facts that were known in a
Hausdorff context.

1. Introduction

Compactness of a topological space X may be characterized by the property that the
projection X × Z // Z maps closed subspaces onto closed subspaces, for every space
Z. Following the early categorical treatments of compactness in [15, 21, 20, 16] that are
largely based on this essential property, the categorical development of closure operators
(see [8, 11]) naturally led to a compelling notion of compact object in a category equipped
with a closure operator (see [3, 9, 5, 6]) or, more generally, with an axiomatically given class
of “closed morphisms” as in [23, 6]. Pursuing this approach in the category of topological
groups, Dikranjan and Uspenskij [12] called an object G c(ategorically) compact if the
projection G × K // K is c-closed, i.e., maps closed subgroups onto closed subgroups.
While (topologically) compact groups are trivially c-compact, and while various relevant
additional properties (such as Abelianess) guarantee the validity of the converse statement
(see [12, 19]), its failure in general was shown only fairly recently in [18].

One of the main advantages of the categorical treatment of compactness in topology is
the fact that it makes precise that the notion of proper map (as promoted by [2], often
called perfect in general topology – see [13]) is simply the fibred version of compactness, so
that any categorically provable statement for compactness leads to a statement on proper
maps, and conversely: f : X // Y is proper if, and only if, f as an object in the category
of fibred spaces over Y , is compact; that is, if the projection X ×Y Z // Z is closed, for
every continuous map g : Z // Y ; equivalently, if f × 1Z : X × Z // Y × Z is closed for
all spaces Z ([2]), or if f is closed and has compact fibres ([13]). But do these equivalent
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formulations remain valid if we carry the categorical notion of properness from Top to the
category TopGrp of topological groups?

To answer these and further questions, in this paper we study the notion of c(ategorical)
properness in the category TopGrp, including its stability under arbitrary direct products,
and compare it with the weaker notions of c-completeness and h(omomorphical) complete-
ness as introduced here at the morphism level as well, in generalization of the object
notion of h-completeness studied in [12, 19]. To derive product stability of c-proper and
h-complete maps, we extend the characterizations of these notions in terms of convergence
of special types of filters as given in [12, 19] from the object to the morphism level. In
addition, we give an alternative proof for the product stability of c-proper maps based
on the categorical Tychonoff Theorem [7] that had already been used to affirm product
stability of c-compactness for topological groups: see Example 9.5 of [5].

In fact, we not only extend but slightly generalize the known object-level results since,
unlike the authors of [12, 19] and of most papers on topological groups, we do not as-
sume a priori that the topologies of our objects must be Hausdorff. The reason for this,
however, is not the aim for generalization per se but rather, we find that keeping track of
where Hausdorffness plays a role adds to the clarity of proofs. In doing so, we follow the
categorical literature which clearly shows that compactness and separation properties are
in many instances equal partners that mutually enhance each other. Of course, for maps
Hausdorffness has to be understood in the fibred sense (see [17]), and following [23, 6] we
reserve the name c-perfect for c-proper maps that are also Hausdorff.

Section 2 presents the principal notion of this paper, c-proper map in TopGrp and,
based on the general categorical theory presented in [23], establishes its basic properties
and interactions with c-compact objects and Hausdorffness. We highlight in particular
the fact that, for maps f : G // H and g : K // H in TopGrp with f c-proper, c-
compactness of K implies c-compactness of G×HK (Corollary 2.13); however, very unlike
the situation in Top, a c-closed map f satisfying this stability property for c-compactness
for all g may still fail to be c-proper (Example 2.14). Section 3 follows the lead of Section
2 in introducing h-complete and c-complete maps in TopGrp and studying their stability
properties. Employing an example given by Shelah [22] under CH, we show that, unlike
for c-proper maps, both types of maps may fail to be stable under composition (Corollary
3.9). We were, however, not able to determine whether the categorically preferable notion
of c-completeness is truly stronger than that of h-completeness – but conjecture that it is.

Having extended the existing filter characterizations for c-compact and h-complete ob-
jects as given in [12, 19] to morphisms in Section 4, always keeping carefully track of,
and trying to minimize, the assumption of Hausdorffness, in Section 5 we reap the ben-
efits and formulate the resulting product stability for c-proper and for h-complete maps,
thus establishing the TopGrp counterparts for the classical Froĺık-Bourbaki [14, 2] and
Chevalley-Frink [4] theorems in topology. However, our filter characterizations require that
the codomains of the participating maps be Hausdorff. For product stability of c-proper
maps, we were able to avoid this (however small) restriction, by applying the categorical
results of [7, 5] and thus demonstrating their power in the current context; see Corollary
5.4.
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2. Categorically closed, proper and perfect maps

Throughout this paper we consider the category TopGrp of (not necessarily Hausdorff)
topological groups and their continuous homomorphisms. Hence, G,H,K, ... will always
denote topological groups, and when we write f : G // H, g : H // K, ..., it is always
assumed that f, g, ... are continuous homomorphisms. In Section 4 we will also consider
not necessarily continuous homomorphisms; they will always be denoted by Greek letters:
ϕ : G //H,ψ : H //K, ..., and when they are assumed to be continuous, we will say so
explicitly. A ≤ G means that A is a subgroup of G provided with the subspace topology.
The identity map of G is denoted by 1G, while eG denotes the neutral element of G.

Whenever Hausdorffness is assumed, we will say so explicitly. Topological groups whose
topology is Hausdorff are called Hausdorff groups. We remind the reader that f : G //H
is (fibrewise) Hausdorff (see [17]) if distinct points of the same fibre of f may be separated
by disjoint open neighbourhoods in G; equivalently, if the diagonal map δf : G //G×H G
is closed. Trivially, G is Hausdorff if, and only if, G // 1 is Hausdorff, with 1 denoting
a trivial group. Also, any f : G // H that is injective or has Hausdorff domain G is
Hausdorff as a map.

Definition 2.1. (1) f : G //H is categorically closed (c-closed, for short), if f(A) ≤ H is
closed for all closed A ≤ G; equivalently, if taking images of subgroups under f commutes
with taking closures: f(A) = f(A) for all A ≤ G.

(2) f : G // H is categorically proper (c-proper) if f is stably c-closed, that is: if in
every pullback diagram

G×H K
p2

//

p1
��

K

g

��

G
f

// H

the projection p2 is c-closed.
(3) f : G //H is categorically perfect (c-perfect) if f is c-proper and Hausdorff.
(4) ([12]) G is categorically compact (c-compact) if G // 1 is c-proper; equivalently: if

the projection p2 : G×K //K is c-closed, for every K.

Remark 2.2. (1) Obviously, every (topologically) closed morphism is c-closed, and ev-
ery (topologically) proper (i.e., closed, with compact fibres) morphism is c-proper. In
particular, every compact group is c-compact.

(2) The existence of a c-compact group G that fails to be compact (see [18]) shows that
none of the implications of (1) is reversible. But we recall from Theorem 3.7 in [12] that
an Abelian c-compact Hausdorff group must be compact. Example 2.1 below presents a
c-closed morphism of Abelian Hausdorff groups that fails to be c-proper.

(3) When f : G // H is a topological embedding, so that G ∼= f(G) ≤ H , then
c-closedness of f is equivalent to its closedness, i.e., to f(G) ≤ H being closed.

(4) The notion of c-compactness as given in Definition 2.1(4) is formally stronger than
the one defined in [12] and used in [19], even when the group G is Hausdorff, since in
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our definition K ranges over all topological groups, including those that are not Haus-
dorff. However, we will show in Corollary 4.13 below that it suffices to consider Hausdorff
groups K in Definition 2.1(4), so that the definition given here is in fact equivalent to the
Dikranjan-Uspenskij notion when G is Hausdorff.

Let us first observe the following easy, but fundamental properties of the class F of
c-closed morphisms:

(F0) every isomorphism (in TopGrp) is in F ;
(F1) if f : G //H, g : H //K are in F , so is g · f ;
(F2) for g injective, if g · f is in F , so is f ;
(F3) for f surjective, if g · f is in F , so is g.
For any class F of morphisms in TopGrp, we say that F satisfies the basic stability

properties (BSP) if (F0)–(F3) hold. For example, the classes of open morphisms and
of (topologically) closed morphisms both satisfy BSP. With the trivial observations that
surjectivity is stable under pullback and that for g injective

M
1M

//

h
��

M

g·h
��

G
g

// H

is a pullback diagram, pullback pasting easily gives that, for any F satisfying BSP, the
class F∗ of all those morphisms belonging stably to F also satisfies BSP. Since for F the
class of c-closed morphisms F∗ is the class of c-proper morphisms, this means in particular:

Proposition 2.3. The class of c-proper morphisms satisfies the basic stability properties.

Corollary 2.4. For f : G //H c-proper and any K also f × 1K : G ×K → H ×K is
c-proper.

Proof. f × 1K is a pullback of f . �

Another useful consequence of BSP for c-proper maps is the following:

Corollary 2.5. For f : G → H c-proper and any g : G → K with K Hausdorff, the
induced morphism 〈f, g〉 : G→ H ×K is also c-proper.

Proof. 〈f, g〉 factors as

G
〈1G,g〉
−→ G×K

f×1K−→ H ×K

with f×1K c-proper by Corollary 2.1 and 〈1G, g〉 a closed embedding since K is Hausdorff.
�

We are also ready to confirm that c-propriety of f : G // H may be characterized in
the following more familiar and easy form whenever H is Hausdorff:

Proposition 2.6. Let H be Hausdorff. Then f : G // H is c-proper if, and only if,
f × 1K : G×K //H ×K is c-closed, for every topological group K.



CATEGORICALLY PROPER HOMOMORPHISMS OF TOPOLOGICAL GROUPS 5

Proof. Any pullback diagram as in Definition 2.1(2) may be decomposed as

G×K H ×K
f×1K

//

G×H K

G×K

i

��

G×H K K
p2

// K

H ×K

〈g,1K〉

��

G H
f

//

G×K

G
��

G×K H ×K// H ×K

H
��

where the embedding i is closed since H is Hausdorff, and where f × 1K is c-closed by
hypothesis. Since 〈g, 1K〉 is injective, with (F1), (F2) one concludes that p2 is c-closed, as
desired. �

For purely categorical reasons one has the same interplay between the object notion of
c-compactness and the morphism notion of c-propriety as one has for the corresponding
topological notions, i.e, when “c-” is removed. We repeat the argumentation given in [23]
in the current environment:

Theorem 2.7. The following assertions for a topological group G are equivalent:

(i) G is c-compact;
(ii) every f : G //H with H Hausdorff is c-proper;
(iii) there is a c-proper f : G //H with H c-compact.

Proof. For (i)⇒(ii) factor f through its graph as in

G
<1G,f>

//

f
  
❅❅

❅❅
❅❅

❅❅
G×H

p2
{{✇✇
✇✇
✇✇
✇✇
✇

H

and apply (F1). For (ii)⇒(iii) observe that H = 1 is c-compact Hausdorff, and for (iii)⇒(i)
apply (F1) to the trivial diagram

G
f

//

��
❄❄

❄❄
❄❄

❄❄
H

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

1

�

Remark 2.8. (1) As the proof above relies only on the fact that the relevant class F satis-
fies (F0) and (F1), the argumentation carries through, for example, also for (topologically)
closed morphisms and for Hausdorff morphisms.

(2) More importantly, we may apply (the categorical version of) Theorem 2.7 to the
category TopGrp/K of topological groups over the fixed topological group K, noting
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that the class of c-closed morphisms over K still satisfies BSP. One may then regard
h : G //K in TopGrp also as the unique morphism in TopGrp/K from (G, h) to the
terminal object (K, 1K) in TopGrp/K. Hence, h is c-proper in TopGrp if, and only if,
(G, h) is c-compact in TopGrp/K. Consequently, as previously stated in the abstract
context in [23], we obtain the fibred version of Theorem 2.1 (i)⇒(ii) as given in (1) of the
next Corollary, which strengthens considerably the assertion (F2) for c-proper maps, as
follows:

Corollary 2.9. (1) If for f : G //H and g : H //K the composite g · f is c-proper and
g is Hausdorff, then f is c-proper.

(2) Let A ≤ G be dense, with G Hausdorff. Then a c-proper morphism h : A // H
cannot be extended to a morphism G //H, unless A = G.

Proof. For (1) see Remark 2.8(2), and (2) follows from (1). �

Remark 2.10. Since c-proper morphisms satisfy (F3), so that g ·f c-proper with f surjec-
tive implies that also g is c-proper, one has in particular that for every surjective morphism
f : G //H with G c-compact also H is c-compact. More remarkably, as previously stated
(see [23]) in generalization of the corresponding topological fact (without the “c-”), Haus-
dorffness is transferred along surjective c-proper morphisms, as follows.

Proposition 2.11. Let f : G //H be c-proper and surjective. Then, if G is Hausdorff,
so is H. More generally, any g : H //K with g · f Hausdorff must be Hausdorff itself.

Proof. For the first assertion, consider the commutative diagram

G
f

//

δG
��

H

δH
��

G×G
f×f

// H ×H

and, noting f × f = (f × 1H) · (1G × f), apply (F1), (F3). The second statement is the
fibred version of the first. �

Corollary 2.12. The class of c-perfect maps satisfies the basic stability properties.

The following Corollary is another easy, but significant, consequence of Theorem 2.7
obtained by categorical reasoning:

Corollary 2.13. In any pullback diagram

G×H K
p2

//

p1
��

K

g

��

G
f

// H

with f c-proper, if K is c-compact, so is G×H K.

Proof. Apply Theorem 2.7 (iii)⇒(i) to p2 in lieu of f . �
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As a consequence, the inverse image of every c-compact subgroup of H under the c-
proper map f : G // H is c-compact; in particular, its kernel is c-compact. But neither
of these necessary conditions for c-propriety of f is also sufficient; not even the property
described by Corollary 2.13 is strong enough to imply c-propriety of f :

Example 2.14. There is a c-closed morphism f : G //H of Abelian Hausdorff groups that
fails to be c-proper but still has the property that for every g : K //H with K c-compact
also G×H K is c-compact.

Proof. For a fixed prime number p, p > 3, let G be the additive subgroup { k
pn

| k, n ∈ Z}
of the Euclidean line R. The key property of G to be used is that every subgroup A ≤ G
different from G is closed. Hence, with Gd denoting the same underlying group as G
provided with the discrete topology, if we let f : Gd

//G map identically, then f is trivially
c-closed but, as we show next, not c-proper. Indeed, consider f × 1R : Gd × R → G × R

and fix a sequence of rational numbers (an) converging to an irrational number x. Let

H = 〈( 1
pn
, an)〉 be the closure of the subgroup of Gd × R generated by {( 1

pn
, an) | n ∈ N}.

H is not closed in G× R since (0, x) 6∈ H .
Let us now consider any g : K → G with K c-compact. Then the image g(K) ≤ G is

also c-compact and, in fact, compact, since it is Abelian. But G has no non-trivial compact
subgroup, so g must be constant. Consequently, the pullback of g along f is the constant
morphism K → Gd, and we can conclude that Gd ×G K ∼= K is c-compact. �

Remark 2.15. Considering the quotient group H = G/Z with G as in Example 2.14 we
note that all proper subgroups of H are finite. Denote by Hd the corresponding discrete
group; then Hd

//H which maps elements identically is still c-closed, but not only fails
to be c-proper but also fails to be a (topologically) closed map.

3. Categorically and homomorphically complete objects and morphisms

Recall that a Hausdorff group G is complete (in its uniformity) if, and only if, it is
absolutely closed, in the sense that it is closed in every Hausdorff extension K ≥ G (see
[1]). Since every discrete topological group is complete, trivially completeness fails to
be closed under taking homomorphic images. It therefore makes sense to pay attention
to those topological groups whose homomorphic images are complete whenever they are
Hausdorff. We introduce here the resulting notion of h-completeness more generally at the
morphism level and contrast it with the new and formally stronger notion of c-completeness
that seems to be categorically smoother, as follows:

Definition 3.1. (1) f : G //H is homomorphically complete (h-complete, for short) if in
every factorization

G
h

//

f
  ❅

❅❅
❅❅

❅❅
❅ K

k
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

H

with k Hausdorff, the image h(G) ≤ K is closed.
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(2) f is categorically complete (c-complete) if in every factorization f = k · h with k
Hausdorff, h must be c-closed.

(3) G is h-complete ([11]) or c-complete if G // 1 has the respective property.

Remark 3.2. (1) By defintion, G is h-complete if, and only if, for every h : G //K with
K Hausdorff, h(G) ≤ K is closed; equivalently, as indicated above, if for every surjective
h : G //K with K Hausdorff, K is even complete. In particular, an h-complete Hausdorff
group is complete.

(2) By definition, G is c-complete if every h : G //K with K Hausdorff is c-closed. One
sees immediately that G is c-complete if every closed subgroup of G is h-complete. But,
as we’ll see in Example 3.8 below, the condition may not be necessary for c-completeness
of G.

(3) Trivially, every c-complete morphism is h-complete; in particular, every c-complete
object is h-complete. A c-complete morphism is also c-closed (just consider h = f, k = 1H
in the defining property for c-completeness), and the image of an h-complete morphism is
closed in the codomain (for the same reason).

(4) In general, h- or c-completeness of f : G //H does not imply the respective property
for G. Indeed, 1G : G //G is easily seen to be c- and, hence, h-complete, for any Hausdorff
group G.

(5) By Corollary 2.9 every c-proper morphism is c-complete; in particular, every c-
compact group is c-complete. For a refined statement, see Remark 3.10 below.

(6) It is easy to see that properties (F0), (F2), (F3) (see Section 2) hold for the classes of
c-complete and of h-complete morphisms. However, as we’ll show in Corollary 3.9 below,
(F1) fails for both of these newly defined classes, so that neither of them satisfies BSP.
Nevertheless, as we show first, the corresponding object and morphism notions interact
similarly to the properties stated in Theorem 2.7 about c-compactness and c-propriety.

Theorem 3.3. The following assertions for a topological group G are equivalent:

(i) G is c-complete;
(ii) every f : G //H with H Hausdorff is c-complete;
(iii) there is a c-complete f : G //H with H c-compact.

These equivalences remain valid if “c-complete” is traded for “h-complete” everywhere.

Proof. (i)⇒(ii): Considering a factorization as in Definition 3.1(1) with k Hausdorff, we
just observe that K is Hausdorff when H is Hausdorff.

(ii)⇒(iii): The trivial group 1 is c-compact Hausdorff.
(iii)⇒(i): Given h : G //K with K Hausdorff one considers the factorization

G
〈f,h〉

//

f
  
❅❅

❅❅
❅❅

❅❅
H ×K

p1

{{✈✈
✈✈
✈✈
✈✈
✈

H

in which p1 is Hausdorff. Consequently, 〈f, h〉 is c-closed. Since H is c-compact, p2 :
H ×K //K is c-closed, whence h = p2 · 〈f, h〉 is also c-closed.
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For the “h-closed” case the proof proceeds similarly. �

Having used exclusively categorical arguments in the proof above we may immediately
conclude the fibred version of the implications (iii)⇒(i)⇒(ii) of Theorem 3.3:

Corollary 3.4. For f : G //H and g : H //K one has:

(1) If f is c-complete and g is c-proper, then g · f is c-complete.
(2) If g · f is c-complete and g Hausdorff, then f is c-complete.

These statements remain valid if “c-complete” is traded for “h-complete” everywhere.

Remark 3.5. (1) It has been noted in [19] (Example 4.5) that a closed subgroup of an
h-complete Hausdorff group may fail to be h-complete. Indeed, it is known (but certainlyly
non-trivial) that the locally compact and minimal groups SLn(R) (n ≥ 2) are h-complete.
(Recall that a Hausdorff group is minimal if it does not admit a strictly coarser Hausdorff
group topology.) The special linear group SL2(R) contains an isomorphic copy of the
discrete group Z as a closed subgroup. But Z is not h-complete since it is not complete in
the p-adic topology.

(2) Considering Z //SL2(R) //1 as in (1) we see that, in general, propriety of f : G //H
and h-completeness of g : H //K do not guarantee that g · f be h-complete, even when
G is Abelian.

Next we will show that not even c-propriety of f and c-completeness of g guarantee that
g · f be h-complete, as long as we assume the Continuum Hypothesis (CH). In particular,
the class of c-complete morphisms (as well as that of h-complete morphisms) fails to be
closed under composition. Some preparations are needed.

Remark 3.6. (1) It is well known (see [24]) that every Hausdorff group may be embed-
ded into a complete, minimal and topologically simple Hausdorff group. (Recall that a
Hausdorff group is topologically simple if it does not admit any non-trivial closed normal
subgroups.) As a consequence, every complete Hausdorff group is a subgroup of a minimal
and topologicaly simple complete Hausdorff group.

(2) One knows from [12] that every minimal and topologically simple complete Hausdorff
group is h-complete.

(3) Every Abelian h-complete Hausdorff group is compact (see [12]).

Assertion (2) may be strengthened, as follows.

Proposition 3.7. Every minimal and topologically simple complete Hausdorff group is
c-complete.

Proof. Since our minimal and topologically simple complete Hausdorff group G is h-
complete (Remark 3.6(2)), it suffices to consider a surjective h : G→ K with K Hausdorff
and show that h must be c-closed. Simplicity of G forces h to be constant or injective; in
the latter case h is bijective and, in fact, an isomorphism since G is minimal. In both cases
h is (c-)closed. �

Example 3.8. Under CH there is a c-complete Hausdorff group M with a closed Abelian
subgroup A that fails to be h-complete.
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Proof. Assuming CH Shelah constructed in [22] a non-Abelian but torsion-free and simple
groupM of cardinality ℵ1 that admits only the trivial group topologies. Thus M , endowed
with the discrete topology, is a minimal and (topologically) simple discrete group that is
trivially complete and, consequently, by Proposition 3.7, actually c-complete. Now consider
any cyclic subgroup A ≤ M . Since M is torsion-free, A is infinite but distinct from the
uncountable group M . Since M is discrete, A is closed in M but cannot be compact and,
in fact, can not even be h-complete, since it is Abelian: see Remark 3.6(3). �

Corollary 3.9. Under CH, the composite of a proper map followed by a c-complete map
may fail to be h-complete.

Proof. Consider A //M // 1 of Example 3.8. �

Remark 3.10. (1) Let us summarize the connections between some of the properties
discussed for f : G // H so far, as follows. Each of the following properties implies the
next:

(i) f is (topologically) proper;
(ii) f is c-proper;
(iii) for every closed subgroup S ≤ G, f |S is h-complete;
(iv) f is c-complete;
(v) f is h-complete.

Indeed, for (i)⇒(ii) and (ii)⇒(iii), see Remark 2.2(1) and Corollary 2.9(1) (to be applied
to f |S in lieu of f), respectively, and (iii)⇒(iv)⇒(v) is trivial.

(2) That the implications (i)⇒(ii) and (iii)⇒(iv) are not reversible (at least under CH
in the latter case) was already mentioned in Remarks 2.2(2) and 3.2(2), with reference to
[18] and Example 3.8, respectively.

(3) Since c-completeness implies c-closedness (see Remark 3.2(3), a stably c-complete
morphism (i.e., a map such that every pullback of it is c-complete) is necessarily c-proper.

The Remark leaves us with the following questions.

Question 3.11. (1) In Corollary 3.9, is the hypothesis CH essential?
(2) Does h-completeness imply c-completeness? Specifically, is there an h-complete

Hausdorff group that is not c-complete?
(3) Is there an f satisfying property (iii) of Remark 3.10 but failing to be c-proper? (See

also Remark 4.14(2) below.)
(4) Is a stably h-complete morphism necessarily c-proper?

4. Characterizations with special filters

In the context of Hausdorff groups, both c-compactness and h-completeness of G have
been characterized in terms of the existence of cluster points and of the convergence of
special filters on G: see [12, 19]. In this section we extend these characterizations to the
morphism levels, continuing to keep Hausdorff assumptions at a minimum. Filters are
always assumed to be proper. N (x) denotes the set of open neighbourhoods of x ∈ G.
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Definition 4.1. Let F be a filter on G.
(1) F is a group filter (g-filter, for short) for f : G // H if there exist r : P // H ,

ϕ : G //P and x ∈ P such that f = r ·ϕ and the family {ϕ−1(U) | U ∈ N (x)} is a base of
F . (Note that, according to our notational conventions, ϕ is just a homomorphism that,
unlike f and r, is not assumed to be continuous a prori!)

(2) F is an open-group filter (og-filter, for short) for f if r, ϕ, x exist as in (1), but with
ϕ now being assumed to be also continuous.

(3) F is an (o)g-filter on G if F is an (o)g-filter for G // 1.

Remark 4.2. (1) Every (o)g-filter for f : G //H is an (o)g-filter on G.
(2) In Definition 4.1(1), one may always assume that the image of ϕ is dense in P .

Indeed, if one had x ∈ U := P \ ϕ(G), then ϕ−1(U) = ∅, so that F would not be proper.
(3) Every (o)g-filter on G is contained in a maximal (w.r.t. ⊆) (o)g-filter on G: see

[12, 19]. This may be used to establish the corresponding fact at the morphism level, as
we show next.

Lemma 4.3. For an (o)g-filter F for f : G //H and a compatible (o)g-filter G on G (so
that A ∩B 6= ∅ for all A ∈ F , B ∈ G), the filter H generated by F ∪ G is an (o)g-filter for
f .

Proof. We have r, ϕ, x as in Definition 4.1(1) and ψ : G //Q, y ∈ Q such that {ψ−1(V ) |
V ∈ N (y)} is a base of G. The diagram

G
〈ϕ,ψ〉

//

f
��
❄❄

❄❄
❄❄

❄❄
P ×Q

r·p1
{{✇✇
✇✇
✇✇
✇✇
✇

H

commutes, and the filter H is actually generated by {〈ϕ, ψ〉−1(W ) |W ∈ N ((x, y))}. �

Corollary 4.4. Every (o)g-filter for f : G //H is contained in a maximal (o)g-filter for
f .

Proof. An (o)g-filter F for f is an (o)g-filter on G and therefore contained in a maximal
(o)g-filter G on G (see Remark 4.2). By Lemma 4.3 G is actually an (o)g-filter for f and
certainly maximal also as such. �

Proposition 4.5. Consider a g-filter F for f and a commutative diagram

H N
h

//

G

H

f

��

G M
π

// M

N

g

��

in which the (not necessarily continuous) homomorphism π is surjective and N is Haus-
dorff. Then the image π(F) (generated by {π(A) | A ∈ F}) is a g-filter for g. Moreover,
if F is an og-filter for f and π a topological quotient map, then π(F) is an og-filter for g.
Maximality transfers from F to G in both the g-filter and the og-filter case.
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Proof. We have r, ϕ, x as in Definition 4.1(1) and may assume P = ϕ(G). For K the kernel

of π, its image ϕ(K) under ϕ is normal in ϕ(G), and then L := ϕ(K) is normal in P
(see Cor. 1.19 of [19]). So, we can form the group Q := P/L and provide it with the
quotient topology, making the projection p : P //Q open. Since p(ϕ(K)) = {eQ} there is
ψ :M //Q (not necessarily continuous) with ψ · π = p · ϕ, and since

h(r(ϕ(K))) ⊆ h(r(ϕ(K))) = h(f(K)) = g(π(K)) = {eN} = {eN}

(as N is Hausdorff), there is s : Q //N with s · p = h · r and, consequently, s · ψ = g.

H N
h

//

G

H

f

��

G M
π

// M

N

g

��

P

H

r

��✞✞
✞✞
✞✞
✞✞

G

P

ϕ

��
✼✼

✼✼
✼✼

✼✼
G

H

f

��

Q

N

s
��
✼✼

✼✼
✼✼

✼✼

M

Q

ψ

��✞✞
✞✞
✞✞
✞✞
M

N
��

P Q
p

//

We now show that π(F) generated by {π(ϕ−1(U)) | U ∈ N (x)} coincides with the g-
filter G for g generated by the base {ψ−1(V ) | V ∈ N (p(x))}. One certainly has G ⊆ π(F)
since ψ−1(V ) = π(π−1(ψ−1(V ))) = π(ϕ−1(p−1(V ))) for all V ∈ N (p(x)). For the converse
inclusion, let U ∈ N (x). Since UA = UA for any subset A ⊆ P , one has in particular
p−1(p(U)) = UL = Uϕ(K) and then

ψ−1(p(U)) = π(π−1(ψ−1(p(U)))) = π(ϕ−1(p−1(p(U)))) = π(ϕ−1(Uϕ(K))) = π(ϕ−1(U))

with p(U) ∈ N (p(x)).
Clearly, when π is a topologial quotient map and ϕ is continuous, so is ψ. Hence, when

F is an og-filter for f , G is one for g. Also, if F is maximal, whether it be as a g-filter or
an og-filter for f , and if H is an (o)g-filter for g with G = π(F) ⊆ H, then F ⊆ π−1(H),
which implies G = H by maximality of F . �

Theorem 4.6. The following assertions for f : G //H with H Hausdorff are equivalent:

(i) f is c-proper;
(ii) for all S ≤ G, every g-filter for f |S has a cluster point in G;
(iii) for all S ≤ G, every maximal g-filter for f |S converges in G.

Proof. (i)⇒(ii): For S ≤ G and a g-filter F for f |S one has ϕ : S // P, r : P // H and
x ∈ P with r · ϕ = f · j, and F generated by {ϕ−1(U) | U ∈ N (x)}; here j is the inclusion
map of S into G, and ϕ(S) may be assumed to be dense in P . Let T = {(z, ϕ(z)) | z ∈ S}
be the image of S in G×P under 〈j, ϕ〉. Continuity of 〈r, 1P 〉 : P //H×P and c-closedness
of f × 1P then give



CATEGORICALLY PROPER HOMOMORPHISMS OF TOPOLOGICAL GROUPS 13

〈r, 1P 〉(P ) ⊆ 〈r, 1P 〉(ϕ(S)) = 〈f · j, ϕ〉(S) = (f × 1P ) · 〈j, ϕ〉(S) = (f × 1P )(T ).

H H × Poo
q1

G

H

f

��

G G× Poo
p1

G× P

H × P

f×1P

��

H × P P
q2

//

G× P

H × P
��

G× P P
p2

// P

P

1P

��

G G× Poo G× P P//

S

G

L
l

j

zztt
tt
tt
tt
tt
tt
tt
S

G× P

〈j,ϕ〉

��

S

P

ϕ

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

Therefore, (r(x), x) ∈ (f × 1P )(T ), and we obtain a ∈ G with (a, x) ∈ T and f(a) = r(x).

We claim that a is a cluster point of F , i.e., that a ∈ ϕ−1(U) for every U ∈ N (x). Indeed,
for every W ∈ N (a) we have (a, x) ∈ (W × U) ∩ T and, consequently, W ∩ ϕ−1(U) 6= ∅.

(ii)⇔(iii) follows easily with Lemma 4.3 and Corollary 4.4.
(ii)⇒(i): For a pullback square as in Definition 2.1(2) we consider S ≤ G×H K closed

and must show that p2(S) ≤ K is also closed. Hence, we let x ∈ p2(S) and form the filter
F on S generated by {p−1

2 (U) ∩ S | U ∈ N (x)}. Clearly, F is a g-filter for p2|S, and with
Proposition 4.5 applied to

K H
g

//

S

K

p2|S

��

S p1(S)
p1|S

// p1(S)

H

f |p1(S)

��

we obtain that p1(F) is a g-filter for f |p1(S). (Note that, while F is actually an og-filter,
p1(F) may not be one.) By hypothesis then, p1(F) has a cluster point a in G. Since S
is closed, it now suffices to show (a, x) ∈ S. Indeed, one obtains (W × U) ∩ S 6= ∅ for all
W ∈ N (a), U ∈ N (x), since W ∩ p1(p

−1
2 (U) ∩ S) 6= ∅, by virtue of a being a cluster point

of p1(F). �

The Theorem returns the known result at the object level (see [12, 19]), but without the
assumption of Hausdorffness:

Corollary 4.7. The following assertions for a topological group G are equivalent:

(i) G is c-compact;
(ii) for all S ≤ G, every g-filter on S has a cluster point in G;
(iii) for all S ≤ G, every maximal g-filter on S converges in G.

The corresponding characterization for h-complete morphisms is obtained quite easily
once one has taken note of the following Lemma utilizing the Hausdorff reflection of a
topological group G, facilitated by the projection πG : G //G/{eG}.

Lemma 4.8. For f : G // H with H Hausdorff and a g-filter F for f , there exist a
Hausdorff group Q, ψ : G // Q and k : Q //H such that f = k · ψ and F is generated
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by {ψ−1(W ) | W ∈ N (y)} for some y ∈ Q. When F is an og-filter for f , then ψ may be
chosen to be continuous.

Proof. The g-filter F for f comes with r, ϕ, x as in Definition 4.1(1). Let Q = P/{eP}
be the Hausdorff reflection of P with projection πP : P // Q. Since H is Hausdorff,
r : P //H factors through Q as r = k · πP , so that with ψ := πP · ϕ : G // Q we have
f = k · ψ. We claim that F is generated by {ψ−1(Z) | Z ∈ N (y)}, with y := πP (x).
Indeed, given U ∈ N (x), there exists V ∈ N (eP ) such that xV ⊆ U , and for W ∈ N (eP )

with W 2 ⊆ V we then have π−1
P (πP (xW )) = xW{eP} ⊆ xW 2 ⊆ U and, consequently,

ψ−1(Z) ⊆ ϕ−1(U) for Z := πP (xW ). This shows the non-trivial inclusion of the the set
equality to be confirmed. �

Proposition 4.9. The following assertions for f : G //H withH Hausdorff are equivalent:

(i) f is h-complete;
(ii) every og-filter for f has a cluster point in G;
(iii) every maximal og-filter for f converges in G.

Proof. (i)⇒(ii): An og-filter F for f comes with r, ϕ, x as in Definition 4.1(1), but with
ϕ : G // P continuous. Since H is Hausdorff, by Lemma 4.8 also P may be assumed
to be Hausdorff, so that also r is Hausdorff and therefore ϕ(G) closed, by hypothesis (i).

Consequently, since x ∈ ϕ(G), one obtains a ∈ G with ϕ(a) = y. Since a ∈ ϕ−1(V ) for all
V ∈ N (y), a is trivially a cluster point for F .

(ii)⇒(iii) is obvious.

(iii)⇒(i): We assume f = k · h with k : K //H Hausdorff and consider x ∈ h(G). By
Corollary 4.4, the og-filter generated by {h−1(U) | U ∈ N (x)} is contained in a maximal
og-filter F for f which, by hypothesis, converges to some a ∈ G. Since h(F) converges
to both h(a) and x, and since with H and k also K is Hausdorff, we have h(a) = x and
therefore x ∈ h(G). �

At the object level one again obtains the known characterization, without separation
condition:

Corollary 4.10. The following assertions for a topological group G are equivalent:

(i) G is h-complete;
(ii) every og-filter on G has a cluster point;
(iii) every maximal og-filter on G converges.

In analogy to Theorem 4.6 we can now state the following theorem. The question whether
its equivalent statements are actually weaker than those of Theorem 4.6 remains open; see
Question 3.11(3).

Theorem 4.11. The following assertions for f : G //H with H Hausdorff are equivalent:

(i) for all closed S ≤ G, f |S is h-complete;
(ii) for all closed S ≤ G, f |S is c-complete;
(iii) for all closed S ≤ G, every og-filter for f |S has a cluster point in G;
(iv) for all closed S ≤ G, every maximal og-filter for f |S converges in G.
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Proof. The equivalence of (i) and (ii) follows directly from the definitions, as closed sub-
groups of closed subgroups are closed. The equivalence of (i), (iii), and (iv) follows from
Proposition 4.9 applied to f |S in lieu of f , with the trivial observation that cluster or
convergence points in G of a filter on the closed subgroup S must necessarily belong to
S. �

The case H = 1 reads as follows:

Corollary 4.12. The following assertions for a topological group G are equivalent:

(i) every closed subroup of G is h-complete;
(ii) every closed subgroup of G is c-complete;
(iii) every og-filter on a closed subgroup of G has a cluster point in G;
(iv) every maximal og-filter on a closed subgroup of G converges in G.

It’s time for us to make good on Remark 2.2(4) and sharpen Proposition 2.6, as follows:

Corollary 4.13. (1) f : G //H with H Hausdorff is c-proper if, and only if, f × 1K is
c-closed for every Hausdorff group K.

(2) G is c-compact if, and only if, the projection G × K // K is c-closed for every
Hausdorff group K.

Proof. (1) Assuming that f × 1K is c-closed for every Hausdorff group K, we must show
that f is c-proper, and for that it suffices to verify condition (ii) of Theorem 4.6. In doing
so, one may proceed as in the proof of (i)⇒(ii) of Theorem 4.6 since, in keeping with the
notation of that proof, the group P may be assumed to be Hausdorff, by Lemma 4.8.

(2) follows from (1): consider H = 1. �

Remark 4.14. (1) Corollary 4.13 confirms the equivalence of our use of “c-compact” with
that of [12, 19] for a Hausdorff groups G. For similar reasons, our use of “h-complete” is
equivalent to that of [12, 19].

(2) For f : G //H with G discrete, trivially every g-filter for f is actually an og-filter
for f . By Theorem 4.6 and Proposition 4.9 we obtain that f is c-proper if, and only if,
f |S : S // H is h-complete, for every subgroup S ≤ G. At the object level, we derive
Theorem 5.3 of [12] as an immediate corollary: A discrete group G is c-compact if, and
only if, every subgroup S ≤ G is h-complete.

Question 4.15. Do Theorem 4.6, Proposition 4.9 and Corollary 4.13 remain valid without
the assumption that the codomain H of the map f be Hausdorff?

5. Tychnoff type theorems for c-proper and h-complete maps

In analogy to the Froĺık-Bourbaki result for (topologically) proper maps, the filter char-
acterizations for c-proper and h-complete maps allow us to derive quite easily the stability
of these properties under taking direct products, provided that the target categories are
all Hausdorff.
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Theorem 5.1. For a family (fi : Gi → Hi)i∈I of c-proper (c-perfect; h-complete) maps
with every Hi Hausdorff, also their product

∏
i∈I fi :

∏
Gi →

∏
Hi is c-proper (c-perfect;

h-complete, respectively).

Proof. To prove the stability of c-propriety, one may use (iii) of Theorem 4.6 and consider
a maximal g-filter F on a subgroup S ≤

∏
Gi. By Proposition 4.5, its projection onto Gi

is a maximal g-filter on the projection of S which, by hypothesis, converges in Gi, for every
i ∈ I, thus giving a convergence point for F in

∏
Gi, as desired. Since Hausdorffness is

trivially stable under products, the same assertion for c-perfectness follows. For stability
of h-completeness under products, one proceeds analogously, using Proposition 4.9. �

The specialization Hi = 1 leads to the following “Hausdorff-free” Tychonoff-style theo-
rem that was proved in [12] for Hausdorff groups. As mentioned in Example 9.5 of [5], for
arbitrary topological groups it may also be derived from Theorem 6.4 in [5], with a method
that was developed in [7] for categorical closure operators.

Corollary 5.2. The direct product of any family of c-compact groups is c-compact. Like-
wise, h-completeness is preserved under taking direct products of topological groups.

This leaves us with the question whether the assumption of Hausdorffness for all Hi (i ∈
I) is essential in Theorem 5.1. Let us first point out that for finite I one can prove the
following statement, using the more elementary methods that were similarly applied in the
proof of Prop. 4.9 in [19].

Proposition 5.3. If f1 : G1
// H1, f2 : G2

// H2 are both c-proper or c-perfect, then
f1 × f2 : G1 × G2

//H1 ×H2 has the respective property as well. Also h-completeness is
preserved in this way, as long as at least one of H1, H2 is Hausdorff.

Proof. Since f1×f2 is the composite (1H1×f2) ·(f1×1G2) of two c-proper maps when f1, f2
are both c-proper, the first statement is obvious. But since h-completeness is not closed
under composition (see Remark 3.2(6)), it is clear that one has to argue quite differently
to validate the second statement.

Let pi, qi denote the product projections onto Gi, Hi respectively, and si : Gi
//G1×G2

is the injection with pi · si = 1Gi
, for i = 1, 2. With the hypothesis that H1 be Hausdorff,

we consider h : G1 × G2
// K and k : K // H1 × H2 with k · h = f1 × f2 and k

Hausdorff, and without loss of generality we may assume h(G1 ×G2) = K. Then, since
s2(G2) is normal in G1 × G2, L := h(s2(G2)) is normal in K. As H1 is Hausdorff, so is
q2, and since (q2 · k) · (h · s2) = f2, h-completeness of f2 guarantees that L be closed in K
and the quotient K/L be Hausdorff. Since q1(k(L)) is trivial, we obtain l : K/L // H1

with l · π = q1 · k, where π : K // K/L is the projection. Since l · (π · h · s1) = f1
with l Hausdorff, h-completeness of f1 makes π(h(s1(G1))) closed in K/L and therefore
π−1(π(h(s1(G1)))) = h(s1(G1)) · h(s2(G2)) = h(G1 ×G2) closed in K. �

Also for infinite products of c-proper maps we can, in fact, abandon the Hausdorff re-
striction for the codomains altogether, by resorting to an argumentation that substantially
differs from the proof of Theorem 5.1; it extends the finite stability via transfinite induction
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– see [7]. This method was already transferred from the object to the morphism level in
Theorem 6.6 of [5], which requires the ambient category X to be complete and equipped
with a proper factorization system (E ,M) such that E is a so-called projectivity class, that
is: there must be a class P of objects in X such that E is precisely the class of morphisms
f : X // Y such that every object in P is projective with respect to f : every y : P // Y
with P ∈ P factors as f · x = y, for some x : P // X . Furthermore, there must be a
hereditary closure operator c = (cX)X∈X with respect to M-subobjects (in the sense of [8])
that satisfies the finite structure property of products (FSPP), as introduced in [10]: given
a product X =

∏
i∈IXi in X , the c-closure of an M-subobject m of X may be computed

as

cX(m) =
∧

F⊆I finite

π−1
F (cXF

(πF (m))),

where πF : X //XF :=
∏

i∈F Xi is the generalized projection and πF (m) the image of m
according to the given factorization system.

Now, considering X = TopGrp with (E ,M) the (surjective, embedding)-factorization
system and c the usual Kuratowski closure operator, one notes that, of course, X is com-
plete (as a topological category over Grp), that E is a projectivity class (choose P = {Z})
and that c satisfies FSPP since the the Kuratowski closure operator satisfies it in Top.
Consequently, Theorem 6.6 of [5] gives the following strengthening of Theorem 5.1:

Corollary 5.4. Products of c-proper morphisms of (not necessarily Hausdorff) topological
groups are c-proper.

Acknowledgement. We thank Gábor Lukács for his very helpful comments on an earlier
version of this paper.
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operator. In: S. Mac Lane and J. Adámek (eds.) Proc. Int. Conf. on Categorical Topology, Prague
1988, pp 284–296, World Scientific, Singapore, 1989.



18 WEI HE AND WALTER THOLEN

[10] D.N. Dikranjan and W. Tholen. Categorical Structure of Closure Operators. Kluwer Academic Pub-
lishers, Dordrecht, 1994.

[11] D.N. Dikranjan and A. Tonolo. On a characterization of linear compactness. Riv. Mat. Pura Appl.
16: 95–106, 1995.

[12] D.N. Dikranjan and V.V. Uspenskij, Categorically compact topological groups, J. Pure Appl. Algebra
126:149–168, 1998.

[13] R. Engelking, General Topology, Sigma Series in Pure Math, vol.6, Heldermann, Berlin, 1989.
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