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MONADS ON HIGHER MONOIDAL CATEGORIES

MARCELO AGUIAR, MARIANA HAIM, AND IGNACIO LÓPEZ FRANCO

Abstract. We study the action of monads on categories equipped with several
monoidal structures. We identify the structure and conditions that guarantee
that the higher monoidal structure is inherited by the category of algebras
over the monad. Monoidal monads and comonoidal monads appear as the
base cases in this hierarchy. Monads acting on duoidal categories constitute
the next case. We cover the general case of n-monoidal categories and discuss
several naturally occurring examples in which n ≤ 3.
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Introduction

Monoidal categories constitute a natural framework within which certain alge-
braic structures can be organized, compared and generalized. Classical examples
include the category of modules over a bialgebra (under tensor product over the
base field) and the category of modules over a commutative algebra (under ten-
sor product over the algebra). It has long been recognized, on the other hand,
that the notion of algebraic theory on a category has a very simple and power-
ful generalization in the notion of a monad. Combining the two settings leads to
the consideration of monoidal monads and comonoidal monads. These monads
act on monoidal categories and carry structure that guarantees the existence of a
monoidal structure on the category of algebras. The former were considered long
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ago by Kock [25, 26, 27, 28] and more recently by Seal [36]; the latter in the 90’s
by McCrudden [33] and Moerdijk [35]. The monoidal structure on algebras is in
one case preserved by the free algebra functor, and by the forgetful functor in the
other. Comonoidal monads have allowed in recent years for the generalization of
many results pertaining to (bi)algebraic structures [2, 7, 13, 14, 34].

The notion of higher monoidal category specifies suitable compatibility condi-
tions between any given number of monoidal structures on a category. It originated
in [6] and was refined more recently in [3] and (in the case of two structures) in [17].
The case of 2-monoidal or duoidal categories has been the object of much recent
study [8, 9, 10, 11, 15, 18, 29, 37].

This works contributes to this developing theory by studying monads acting
on higher monoidal categories. The ultimate goal is to provide conditions that
guarantee that the higher monoidal structure is inherited by the category of algebras
over the monad. This is reached in Theorem 8.1 with the groundwork being laid
in earlier sections. Throughout, the notion of multilinearity plays a central role.
The special case in which only two monoidal structures are involved already exhibits
most of the interesting phenomena present in the general case. Here the monad may
be monoidal with respect to both structures, or comonoidal, or of a mixed nature
(monoidal with respect to one and comonoidal with respect to the other). These
cases are studied in Sections 5, 6 and 7. An interesting notion of multilinearity with
respect to two monoidal structures is identified in Section 6.2. Sections 2 and 3
review the basic cases in which only one monoidal structure intervenes. We devote a
certain amount of effort to the case of monoidal monads in Section 3. As mentioned,
this case has been dealt with by Seal, building on ealier work of Kock. We add to
the discussion by addressing the existence of a multicategory structure and a colax
monoidal structure on the category of algebras over a monoidal monad. We employ
the notion of representable multicategory studied by C. Hermida [20]. The main
result (on the monoidal structure of the category of such algebras) is formulated in
this context and obtained in Theorem 3.14. The monoidal structure is defined in
terms of certain coequalizers first proposed by Linton [31]. An interesting example
that combines the constructions of Sections 2 and 3 involves the pointing monad.
It leads to the construction of the smash product of bipointed objects in a monoidal
category. It is presented in Section 4 and further developed in Section 5.5. Other
examples are presented in the course of the exposition; linear monads are discussed
in Sections 2.2, 3.10, 5.4, and 8.6. In Appendix A we describe certain bimonoidal
comonads on the category of species.

1. Preliminaries

We collect standard material on monads, monoidal and duoidal categories, and
multicategories. We refer to [7], [12, Chapter 4], and [32, Chapter VI] for monads
and their algebras, to [22], [32, Chapters VII and XI], and [3, Chapters 1 and 3] for
background on monoidal categories, to [3, Chapter 6] for duoidal categories, and
to [20] and [30, Chapters 2 and 3] for multicategories and colax monoidal categories.

1.1. Algebras over a monad. Let (T , µ, η) be a monad on a category C; T is the
underlying endofunctor on C and the transformations µ and η are the multiplication
and unit of the monad, respectively.
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Let CT denote the category of T -algebras in C. The objects are pairs (V, v)
where V is an object of C and v : T V → V is a morphism that is associative and
unital. A morphism of algebras is required to preserve this structure.

For any T -algebra (V, v), the parallel pair of morphisms

T 2V
µV

//

T v
// T V

is reflexive, with common section T ηV . Moreover, the diagram

T 2V
µV

//

T v
// T V

v // V

is a split fork, and in particular a coequalizer.
A reflexive coequalizer is the coequalizer of a reflexive pair. When we speak of

coequalizers

A
f

//

g
// B

c // C,

we refer to either the coequalizer object C, or the coequalizer map c : B → C, or
the whole coequalizer diagram, depending on the context.

1.2. The free-forgetful adjunction. Associated to a monad T on C there is an
adjunction

C
FT

//
CT .

UT

oo

The left adjoint is FTX = (T X,µX). This is the free algebra on the object X .
The right adjoint forgets the algebra structure: UT (V, v) = V .

Given f : X → UT (W,w) in C, let f̄ : FTX → W in CT be its adjoint, so that
f̄ = w ◦ T f and f̄ ◦ η = f .

The following result is contained in [12, Propositions 4.3.1 and 4.3.2].

Lemma 1.1. The functor UT creates all limits that exist in C, and all colimits
that exist in C and are preserved by both T and T 2.

The class of reflexive pairs is stable under any functor. Therefore, if T preserves
reflexive coequalizers, so does T 2.

Lemma 1.2. Suppose C admits reflexive coequalizers and these are preserved by
T . Then UT creates reflexive coequalizers.

1.3. Monoidal categories and functors. We employ (C,⊗, I) to denote amonoidal
category and (F , ϕ, ϕ0) to denote a monoidal functor between two monoidal cate-
gories C and D. The latter involves a natural transformation

ϕX,Y : FX ⊗FY → F(X ⊗ Y )

and a map

ϕ0 : I → FI

from the unit object of D to the image of the unit object of C under F , satisfy-
ing certain axioms. A comonoidal functor (F , ψ, ψ0) is the dual notion. When
(F , ϕ, ϕ0) is monoidal and ϕ and ϕ0 are invertible, (F , ϕ−1, ϕ−1

0 ) is comonoidal,
and vice versa. In this case we say F is strong.

We often treat monoidal categories as if they were strict.
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Iterating the structure (ϕ, ϕ0) of a monoidal functor F one obtains maps

ϕX1,...,Xn
: FX1 ⊗ · · · ⊗ FXn → F(X1 ⊗ · · · ⊗Xn)

for any sequence of objects X1, . . . , Xn. When n = 1, this map is the identity.
When n = 0, this is ϕ0.

1.4. Duoidal categories. Let (⋄, I) and (⋆, J) be two monoidal structures on
the same category C. Suppose there is in addition a natural transformation (the
interchange law)

ζA,B,C,D : (A ⋆ B) ⋄ (C ⋆ D) → (A ⋄C) ⋆ (B ⋄D)

and three morphisms (the unit maps)

I → I ⋆ I J ⋄ J → J I → J

satisfying the axioms given in [3, Definition 6.1]. We state one of them:

(1)

(A ⋆ X) ⋄ (B ⋆ Y ) ⋄ (C ⋆ Z)

ζ⋄id

yytt
tt
tt
tt
tt
tt
tt

id⋄ζ

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

(

(A ⋄B) ⋆ (X ⋄ Y )
)

⋄ (C ⋆ Z)

ζ

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

(A ⋆ X) ⋄
(

(B ⋄ C) ⋆ (Y ⋄ Z)
)

ζ

yytt
tt
tt
tt
tt
tt
tt

(A ⋄B ⋄ C) ⋆ (X ⋄ Y ⋄ Z)

Endowed with such structure, C is a 2-monoidal category. The term duoidal category
is also employed.

The interchange law and the unit maps are not required to be invertible. We
indicate the direction of these maps by listing the structures in order and saying
that (C, ⋄, ⋆) is a duoidal category.

Suppose a monoidal category (C,⊗, I) carries a braiding β. In this case, C is
duoidal with both structures (⋄, I) and (⋆, J) equal to (⊗, I) and with interchange
law

ζA,B,C,D = idA ⊗ βB,C ⊗ idD.

The unit morphisms are canonical isomorphisms. In this case, all structure maps
are invertible. A version of the Eckmann-Hilton argument due to Joyal and Street
[3, Proposition 6.11] states the converse: if all structure maps are invertible, the
duoidal category must arise from a braided monoidal category in this manner.

For a simple example of a different nature, let G be a monoid (in the cartesian
category of sets). The category of G-graded sets is duoidal. The objects are se-
quences S = (Sg)g∈G of sets. The monoidal structures S ⋄ T and S ⋆ T are given
by

(S ⋄ T )g =
∐

xy=g

Sx × Ty and (S ⋆ T )g = Sg × Tg.

The interchange law is an inclusion.
Additional examples of duoidal categories are given in [3, Section 6.4] and later

in this paper.
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1.5. Colax monoidal categories. A colax monoidal structure on a category C

consists of a sequence of functors

⊗n : Cn → C, n ≥ 0,

a natural transformation ǫ : ⊗1 → id, and a family of natural transformations
αm1,...,mn , m1, . . . ,mn ≥ 0, as follows. For each i = 1, . . . , n, let

Xi = (X i
1, . . . , X

i
mi

)

be a sequence of length mi of objects of C. Let

X = (X1
1 , . . . , X

n
mn

)

denote the concatenation of the n sequences X1, . . . , Xn. The transformations map

(2) αm1,...,mn : ⊗m1+···+mn(X) → ⊗n
(

⊗m1(X1), . . . ,⊗mn(Xn)
)

.

They are subject to certain axioms: see [30, Definition 3.1.1] (for the dual axioms).
When the transformation ǫ is invertible we say that the structure is normal. We

denote such structure by (C,⊗, α), where ⊗ stands for the sequence {⊗n}n≥0 and
α for the family {αm1,...,mn}mi≥0. Note that ⊗0 amounts to the choice of an object
of C.

Every monoidal structure (⊗, I) on a category C gives rise to a normal colax
monoidal structure on the same category with

⊗n(X1, . . . , Xn) = X1 ⊗ · · · ⊗Xn, ⊗0 = I.

The transformations (2) are invertible and constructed from the associativity and
unit constraints of C. The transformation ǫ is the identity.

1.6. Multicategories. A multicategory M possesses objects and multimaps. The
domain of a multimap is a finite sequence of objects and the codomain is a single
object. The notation f : (X1, . . . , Xn) → Y indicates that f is multimap from
(X1, . . . , Xn) to Y in M. In this case, we say that f is an n-map. Multimaps can be
suitably composed (in a tree-like manner). Each object has an associated identity
(a 1-map with domain and codomain equal to the given object).

A multicategory M has an underlying category U(M). It has the same objects as
M and the morphisms are the 1-maps of M.

A universal multimap for the sequence (X1, . . . Xn) is a multimap

u : (X1, . . . , Xn) → U

in M through which every other multimap of the same domain factors. In other
words, for every multimap f : (X1, . . . , Xn) → Y in M, there exists a unique 1-map

f̂ : U → Y making the diagram

(X1, . . . , Xn)
f

//

u

��

Y

U

f̂

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣

commutative. For a given sequence of objects, universal multimaps may or may
not exist. When they do, they are unique up to isomorphism. For any object X ,
idX is a universal 1-map for X .



6 M. AGUIAR, M. HAIM, AND I. LÓPEZ FRANCO

1.7. Representable multicategories. A colax monoidal category (C,⊗, α) gives
rise to a multicategory M(C). The objects of M(C) are those of C. A multimap
X1, . . . , Xn → Y is a morphism in C of the form

f : ⊗n(X1, . . . , Xn) → Y.

Composition of multimaps employs the transformations α. The identity of X in
M(C) is ǫX : ⊗1X → X .

There is a canonical functor C → UM(C) which sends

X
f
−→ Y to ⊗1 X

ǫX−−→ X
f
−→ Y.

When C is normal, in fact C ∼= UM(C).
A multicategoryM is (colax) representable if there exists a normal colax monoidal

structure on U(M) such that M ∼= MU(M) under an isomorphism of multicategories
that restricts to the canonical isomorphism between the underlying categories.

The following lemma is a variant of the results of [20, Section 9] on representable
multicategories.

Lemma 1.3. A multicategory M is representable if and only if M admits universal
multimaps. In this case, the colax monoidal structure on U(M) is monoidal if and
only if the class of universal multimaps is closed under composition.

The codomain of the universal multimap u corresponding to the tupleX1, . . . , Xn

is ⊗n(X1, X2, . . . , Xn). The transformations ǫ and α are defined by universality. In
particular,

X

��

idX // X

⊗1X

ǫX

;;✈✈✈✈✈✈✈

and since idX is itself universal, we have that ǫX is invertible, so the colax structure
is normal.

2. Comonoidal monads

We review the definition of comonoidal monad and its basic properties. Refer-
ences include [33, 35, 38]. (The term opmonoidal monad is used in [33, 38] for these
objects, and the term Hopf monad is used in [35].)

2.1. Comonoidal monads and their algebras. Let (C,⊗, I) be a monoidal cat-
egory. A monad (T , µ, η) on C is comonoidal if the functor T is equipped with a
comonoidal structure (ψ, ψ0) for which µ and η are morphisms of comonoidal func-
tors. In other words, a comonoidal monad is a monad in the 2-category of monoidal
categories and comonoidal functors.

Let T be such a monad. Given two T -algebras (V, v) and (W,w), we may turn
V ⊗W into an algebra by means of

T (V ⊗W )
ψV,W
−−−→ T V ⊗ TW

v⊗w
−−−→ V ⊗W.

The unit object of C is also an algebra by means of

T I
ψ0
−−→ I.

Theorem 2.1. The preceding defines a monoidal structure on the category CT of
T -algebras. It is such that the forgetful functor UT : CT → C is strict monoidal.
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This is [33, Proposition 1.1] and [35, Theorem 7.1].
The compatibility between the monad and comonoidal structures on T expresses

precisely that ψ0 and ψX,Y are morphisms of T -algebras, for any objects X and Y
of C.

Theorem 3.14 admits the following converse. Suppose T is a monad and that
CT carries a monoidal structure for which UT is strong monoidal. Then FT is
comonoidal by means of the mate structure [24] (see, for example, [3, Section 3.9]).
Then T = FT UT is comonoidal and the structure is such that ψ0 and ψX,Y are
morphisms of T -algebras. Hence T is a comonoidal monad.

2.2. Example: linear monads. Let H be a bimonoid in a 2-monoidal category
(C, ⋄, ⋆). In particular, H is a monoid in (C, ⋄) and a comonoid in (C, ⋆). Consider
the endofunctor T on C defined by

T X = H ⋄X.

The monoid structure of H results in a monad structure on T . Monads arising
from monoids in this manner are called linear. The comonoid structure of H ,
on the other hand, may be employed to turn T into a comonoidal monad on the
monoidal category (C, ⋆). The comonoidal structure ψX,Y is

T (X ⋆Y ) = H ⋄ (X ⋆Y )
∆⋄id
−−−→ (H ⋆H) ⋄ (X ⋆Y )

ζ
−→ (H ⋄X) ⋆ (H ⋄ Y ) = T X ⋆ T Y.

The map ψ0 is defined similarly, in terms of the counit of H and one of the unit
maps of C. The bimonoid axioms imply those for a comonoidal monad.

In this case, T -algebras are modules over the monoid H in (C, ⋄). Theorem 2.1
affords a monoidal structure on this category. This recovers [3, Proposition 6.39].
The special case when H is a bimonoid in a braided monoidal category is classical.

2.3. Example: monads on cartesian categories. Let C be a category admit-
ting all finite products. We may view it as a monoidal category in which the
tensor product is the categorical product and the unit object is a terminal object.
Categories of this form are called cartesian.

Any functor between cartesian categories carries a unique comonoidal structure.
(See, for instance, [3, Example 3.19].) In addition, this structure is preserved by
any natural transformation between two such functors. It follows that any monad
on a cartesian category admits a unique comonoidal structure.

Theorem 2.1 says that products of algebras over such a monad are given by
products in C. This well-known fact also follows from Lemma 1.1.

3. Monoidal monads

We review the definition of monoidal monad and go over the construction of a
monoidal structure on the category of algebras in some detail. We discuss the con-
nection between Linton’s coequalizers, which define this structure, and universal
multilinear maps (multimaps in a multicategory whose objects are algebras over
the monoidal monad). The multicategory is defined under no further assumptions.
When universal multilinear maps exist, the multicategory is representable and the
category of algebras carries a colax monoidal structure. Under additional assump-
tions, this structure is in fact monoidal.
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3.1. Monoidal monads and Linton’s coequalizers. Let (C,⊗, I) be a monoidal
category. A monad (T , µ, η) on C is monoidal if the functor T is equipped with
a monoidal structure (ϕ, ϕ0) for which µ and η are morphisms of monoidal func-
tors. In other words, a monoidal monad is a monad in the 2-category of monoidal
categories and monoidal functors.

Let T be such a monad. Given T -algebras (Vi, vi), i = 1, . . . , n, consider the
following parallel pair of morphisms:

(3) T (T V1 ⊗ · · · ⊗ T Vn)
T ϕ

//

T (v1⊗···⊗vn)

11
T 2(V1 ⊗ · · · ⊗ Vn)

µ
// T (V1 ⊗ · · · ⊗ Vn).

It is reflexive: the map

T (T V1 ⊗ · · · ⊗ T Vn) T (V1 ⊗ · · · ⊗ Vn)
T (ηV1

⊗···⊗ηVn )
oo

is a common section. Note that each of these objects is a free T -algebra and each
of these maps is a morphism of T -algebras.

We refer to an equalizer of a pair of the form (3) as a Linton coequalizer. They
were considered in [31]. We will consider such equalizers both in the category C

and in the category CT of T -algebras.
If all Linton coequalizers exist in C and they are preserved by T and T 2, then

they also exist in CT and they are calculated as in C, according to Lemma 1.1. The
same conclusion holds if C admits all reflexive coequalizers and these are preserved
by T , in view of Lemma 1.2.

In the case of free algebras, Linton coequalizers always exist, according to the
following result. For i = 1, . . . , n, let Xi be an object of C.

Lemma 3.1. The diagram

T (T 2X1 ⊗ · · · ⊗ T 2Xn)
µ◦T ϕ

//

T (µ⊗···⊗µ)
// T (T X1 ⊗ · · · ⊗ T Xn)

µ◦T ϕ
// T (X1 ⊗ · · · ⊗Xn)

is a split cofork (and hence a coequalizer) in CT .

Proof. The splitting data is

T (T 2X1 ⊗· · ·⊗ T 2Xn) T (T X1 ⊗· · ·⊗ T Xn)
T (T η⊗···⊗T η)
oo T (X1 ⊗· · ·⊗Xn).

T (η⊗···⊗η)
oo

�

3.2. Multilinearity. Let (T , ϕ) be a monoidal monad on C. For i = 1, . . . , n,
let (Vi, vi) be a T -algebra, as before, and let (W,w) be another such algebra. A
morphism f : V1⊗· · ·⊗Vn →W in C is said to be n-linear (with respect to (T , ϕ))
if the following diagram commutes.

(4)

T V1 ⊗ · · · ⊗ T Vn
ϕ

//

v1⊗···⊗vn

��

T (V1 ⊗ · · · ⊗ Vn)

T f

��

TW

w

��

V1 ⊗ · · · ⊗ Vn
f

// W
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We refer to such maps f collectively as T -multilinear. When n = 2, we say f is
T -bilinear, and when n = 1 we say it is T -linear. A T -linear map is the same as
a morphism of T -algebras. A 0-linear map is the same as a morphism I → W in
C: the commutativity of (4) is in this case automatic, it follows from the fact that
ϕ0 = ηI which is one of the conditions for a monoidal monad.

Define a multicategory CT ,ϕ as follows. The objects are T -algebras. A multimap
V1, · · · , Vn →W in CT ,ϕ is a T -multilinear map f : V1 ⊗ · · · ⊗ Vn →W in C. Such
maps are particular multimaps in the multicategory M(C,⊗) associated to the
monoidal category (C,⊗) (Section 1.7).

Lemma 3.2. The forgetful functor UT : CT → C extends to a faithful morphism
of multicategories

CT ,ϕ → M(C,⊗).

Proof. Every identity is linear. We omit the verification of the fact that multilinear
maps are closed under composition in M(C,⊗). �

Since linear maps are precisely algebra morphisms, we have U(CT ,ϕ) = CT .

3.3. Kock’s criterion. The notion of multilinearity originates in work of Linton
[31] and Kock [26]. The following criterion for bilinearity is given in [26, Theorem
1.1]. There is an evident extension to multilinearity.

Lemma 3.3. Let A, B, C be T -algebras. A map f : A⊗B → C in C is T -bilinear
if and only if the following diagrams commute.

T A⊗B
id⊗η

//

a⊗id

��

T A⊗ T B
ϕ
// T (A⊗B)

T f
��

T C
c
��

A⊗B
f

// C

A⊗ T B
η⊗id

//

id⊗b

��

T A⊗ T B
ϕ
// T (A⊗B)

T f
��

T C
c
��

A⊗B
f

// C

We employ Kock’s criterion in a few examples later.

3.4. Linton’s coequalizers and universal multilinear maps. We continue to
work with a monoidal monad (T , ϕ) on the monoidal category (C,⊗). Let (Vi, vi),
i = 1, . . . , n, and (W,w) be T -algebras. Given f : V1 ⊗ · · · ⊗ Vn →W in C, let f̄ in
CT be its adjoint:

f̄ : T (V1 ⊗ · · · ⊗ Vn)
T f
−−→ TW

w
−→W.

The map f is recovered as

f : V1 ⊗ · · · ⊗ Vn
η
−→ T (V1 ⊗ · · · ⊗ Vn)

f̄
−→W.

We first look at the behavior of this correspondence under post-composition. Sup-
pose h : (W,w) → (R, r) is a morphism of algebras.

Lemma 3.4. We have
h ◦ f̄ = h ◦ f.

Proof. Precomposing either side with η yields h ◦ f . �

Multilinearity of f and f̄ being a Linton coequalizer are closely related properties.

Lemma 3.5. We have that
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(i) f is T -multilinear if and only if f̄ coequalizes the pair (3);
(ii) f is a universal multimap in CT ,ϕ if and only if f̄ is the coequalizer of the

pair (3) in CT .

Proof. Multilinearity for f is the equality

w ◦ T f ◦ ϕ = f ◦ (v1 ⊗ · · · ⊗ vn),

while the coequalizing condition for f̄ is

w ◦ T f ◦ µ ◦ T ϕ = w ◦ T f ◦ T (v1 ⊗ · · · ⊗ vn).

The former equality is equivalent (by adjointness) to

w ◦ T (w ◦ T f ◦ ϕ) = w ◦ T (f ◦ (v1 ⊗ · · · ⊗ vn)) ,

so to prove (i) it suffices to verify that

w ◦ T (w ◦ T f ◦ ϕ) = w ◦ T f ◦ µ ◦ T ϕ.

This holds by functoriality of T , naturality of µ, and associativity of w.
To prove (ii) we may assume that f is T -multilinear (this is either an assumption,

or a consequence, in view of (i)). Part (i) tells us that then f̄ coequalizes the pair (3).
Let (R, r) be a T -algebra. Let Ccoeq

(

(V1, v1), . . . , (Vn, vn); (R, r)
)

denote the set
of algebra morphisms

T (V1 ⊗ · · · ⊗ Vn) → R

that coequalize the pair (3). By (i) applied to (R, r), we have a bijection

CT ,ϕ
(

(V1, v1), . . . , (Vn, vn); (R, r)
)

→ Ccoeq
(

(V1, v1), . . . , (Vn, vn); (R, r)
)

, g 7→ ḡ.

Consider the following diagram

CT ,ϕ
(

(V1, v1), . . . , (Vn, vn); (R, r)
) ∼= // Ccoeq

(

(V1, v1), . . . , (Vn, vn); (R, r)
)

CT
(

(W,w), (R, r)
)

(−)◦f

hh◗◗◗◗◗◗◗◗◗◗◗◗ (−)◦f̄

66♠♠♠♠♠♠♠♠♠♠♠♠

in which the diagonal arrows are given by precomposition with f and f̄ , respectively.
Lemma 3.4 says precisely that the diagram commutes. Now, a multilinear map f
as in the statement is universal if and only if (−) ◦ f is a bijection for all algebras
(R, r). Since the horizontal map is a bijection, this is equivalent to (−) ◦ f̄ being
a bijection for all (R, r). Given that f̄ coequalizes, this is in turn equivalent to f̄
being the coequalizer of the pair (3). �

3.5. Free algebras and multilinearity. We turn to the construction of a mor-
phism of multicategories M(C,⊗) → CT ,ϕ which agrees with the free algebra func-
tor on the underlying categories.

Lemma 3.6. Let n ≥ 0 and Xi be an object of C, i = 1, . . . , n. The structure map

ϕX1,...,Xn
: T X1 ⊗ · · · ⊗ T Xn → T (X1 ⊗ · · · ⊗Xn)

is n-linear, where each T X is a free T -algebra. Moreover, it is universal in CT ,ϕ.
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Proof. When n = 0, the claim is about ϕ0 : I → T I. As mentioned, any map from
I to an algebra is 0-linear. Moreover, ϕ0 is universal by freeness of the algebra T I.
When n = 1, the claim is about id : T X → T X . But the identity of any algebra is
1-linear and universal. For n ≥ 2, we employ Lemma 3.5. We have ϕ̄ = µ ◦ T ϕ and
this is the coequalizer of the pair (3) by Lemma 3.1. Hence ϕX1,...,Xn

is multilinear
and universal. �

We mention that the bilinearity of ϕX,Y is in fact one of the conditions for
a monoidal monad. The n-linearity of ϕX1,...,Xn

may be deduced from this plus
Lemma 3.2.

Together with Lemma 3.4, the following lemma addresses the behavior of the
correspondence in Lemma 3.5 with respect to composition. For i = 1, . . . , n, let
fi : Xi → Vi be a morphism in C, where Xi is an object of C and (Vi, vi) is a T -
algebra. Let (W,w) be another algebra and g : V1 ⊗ · · · ⊗ Vn →W a T -multilinear
map.

Lemma 3.7. We have

g ◦ (f̄1 ⊗ · · · ⊗ f̄n) = g ◦ (f1 ⊗ · · · ⊗ fn) ◦ ϕ.

Proof. Since g is multilinear and each f̄i is a morphism of algebras, the composite
on the left-hand side is multilinear. By universality of ϕ (Lemma 3.6), there exists
a (unique) map h : X1 ⊗ · · · ⊗Xn →W such that

g ◦ (f̄1 ⊗ · · · ⊗ f̄n) = h̄ ◦ ϕ.

To determine h, precompose both sides above with ηX1
⊗ · · · ⊗ ηXn

. This yields

g ◦ (f1 ⊗ · · · ⊗ fn) = h̄ ◦ ηX1⊗···⊗Xn
= h,

which completes the proof. �

Lemma 3.4 is the case n = 1 of Lemma 3.7.
To a map f : X1 ⊗ · · · ⊗Xn → Y in C we associate the composite

T X1 ⊗ · · · ⊗ T Xn
ϕ
−→ T (X1 ⊗ · · · ⊗Xn)

T f
−−→ T Y.

Since ϕ is n-linear (Lemma 3.6) and T f is 1-linear, the composite is n-linear. This
assignment is compatible with composition of multimaps. We obtain a morphism
of multicategories

M(C,⊗) → CT ,ϕ

which agrees with the free algebra functor FT : C → CT on the underlying cate-
gories.

3.6. Colax monoidal structure on the category of algebras. We are inter-
ested in potential monoidal structures on the category CT , and in fact in colax
monoidal structures on this category. Recall from Section 1.7 that any such struc-
ture ⋆ gives rise to a multicategory M(CT , ⋆), and that if the structure is normal
we have UM(CT , ⋆) ∼= CT . The following proposition roughly states that the mul-
ticategories M(CT , ⋆) and CT ,ϕ are related provided that the (colax) monoidal
categories (CT , ⋆) and (C,⊗) are related, and conversely.

To this end, we first regard the monoidal category (C,⊗) as a normal colax
monoidal category (C,⊗) (Section 1.5).

Proposition 3.8. Fix a normal colax monoidal structure ⋆ on CT . There is a
bijective correspondence between:
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(i) Monoidal structures γ on the forgetul functor UT : (CT , ⋆) → (C,⊗) (be-
tween colax monoidal categories) for which the maps

V1 ⊗ · · · ⊗ Vn = ⊗n(UT V1, . . . ,U
T Vn)

γ
−→ UT

(

⋆n(V1, . . . , Vn)
)

= ⋆n(V1, . . . , Vn)

are T -multilinear;
(ii) Morphisms of multicategories F : M(CT , ⋆) → CT ,ϕ that restrict to the

canonical isomorphism

UM(CT , ⋆) ∼= CT = U(CT ,ϕ)

on the underlying categories.

Proof. We sketch the argument. Starting from γ as in (i), one defines F as follows.
Let f : (V1, . . . , Vn) → Y be a multimap inM(CT , ⋆). Thus, f : ⋆n(V1, . . . , Vn) → Y

is a morphism in CT . Set
F(f) = f ◦ γ.

Conversely, starting from F as in (ii)), define γ to be the image under F of the
identity morphism of ⋆n(V1, . . . , Vn) regarded as an n-map. �

We now construct a colax monoidal structure ⊗ϕ on CT , under the assumption
that C possesses reflexive coequalizers and that these are preserved by T . The
structure is such that M(CT ,⊗ϕ) ∼= CT ,ϕ as multicategories.

Proposition 3.9. Let (T , ϕ) be a monoidal monad on a monoidal category (C,⊗).
Assume that C admits reflexive coequalizers and that these are preserved by T .
There exists a normal colax monoidal structure ⊗ϕ on CT with the following prop-
erties.

(i) The forgetful functor UT : (CT ,⊗ϕ) → (C,⊗) is monoidal and its structure
maps are (T , ϕ)-multilinear.

(ii) The associated multicategory is the multicategory of (T , ϕ)-multilinear maps:

M(CT ,⊗ϕ) ∼= CT ,ϕ.

(iii) The preceding restricts to the canonical isomorphism UM(CT ,⊗ϕ) ∼= CT

on the underlying categories.

Statements (ii) and (iii) say that the multicategory CT ,ϕ is colax representable.

Proof. As discussed in Section 3.1, the hypotheses guarantee that Linton’s coequal-
izers exist in CT . Lemma 3.5 then yields the existence of universal T -multilinear
maps, and Lemma 1.3 implies that CT ,ϕ is colax representable. Thus, there ex-
ists a normal colax monoidal structure ⊗ϕ on CT such that M(CT ,⊗ϕ) ∼= CT ,ϕ.
By Proposition 3.8, the preceding isomorphism of multicategories corresponds to
a monoidal structure on U : (CT ,⊗ϕ) → (C,⊗) whose components are (T , ϕ)-
multilinear. �

Proposition 3.9 holds under the weaker assumption on coequalizers in Lemma
1.1, with the same proof.

We turn to the free algebra functor.

Proposition 3.10. Under the same hypothesis as for Proposition 3.9, the free
algebra functor

FT : (C,⊗) → (CT ,⊗ϕ)

is strong monoidal.
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Proof. Universality of ϕX1,...,Xn
: FTX1 ⊗ · · · ⊗ FTXn → FT (X1 ⊗ · · · ⊗ Xn) in

CT ,ϕ (Lemma 3.6) affords canonical isomorphisms

⊗ϕ,n(FTX1, . . . ,F
TXn) ∼= FT (X1 ⊗ · · · ⊗Xn). �

The functor FT then induces a morphism of multicategories

M(FT ) : M(C,⊗) → M(CT ,⊗ϕ) ∼= CT ,ϕ.

This agrees with the morphism in Section 3.5.

3.7. Composition of universal multilinear maps. We continue to work with
a monoidal monad (T , ϕ) on (C,⊗).

Consider algebras (Vi, vi) and (V ′
i , v

′
i), i = 1, . . . , n, (W,w) and (W ′, w′). Con-

sider a commutative diagram

(5)

V1 ⊗ · · · ⊗ Vn

h

��

f1⊗···⊗fn
// V ′

1 ⊗ · · · ⊗ V ′
n

h′

��

W
g

// W ′

in which the fi and g are in CT , and h and h′ are in C.

Lemma 3.11. Suppose h is T -multilinear and T f1⊗ · · ·⊗T fn is an epimorphism
in C. Then h′ is T -multilinear also.

Proof. Let f = T f1 ⊗ · · · ⊗ T fn. We calculate:

w′ ◦ T h′ ◦ ϕ ◦ f = w′ ◦ T h′ ◦ T (f1 ⊗ · · · ⊗ fn) ◦ ϕ by naturality of ϕ,

= w′ ◦ T g ◦ T h ◦ ϕ by commutativity,

= g ◦ w ◦ T h ◦ ϕ since g ∈ CT ,

= g ◦ h ◦ (x1 ⊗ · · · ⊗ xn) by multilinearity of h,

= h′ ◦ (f1 ⊗ · · · ⊗ fn) ◦ (x1 ⊗ · · · ⊗ xn) by commutativity,

= h′ ◦ (y1 ⊗ · · · ⊗ yn) ◦ f since each fi ∈ CT .

Canceling f we obtain the multilinearity of h′. �

Recall from [7, Lemma 4.7] and [21, Lemma 0.17], that the tensor product functor
⊗ : C×C → C preserves reflexive coequalizers (as a functor of two variables) if and
only if for each object X in C, the one-variable functors X ⊗ (−) and (−) ⊗ X

preserve reflexive coequalizers. We make this assumption below.
Let X be an object of C and A a T -algebra. We say that a map e : X → A

in C is a reflexive T -coequalizer if the corresponding morphism ē : T X → A is a
reflexive coequalizer in CT .

Universal multilinear maps are examples of reflexive T -coequalizers, by (ii) in
Lemma 3.5. Such maps need not be epimorphisms in C: the universal bilinear map
for a pair of free algebras fails to be surjective for the multiset monad and for the
powerset monad (Sections 3.11 and 3.12). However, reflexive T -coequalizers possess
the following property.
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Lemma 3.12. Let ui : Xi → Ai be a reflexive T -coequalizer, i = 1, . . . , n. Let
f and g : A1 ⊗ · · · ⊗ An → B be two T -multilinear maps. Assume that C admits
reflexive coequalizers and both ⊗ and T preserve such coequalizers. If

f ◦ (u1 ⊗ · · · ⊗ un) = g ◦ (u1 ⊗ · · · ⊗ un),

then in fact f = g.

Proof. By Lemma 3.7,

f◦(u1⊗· · ·⊗un) = f ◦ (u1 ⊗ · · · ⊗ un)◦ϕ = g ◦ (u1 ⊗ · · · ⊗ un)◦ϕ = g◦(u1⊗· · ·⊗un).

The map u1⊗ · · ·⊗un is a reflexive coequalizer in C by the assumptions. It follows
that f = g. �

Proposition 3.13. Assume that C admits reflexive coequalizers and both ⊗ and
T preserve such coequalizers. Then, universal T -multilinear maps are closed under
composition.

Proof. For each i = 1, . . . , n, let U i be a sequence of algebras and let Ui denote
the tensor product of the terms in each sequence. Let ai : Ui → Vi be a universal
multilinear map for U i. Let b : V1 ⊗ · · · ⊗ Vn → W be an additional universal
multilinear map. In order to show that the composite

U1 ⊗ · · · ⊗ Un
a1⊗···⊗an−−−−−−−→ V1 ⊗ · · · ⊗ Vn

b
−→ W

is universal, we need to verify that any multilinear map

g : U1 ⊗ · · · ⊗ Un → X

factors uniquely as the composite above followed by a morphism of algebras. We
construct the factorization in two steps.

Consider the sequence obtained by applying T to each term in the sequence U i.
Let Ti denote the tensor product of the terms in this sequence. Let ui : Ti → Ui
denote the tensor product of the structure maps of the algebras in the sequence U i.
We claim that we also have two commutative squares as follows.

T T1 ⊗ · · · ⊗ T Tn

ϕ

��

(µ◦T ϕ)⊗···⊗(µ◦T ϕ)
//

T u1⊗···⊗T un

// T U1 ⊗ · · · ⊗ T Un

ϕ

��

T (T1 ⊗ · · · ⊗ Tn)
µ◦T ϕ

//

T (u1⊗...un)
// T (U1 ⊗ · · · ⊗ Un)

The top row is the tensor product of the Linton pairs associated to the sequences U i.
The bottom row is the Linton pair associated to their concatenation. The bottom
squares commutes by naturality of ϕ. The commutativity of the top square follows
from associativity for the monoidal structure ϕ and multilinearity of ϕ (Lemma
3.6).

By item (i) in Lemma 3.5, ḡ coequalizes the bottom pair. By item (ii) in the
same result, and since ⊗ preserves coequalizers, a1 ⊗ · · · ⊗ an is the coequalizer of
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the top pair. We deduce a (unique) map g̃ in C as below

T U1 ⊗ · · · ⊗ T Un
a1⊗···⊗an //

ϕ

��

V1 ⊗ · · · ⊗ Vn

g̃

��
✤

✤

✤

T (U1 ⊗ · · · ⊗ Un) ḡ
// X.

By Lemma 3.11, g̃ is multilinear. (Note that ϕ is multilinear by Lemma 3.6 and
T a1 ⊗ · · · ⊗ T an is an epimorphism since T and ⊗ preserve coequalizers.) Then,
universality of b yields a (unique) morphism of algebras ĝ as below.

V1 ⊗ · · · ⊗ Vn

g̃

��

b // W

ĝ
xxr
r
r
r
r
r

X

By construction,

ĝ ◦ b ◦ (a1 ⊗ · · · ⊗ an) = ḡ ◦ ϕ.

Precomposing with ηV1
⊗ · · · ⊗ ηVn

we obtain

ĝ ◦ b ◦ (a1 ⊗ · · · ⊗ an) = g.

This is the desired factorization. Its uniqueness follows from the uniqueness in each
of the two steps of the construction, or as an application of Lemma 3.12. �

3.8. Monoidal structure on the category of algebras. We arrive at the main
result of the section: the existence of a monoidal structure on the category of
algebras over a monoidal monad. We show that the colax monoidal structure on
CT from Proposition 3.9 is in fact monoidal. This builds on the work in Section
3.7 and the hypothesis are as in Proposition 3.13.

Theorem 3.14. Let (T , ϕ) be a monoidal monad on the monoidal category (C,⊗).
Assume that C admits reflexive coequalizers and that both ⊗ and T preserve such
coequalizers. Then the colax monoidal structure ⊗ϕ on CT is in fact monoidal.

Proof. According to Lemma 1.3, the colax monoidal structure is monoidal when
universal multilinear maps are closed under composition. This is the result of
Proposition 3.13. �

We denote the tensor product on CT by ⊗ϕ. The following recapitulates some
of the results from previous sections. The tensor product of two algebras (V, v) and
(W,w) is the Linton coequalizer

T (T V ⊗ TW )
T ϕ

//

T (v⊗w)

22
T 2(V ⊗W )

µ
// T (V ⊗W ) // V ⊗ϕW

in CT . The unit object is (T I, µI). The free algebra functor

FT : (C,⊗, I) → (CT ,⊗ϕ, T I)

is strong monoidal.
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3.9. Example: monads on cocartesian categories. Let C be a category ad-
mitting all finite coproducts. We may view it as a monoidal category in which the
tensor product is the categorical coproduct ∐ and the unit object is an initial object
⊥. Categories of this form are called cocartesian.

Any functor between cocartesian categories carries a unique monoidal structure.
(See, for instance, [3, Example 3.19].) In addition, this structure is preserved by
any natural transformation between two such functors. It follows that any monad
T on C admits a unique monoidal structure. Explicitly, the structure is

ϕX,Y : T X ∐ T Y
(T ιX
T ιY

)
−−−−→ T (X ∐ Y ),

where ιX : X → X ∐ Y and ιY : Y → X ∐ Y are the canonical insertions.
Linton studied the existence of coproducts in the category of algebras over such

a monad. He showed that coproducts in CT are defined by the coequalizers (3) [31,
Proposition 2]. We review his result from our perspective.

Let U , V andW be T -algebras. One easily verifies that a map
(

f1
f2

)

: U∐V →W

is T -bilinear if and only if its components f1 : U → W and f2 : V → W are
morphisms of T -algebras. It follows that the coproduct of U and V exists in CT

precisely when the universal T -bilinear map exists for (U, V ). In this case, the
coproduct U ∐ϕ V in CT is given by the Linton coequalizer

T (T U ∐ T V )
T ϕ

//

T (u∐v)

22
T 2(U ∐ V )

µ
// T (U ∐ V ) // U ∐ϕ V

in CT . It also follows that the coinsertions in the coproduct U ∐ϕ V are the
components of the universal bilinear map U ∐ V → U ∐ϕ V .

Since the resulting structure on CT is the cocartesian one, the fact that this
structure is monoidal is guaranteed with no assumptions beyond existence of Linton
coequalizers.

3.10. Example: linear monads. Let (C,⊗) be a braided monoidal category with
braiding β. Let A be a commutative monoid in C. The linear monad T = A⊗ (−)
is monoidal on (C,⊗). The structure ϕX,Y is

A⊗X ⊗A⊗ Y
id⊗β⊗id
−−−−−→ A⊗A⊗X ⊗ Y

µ⊗id
−−−→ A⊗X ⊗ Y.

Commutativity of A guarantees the compatibility between the monoidal and the
monad structures.

Let L, M and N be left A-modules in C. Let m and n denote the actions of A
on M and N . Kock’s criterion (Lemma 3.3) says that a map f : M ⊗ N → L is
T -bilinear precisely when it satisfies the following two conditions.

• f is a morphism of A-modules with M ⊗N viewed as an A-module under

A⊗M ⊗N
m⊗id
−−−→M ⊗N ;

• f is a morphism of A-modules with M ⊗N viewed as an A-module under

A⊗M ⊗N
β⊗id
−−−→M ⊗A⊗N

id⊗n
−−−→M ⊗N.

It follows that

M ⊗ϕ N =M ⊗A N,

the familiar tensor product of modules over a commutative monoid.
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The preceding example may be generalized: starting from a double monoid A in
a duoidal category (C, ⋄, ⋆), the monad H ⋆ (−) is monoidal on the duoidal category
(C, ⋄). Note the order of the operations. See [3, Section 6.5] for information on
double monoids.

3.11. Example: the multiset monad. Let N denote the set of natural numbers.
It is a commutative semiring. Let Set denote the category of sets.

Given a set X , let T X be the set of functions

f : X → N

of finite support. Such a function is a multisubset of X . Given a map h : X → Y ,
let T h : T X → T Y be defined by

(T h)(f)(y) =
∑

x∈h−1(y)

f(x).

The endofunctor T on Set carries a monad structure. The multiplication µ is as
follows. Let F be an element of T 2X . It is a function T X → N of finite support.
Then µX(F ) ∈ T X is the function

X → N, x 7→
∑

f∈TX

F (f)f(x).

It is well-defined since F is of finite support. The unit η is as follows: ηX(x) ∈ T X
is the function

X → N, y 7→ δ(x, y)

(the Kronecker delta). Algebras over (T , µ, η) are commutative monoids in the
standard sense (commutative monoids in the cartesian category (Set,×,⊤)): such
a monoid A is a T -algebra via

α : T A→ A, α(f) =
∑

a∈A

f(a) · a.

The monad T on (Set,×,⊤) carries a monoidal structure. The structure trans-
formation ϕ is as follows. Let (f, g) be an element of T X×T Y . Then ϕX,Y (f, g) ∈
T (X × Y ) is the function

X × Y → N, (x, y) 7→ f(x)g(y).

The map ϕ0 sends the unique element of ⊤ to 1 ∈ N = T ⊤.
The monad T is associated to the algebraic theory of commutative monoids. It

follows that is preserves reflexive coequalizers [1, Corollaries A.22 and A.23]. (This
also follows by a direct argument.) Theorem 3.14 yields a monoidal structure ⊗ϕ

on the category of commutative monoids.
Let A, B and C be commutative monoids. Kock’s criterion (Lemma 3.3) says

that a map h : A × B → C is T -bilinear if and only if h(−, b) : A → C and
h(a,−) : A → C are morphisms of monoids for each a ∈ A and b ∈ B. It follows
that A⊗ϕ B is the familiar tensor product of commutative monoids.

Abelian groups and modules over commutative rings may be treated similarly.
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3.12. Example: the powerset monad. The preceding example may be gener-
alized: starting from a commutative semiring R (with additive and multiplicative
units), there is a monoidal monad T on (Set,×,⊤) defined by

T X = {f : X → R | f is of finite support}.

This leads to a notion of tensor product for R-semimodules [19, Chapter 16].
Consider the case in which R = {0, 1} is the Boolean semiring. In this case

T X may be identified with the collection of finite subsets of X , and T is the
finite powerset monad. Algebras are ∨-semilattices : sets equipped with a binary
operation ∨ that is associative, unital, commutative, and idempotent. For the same
reasons as above, this monad preserves reflexive coequalizers. We obtain a monoidal
structure on the category of ∨-semilattices.

Consider instead the full powerset monad, for which T X is the collection of all
subsets of X . Algebras are now complete ∨-semilattices. This monad does not cor-
respond to an algebraic theory and in fact does not preserve reflexive coequalizers.
Theorem 3.14 does not apply. Nevertheless, the resulting structure on the category
of complete ∨-semilattices is monoidal. This is guaranteed by an alternative set of
hypotheses for Theorem 3.14 which we do not discuss in this paper (the closedness
of the ground category).

The tensor product of semilattices is considered in [16] and [23, Section I.5].
Here is a reflexive pair whose coequalizer is not preserved by the full powerset

monad. Let f, g : N× {0, 1} → N be given by

f(n, 0) = f(n, 1) = n and g(n, 0) = n, g(n, 1) = n+ 1.

The function s(n) = (n, 0) is a common section. See [12, Proposition 4.6.5] for
complementary information on the powerset monad.

4. The pointing monad and the smash product

We illustrate the constructions of the preceding sections with the pointing monad
and related notions. The goal is to arrive at the definition of smash product of
bipointed objects in a monoidal category.

4.1. Pointed, copointed, and bipointed objects. Let (C, I) be a pointed cat-
egory: a category together with a distinguished object I. A pointed object is a pair
(X, e) where e : I → X is a map in C. The map e is the point of X . The morphisms
of pointed objects are the point-preserving maps in C. Let C• denote the category
of pointed objects in (C, I). It is the coslice category of objects under I.

A copointed object is a pair (X, ǫ) where ǫ : X → I is a map in C. Let C• denote
the category of copointed objects. It is the slice category of objects over I.

An object X is bipointed if it is equipped with a point e : I → X and a copoint
ǫ : X → J such that

X
ǫ

��
❄❄

❄❄
❄

I

e
??⑧⑧⑧⑧⑧

I

commutes. Let C•
• denote the category of bipointed objects in C.

The object I is bipointed with the point and copoint equal to idI . As a pointed
object, it is initial in the category C•. As a copointed object, it is terminal in C•.
As a bipointed object, it is null in C•

•.
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Suppose the object I is terminal in C. In this case, every object of C carries a
unique copoint, and there are canonical equivalences

C ∼= C• and C• ∼= C•
•.

There are corresponding statements when I is initial or null.

4.2. The smash product of bipointed objects. Let (C,⊗, I) be a monoidal
category. Consider the pointed category (C,⊗). Assume C admits finite coproducts.
The smash product X ∧ Y of two bipointed objects X and Y is defined as the
following pushout in the category C• (when this exists):

(6)

X ∐ Y
(idX⊗eY
eX⊗idY

)
//

(ǫXǫY )
��

X ⊗ Y

��

I // X ∧ Y.

The components of the top map are

X = X ⊗ I
idX⊗eY // X ⊗ Y I ⊗ Y = Y.

eX⊗idYoo

The bottom map defines the point of X ∧ Y .
Anel and Joyal have considered this notion in [5, Section 1.1.1].
In the following sections we discuss how these notions can be formulated in terms

of monads and the constructions of the previous sections.

4.3. The pointing monad. We return to a pointed category (C, I). Assume C

admits finite coproducts. The pointing monad T • is defined by

T •X = I ∐X.

Algebras over T • are precisely pointed objects in (C, I). It is a linear monad as in
Section 2.2, since I is a monoid in (C,∐,⊥).

Assume that (C,⊗, J) is monoidal. Suppose that the object I is a comonoid in
C, but not necessarily the unit object J . In this case, the monad T • is comonoidal.
Indeed, we may view I as a bimonoid in the duoidal category (C,∐,⊥,⊗, J) [3,
Example 6.19], and the construction of Section 2.2 applies. According to Theorem
2.1, the monoidal structure lifts to the category of T •-coalgebras. Explicitly, if X
and Y are pointed, then so is X ⊗ Y with point

I −→ I ⊗ I
eX⊗eY−−−−−→ X ⊗ Y.

The unlabeled map is the coproduct of I. The point of J is the counit of I. We
obtain a monoidal category (C•,⊗, J).

We turn to a monoidal structure on T •. It is defined under a different set
of assumptions from the preceding. Suppose the functors X ⊗ (−) and (−) ⊗ X

preserve coproducts, for each object X of C. Again I need not be the unit object
of C. Instead, suppose I is terminal in C. We may then define a map as follows,
for any objects X and Y of C:

(I ∐X)⊗ (I ∐ Y )
∼=−→ (I ⊗ I)∐ (I ⊗ Y )∐ (X ⊗ I) ∐ (X ⊗ Y ) → I ∐ (X ⊗ Y ).

Preservation of coproducts affords the isomorphism on the left. The map on the
right has the following components:

I ⊗ I → I, I ⊗ Y → I, X ⊗ I → I, X ⊗ Y
id
−→ X ⊗ Y.
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The unlabeled maps are unique.

Lemma 4.1. With the above structure, the monad T • is monoidal on (C,⊗).

Note that even though the monad T • is linear, the underlying monoidal structure
is not, in the sense that it does not arise from the construction of Section 3.10. For
this, one would require first of all a duoidal structure for (C,⊗,∐) (and then a
double monoid structure on I). But in general there is no such structure.

4.4. The copointing comonad. Assume now that C admits finite products. We
denote them by X × Y and use π for the canonical projections. The copointing
comonad T• is defined by

T•X = I ×X.

Coalgebras over T• are precisely copointed objects in C.
Assume C admits finite coproducts as well as finite products. There is a mixed

distributive law T •T• → T•T • defined as follows. The map

I ∐ (I ×X) → I × (I ∐X)

has components
(

idI ιI
πI ιX ◦ πX

)

.

The bottom right corner is the composite I × X
πX−−→ X

ιX−−→ I ∐ X between a
product projection and a coproduct insertion. It follows that the monad T • lifts
to the category of copointed objects. Explicitly, if ǫ is the copoint of X , then

I ∐X
(uǫ)
−−→ I

is the copoint of T •X . Algebras over the lifted monad are precisely bipointed
objects. We continue to write T • for the monad lifted to C•.

4.5. The smash product as a monoidal structure. Let (C,⊗, I) be a monoidal
category. We view it as a pointed category (C, I) and consider (co)pointed objects
in this category, and the associated monad and comonad.

Assume that C admits finite products, so the comonad T• is defined. The
comonad T• is monoidal on C. In fact, the unit object I is a monoid in this
category, so the situation is dual to that in Section 4.3 (where we discussed the
comonoidal structure of T •). Hence, the monoidal structure lifts to the category of
T•-coalgebras. Explicitly, if X and Y are copointed, then so is X ⊗ Y with copoint

X ⊗ Y
ǫX⊗ǫY−−−−→ I ⊗ I ∼= I.

The copoint of I is idI . We obtain a monoidal category (C•,⊗, I).
Assume that C admits finite coproducts and that they are preserved by the

functors X ⊗ (−) and (−) ⊗ X , for each object X . Since the forgetful functor
C• → C creates colimits, the monoidal category C• inherits these properties. It
follows that the lifted monad T • on C• is the pointing monad associated to the
terminal object I of C•. Lemma 4.1 then affords a monoidal structure for the
monad T • on (C•,⊗, I).
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Let X , Y and Z be bipointed objects. A morphism f : X ⊗ Y → Z of copointed
objects is T •-bilinear precisely when the diagram

(7)

X ∐ Y
(idX⊗eY
eX⊗idY

)
//

(ǫXǫY )
��

X ⊗ Y

f

��

I
eZ

// Z

commutes. It follows that the universal T •-bilinear map for (X,Y ) exists if and
only if the smash product X ∧ Y exists. In this case, the right vertical arrow in
(6) is the universal map of (X,Y ), and the bottom horizontal arrow is the point of
X ∧ Y .

Thus, the smash product X ∧ Y is the colax monoidal structure afforded by
Proposition 3.9. The situation for n copointed objects is similar.

Theorem 3.14 provides conditions that guarantee existence and associativity of
the smash product. Note that the lifted monad T • preserves colimits. Therefore,
to obtain the preceding, it suffices to assume that C• admits finite colimits and that
these are preserved by the one-variable tensor functors.

4.6. The smash product of pointed comonoids. Let Comon(C) denote the
category of comonoids in (C,⊗, I). An object is a triple (C,∆, ǫ) subject to the
usual axioms. Forgetting the coproduct ∆ and retaining the counit ǫ as the copoint
yields a functor

Comon(C) → C•.

We may regard I as a bimonoid in the duoidal category (C,∐,⊥,⊗, I), and there-
fore T • as a comonoidal monad on (C,⊗, I). It follows that T • lifts to Comon(C)
[35, Proposition 2.1]. Algebras over the lifted monad are pointed comonoids in C.

Assume now that (C,⊗, I) is braided. The category Comon(C) is then monoidal,
and the monad T • on this category is monoidal in the same manner as in Lemma
4.1. This leads to the notion of smash product of pointed comonoids. It is defined
by the same diagram (6), where the pushout is now calculated in the category of
comonoids. This notion is considered in [5, Section 1.3.6].

5. Bimonoidal monads

Consider a monad T acting on a duoidal category (C, ⋄, ⋆). The monad may
interact with the monoidal structures in three different ways. Here we treat the
case in which T is monoidal with respect to ⋄ and comonoidal with respect to
⋆; the other two cases are treated in the following sections. Let ϕ and ψ denote
the monoidal and comonoidal structures of T , respectively. The (colax) monoidal
structure on CT resulting from the former is denoted by ⋄ϕ. It is preserved by the
free algebra functor. This was the subject of Section 3. The monoidal structure
resulting from the latter is still denoted by ⋆. It is preserved by the forgetful
functor. This was the subject of Section 2. Our goal is to show that (CT , ⋄ϕ, ⋆) is
itself a duoidal category. This requires a compatibility between the monoidal and
comonoidal structures on the monad.
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5.1. Bimonoidal monads. We say that (T , ϕ, ψ) is a bimonoidal monad if (in
addition to the above conditions) the following diagrams commute.

(8)

T (A ⋆ B) ⋄ T (C ⋆ D)
ψ⋄ψ

&&▼
▼▼

▼▼
▼▼

▼▼ϕ

yyss
ss
ss
ss

T
(

(A ⋆ B) ⋄ (C ⋆ D)
)

T ζ

��

(T A ⋆ T B) ⋄ (T C ⋆ T D)

ζ

��

T
(

(A ⋄ C) ⋆ (B ⋄D)
)

ψ %%❑
❑❑

❑❑
❑❑

❑
(T A ⋄ T C) ⋆ (T B ⋄ T D)

ϕ⋆ϕ
xxqq
qq
qq
qq
q

T (A ⋄ C) ⋆ T (B ⋄D)

(9)

I

��

ϕ0
// T I // T (I ⋆ I)

ψI,I

��

I ⋆ I
ϕ0⋆ϕ0

// T I ⋆ T I

J T J
ψ0

oo T (J ⋄ J)oo

J ⋄ J

OO

T J ⋄ T J
ψ0⋄ψ0

oo

ϕJ,J

OO

(10)

T I // T J

ψ0

��

I //

ϕ0

OO

J

The unlabeled arrows are either unit maps of C or their images under T .
Consider the 2-category whose objects are duoidal categories, whose morphisms

are bilax monoidal functors, and whose 2-cells are morphisms of such functors [3,
Proposition 6.52]. A bimonoidal monad is precisely a monad in this 2-category.

We remark that (10) and the first diagram in (9) are superfluous: the commu-
tativity of these diagrams follows from the fact that η is a morphism of monoidal
functors and of comonoidal functors, which includes the properties

ϕ0 = ηI and ψ0 ◦ ηJ = idJ .

The two remaining conditions may be interpreted in terms of (T , ϕ)-bilinearity for
the monoidal structures on algebras induced by ψ, as we next discuss.

The comonoidal monad (T , ψ) on (C, ⋆, J) gives rise to a monoidal structure on
CT preserved by the forgetful functor (Theorem 2.1). Given T -algebras X and Y ,
X ⋆ Y is a T -algebra via

T (X ⋆ Y )
ψX,Y
−−−→ T X ⋆ T Y

x⋆y
−−→ X ⋆ Y.

The unit object J is a T -algebra via T J
ψ
−→ J . We do not distinguish notationally

between the tensor product ⋆ on C and on CT .
The second diagram in (9) says that the unit map J ⋄ J → J is (T , ϕ)-bilinear.

Regarding (8), we have the following result.

Lemma 5.1. Let A, B, C, D, X and Y be T -algebras. Let f : A ⋄ C → X and
g : B ⋄D → Z be (T , ϕ)-bilinear maps. Then

(A ⋆ B) ⋄ (C ⋆ D)
ζ
−→ (A ⋄ C) ⋆ (B ⋄D)

f⋆g
−−→ X ⋆ Y

is (T , ϕ)-bilinear too.
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Proof. Bilinearity is shown by the commutativity of the diagram below.

T (A⋆B)⋄T (C⋆D)

ψ⋄ψ

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

ϕ

xxrr
rr
rr
rr
rr

T (A⋆B)⋄(C⋆D))

T ζ

��

(T A⋆TB)⋄(T C⋆TD)

ζ

��

(a∗b)⋄(c∗d)

&&▲
▲▲

▲▲
▲▲

▲▲
▲

T ((A⋄C)⋆(B⋄D))

ψ
&&▲

▲▲
▲▲

▲▲
▲▲

▲

T (f∗g)

��

(T A⋄T C)⋆(T B⋄TD)

ϕ⋆ϕ
ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

(a⋄c)⋆(b⋄d)
&&▲

▲▲
▲▲

▲▲
▲▲

▲
(A⋆B)⋄(C⋆D)

ζ

��
T (X∗Y )

ψ
&&▼

▼▼
▼▼

▼▼
▼▼

▼
T (A⋄C)⋆T (B⋄D)

T f⋆T g

��

(A⋄C)⋆(B⋄D)

f∗g

��
TX∗T Y

x∗y
// X∗Y

The hexagon is axiom (8) for the bimonoidal monad and the pentagon commutes
by bilinearity (4) of f and g. �

Bimonoidal monads are in fact characterized by the preceding properties. Let
T be a monad on C that is monoidal on (C, ⋄) and comonoidal on (C, ⋆). Sup-
pose the unit map J ⋄ J → J is bilinear and the interchange law is bilinear when
postcomposed with a pair of bilinear maps, as in Lemma 5.1.

Lemma 5.2. In the above situation, T is bimonoidal on (C, ⋄, ⋆).

Proof. As mentioned, we only need to verify the commutativity of (8) and the
second diagram in (9). The latter is the bilinearity of J ⋄ J → J . For the former
one applies the hypothesis on ζ to the free algebras on objects A, B, C and D, and
the maps ϕA,B and ϕC,D, which are bilinear by Lemma 3.6. One precomposes with
T (ηA ⋆ ηB) ⋄ T (ηC ⋆ ηD) to deduce the result. �

5.2. Duoidal structure on the category of algebras. Assume that universal
(T , ϕ)-multilinear maps in (C, ⋄) exist and that they are closed under composition.
In other words, the multicategory CT ,ϕ is representable by a monoidal structure
⋄ϕ. The unit object is T I. (Theorem 3.14 provides sufficient conditions for this,
but we do not make the assumptions of the theorem. Lemma 3.5 says that ⋄ϕ is
defined in terms of Linton coequalizers, but we will not make use of this fact here.)
Let

uA1,...,An
: A1 ⋄ · · · ⋄An → A1 ⋄

ϕ · · · ⋄ϕ An

denote the universal multilinear map in (C, ⋄) of a sequence of T -algebrasA1, . . . , An.
By assumption, diagrams of the form

(11)

A ⋄B ⋄ C
u⋄id

vv♠♠♠
♠♠♠

♠♠

u

��

id⋄u

((◗
◗◗◗

◗◗◗
◗

(A ⋄ϕ B) ⋄ C

u ((◗
◗◗◗

◗◗◗
A ⋄ (B ⋄ϕ C)

uvv♠♠♠
♠♠♠

♠

A ⋄ϕ B ⋄ϕ C

commute.
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We proceed to turn (C, ⋄ϕ, T I, ⋆, J) into a duoidal category. Let A, B, C and D
be T -algebras. By Lemma 5.1, the map

(A ⋆ B) ⋄ (C ⋆ D)
ζA,B,C,D
−−−−−−→ (A ⋄ C) ⋆ (B ⋄D)

uA,C⋆uB,D
−−−−−−−→ (A ⋄ϕ C) ⋆ (B ⋄ϕ D)

is (T , ϕ)-bilinear. Universality yields an algebra morphism

ζTA,B,C,D : (A ⋆ B) ⋄ϕ (C ⋆ D) −→ (A ⋄ϕ C) ⋆ (B ⋄ϕ D)

making the diagram

(12)

(A ⋆ B) ⋄ (C ⋆ D)

u

��

ζ
// (A ⋄ C) ⋆ (B ⋄D)

u⋆u

��

(A ⋆ B) ⋄ϕ (C ⋆ D)
ζT

//❴❴❴ (A ⋄ϕ C) ⋆ (B ⋄ϕ D)

commutative. This defines the interchange law ζT for CT . One of the unit maps is
defined similarly, from the bilinearity of the corresponding unit map of C:

J ⋄ J //

uJ,J

��

J.

J ⋄ϕ J

;;✇
✇

✇
✇

The remaining unit maps are as follows.

T I −→ T (I ⋆ I)
ψI,I
−−−→ T I ⋆ T I,

T I −→ T J
ψ0
−−→ J.

The unlabeled maps are built from the unit maps of C.

Theorem 5.3. With the preceding structure, (CT , ⋄ϕ, T I, ⋆, J) is a duoidal cate-
gory.

Proof. We verify one of the conditions for a duoidal category, namely axiom (1).
We build the following diagram.

(A⋆X)⋄(B⋆Y )⋄(C⋆Z)

ζ⋄id

��

u⋄id ++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲

u // (A⋆X)⋄ϕ(B⋆Y )⋄ϕ(C⋆Z)

ζT ⋄ϕid

��

((A⋆X)⋄ϕ(B⋆Y ))⋄(C⋆Z)

ζT ⋄id

��

u

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

((A⋄B)⋆(X⋄Y ))⋄(C⋆Z)

ζ

��

(u⋆u)⋄id
// ((A⋄ϕB)⋆(X⋄ϕY ))⋄(C⋆Z)

ζ

��

u
// ((A⋄ϕB)⋆(X⋄ϕY ))⋄ϕ(C⋆Z)

ζT

��

((A⋄ϕB)⋄C)⋆((X⋄ϕY )⋄Z)

u⋆u

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲

(A⋄B⋄C)⋆(X⋄Y ⋄Z)
u⋆u

//

(u⋄id)⋆(u⋄id)
33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

(A⋄ϕB⋄ϕC)⋆(X⋄ϕY ⋄ϕZ)
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The triangles commute by (11), the quadrilaterals on the top left and bottom right
corners by (12), and the remaining two by naturality.

It follows that

ζT ◦ (ζT ⋄ϕ id) ◦ u = (u ⋆ u) ◦ ζ ◦ (ζ ⋄ id).

A symmetric argument yields

ζT ◦ (id ⋄ϕ ζT ) ◦ u = (u ⋆ u) ◦ ζ ◦ (id ⋄ ζ).

Axiom (1) for ζ implies equality between the two previous expressions, and univer-
sality of u allows us to conclude that

ζT ◦ (ζT ⋄ϕ id) = ζT ◦ (id ⋄ϕ ζT ). �

5.3. Monoidal structure on the multicategory CT ,ϕ. We retain the assump-
tions of Section 5.2. Recall the multicategory CT ,ϕ from Section 3.2. It consists
of T -algebras and (T , ϕ)-multilinear maps. According to Lemma 3.2, there is a
faithful morphism

CT ,ϕ → M(C, ⋄),

where the latter is the multicategory represented by the monoidal structure ⋄ on
C. Proposition 3.9 states that CT ,ϕ is represented by the monoidal structure ⋄ϕ:

(13) CT ,ϕ ∼= M(CT , ⋄ϕ).

A multilinear map f is represented by the morphism of algebras f̃ defined by
universality, as below.

V1 ⋄ · · · ⋄ Vn

u

��

f
// W

V1 ⋄ϕ · · · ⋄ϕ Vn

f̃

88qqqqqqqqqqq

The duoidal structure on C allow us to turn M(C, ⋄) into a monoidal multicate-
gory. We denote this structure by ⋆ζ . On objects we simply set

X ⋆ζ Y = X ⋆ Y.

Given multimaps f : X1 ⋄ · · · ⋄Xn → X and g : Y1 ⋄ · · · ⋄ Yn → Y , we let f ⋆ζ g be
the composite

(X1 ⋆ Y1) ⋄ · · · ⋄ (Xn ⋆ Yn)
ζ
−→ (X1 ⋄ · · · ⋄Xn) ⋆ (Y1 ⋄ · · · ⋄ Yn)

f⋆g
−−→ X ⋆ Y.

The map on the left is the unique such obtained by iterating the interchange law ζ

[3, (6.19)].
We may also consider the multicategory represented by (CT , ⋄ϕ), and the monoidal

structure ⋆ζT on it arising from the duoidal structure in Theorem 5.3.

Proposition 5.4. Let (T , ϕ, ψ) be a bimonoidal monad on C. The multicategory
CT ,ϕ inherits the monoidal structure ⋆ζ of M(C, ⋄) under (13). Moreover,

(CT ,ϕ, ⋆ζ) ∼= (M(CT , ⋄ϕ), ⋆ζT )

as monoidal multicategories.
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Proof. The first statement is a generalization of Lemma 5.1, and may be established
by similar arguments. For the second statement, we verify that tensor products of
multimaps agree via the correspondence f ↔ f̃ . Given algebras Ai and Bi, we
build the following diagram.

(A1 ⋆ B1) ⋄ · · · ⋄ (An ⋆ Bn)

u

��

ζ
// (A1 ⋄ · · · ⋄An) ⋆ (B1 ⋄ · · · ⋄Bn)

u⋆u

��

f∗g
// C ⋆ C

(A1 ⋆ B1) ⋄ϕ · · · ⋄ϕ (An ⋆ Bn)
ζT

// (A1 ⋄ϕ · · · ⋄ϕ An) ⋆ (B1 ⋄ϕ · · · ⋄ϕ Bn)

f̃∗g̃

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Its commutativity follows from (12). We deduce that

f̃ ⋆ζ g = f̃ ⋆ζT g̃,

as needed. �

5.4. Example: linear monads. Let (C,⊗) be a braided monoidal with braiding
β. Let H be a commutative bimonoid therein. The linear monad H ⊗ (−) on C is
bimonoidal. The comonoidal structure is

H ⊗X ⊗ Y
∆⊗id
−−−→ H ⊗H ⊗X ⊗ Y

id⊗β⊗id
−−−−−→ H ⊗X ⊗H ⊗ Y.

Note this is an instance of the construction in Section 2.2: H is a bimonoid in
the duoidal category associated to the braiding. The monoidal structure is as in
Section 3.10.

Theorem 5.3 yields a duoidal structure on the category of H-modules (under
suitable assumptions such as those in Theorem 3.14). The monoidal structures are
⋄ = ⊗B (Example 3.10) and ⋆ = ⊗ (Example 2.2).

We illustrate with a special case of the dual to the preceding construction. Let G
be a monoid in the category of sets under cartesian product. We may regard G as
a cocommutative bimonoid therein. (A fact available for all monoids in a cartesian
category.) The linear comonad G× (−) is then bimonoidal and a duoidal structure
on the category of G-graded sets ensues. It is the one described in Section 1.4. For
a related example, see Appendix A.

This example may be generalized: starting from a (2, 1)-monoid H in a 3-
monoidal category (C, ⋄,⊗, ⋆), the linear monad H ⊗ (−) is bimonoidal on the
duoidal category (C, ⋄, ⋆). See Section 8.6 for more details.

5.5. Example: pointing as a bimonoidal monad. Let (C, ⋄, I, ⋆, J) be a duoidal
category with interchange law ζ. We name its unit maps as follows:

δ : I → I ⋆ I, ζ0 : I → J, θ : J ⋄ J → J.

We make the following main assumption: that the unit map ζ0 is an isomorphism.
Duoidal categories with this property are called normal [8, 18].

Lemma 5.5. In this situation, δ and θ are invertible.

Proof. Since I is a comonoid with coproduct δ and counit ζ0, δ must be invertible
with inverse ζ0 ⋆ id = id ⋆ ζ0. The argument for θ is dual. �

As in Section 4.3, assume also that the unit object I is terminal in C, C admits
coproducts and these are preserved by X ⋄ (−) and (−) ⋄ X for each object X .
According to Lemma 4.1, the pointing monad T • is then monoidal on (C, ⋄, I). It
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is also comonoidal on (C, ⋆, J); as discussed in Section 4.3, this relies on the fact
that I is a comonoid in (C, ⋆, J).

Lemma 5.6. In this situation, the pointing monad T • is bimonoidal on (C, ⋄, I, ⋆, J).

Proof. We verify the conditions of Lemma 5.2, and for this we employ the criterion
for T •-bilinearity in (7).

Note first of all that ζ−1
0 must be the unique map J → I. Then, according to

(7), bilinearity of θ is equivalent to the commutativity of the following diagrams.

J ⋄ I
id⋄ζ0

// J ⋄ J

θ

��

J
ζ−1
0 ��

I
ζ0

// J

I ⋄ J
ζ0⋄id

// J ⋄ J

θ

��

J
ζ−1
0 ��

I
ζ0

// J

This holds since J is a monoid with multiplication θ and unit ζ0 (or by Lemma
5.5).

Now let A, B, C, D, X and Y be pointed objects. We denote their points by
e. Let f : A ⋄ C → X and g : B ⋄ D → Y be T •-bilinear. We check that the
composite (f ⋆ g) ◦ ζ is likewise. According to (7), bilinearity of f and g yields the
commutative diagrams

A ⋄ I
idA⋄eC // A ⋄ C

f

��

A

��

I
eX

// X

B ⋄ I
idB⋄eD // B ⋄D

g

��

B

��

I
eY

// Y,

(and two similar diagrams in which I occurs on the left). The bilinearity of (f ⋆g)◦ζ
follows from the commutativity of the diagram below (and its left version).

(A ⋆ B) ⋄ I
id⋄δ // (A ⋆ B) ⋄ (I ⋆ I)

id⋄(eC⋆eD)
//

ζ
��

(A ⋆ B) ⋄ (C ⋆ D)

ζ
��

A ⋆ B

��

(A ⋄ I) ⋆ (B ⋄ I)
(id⋄eC)⋆(id⋄eD)

// (A ⋄ C) ⋆ (B ⋄D)

f∗g

��

A ⋆ B

��

I
δ

// I ⋆ I
eX⋆eY

// X ⋆ Y

The square on the top left commutes by one of the axioms for a duoidal category.
The square below it commutes since δ is invertible and I is terminal. �

The discussion below makes use of some of the notions in Section 7.
We now remove the assumption on terminality of I in C. We continue to assume

that ζ0 is invertible and maintain the assumptions on existence and preservation of
coproducts in C.

Assume in addition that products exist in C. We proceed as in Section 4.5.
The copointing comonad T• is defined on C. Moreover, it is double monoidal on
(C, ⋄, ⋆), in the dual sense to that of Section 7. Indeed, the invertibility of ζ0 implies
that I is a double monoid in this duoidal category, and hence a (2, 1)-monoid in
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the 3-monoidal category (C, ⋄, ⋆,×). By (the dual of) Theorem 7.2, the category
of copointed objects C• inherits the duoidal structure from C. This category also
inherits the coproducts from C, and the copointed object I is terminal in C•. We
now apply Lemma 5.6 to the lifted monad T • on (C•, ⋄, I, ⋆, J). We conclude
that it is bimonoidal. Theorem 5.3 then yields a duoidal structure (⋄ϕ, ⋆) on the
category C•

• of bipointed objects (assuming representability as in Section 5.2). Given
bipointed objects X and Y , X ⋄ϕ Y is their smash product, and X ⋆Y is bipointed
via

I
δ
−→ I ⋆ I

eX⋆eY−−−−→ X ⋆ Y and X ⋆ Y
ǫX⋆ǫY−−−−→ I ⋆ I

δ−1

−−→ I.

6. Double monoidal monads

There are three manners in which a monad may interact with the duoidal struc-
ture of the category on which it acts. One of these gives rise to the notion of
bimonoidal monad studied in Section 5. The other two occur when the monad
is either monoidal with respect to both monoidal structures, or comonoidal with
respect to both structures. In the latter case we speak of a double comonoidal
monad. This notion is discussed in Section 7. In the former we speak of a double
monoidal monad; we study this notion here. A central role is played by the notion
of double multilinearity which we introduce.

Throughout, (C, ⋄, I, ⋆, J) denotes a duoidal category with interchange law ζ.

6.1. Double monoidal monads and duoidal structure on the category of

algebras. A double monoidal monad (T , ϕ, γ) on C consists of a monad T equipped
with two structures ϕ and γ such that (T , ϕ) is monoidal on (C, ⋄, I), (T , γ) is
monoidal on (C, ⋆, J), and the following diagrams commute.

(14)

(T A ⋆ T B) ⋄ (T C ⋆ T D)
ζ

''❖
❖❖

❖❖
❖❖

❖❖
❖

γ⋄γ

xxqq
qq
qq
qq
q

T (A ⋆ B) ⋄ T (C ⋆ D)

ϕ

��

(

T A ⋄ T C
)

⋆
(

T B ⋄ T D
)

ϕ⋆ϕ

��

T
(

(A ⋆ B) ⋄ (C ⋆ D)
)

T ζ &&▼
▼▼

▼▼
▼▼

▼▼
T (A ⋄ C) ⋆ T (B ⋄D)

γ
ww♦♦
♦♦
♦♦
♦♦
♦♦

T
(

(A ⋄ C) ⋆ (B ⋄D)
)

(15)

I

��

ϕ0
// T I // T (I ⋆ I)

I ⋆ I
ϕ0⋆ϕ0

// T I ⋆ T I

γ

OO
J ⋄ J //

γ0⋄γ0
��

J

γ0
��

T J ⋄ T J
ϕ
// T (J ⋄ J) // T J

(16)

I //

ϕ0

��

J

γ0
��

T I // T J

The unlabeled arrows are either unit maps of C or their images under T .
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Consider the 2-category whose objects are duoidal categories, whose morphisms
are double lax monoidal functors, and whose 2-cells are morphisms of such functors
[3, Proposition 6.57]. A double monoidal monad is precisely a monad in this 2-
category.

We remark that (16) and both diagrams in (15) are superfluous: the commu-
tativity of these diagrams follows from the fact that η is a morphism of monoidal
functors for both ϕ and γ, which includes the properties

ϕ0 = ηI and γ0 = ηJ .

Apply the constructions of Section 3 to each of the monoidal monads (T , ϕ)
and (T , γ). Under suitable assumptions (Theorem 3.14), we obtain two monoidal
structures ⋄ϕ and ⋆γ on the category of T -algebras.

Theorem 6.1. Let (T , ϕ, γ) be a double monoidal monad on C. Assume that C

admits reflexive coequalizers and that these are preserved by T , ⋄ and ⋆. Then
(CT , ⋄ϕ, T I, ⋆γ , T J) is a duoidal category. Moreover, the free algebra functor

FT : (C, ⋄, ⋆) → (CT , ⋄ϕ, ⋆γ)

is double strong monoidal.

For the proof one adapts the results in Section 3. We sketch the main steps in
the following sections. A crucial ingredient is the notion of double multilinearity
which we discuss next.

6.2. Double multilinearity. For clarity, we first spell out a special case. Let A,
B, C, D, W be T -algebras. A map

f : (A ⋆ B) ⋄ (C ⋆ D) →W

in C is (T , ϕ, γ)-bilinear if the following diagram commutes.

(17)

(T A ⋆ T B) ⋄ (T C ⋆ T D)

(a⋆b)⋄(b⋆d)

��

γ⋄γ
// T (A ⋆ B) ⋄ T (C ⋆ D)

ϕ

��

T ((A ⋆ B) ⋄ (C ⋆ D))

T f
��

TW

w

��

(A ⋆ B) ⋄ (C ⋆ D)
f

// W

To describe the general case, we set up some notation. Given a sequence

V = (V1, . . . , Vm)

of T -algebras, let

⋆V = V1 ⋆ · · · ⋆ Vm, T V = (T V1, . . . , T Vm),

and
⋆v = v1 ⋆ · · · ⋆ vm : ⋆T V → ⋆V

be the ⋆-product of all the algebra structure maps in the sequence. Now let V i be
a sequence of algebras, for each i = 1, . . . , n, and let W be another algebra. A map

f : (⋆V 1) ⋄ · · · ⋄ (⋆V n) →W
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in C is (T , ϕ, γ)-multilinear if the following diagram commutes.

(18)

(⋆T V 1) ⋄ · · · ⋄ (⋆T V n)

⋆v

��

γ⋄···⋄γ
// T (⋆V 1) ⋄ · · · ⋄ T (⋆V n)

ϕ

��

T
(

(⋆V 1) ⋄ · · · ⋄ (⋆V n)
)

T f
��

TW

w

��

(⋆V 1) ⋄ · · · ⋄ (⋆V n)
f

// W

Thus, (17) is the special case of (18) in which n = 2, V 1 = (A,B) and V 2 = (C,D).
When all sequences are of length 1, f is simply a (T , ϕ)-multilinear map in (C, ⋄).
When there is only one sequence, f is simply a (T , γ)-multilinear map in (C, ⋆).
When both occur, f is a morphism of T -algebras in C.

When (T , ϕ, γ) is understood, we speak of double multilinear maps, or double
bilinear maps in the case of (17).

The interchange law does not intervene in (18). Double multilinearity may be
considered for any ordered pair of monoidal structures on a category and on a
monad. Though the first kind of maps play a more important role in our discussion,
we consider both (T , ϕ, γ) and (T , γ, ϕ)-multilinear maps. The interchange law
turns maps of the second kind into maps of the first kind. We state the result in
the case of bilinear maps, though the general statement and its proof are similar.

Proposition 6.2. Let f : (A⋄C)⋆ (B ⋄D) →W be a (T , γ, ϕ)-bilinear map. Then
the composite

(A ⋆ B) ⋄ (C ⋆ D)
ζ
−→ (A ⋄ C) ⋆ (B ⋄D)

f
−→W

is (T , ϕ, γ)-bilinear.

Proof. We build the following diagram.

(A ⋆ B) ⋄ (C ⋆ D)
ζ

// (A ⋄C) ⋆ (B ⋄D)
f

// W

(T A ⋆ T B) ⋄ (T C ⋆ T D)

γ⋄γ

��

(a⋆b)⋄(c⋆d)

OO

ζ
// (T A ⋄ T C) ⋆ (T B ⋄ T D)

ϕ⋆ϕ

��

(a⋄c)⋆(b⋄d)

OO

T (A ⋆ B) ⋄ T (C ⋆ D)

ϕ

��

T (A ⋄C) ⋆ T (B ⋄D)

γ

��

T ((A ⋆ B) ⋄ (C ⋆ D))
T ζ

// T ((A ⋄ C) ⋆ (B ⋄D))
T f

// TW

w

OO

The rectangle in the bottom left corner commutes by (14) and the one on the right
by (T , γ, ϕ)-bilinearity of f . �

Conversely, if ζ satisfies the property of Proposition 6.2 for all such maps f , then
axiom (14) holds. Thus this property characterizes double monoidal monads. The
proof is similar to that of Lemma 5.2.
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6.3. Composition of double multilinear maps. Again we first discuss a special
case.

Proposition 6.3. For any (T , γ)-bilinear maps

f : A ⋆ B → X and g : C ⋆ D → Y

and any (T , ϕ)-bilinear map

h : X ⋄ Y → Z,

the composite

(A ⋆ B) ⋄ (C ⋆ D)
f⋄g
−−→ X ⋄ Y

h
−→ Z

is (T , ϕ, γ)-bilinear.

Proof. We build the following diagram.

(A ⋆ B) ⋄ (C ⋆ D)
f⋆g

// X ⋄ Y
h // Z

(T A ⋆ T B) ⋄ (T C ⋆ T D)

γ⋄γ

��

(a⋆b)⋄(c⋆d)

OO

T Z

z

OO

T (A ⋆ B) ⋄ T (C ⋆ D)
T f⋄T g

// T X ⋄ T Y

x⋄y

OO

ϕ
// T (X ⋄ Y )

T h

OO

The rectangles commute by bilinearity of f , g and h. �

We turn to the details of the general case. There are two types of composition
one may perform. In both cases, the result is (T , ϕ, γ)-multilinear.

(i) Given a sequence of (T , ϕ, γ)-multilinear maps, we may form their ⋄-product
and follow it with a (T , ϕ)-multilinear map.

(ii) We may start from a (T , ϕ, γ)-multilinear map and precede it with a ⋄-
product of maps, each of which is itself a ⋆-product of (T , γ)-multilinear
maps.

The composite in Proposition 6.3 is a special case of both types of composition.
Type (i) is as follows. Let

g :W1 ⋄ · · · ⋄Wm → X

be (T , ϕ)-multilinear. For each j = 1, . . . ,m and i = 1, . . . , nj , let V
i
j be a sequence

of algebras, and let

fj : (⋆V
1
j ) ⋄ · · · ⋄ (⋆V

nj

j ) →Wj

be a (T , ϕ, γ)-multilinear map. The composite

g ◦ (f1 ⋄ · · · ⋄ fm)

is then (T , ϕ, γ)-multilinear.
Type (ii) is as follows. For each i = 1, . . . , n, let V i be a sequence of algebras

and let

g : (⋆V 1) ⋄ · · · ⋄ (⋆V n) → W

be (T , ϕ, γ)-multilinear. Write V i = (V i1 , . . . , V
i
mi

). For each i = 1, . . . , n and

j = 1, . . . ,mi, let U
i
j be a sequence of algebras, and let

f ij : ⋆U
i
j → V ij
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be a (T , γ)-multilinear map. Let U i denote the concatenation of the sequences
U i1, . . . , U

i
mi

and let

f i : ⋆U i
fi
1⋆···⋆f

i
mi−−−−−−→ V i1 ⋆ · · · ⋆ V

i
mi

= ⋆V i.

The composite

(⋆U1) ⋄ · · · ⋄ (⋆Un)
f1⋄···⋄fn

−−−−−−→ (⋆V 1) ⋄ · · · ⋄ (⋆V n)
g
−→W

is then (T , ϕ, γ)-multilinear.

6.4. Universal double multilinear maps. There is an evident notion of uni-
versality for double multilinear maps. For example, a double bilinear map θ :
(A ⋆ B) ⋄ (C ⋆ D) → U is universal if for any bilinear map f as above, there exists

a unique morphism f̂ in CT such that f̂ ◦ θ = f . When they exist, universal maps
are unique up to isomorphism.

The following parallel pair in CT is reflexive:

(19) T ((T A ⋆ T B) ⋄ (T C ⋆ T D))
µ◦T ϕ◦T (γ⋄γ)

//

T ((a⋆b)⋄(c⋆d))
// T ((A ⋆ B) ⋄ (C ⋆ D)) .

The common section is T (ηA⋆B ⋄ ηC⋆D).
In the same manner as (T , ϕ)-multilinear maps are linked with Linton coequal-

izers (3), (T , ϕ, γ)-bilinear maps are linked with coequalizers of the pairs (19).

Lemma 6.4. Let f : (A ⋆ B) ⋄ (C ⋆ D) →W be a map in C. Then

(i) f is (T , ϕ, γ)-bilinear if and only if f̄ coequalizes the pair (19).
(ii) f is universal (T , ϕ, γ)-bilinear if and only if f̄ is the coequalizer of the pair

(19) in CT .

(As before, f̄ : T X → V denotes the adjoint in CT of a map f : X → V in C.)
The proof is similar to that of Lemma 3.5. The definition of the pair (19) can

be extended to any number of sequences of algebras (instead of the two sequences
(A,B) and (C,D)), and Lemma 6.4 holds in this generality.

Proposition 6.5. Assume C admits reflexive coequalizers and these are preserved
by T , ⋄, and ⋆. Then universal multilinear maps are closed under compositions of
either type (i) or (ii).

The proof is similar to that of Proposition 3.13. We outline the steps in the
special case of a composite

(A ⋆ B) ⋄ (C ⋆ D)
u⋄u
−−→ (A ⋆γ B) ⋄ (C ⋆γ D)

v
−→ (A ⋆γ B) ⋄ϕ (C ⋆γ D)

in which the maps u are (T , γ)-universal and the map v is (T , ϕ)-universal. Let

g : (A ⋆ B) ⋄ (C ⋆ D) → X

be a (T , ϕ, γ)-multilinear map. Let us abbreviate

V = (A ⋆γ B) ⋄ (C ⋆γ D) and W = (A ⋆γ B) ⋄ϕ (C ⋆γ D).
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In the diagram

T ((T A ⋆ T B)) ⋄ T ((T C ⋆ T D))

ϕ

��

//
// T (A ⋆ B) ⋄ T (C ⋆ D)

u⋄u //

ϕ

��

V

g̃

��
✤

✤

✤
v // W

ĝ
��⑧
⑧
⑧
⑧

T ((T A ⋆ T B) ⋄ (T C ⋆ T D)) //
// T ((A ⋆ B) ⋄ (C ⋆ D))

ḡ
// X

the bottom pair is (19), while the top pair is the ⋄-product of two pairs (3) for γ.
Hence, ū ⋄ ū is the coequalizer of the top pair, while ḡ coequalizes the bottom row
(by Lemmas 3.5 and 6.4). There is then a unique map g̃ as above. By Lemma
3.11, g̃ is (T , ϕ)-multilinear. Then, universality of v yields a (unique) morphism of
algebras ĝ. Precomposing with ηA⋆B ⋄ ηC⋆D yields

g = ĝ ◦ v ◦ (u ⋄ u)

which is the desired factorization. Uniqueness follows or one may appeal to Lemma
3.12.

We mention in passing that the result in Proposition 6.5 holds for any pair of
monoidal structures on a category C, not necessarily linked by the duoidal axioms.

6.5. The interchange law on algebras. Under the assumptions of Proposi-
tion 6.5, universal bilinear maps exist both for (T , ϕ) and (T , γ). They are in
particular universal (T , ϕ, γ)-multilinear maps. We use u to denote a universal
(T , γ)-bilinear map and v for a universal (T , ϕ)-bilinear map.

We build the following diagram, given T -algebras A, B, C and D.

(20)

(A ⋆ B) ⋄ (C ⋆ D)

u⋄u

��

ζ
// (A ⋄ C) ⋆ (B ⋄D)

v⋆v

��

(A ⋆γ B) ⋄ (C ⋆γ D)

v

��

(A ⋄ϕ C) ⋆ (B ⋄ϕ D)

u

��

(A ⋆γ B) ⋄ϕ (C ⋆γ D)
ζT

//❴❴❴ (A ⋄ϕ C) ⋆γ (B ⋄ϕ D)

By Proposition 6.5, the vertical map on the left is universal (T , ϕ, γ)-bilinear. Com-
bining Propositions 6.2 and 6.3 we see that the composite around the top right
corner is (T , ϕ, γ)-bilinear. Universality then defines a morphism ζT in CT as
indicated. This is the interchange law of CT .

The unit maps of CT are obtained by applying T to the unit maps of C.
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In order to verify axiom (1) for CT , we build the commutative diagram below.

(A⋆X)⋄(B⋆Y )⋄(C⋆Z)

ζ⋄id

��

u⋄u⋄id
%%❑

❑❑
❑❑

❑❑
❑❑

u⋄u⋄u // (A⋆γX)⋄(B⋆γY )⋄(C⋆γZ)

v⋄id
''◆

◆◆
◆◆

◆◆
◆◆

◆◆

v // (A⋆γX)⋄ϕ(B⋆γY )⋄ϕ(C⋆γZ)

ζT ⋄ϕid

��

((A⋆γX)⋄(B⋆γY ))⋄(C⋆Z)

id⋄u

88qqqqqqqqqq

v⋄id
&&▼

▼▼
▼▼

▼▼
▼▼

▼
((A⋆γX)⋄ϕ(B⋆γY ))⋄(C⋆γZ)

ζT ⋄ϕid

��

v

77♦♦♦♦♦♦♦♦♦♦♦

((A⋆γX)⋄ϕ(B⋆γY ))⋄(C⋆Z)

id⋄u

77♣♣♣♣♣♣♣♣♣♣♣

ζT ⋄id

��
((A⋄B)⋆(X⋄Y ))⋄(C⋆Z)

ζ

��

(v⋆v)⋄id
❑❑

❑

%%❑
❑❑

❑

((A⋄ϕB)⋆γ(X⋄ϕY ))⋄(C⋆Z)

id⋄u

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

((A⋄ϕB)⋆(X⋄ϕY ))⋄(C⋆Z)

ζ

��

u⋄id
88qqqqqqqqqq

u⋄u
// ((A⋄ϕB)⋆γ(X⋄ϕY ))⋄(C⋆γZ)

v

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

((A⋄ϕB)⋄C)⋆((X⋄ϕY )⋄Z)

v⋆v

&&▼
▼▼

▼▼
▼▼

▼▼
▼

((A⋄ϕB)⋆γ(X⋄ϕY ))⋄ϕ(C⋆γZ)

ζT

��
(A⋄B⋄C)⋆(X⋄Y ⋄Z)

(v⋄id)⋆(v⋄id)
ssss

99sss

v⋆v
// (A⋄ϕB⋄ϕC)⋆(X⋄ϕY ⋄ϕZ)

u
// (A⋄ϕB⋄ϕC)⋆γ(X⋄ϕY ⋄ϕZ)

It follows that

ζT ◦ (ζT ⋄ϕ id) ◦ v ◦ (u ⋄ u ⋄ u) = u ◦ (v ⋆ v) ◦ ζ ◦ (ζ ⋄ id).

A symmetric argument yields

ζT ◦ (id ⋄ϕ ζT ) ◦ v ◦ (u ⋄ u ⋄ u) = u ◦ (v ⋆ v) ◦ ζ ◦ (id ⋄ ζ).

Axiom (1) for ζ implies equality between the two previous expressions. Universality
of v ◦ (u ⋄ u ⋄ u) (Proposition 6.5) allow us to conclude that

ζT ◦ (ζT ⋄ϕ id) = ζT ◦ (id ⋄ϕ ζT ).

The remaining duoidal axioms may be verified similarly.

6.6. The free algebra functor. Theorem 3.14 guarantees that the free algebra
functor FT is strong monoidal for each of the monoidal structures (⋄ϕ, T I) and
(⋆γ , T J). By Lemma 3.6,

ϕ : T X ⋄ T Y → T (X ⋄ Y ) and γ : T X ⋆ T Y → T (X ⋆ Y )

are universal (T , ϕ) and (T , γ)-bilinear, respectively. Thus, we have isomorphisms
ϕ̄ and γ̄ such that

FTX ⋄ FT Y
ϕ

//

u

��

FT (X ⋄ Y )

FTX ⋄ϕ FT Y

ϕ̄

66♥♥♥♥♥♥♥♥♥♥♥

FTX ⋆ FT Y
γ

//

u

��

FT (X ⋆ Y )

FTX ⋆γ FT Y

γ̄

66♥♥♥♥♥♥♥♥♥♥♥
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commute. Let A, B, C and D be objects in C. Consider diagram (14), which we
redraw here as follows.

(T A ⋆ T B) ⋄ (T C ⋆ T D)
ζ

//

γ⋄γ
��

(

T A ⋄ T C
)

⋆
(

T B ⋄ T D
)

ϕ⋆ϕ
��

T (A ⋆ B) ⋄ T (C ⋆ D)

ϕ
��

T (A ⋄ C) ⋆ T (B ⋄D)

γ
��

T
(

(A ⋆ B) ⋄ (C ⋆ D)
)

FT ζ

// T
(

(A ⋄ C) ⋆ (B ⋄D)
)

Comparing with (20) we deduce the commutativity of the following diagram.

(FT A ⋆γ FT B) ⋄ϕ (FT C ⋆γ FTD)
ζT

//

γ̄⋄γ̄
��

(

FT A ⋄ϕ FT C
)

⋆γ
(

FT B ⋄ϕ FTD
)

ϕ̄⋆ϕ̄
��

FT (A ⋆ B) ⋄ϕ FT (C ⋆ D)

ϕ̄
��

FT (A ⋄ C) ⋆γ FT (B ⋄D)

γ̄
��

FT
(

(A ⋆ B) ⋄ (C ⋆ D)
)

FT ζ

// FT
(

(A ⋄ C) ⋆ (B ⋄D)
)

This is precisely [3, Axiom (6.35)] for the double strong monoidal functor (FT , ϕ̄, γ̄).
This completes the proof of Theorem 6.1.

7. Double comonoidal monads

We discuss this notion briefly. Let (C, ⋄, I, ⋆, J) be a duoidal category with
interchange law ζ.

A double comonoidal monad (T , χ, ψ) on C consists of a monad T equipped
with two structures χ and ψ such that (T , χ) is comonoidal on (C, ⋄, I), (T , ψ) is
comonoidal on (C, ⋆, J), and the following diagrams commute.

(21)

T
(

(A ⋆ B) ⋄ (C ⋆ D)
)

T ζ

&&▼
▼▼

▼▼
▼▼

▼▼
χ

ww♦♦
♦♦
♦♦
♦♦
♦♦

T (A ⋆ B) ⋄ T (C ⋆ D)

ψ⋄ψ

��

T
(

(A ⋄ C) ⋆ (B ⋄D)
)

ψ

��

(T A ⋆ T B) ⋄ (T C ⋆ T D)

ζ ''❖
❖❖

❖❖
❖❖

❖❖
❖

T (A ⋄ C) ⋆ T (B ⋄D)

χ⋆χ
xx♣♣
♣♣
♣♣
♣♣
♣

(T A ⋄ T C) ⋆ (T B ⋄ T D)

(22)

T I

χ0

��

// T (I ⋆ I)
ψ
// T I ⋆ T I

χ0⋆χ0

��

I // I ⋆ I

T J

ψ0

��

// T (J ⋄ J)
χ
// T J ⋄ T J

ψ0⋄ψ0

��

J // J ⋆ J
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(23)

T I //

χ0

��

T J

ψ0

��

I // J

The unlabeled arrows are either unit maps of C or their images under T .
Consider the 2-category whose objects are duoidal categories, whose morphisms

are double colax monoidal functors, and whose 2-cells are morphisms of such func-
tors [3, Proposition 6.57]. A double comonoidal monad is precisely a monad in this
2-category.

The following result interprets the axioms in terms of T -algebras. Let T be a
monad on C that is comonoidal on both (C, ⋄) and (C, ⋆). First note that each of the
monoidal structures on C induces a corresponding structure on CT , by Theorem 2.1.
We do not distinguish notationally between the original and the induced structures.
Given algebras A and B, their tensor products are algebras via

T (A ⋄B)
χ
−→ T A ⋄ T B

a⋄b
−−→ A ⋄B and T (A ⋆ B)

ψ
−→ T A ⋆ T B

a⋆b
−−→ A ⋆ B.

The unit objects I and J are algebras via χ0 and ψ0, respectively.

Lemma 7.1. In the above situation, T is double comonoidal if and only all three
unit maps of C are morphisms of T -algebras, and for any T -algebras A, B, C and
D, the interchange law ζA,B,C,D is a morphism of T -algebras.

Proof. Each of the diagrams (22) and (23) expresses precisely that one of the unit
maps is a morphism of algebras. That ζA,B,C,D is a morphism of algebras (when the
four objects are algebras) follows immediately from (21). Conversely, (21) follows
from the hypothesis on ζ applied to free algebras. �

The following is an immediate consequence.

Theorem 7.2. Let (T , χ, ψ) be a double comonoidal monad on a duoidal category
C. Then (CT , ⋄, I, ⋆, J) is a duoidal category.

8. Higher monoidal monads

Bimonoidal, double monoidal, and double comonoidal monads constitute the
second level in a hierarchy. For any i, j, and n with n = i+ j and i, j ≥ 0, one may
consider (p, q)-monoidal monads acting on an n-monoidal category.

8.1. 3-monoidal categories. Let C be a category. Three monoidal structures
(⋄, I), (⊗, J) and (⋆,K) on C, listed in order, turn C into a 3-monoidal category
if the axioms in [3, Definition 7.1.1] are satisfied. These include the requirements
that each of (⋄, I,⊗, J), (⊗, J, ⋆,K), and (⋄, I, ⋆,K) is a duoidal structure on C.
We use ζ to denote the interchange law of any of them. The axioms also require
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the commutativity of the following diagram.

(24)

((A1⋆B1)⊗(A2⋆B2))⋄((C1⋆D1)⊗(C2⋆D2))
ζ⋄ζ

//

ζ

��

((A1⊗A2)⋆(B1⊗B2))⋄((C1⊗C2)⋆(D1⊗D2))

ζ

��
((A1⋆B1)⋄(C1⋆D1))⊗((A2⋆B2)⋄(C2⋆D2))

ζ⊗ζ

��

((A1⊗A2)⋄(C1⊗C2))⋆((B1⊗B2)⋄(D1⊗D2))

ζ⋆ζ

��
((A1⋄C1)⋆(B1⋄D1))⊗((A2⋄C2)⋆(B2⋄D2))

ζ
// ((A1⋄C1)⊗(A2⋄C2))⋆((B1⋄D1)⊗(B2⋄D2))

The remaining axioms involve the unit maps of the three duoidal categories.
A symmetric monoidal structure on C gives rise to a 3-monoidal structure in

which ⋄ = ⊗ = ⋆ all coincide with the given structure. All three interchange laws
also coincide and are constructed from the symmetry as in Section 1.4. See [3,
Section 7.3] for additional information.

3-monoidal structures may be constructed by combining a duoidal structure with
a (co)cartesian structure on a category. If (C, ⋄, ⋆) is duoidal and × denotes the
categorical product, then (C, ⋄, ⋆,×) is 3-monoidal. If ∐ denotes the categorical
coproduct, (C,∐, ⋄, ⋆) is 3-monoidal. This is discussed (in part) in [3, Section
7.3.1].

An example of a 3-monoidal category in which none of the structures is cartesian
or cocartesian is given in [3, Proposition 8.69].

8.2. n-monoidal categories. Suppose given n monoidal structures (⊗i, Ii) on a
category C, and for each i < j, a duoidal structure on (C,⊗i, Ii,⊗j , Ij). We say
that

(C,⊗1, I1, . . . ,⊗n, In)

is an n-monoidal category if for each i < j < k,

(C,⊗i, Ii,⊗j, Ij ,⊗k, Ik)

is a 3-monoidal category. The structure involves an interchange law and three unit
maps for each pair i < j. See [3, Section 7.6].

If (C,⊗i, Ii)1≤i≤n is n-monoidal and C admits (co)products, then adding the
(co)cartesian structure as the last (first) structure to the list produces an (n+ 1)-
monoidal category.

8.3. (p, q)-monoidal monads. Let (C,⊗i, Ii)1≤i≤n be an n-monoidal category.
Fix p and q with 0 ≤ p, q ≤ n and p + q = n. A (p, q)-monoidal monad on C

consists of a monad T equipped with n structures γi (1 ≤ i ≤ n) such that the
first p are monoidal, the last q are comonoidal, and for each pair i, j the monad
(T , γi, γj) on the duoidal category (C,⊗i,⊗j) is:

• double monoidal if i < j ≤ p,
• bimonoidal if i ≤ p < j,
• double comonoidal if p < i < j.

In other words, a (p, q)-monoidal monad is a monad in the 2-category whose
objects are n-monoidal functors and whose morphisms are (p, q)-monoidal functors
[3, Section 7.8].



38 M. AGUIAR, M. HAIM, AND I. LÓPEZ FRANCO

8.4. Higher monoidal structure on the category of algebras. Apply the
constructions of Section 3 to each of the monoidal structures γi on T , 1 ≤ i ≤ p.
Under suitable assumptions (Theorem 3.14), we obtain monoidal structures ⊗γi on
the category of T -algebras. On the other hand, according to Theorem 2.1, for each
p < i the comonoidal structure γi allow us to lift the monoidal structure ⊗i from
C to CT .

Theorem 8.1. Assume that C admits reflexive coequalizers and that these are
preserved by T and ⊗i for each i ≤ p. Then

(CT ,⊗γ1 , . . . ,⊗γp ,⊗p+1, . . . ,⊗n)

is an n-monoidal category.

We outline the main steps in the proof.
The interchange law between the i-th and j-th monoidal structures on C is

afforded by either Theorem 6.1 if i < j ≤ p, Theorem 5.3 if i ≤ p < j, or Theorem
7.2 if p < i < j. One then has to verify the 3-monoidal axioms for each triple
i < j < k. There are four possible cases.

(i) p < i < j < k. In this case, the axioms follow from the fact that UT is
strong monoidal with respect to all three monoidal structures.

(ii) i ≤ p < j < k. The axioms follow by arguments involving universal (T , γi)-
multilinear maps similar to that in the proof of Theorem 5.3.

(iii) i < j ≤ p < k. The axioms now involve (T , γi, γj)-bilinear maps and are
similar to those in the proof of Theorem 6.1.

(iv) i < j < k ≤ p. We provide more detail in this, the case that requires more
attention.

Let ui, uj and uk denote universal bilinear maps for each of the monoidal struc-
tures. Let Uijk denote the composite below.

((A1 ⊗k B1)⊗j (A2 ⊗k B2))⊗i ((C1 ⊗k D1)⊗j (C2 ⊗k D2))

(uk⊗juk)⊗i(uk⊗juk)

��

((A1 ⊗γk B1)⊗j (A2 ⊗γk B2))⊗i ((C1 ⊗γk D1)⊗j (C2 ⊗γk D2))

uj⊗iuj

��

((A1 ⊗
γk B1)⊗

γj (A2 ⊗
γk B2))⊗i ((C1 ⊗

γk D1)⊗
γj (C2 ⊗

γk D2))

ui

��

((A1 ⊗γk B1)⊗γj (A2 ⊗γk B2))⊗γi ((C1 ⊗γk D1)⊗γj (C2 ⊗γk D2))

The map Ukji is defined in the same manner.
Let ζij , ζik, ζjk be the interchange laws for (C,⊗i,⊗j ,⊗k), and ζTij , ζ

T
ik, ζ

T
jk those

for (CT ,⊗γi ,⊗γj ,⊗γk). Arguing as in the above proofs, and employing axiom (24)
for C, one obtains

ζTjk ◦ (ζ
T
ik ⊗j ζ

T
ik) ◦ ζ

T
ij ◦ Uijk = Ukji ◦ ζjk ◦ (ζik ⊗j ζik) ◦ ζij

= Ukji ◦ (ζij ⊗k ζij) ◦ ζik ◦ (ζjk ⊗i ζjk) = (ζTij ⊗
γk ζTij ) ◦ ζ

T
ik ◦ (ζ

T
jk ⊗

γi ζTjk) ◦ Uijk.

Thus, in order to to obtain axiom (24) for CT , it suffices to check that Uijk is
epimorphic with respect to morphisms of T -algebras. This holds since ui satisfies
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this property (by universality) and since (uj ⊗i uj) ◦ ((uk ⊗j uk) ⊗i (uk ⊗j uk)) is
epimorphic with respect to (T , γi)-bilinear maps. This is the case by Lemma 3.12,
since uj ◦ (uk ⊗j uk) is a universal (T , γj , γk)-multilinear map (Proposition 6.5),
hence a reflexive T -coequalizer (Lemma 6.4).

8.5. (p, q)-monoids. Let (C,⊗i, Ii)1≤i≤n be an n-monoidal category. Fix p and
q with 0 ≤ p, q ≤ n and p + q = n. A (p, q)-monoid on C consists of an object
H equipped with a monoid structure in (C,⊗i) for each i ≤ p and a comonoid
structure in (C,⊗i) for each i > p, such that for each i < j, the i-th and j-th
structures turn M into a

• double monoid if i < j ≤ p,
• bimonoid if i ≤ p < j,
• double comonoid if p < i < j,

in the duoidal category (C,⊗i,⊗j). See [3, Section 7.7].

8.6. Linear monads on higher monoidal categories. Let n = p + q with
p, q ≥ 0. Suppose now that H is a (p + 1, q)-monoid in an (n + 1)-monoidal
category (C,⊗i)1≤i≤n+1. We employ the last of the p + 1 monoid structures to
define a monad T on C by

T X = H ⊗p+1 X.

We employ the remaining n structures to endow T with pmonoidal and q comonoidal
structures: for i < p+ 1 < j,

(H ⊗p+1 X)⊗i (H ⊗p+1 Y )
ζ
−→ (H ⊗i H)⊗p+1 (X ⊗i Y ) → H ⊗p+1 (X ⊗i Y ),

H ⊗p+1 (X ⊗j Y ) → (H ⊗j H)⊗p+1 (X ⊗i Y )
ζ
−→ (H ⊗p+1 X)⊗j (H ⊗p+1 Y ).

Proposition 8.2. With this structure, T is a (p, q)-monoidal monad on the n-
monoidal category (C,⊗i)i6=p+1.

Proof. Given an object A, let FA : I → C denote the functor that sends the unique
object of the one-arrow category I to A. Then A is a (p, q)-monoid if and only FA
is (p, q)-monoidal [3, Proposition 7.40]. On the other hand, the definition of higher
monoidal category implies that ⊗p+1 : C × C → C is (p, q)-monoidal. It follows
that, if A is such a monoid, the composite

C = I× C
FA×id
−−−−→ C× C

⊗p+1

−−−→ C

is (p, q)-monoidal. We obtain a functor

A 7→ A⊗p+1 (−)

from the category of (p, q)-monoids in (C,⊗i)i6=p+1 to the category of (p, q)-monoidal
endofunctors of this n-monoidal category. The former is monoidal under ⊗p+1 and
the latter under functor composition, and the above functor is strong monoidal for
these structures. The result follows since a (p + 1, q)-monoid is a monoid in the
former and a (p, q)-monoidal monad is a monoid in the latter. �

Such (p, q)-monoidal monads are called linear.
Algebras over T are modules over H in (C,⊗p+1). Under the assumptions of

Theorem 8.1, we obtain an n-monoidal structure on this category.
The dual construction inputs a (p, 1 + q)-monoid H in an (n + 1)-monoidal

category C and produces the (p, q)-comonad H ⊗p+1 (−).
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We list the possibilities for a linear monad and a linear comonad on a 3-monoidal
category (C, ⋄,⊗, ⋆). Note the former necessitates at least one monoid structure on
H , the latter at least one comonoid structure.

monoid type linear monad acted category monoidality
(3, 0) H ⋆ (−) (C, ⋄,⊗) double monoidal
(2, 1) H ⊗ (−) (C, ⋄, ⋆) bimonoidal
(1, 2) H ⋄ (−) (C,⊗, ⋆) double comonoidal

monoid type linear comonad acted category monoidality
(0, 3) H ⋄ (−) (C,⊗, ⋆) double comonoidal
(1, 2) H ⊗ (−) (C, ⋄, ⋆) bimonoidal
(2, 1) H ⋆ (−) (C, ⋄,⊗) double monoidal

We encountered an example of a double monoidal linear comonad in Section
5.5 (the copointing comonad). In Appendix A we describe certain bimonoidal
comonads on the category of species which though not quite linear, are constructed
from similar data on a given species.

Appendix A. Comonads on the category of species

We discuss a construction of bimonoidal comonads on the category of species. It
shares some features with the construction of Section 5.4, but it is set apart by the
fact that the present examples are non-linear. More precisely, while the underlying
monoidal comonads are linear, their comonoidal structure is not. We expand on
this below.

Let Sp denote Joyal’s category of set species. We employ the terminology of [3,
Chapter 8] and [4, Chapter 4]. Warning: in the former reference, Sp denotes the
category of vector species. The distinction between the two categories plays a role
below.

A (set) species is a functor

set× → Set

from the groupoid of finite sets and bijections to the category of sets. A species
P specifies a set P[I] for each finite set I. A morphism of species is a natural
transformation f : P → Q, and as such has components

fI : P[I] → Q[I],

one for each finite set I. We will not dwell on the role played by the morphisms in
set×.

The category of species is symmetric monoidal under Cauchy product : the species
P ·Q is given on a finite set I by

(P ·Q)[I] =
∐

I=S⊔T

P[S]×Q[T ].

The disjoint union is taken over all ordered pairs (S, T ) of subsets of I such that
I = S ∪ T and S ∩ T = ∅. The unit object is the species U characteristic of the
empty set. The symmetry simply exchanges the factors in the product.
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Let B be a set-theoretic bimonoid in Sp. Thus, for each finite set I and each
decomposition I = S ⊔ T , there are maps

µS,T : B[S]× B[T ] → B[I] and ∆S,T : B[I] → B[S]× B[T ].

There is also a distinguished element 1 ∈ B[∅]. The structure is subject to the
axioms described in [4, Section 4.2]. While the maps µ and the element 1 turn B
into a monoid in the monoidal category (Sp, ·,U), the maps ∆ do not endow it with
the structure of a comonoid therein. Note that if there is a morphism P → U in
Sp, then P[I] = ∅ on every nonempty set I. Certainly we do not require this from
B.

There are many natural examples of set-theoretic bimonoids. The species L of
linear orders is one: given linear orders ℓ1 on S and ℓ2 on T , their concatenation
defines a linear order µS,T (ℓ1, ℓ2) on I. Given a linear order ℓ on I, their restric-
tions define ∆S,T (ℓ) = (ℓ|S , ℓ|T ). Another example is furnished by the species of
matroids : direct sum of matroids defines the multiplication, while the matroid op-
erations of restriction and contraction define the comultiplication. See [3, Chapters
12 and 13] and [4, Section 9] for more examples.

We employ a second monoidal structure on Sp, the Hadamard product : the
species P ·Q is given on a finite set I by

(P×Q)[I] = P[I]×Q[I].

Note this is simply the categorical product on Sp. Therefore, together with the
Cauchy product, it turns the category of species into a duoidal category (Sp, ·,×).
Moreover, a bimonoid in this duoidal category is the same as a monoid in (Sp, ·).

Consider in addition the duoidal category (Sp, ·, ·) associated to the symmetric
monoidal (Sp, ·) (Section 1.4). We construct a bimonoidal comonad T on this
duoidal category out of the above structure on B. The endofunctor is defined by

T P = B× P.

The comultiplication T P → T 2P and counit T P → P of the comonad have com-
ponents as follows:

B[I]× P[I] → B[I]× B[I]× P[I] B[I]× P[I] → P[I]

(a, x) 7→ (a, a, x) (a, x) 7→ x.

The monoidal structure ϕP,Q : T P · T Q → T (P ·Q) has components

B[S]× P[S]× B[T ]× B[T ] → B[I]× P[S]×Q[T ]

(a, x, b, y) 7→ (µS,T (a, b), x, y).

The map ϕ0 : U → T U has only one non-trivial component:

U[∅] → B[∅]×U[∅]

∗ 7→ (1, ∗).

The comonoidal structure ψP,Q : T (P ·Q) → T P · T Q has components

B[I]× P[S]×Q[T ] → B[S]× P[S]× B[T ]×Q[T ]

(a, x, y) 7→ (a1, x, a2, y),



42 M. AGUIAR, M. HAIM, AND I. LÓPEZ FRANCO

where ∆S,T (a) = (a1, a2). The map ψ0 : T U → U has only one non-trivial compo-
nent:

B[∅]×U[∅] → U[∅]

(x, ∗) 7→ ∗.

These definitions turn T into a bimonoidal comonad on (Sp, ·, ·). The axioms
follow from the axioms for the set-theoretic bimonoid B.

We now describe in explicit terms the duoidal structure on the category of T -
comodules afforded by Theorem 5.3.

To this end, first recall the groupoid of elements el(B) associated to the species
B. The objects are pairs [I, a] where I is a finite set and a is an element of B[I]. A
morphism [I, a] → [J, b] in B is a morphism σ : I → J in set× such that B[σ](a) = b.
A B-species is a functor

el(B) → Set.

Let SpB denote the category of B-species.
Note that the category of T -comodules is the slice category of Sp under the

species B. We may therefore identify it with SpB. Concretely: a T -coalgebra is a
species P equipped with a morphism f : P → B in Sp. To this one associates the
B-species

el(B) → Set, [I, a] 7→ {x ∈ P[I] | fI(x) = a}.

The resulting duoidal structure (⋄, ⋆) on the category SpB is as follows. Given
two B-species P and Q, we have

(P ⋄Q)[I, a] =
∐

I=S⊔T
b∈B[S], c∈B[T ]
µS,T (b,c)=a

P[S, b]×Q[T, c]

and

(P ⋆Q)[I, a] =
∐

I=S⊔T

P[S, a1]×Q[T, a2],

where ∆S,T (a) = (a1, a2). The respective unit objects I and J have

I[I, a] =

{

{∗} if I = ∅ and a = 1,

∅ if not,
J[I, a] =

{

{a} if I = ∅

∅ if not.

We close with some remarks regarding the non-linearity of the bimonoidal comonad
T . The structure of monoidal comonad on T is in fact linear: B is a bimonoid
in (Sp, ·,×) (being a monoid in (Sp, ·)) and T is the associated linear monoidal
comonad (in the dual sense to that of Section 2.2). On the other hand, the
comonoidal structure is not linear, since as explained, B is not a comonoid in
(Sp, ·) (unless the species B is concentrated on the empty set).

Note also that for T to be a linear bimonoidal comonad (in the dual sense to
that of Section 5.4), B would have to be a (2, 1)-monoid in a 3-monoidal category
of the form (Sp, ·,×, ·) (see Section 8.6). However, not even a duoidal structure
of the form (Sp,×, ·) exists: there is no natural transformation of the appropriate
form for an interchange law.

The situation changes if we work with the category Sp
k
of vector species instead:

we do have a 3-monoidal category (Sp
k
, ·,×, ·) [3, Proposition 8.69], a set-theoretic

bimonoid as above gives rise by linearization to a (2, 1)-monoid therein, and we
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have an associated bimonoidal comonad. The resulting duoidal structure on Sp
k

admits a description similar to the above.
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