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Abstract. Sublocales of a locale (frame, generalized space) can
be equivalently represented by frame congruences. In this paper we
discuss, a.o., the sublocales corresponding to complete congruences,
that is, to frame congruences which are closed under arbitrary
meets, and present a “geometric” condition for a sublocale to be
complete. To this end we make use of a certain closure operator
on the coframe of sublocales that allows not only to formulate the
condition but also to analyze certain weak separation properties
akin to subfitness or T1.

Trivially, every open sublocale is complete. We specify a very
wide class of frames, containing all the subfit ones, where there are
no others. In consequence, e.g., in this class of frames, complete
homomorphisms are automatically Heyting.

Introduction

Sublocales S ⊆ L of a frame (locale) are, up to isomorphism, pre-
cisely the frames (locales) S embedded into L by extremal monomor-
phisms in the category of locales. Thus, if we view a frame as a general-
ized space we have here the natural geometric concept of a generalized
subspace. Unlike classical subspaces of a topological space, they have
also an algebraic aspect, being in a natural one-one correspondence
with the congruences on L. Now, among frame congruences on L, that
is, the congruences closed in L × L under arbitrary joins and finite
meets, we have the special case of complete lattice congruences (closed
under all joins and all meets). The question naturally arises what are
the geometric features of complete sublocales, that is, of sublocales
corresponding to complete congruences.
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In particular, each open sublocale is complete. The case of finite
frames immediately shows that there are complete sublocales that are
not open. On the other hand, under not too demanding separation ax-
ioms, complete frame homomorphisms coincide with the open (Heyt-
ing) ones and hence one can expect that under such circumstances
also complete and open sublocales will coincide. Thus the questions
naturally arise

– what is the geometric relation between complete and open sublo-
cales in general,

– in view of such a relation, what makes the two concepts coincide
in special frames,

– and what is the weakest condition under which they still coin-
cide.

It turns out that the key is a closure operator S 7→ S◦, which we call
fitting (following the Isbell terminology of fitted sublocales [?]). We will
answer the questions above by presenting a formula in terms of that
operator (S is complete iff for each open U , (S ∩U)◦ is open; assuming
just the openness of S◦ also makes a special sense), explain the coinci-
dence under special conditions by the behaviour of this operator, and
specify the conditions in these terms.

The paper is organized as follows. After necessary preliminaries in
Section 1 we discuss in Section 2 the operator of fitting. An analo-
gous construction in spaces is not a restriction of the general pointfree
one; the differences are analyzed in Section 3. Section 4 is devoted
to the behavior of completeness (and of its weaker variant) in terms
of the fitting operator, and to showing what happens in the context
of the separation axiom of subfitness. The last section is concerned
with the “border of the coincidence” of completeness and openness. A
necessary and sufficient condition for the coincidence in the form of a
relaxed subfitness (c-subfitness) is found, and it is also shown that this
is precisely the condition under which complete homomorphisms auto-
matically preserve the Heyting operation. It should be stated, though,
that while c-subfitness is weaker than subfitness formally, the question
whether it is really weaker remains an open problem.

1. Preliminaries

1.1. The terminology and notation concerning posets (here they will
be mostly complete lattices) is standard. For A ⊆ (X,≤) we write

↑A = {x ∈ X | x ≥ a for some a ∈ A}
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and
↓A = {x ∈ X | x ≤ a for some a ∈ A}.

A join (supremum) of A ⊆ (X,≤) will be denoted by
∨

A, and we
write a ∨ b for

∨
{a, b}; similarly we write

∧
A and a ∧ b for infima.

The smallest resp. largest element in a poset will be denoted by 0
resp. 1.

1.2. Adjoint maps. If X, Y are posets we say that monotone maps
f : X → Y , g : Y → X are adjoint, f to the left and g to the right, and
write f ⊣ g, if

f(x) ≤ y iff x ≤ g(y).

Recall that this is characterized by fg(y) ≤ y and x ≤ gf(x), that if
f ⊣ g then f (resp. g) preserves all the existing suprema (resp. infima),
and

1.2.1. if X, Y are complete lattices then an f : X → Y preserving all

suprema (resp. a g : Y → X preserving all infima) has a right (resp.
left) adjoint.

1.3. Frames and coframes. A frame, resp. coframe, is a complete
lattice L satisfying the distributivity law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}, (frm)

resp. (
∧

A) ∨ b =
∧
{a ∨ b | a ∈ A}, (cofrm)

for all A ⊆ L and b ∈ L; a frame (resp. coframe) homomorphism

preserves all joins and all finite meets (resp. all meets and all finite
joins). The lattice Ω(X) of all open subsets of a topological space X
is an example of a frame, and if f : X → Y is continuous we obtain
a frame homomorphism Ω(f) : Ω(Y ) → Ω(X) by setting Ω(f)(U) =
f−1[U ]. Thus we have a functor Ω from the category of topological
spaces into that of frames.

1.4. The Heyting structure. The equality (frm) states that the
mappings (x 7→ x ∧ b) : L → L preserve all joins. Hence, by ??, every
frame is a Heyting algebra with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b→c.

1.4.1. Pseudocomplements, supplements and complements. In
a frame we have the pseudocomplement b∗ = b→0 (=

∨
{x | x∧b = 0});

dually, in a coframe we have the supplement b# =
∧
{x | x ∨ b = 1}

([?]). Recall the standard De Morgan formulas (
∨

ai)
∗ =

∧
a∗
i
and

(
∧

ai)
# =

∨
a#
i
.

An element a is said to be complemented if there exists a b such that
a ∧ b = 0 and a ∨ b = 1; such b will be referred to as the complement
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of a. In a distributive lattice the complement, if it exists, is uniquely
determined, and is simultaneously the pseudocomplement and the sup-
plement of a. Therefore we will also denote it by a∗ (it will be always
clear we have in mind a complement which in the case in question
happens to exist).

1.5. The concrete category Loc. The functor Ω: Top → Frm

from ?? is a contravariant full embedding on an important part of
Top, the subcategory of sober spaces. Thus we can regard frames as
a natural generalization of spaces; it is useful to view it as a covariant
functor into the category of locales Loc, the dual of the category of
frames. Furthermore, it is of advantage to represent Loc as a con-
crete category with specific maps as morphisms. For this purpose one
defines a localic map f : L → M as the right adjoint of a frame homo-
morphism h = f ∗ : M → L. This can be done since frame homomor-
phisms preserve suprema; but, of course, not every mapping preserv-
ing infima is a localic one: they are precisely the infima-preserving
mappings f : L → M that satisfy f(f ∗(b) → a) = b → f(a) and
(f(a) = 1 ⇒ a = 1) for every a ∈ L and b ∈ M .

1.6. The coframe of sublocales. A sublocale of a frame L is a subset
S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→s ∈ S.

Note that sublocales are the natural subobjects in the category Loc:
extremal monomorphisms in Loc are up to isomorphism precisely the
embeddings of sublocales.
The set of all sublocales ordered by inclusion, denoted by S(L), is a

coframe, with lattice operations
∧

i∈J

Si =
⋂

i∈J

Si and
∨

i∈J

Si = {
∧

A |A ⊆
⋃

i∈J

Si}.

The top of S(L) is L and the bottom is the set O = {1} (the empty

sublocale).
We have the closed resp. open sublocales

c(a) = ↑a resp. o(a) = {x | a→x = x} = {a→x | x ∈ L}

modeling closed resp. open subspaces (and corresponding precisely to
the closed resp. open parts in [?]). They are complements of each other,
and we have (see e.g. [?]):

(a) o(0) = O, o(1) = L, o(a) ∩ o(b) = o(a ∧ b),
∨

o(ai) = o(
∨

ai),
(b) c(0) = L, c(1) = O, c(a) ∨ c(b) = c(a ∧ b),

⋂
c(ai) = c(

∨
ai).
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(c) The closed (resp. open) sublocales of a sublocale S are precisely
the c(a) ∩ S (resp. o(a) ∩ S) for a ∈ S.

1.6.1. Partial frame distributivity in S(L). In S(L) we have the
distributivity rule (cofrm) from ??, and (frm) does not generally hold.
But, maybe somewhat surprisingly,

if (Ti)i∈J is any system of sublocales and if S is complemented then

(
∨

i∈J

Ti) ∩ S =
∨

i∈J

(Ti ∩ S)

(see e.g. [?, VI.4.4.3]).

1.6.2. Frame congruences. Another representation of subobjects is
as (natural equivalence classes of) surjective frame homomorphisms,
the left adjoints to the embeddings of sublocales. Or, we can take
the associated frame congruences E ⊆ L×L (the sublocale associated
with E can be given by the formula SE = {

∨
Ea | a ∈ L}). The natural

correspondence of sublocales and frame homomorphisms gives rise to a
contravariant isomorphism between S(L) and the frame of congruences.

Recall the following fact from [?, VI.1.4.1]:

Theorem. Let S be a sublocale of L. Then, for the corresponding

congruence ES, we have

ES = {(a, b) | ↑a ∩ S = ↑b ∩ S} = {(a, b) | o(a) ∩ S = o(b) ∩ S}.

(For the equivalence of the two formulas see also the proof in [?].)
The frame congruences associated with the open resp. closed sublo-

cales are

∆a = {(x, y) | x ∧ a = y ∧ a} resp. ∇a = {(x, y) | x ∨ a = y ∨ a};

One speaks of open resp. closed congruences.

1.7. Quotients of frames. Let R ⊆ L× L be an arbitrary relation.
The quotient by the congruence generated by R can be constructed as
follows (see e.g. [?, III.11]). An element s ∈ L is R-saturated if

∀a, b, c aRb ⇒ a ∧ c ≤ s iff b ∧ c ≤ s

(if R is closed under finite meets, in particular if it is already a con-
gruence, the condition simplifies to aRb ⇒ a ≤ s iff b ≤ s). It is easy
to see that the set of R-saturated elements is a sublocale of L (usually
denoted by L/R). We have a map νR : L → L called the nucleus of
R (or of the resulting sublocale) which restricts to a quotient frame
homomorphism L → L/R.
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1.8. Subfit, fit and regular. A frame is subfit (conjunctive in [?]) if

∀a, b, a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c, (sfit)

and fit if

∀a, b, a � b ⇒ ∃c, a ∨ c = 1 and c→b 6= b. (fit)

A frame is subfit iff each open sublocale is a join of closed ones, and fit
iff each closed sublocale is a meet of open ones (those were the original
definitions in [?]). A frame is fit iff each of its sublocales is subfit.

In spaces, subfitness is slightly weaker than T1 (together with TD —
see [?] — it is precisely T1; for more about low separation axioms see
e.g. [?, ?]). The fitness, however, is, surprisingly, a strong separation
property akin to regularity (see [?]).

Regularity: Write x ≺ y if x∗ ∨ y = 1. A frame L is regular if, for
each a ∈ L, a =

∨
{x | x ≺ a}, and this corresponds precisely to the

regularity of spaces.

For more about frames see, e.g., [?] or [?]. We use only the most
standard facts about categories; the reader may consult, e.g., [?].

2. Fitting: the other closure

2.1. A sublocale S is fitted (Isbell, [?]) if it is a meet of open ones.
The fitted sublocales of a locale L form a closure system in S(L) (that
is, a system of sublocales closed under arbitrary intersections), with
associated closure operator

S 7→ S◦ =
⋂
{T |T fitted, S ⊆ T} =

⋂
{o(a) |S ⊆ o(a)}.

We call S◦ the fitting of S. In particular, we have

S ⊆ S◦, S ⊆ T ⇒ S◦ ⊆ T ◦, (S◦)◦ = S◦ and O
◦ = O. (2.1.1)

Furthermore, the coframe distributivity in S(L) implies immediately
that the closure system of fitted sublocales is also closed under binary
joins. Hence, the fitting closure also satisfies the property

(S ∨ T )◦ = S◦ ∨ T ◦. (2.1.2)

Note. We have not been able to find an effective use of this closure
operator in the literature on pointfree topology. A. Simpson mentions
it implicitly in [?, Section 4], in the framework of σ-locales, and, more
recently, T. Dube [?, Remark 3.3] used a variant of it (defined only for
cozero elements a ∈ L) to characterize Gδ-dense sublocales.

Note that the congruences E on L which correspond to the fitted
sublocales of L are exactly those for which E =

∨
{∆a | ∆a ⊆ E} in the

congruence frame of L, that is, the E generated by {(a, 1) | (a, 1) ∈ E}.
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2.2. Observation. The supplements of fitted sublocales are, obviously,
the joins of closed elements:

S# = (
⋂
{o(a) |S ⊆ o(a)})# =

∨
{c(a) |S ∩ c(a) = O}.

2.3. In the notation of this section we have (see [?] or [?, Prop. 4.2])
that

– a frame L is fit iff for all a ∈ L, c(a)◦ = c(a), and, equivalently,
– a frame L is fit iff for all sublocales S ⊆ L, S◦ = S, that is, if
fitting is trivial.

2.4. Images and preimages. ([?]) For a localic map f : L → M the
image f [S] of any sublocale S ⊆ L is a sublocale of M . On the other
hand, the set-theoretic preimage f−1[S] of a sublocale S is not necessar-
ily a sublocale. It is a meet-closed subset, though, and hence (see the
formula for the join of sublocales in ??) there is the largest sublocale
f−1[S] =

∨
{T ∈ S(L) | T ⊆ f−1[S]} contained in f−1[S]. This defines

the localic preimage function f−1 : S(M) → S(L) right adjoint to the
image. For closed sublocales we have f−1[c(a)] = f−1[c(a)] = c(f ∗(a)).
For open sublocales the localic and set-theoretic preimages do not nec-
essarily coincide, but we do have f−1[o(a)] = o(f ∗(a)).

Proposition. Let f : L → M be a localic map, S ∈ S(L) and T ∈
S(M). Then:

(1) f [S◦] ⊆ f [S]◦.
(2) f−1[T ]

◦ ⊆ f−1[T
◦].

(3) If f is injective, then f−1[f [S]
◦] = S◦.

Proof. (1) First, notice that one of the defining properties of a localic
map means that f [o(f ∗(b))] ⊆ o(b) for any b ∈ M . Then, we have

f [S◦] ⊆
⋂
{f [o(a)] | S ⊆ o(a)} ⊆

⋂
{f [o(f ∗(b))] | S ⊆ o(f ∗(b))} =

=
⋂
{f [o(f ∗(b))] | f [S] ⊆ o(b)} ⊆

⋂
{o(b) | f [S] ⊆ o(b)} = f [S]◦.

(2) It is equivalent to (1) by adjunction.
(3) By the previous property, one has always

S◦ ⊆ f−1[f [S]]
◦ ⊆ f−1[f [S]

◦].

Moreover,

f−1[f [S]
◦] =

⋂
{o(f ∗(b)) | f [S] ⊆ o(b)} =

⋂
{o(f ∗(b)) | S ⊆ o(f ∗(b))}

and this is S◦ whenever f ∗ is onto, that is, whenever f is one-one. �

Note that property (1) together with ?? make the fitting operator a
closure operator in the sense of Dikranjan-Giuli [?].
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2.5. Codense sublocales. Let S ⊆ T be sublocales of L. We say
that S is codense in T if, for every a ∈ L,

c(a) ∩ S = O ⇒ c(a) ∩ T = O.

We say that S is codense when it is codense in L. Thus S is codense
if, for every a ∈ L,

c(a) ∩ S = O ⇒ c(a) = O (that is, a = 1).

Note. Compare this property with density, with the analogous im-
plication concerning open sublocales. One should also keep in mind
that this notion is consistent with the standard use of the term co-

dense homomorphism for the frame homomorphisms h : L → M such
that h(a) = 1 implies a = 1: S is codense iff the associated frame
homomorphism L → S is codense iff (a, 1) ∈ ES implies a = 1.

2.5.1. Codensity is to the operator S◦ as density is to the standard
closure S. We have

Proposition. S is codense in T iff T ⊆ S◦.

Proof. If T ⊆ S◦ and S∩c(a) = O then S ⊆ o(a), hence T ⊆ S◦ ⊆ o(a),
and T ∩ c(a) = O. Thus, S is codense in T . Conversely, if S is codense
in T and S ⊆ o(a) then S ∩ c(a) = O, hence T ∩ c(a) = O, and
T ⊆ o(a). �

Then, using ??, we immediately obtain

Corollary. Let f : L → M be a localic map, S, T ∈ S(L). If S is co-

dense in T , then f [S] is codense in f [T ]. The converse holds whenever

f is injective. �

3. What happens in spaces

3.1. Preparing for examples. Consider an infinite set X and the
cofinal topology on X, that is, open sets are the UA = X r A with A
finite, and ∅. The resulting space will be denoted by Xcf .
The Heyting operation in Ω(Xcf) is easily computed to be

UA→UB = UBrA and UA→∅ = ∅

so that the open sublocales are

o(UA) = {UB |B ∩ A = ∅} ∪ {∅} and o(∅) = O.
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3.2. The spatial fitting. In analogy with ?? we define in a space
X = (X, τ), for a subset A of X, the spatial fitting

A◦ =
⋂
{U |U ∈ τ, A ⊆ U}.

Again, one has

A ⊆ A◦, A ⊆ B ⇒ A◦ ⊆ B◦, (A◦)◦ = A◦, ∅◦ = ∅

and (A ∪ B)◦ = A◦ ∪ B◦.

3.2.1. Using the same symbol of ◦ in the superscript like in the point-
free case will, hopefully, not create confusion. One has to bear in
mind, however, that the spatial fitting of a subspace (subset) in a space
X = (X, τ) does not have to agree with the fitting of the associated
sublocale in Ω(X). Take the space Xcf from ??. For a subset M ⊆ X
one has there, trivially, M = M◦ but

for any non-empty sublocale S ⊆ Ω(Xcf), S◦ is dense

(each non-empty open sublocale of Ω(Xcf) contains ∅) while for instance
no closed sublocale c(UA) is dense.

3.3. The relation of subfitness and fitness to the spatial fitting is
quite different from that of the fitting in the pointfree case.

First of all, due to the both-sided De Morgan formulas, unlike in the
general pointfree case, the conditions

– every closed subset (resp. every subset) is an intersection of
open sets,

– every open subset (resp. every subset) is an intersection of
closed sets,

in spaces coincide.

We have

3.3.1. Proposition. The following statements are equivalent for a

topological space X:

(i) For every M ⊆ X, M◦ = M .

(ii) Each M ⊆ X is a union of closed subsets.

(iii) X is T1.

Proof. (i)⇔(ii) by De Morgan formulas.

(ii)⇒(iii): {x} is a union of closed subsets, hence {x} ⊆ {x}.
(iii)⇒(ii): M =

⋃
{{x} | x ∈ M}. �
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3.3.2. Recall that a space is said to be symmetric (see e.g. [?]) if for
all x, y ∈ X

x ∈ {y} iff y ∈ {x}. (sym)

This is obviously equivalent with

for every open U and x ∈ U, {x} ⊆ U. (sym’)

(Indeed, if (sym) holds, x ∈ U and y ∈ {x} then x ∈ {y} and, since

x ∈ U open, y ∈ U . On the other hand, if (sym’) holds and x ∈ {y},

and if y ∈ U , then x ∈ {y} ⊆ U and hence y ∈ {x}.)

3.3.3. Proposition. The following statements are equivalent for a

topological space X:

(i) For every closed M ⊆ X, M◦ = M .

(ii) Each open M ⊆ X is a union of closed subsets.

(iii) X is symmetric.

Proof. Again, (i)⇔(ii) by De Morgan formulas. Now we will use (sym’).
(ii)⇒(iii): If x ∈ U with U open then x ∈ F ⊆ U for some closed F

and hence {x} ⊆ F ⊆ U .

(iii)⇒(ii): U =
⋃
{{x} | x ∈ U}. �

3.3.4. Note the contrast with the pointfree case: the open vs. closed
conditions are here equivalent, while, on the other hand, M◦ = M for
all M and for closed M are here not equivalent.

3.4. The following is a well known result ([?, ?]). We will present
a proof, because it is very short and because we wish to stress the
equivalence of (1) and (2) which will contrast with ?? below.

Proposition. The following statements about a space X are equivalent:

(i) Ω(X) is subfit, that is, if A * B for open A,B, then there is an

open C such that A ∪ C = X 6= B ∪ C.

(ii) The condition (i) holds for the generic B = X r {x} that is, for

open A and x ∈ A there is an open C such that A ∪ C = X 6=
(X r {x}) ∪ C.

(iii) For every open U and x ∈ U there is a y ∈ {x} such that {y} ⊆ U .

Proof. (i)⇒(ii) is trivial.
(ii)⇒(iii): For an open U and x ∈ U choose an open C with U ∪ C =

X 6= (X r {x}) ∪ C. Pick a y /∈ (X r {x}) ∪ C, that is, y ∈ {x} and

y /∈ C. Then {y} ∩ C = ∅ and, finally, {y} ⊆ U .

(iii)⇒(i): Let A * B. Choose an x ∈ A r B and a y ∈ {x} such that

{y} ⊆ A. Set C = X r {y}. Then A ∪ C = X and y /∈ B ∪ C. �
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Note. Compare the statement in (iii) with (sim’). Symmetry is a
stronger property, not only formally so (for an example see [?]).

3.5. Fitness. In spite of the formal similarity of ?? and the state-
ments in ??, fitness is in fact a much stronger condition than the
conditions concerning M◦ = M for spaces (while, as shown in ??,
subfitness is in fact weaker than the analogous spatial conditions). For
a full characterization of fitness in spaces see [?]. Here, let us just show
that even a weaker condition is close to regularity.

Recall that in Heyting terms we have U∗ = U → ∅. The fitness
formula

A * B ⇒ ∃C, A ∨ C = X and C→B 6= B

implies a weaker prefitness [?]

A 6= ∅ ⇒ ∃D ≺ A, D 6= ∅ (pfit)

(indeed, in the formula above take B = ∅ and D = C∗ = C→∅).
Now prefitness implies “regularity up to density”. That is, we have

Proposition. If Ω(X) is prefit then, for every open A,

A ⊆
⋃
{B |B ≺ A}

Proof. If U ∩ A 6= ∅ choose ∅ 6= D ≺ U ∩ A. Then D ⊆
⋃
{B |B ⊆

A}. �

In Proposition ?? we saw that the subfitness condition could be
reduced to the generic primes X r {x} for the B’s. For fitness, the
situation is quite different.

3.5.1. Proposition. We have the implication

A * Xr{x} ⇒ ∃C open, C∪A = X and C→(Xr{x}) 6= Xr{x},

for every open A in X, iff X is symmetric.

Proof. I. Explicitly, the implication says that

x ∈ A ⇒ ∃C open, C∪A = X and int((XrC)∪(Xr{x})) ⊃ Xr{x}.

Thus, there is a y /∈ X r {x}, that is, y ∈ {x}, and an open U with

y ∈ U ⊆ (X r C) ∪ (X r {x}). Since y ∈ U open and y ∈ {x}, x ∈ U ,

and hence x ∈ X r C, which is closed, and finally {x} ⊆ X r C ⊆ A,
the last inclusion because C ∪ A = X.

II. Conversely, if X is symmetric and x ∈ A, then {x} ⊆ A and we

have (X r {x}) ∪ A = X. Set C = X r {x}. Then

C→(X r {x}) = C→C = X 6= X r {x}. �
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3.6. Note. In the conditions similar to fitness, very small variations
can cause big differences. One may think of the relaxation to the
generic elements as in ?? as fairly radical (even if such a change did
not cause anything in the subfit case), but consider the following im-
plication.

a � b 6= 0 ⇒ ∃c, c ∨ a = 1 and c→b 6= b. (fit-0)

Here the fitness is relaxed only by assuming the b non-zero. But it is
satisfied by Ω(Xcf) which is really very far from being fit (for instance,
in this frame there is no non-trivial occurrence of x ≺ y). Note that,
furthermore, in Ω(Xcf) the bottom can be obtained as a meet of already
two non-zero elements so that the anomaly is not caused by a special
status of the bottom (in particular, this frame is subfit).

It might be of interest to discuss (fit-0), perhaps also in combination
with the weak subfitness ([?], puny in [?])

a 6= 0 ⇒ ∃c 6= 1, a ∨ c = 1 (wsfit)

to dismiss the trivial cases of the frame with immediate successor of 0.

4. Complete and weakly complete sublocales

4.1. A (frame) congruence is said to be complete if it is closed under
arbitrary joins and arbitrary meets. For instance, each ∆a (recall ??)
is complete.

4.1.1. Proposition. A congruence E ⊆ L × L is complete iff each

congruence class Ea contains a least element.

Proof. The implication ‘⇒’ is obvious.
Now consider the quotient map q : L → L/E as in ??. From the

saturation formula xEy ⇒ (x ≤ s ≡ y ≤ s) we immediately see
that q(a) is the maximum element of the equivalence class Ea. For
x ∈ L/E = q[L] define φ(x) as the minimum element of Ex. Then, as
φ(x)Ex, we have

q(φ(x)) = x. (4.1.1)

We claim that φ is monotone: indeed, if x ≤ y for x, y ∈ q[L], we
have (φ(x) ∧ φ(y))E(x ∧ y) = xEφ(x) and hence φ(x) ∧ φ(y) = φ(x),
by the minimality of φ(x). Now, by (??) and the obvious inequality
φ(q(x)) ≤ x, we infer that φ is a left adjoint of q, hence q preserves all
meets, and E is complete. �
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4.2. For a sublocale S, and for an element a ∈ L, set

uaS =
∧
{x | o(x) ∩ S = o(a) ∩ S} =

∧
{x | o(a) ∩ S ⊆ o(x)}

(the second equality holds since o(a) ∩ S ⊆ o(x) implies o(a) ∩ S =
o(x ∧ a) ∩ S). Note that (recall ??)

{x | o(x) ∩ S = o(a) ∩ S} = ESa and hence uaS =
∧

ESa.

4.2.1. Lemma. For any S and a ∈ L,

o(uaS) ⊆ ((o(a) ∩ S)◦)## ⊆ (o(a) ∩ S)◦.

Proof. Obviously ↑uaS ⊇
∨
{↑x | o(a) ∩ S ⊆ o(x)} in L and hence

↑uaS ⊇
∨
{o(x)# | o(a) ∩ S ⊆ o(x)} =

= (
⋂
{o(x) | o(a) ∩ S ⊆ o(x)})# = ((o(a) ∩ S)◦)#

so that o(uaS) = (↑uaS)
# ⊆ ((o(a) ∩ S)◦)##. �

4.2.2. Lemma. If ESa has a least element then (o(a) ∩ S)◦ ⊆ o(uaS).

Proof. The least element is uaS and hence o(uaS)∩S = o(a)∩S so that
o(a) ∩ S ⊆ o(uaS) and, since o(uaS) is open, (o(a) ∩ S)◦ ⊆ o(uaS). �

4.2.3. Proposition. ESa has a least element iff (o(a) ∩ S)◦ is open.

Proof. Let (o(a) ∩ S)◦ = U be open. Since o(a) ∩ S is codense in U , it
is also codense in o(a) ∩ U and we see that U = o(b) with o(b) ⊆ o(a)
and hence b ≤ a. We have

↑b∩S = ↑b∩S∩ (o(a)∨↑a) = (↑b∩ (o(a)∩S))∨ (↑a∩↑b∩S) = ↑a∩S

so that bESa. Now, if cESa we have o(a) ∩ S = o(c) ∩ S ⊆ o(c) and
hence o(b) = (o(a)∩S)◦ ⊆ o(c) and b ≤ c. Thus, b is the least element
of ESa.
On the other hand, if ESa has a least element, it is uaS and we have,

by ?? and ??, o(uaS) ⊆ (o(a) ∩ S)◦ ⊆ o(uaS), that is, (o(a) ∩ S)◦ =
o(uaS). �

4.3. A sublocale S is said to be complete if the congruence ES is
complete.

A congruence E (resp. a sublocale S) is said to be weakly complete

if E1 (resp. ES1) has a least element.

4.3.1. Theorem. A sublocale S ⊆ L is complete iff for every open U ,

(S ∩ U)◦ is open.

S is weakly complete iff S◦ is open.

Proof. The first statement follows immediately from ?? and ??; for the
second one apply ?? with o(1) = L. �
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4.3.2. Notes. (1) It is easy to find examples of weakly complete but
not complete sublocales (if we assume no separation axiom; but see ??
below). For instance, in the unit interval [0, 1] with the natural order,
we have o(a) = [0, a) ∪ {1}; if we consider

S = {s1 < s2 < · · · < sn < · · · }

where sn converges to 1
2
, we have ES1 = [1

2
, 1] with least element 1

2
,

so that S is weakly complete, while the other congruence classes ESa
with 0 < a < 1

2
are not. Or take the topology on X = [0, 1] consisting

of the standard open sets not containing 0, plus X. Then any subset
containing 0 makes for a weakly complete sublocale, but many of these
are not complete: for S = [0, 1

2
] and U = (0, 1), S ∩U = (0, 1

2
] is closed

(in U and X) for the closure operator (−)◦ but S ∩U is not open in U .

(2) A closer scrutiny of the proofs shows that we can be more specific,
that is, in the case of weak completeness we know that the open set is
o(u1S), while in the case of completeness it is o(uaS). Hence, we have:

– a sublocale S ⊆ L is weakly complete iff S◦ = o(u1S), and
– S is complete iff for each a ∈ L (S ∩ o(a))◦ = o(uaS).

4.3.3. Recall that a localic map f : L → M is said to be open if the
image of each open sublocale S ⊆ L is open (note that for TD-spaces
this agrees with the open continuous maps — see [?, ?, ?]; TD, an
axiom weaker than T1, appeared, first, in [?]).

Corollary. Open localic maps preserve weakly complete sublocales.

Proof. Let f : L → M be an open localic map and S a weakly complete
sublocale of L. By ??, f [S]◦ ⊇ f [S◦] ⊇ f [S]. Since S◦ is open, f [S◦] is
also open and hence f [S]◦ = f [S◦]. �

4.3.4. By ??, ES1 = {x | o(x) ∩ S = S} = {x |S ⊆ o(x)}. Since
S ⊆ o(x) iff S◦ ⊆ o(x) we have

ES◦1 = ES1. (∗)

Lemma. If S is weakly complete then

↓(S r {1}) = ↓(o1S r {1}).

Proof. The equality states that x(nonES)1 iff x(nonEo(u1S))1, that is,
xES1 iff xEo(u1S)1. If S is weakly complete then, by ??(2), S◦ = o(u1S).
Use (∗). �

4.4. Theorem. [Another characterization of subfitness] A frame L is

subfit iff each weakly complete sublocale of L is open.
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Proof. ⇒: If S is weakly complete then it is codense in an open U ⊆ L.
Every open sublocale of a subfit L is subfit (in fact, every complemented
one is — see e.g. [?, 4.2.1]; but it also immediately follows from ??),
and hence we can apply [?, 5.3] and conclude that S = U .

⇐: Let S be codense in L. Since L is open, S is weakly complete and
hence open, and an open codense S ⊆ L is equal to L (consider the
complement of S). Use [?, 5.3]. �

4.4.1. Corollary. Let L be subfit. Then the following statements are

equivalent.

(i) S is weakly complete.

(ii) S is complete.

(iii) S is open. �

5. A formal relaxation of subfitness

5.1. The “trivial top” characterization in terms of fitting. Yet
another well known characterization of subfitness is as follows (Isbell,
[?]):

if E1 = {1} for a congruence E on L

then E = IdL, the identity relation on L. (sfit’)

This has a very concise reformulation (and a very easy proof at least
in one direction) in terms of fitting.

5.1.1. Lemma. For any S ∈ S(L), S◦ = L if and only if ES1 = {1}.

Proof. aES1 iff a ≤ s ∈ S implies that s = 1, in other words, iff
↑a ∩ S = O. Thus, ES1 = {1} iff S is codense. �

5.1.2. Theorem. The following statements are equivalent for a frame

L:

(i) L is subfit.

(ii) For any congruence E of L, E1 = {1} ⇒ E = IdL.
(iii) For any sublocale S of L, S◦ = L ⇒ S = L.

Proof. (iii) is by ?? only a reformulation of (ii).
(i)⇒(iii): Let L be subfit and let S◦ = L. Since L is open, S is weakly
complete by ??, hence open by ??, and consequently S = S◦ = L.
(iii)⇒(i): Let a � b. Hence ↑b * ↑a, and ↑b 6= ↑b ∩ ↑a.
Set S = ↑a∨

∨
{↑c | c∨a = 1}. Let ↑x∩↑a = O, that is, ↑(a∨x) = O;

hence a ∨ x = 1 and ↑x ⊆
∨
{↑c | a ∨ c = 1}. Thus, S is codense, and

by the assumption, S = L.
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Hence, ↑b = ↑b ∩ S, and since ↑b 6= ↑b ∩ ↑a we have

↑b ∩ (
∨
{↑c | a ∨ c = 1}) 6= O,

and since ↑b is complemented, we have, by ??, ↑b ∩ ↑c 6= O, that is,
b ∨ c 6= 1, for some c such that a ∨ c = 1. �

5.2. A formal relaxation. We will formally relax the condition of
(sfit’) by assuming the triviality for complete sublocales only; we will
speak of c-subfitness. We will require for a congruence E on L just that

if E1 = {1} and E is complete, then E = IdL. (c-sfit)

By ??, this can be rewritten in localic terms as

for complete S, if S◦ = L then S = L. (c-sfit)

We will present two necessary and sufficient conditions for c-subfit-
ness, one of them technical, another stating that this is precisely the
borderline of the coincidence of completeness and openness (analogous
to the characterization of subfitness in ??).

5.3. Theorem. A frame L is c-subfit iff, for every complete S and

open U in S(L),

↓(S r {1}) = ↓(U r {1}) ⇒ S = U.

Proof. ⇐ is trivial.
⇒: Let ↓(S r {1}) = ↓(o(a)r {1}). We shall show that c(a) ∩ S = O.
Indeed, if 1 6= s ∈ S and if a ≤ s, then a ∈ ↓(o(a) r {1}), hence
a ≤ a→x 6= 1 for some x. But then a ≤ x and therefore a→x = 1, a
contradiction. �

5.4. Theorem. A frame L is c-subfit iff each complete sublocale S ⊆ L
is open.

Proof. ⇒: Let L be c-subfit and let S ⊆ L be complete. Then it is
weakly complete and hence, by ??, ↓(Sr{1}) = ↓(o(u1S)r{1}). Thus,
by ??, S = o(u1S) is open.

⇐: By ?? it suffices to prove that

↓(o(b)r {1}) = ↓(o(a)r {1}) ⇒ b = a.

Let the first equality hold and let b � a. Then 1 6= b→a ∈ o(b)r {1}.
Then b→ a ∈ ↓(o(a) r {1}) and b→ a = a→ x for some x such that
a→x 6= 1. Therefore, a ∧ (b→a) ≤ x but, since a ≤ b→a, this yields
a ≤ x and a→x = 1, a contradiction. �
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5.5. Complete Heyting homomorphisms. By a theorem of Joyal
and Tierney ([?]) a localic map f : L → M is open iff its associated
frame homomorphism f ∗ : M → L is a complete Heyting homomor-
phism. On the other hand, it is known (see e.g. [?]) that for a subfit
M each complete frame homomorphism h : M → L is a complete Heyt-
ing homomorphism; that is, we obtain the preservation of the Heyting
operation for free. Now we will show that this is true precisely for
c-subfit frames.

5.5.1. Lemma. Let h : M → L be a frame homomorphism. Then we

have, for congruences associated with sublocales,

(h× h)−1[ES] = Eh∗[S].

Proof. Use ??. From the adjunction h ⊣ h∗ we have that (x, y) ∈
(h× h)−1[ES], that is,

∀s ∈ S, h(x) ≤ s iff h(y) ≤ s

if and only if
∀s ∈ S, x ≤ h∗(s) iff y ≤ h∗(s),

that is, (x, y) ∈ Eh∗[S]. �

5.5.2. Theorem. Each complete frame homomorphism h : M → L is

a complete Heyting homomorphism iff M is c-subfit.

Proof. ⇐: Let M be c-subfit and let h : M → L be a complete frame
homomorphism. Let S be an open sublocale of L. Then, in particular,
it is complete, and hence ES is complete. From the completeness of h
and from ?? we now immediately infer that Eh∗[S] is complete. Thus,
h∗[S] is complete and, by ??, it is open. We conclude that h is an open
homomorphism and apply the Joyal-Tierney theorem.

⇒: Let S be a complete sublocale of M . Consider the quotient ho-
momorphism h : M → S adjoint to the embedding j : S ⊆ M . Then
h is a complete homomorphism and hence it is a Heyting one. Thus,
it is an open homomorphism and, in particular, S = j[S] is an open
sublocale. �

5.6. Note. Restricting in (c-sfit) the condition from general sublocales
to (very special) complete ones seems to be a very radical reduction.
Yet, it is still an open problem whether it is not, after all, just another
formula for subfitness. It has defied solution for years, even in modified
contexts like that of Heyting meet-semilattices ([?]).

Any answer to this problem would be of interest. And if it should
turn out that c-subfitness were strictly weaker then fitness, it would be
of interest to find a first order formula akin to (sfit) in ??.
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5.3 Theorem A frame L is c-subfit iff, for every complete S and open U in S(L),

↓(S � {1}) =↓(U � {1}) ⇒ S = U .

Proof ⇒: Since S◦ = o(a) is obviously the same as claiming that S ⊆ o(a) together with

↓(S � {1}) being cofinal in ↓(o(a) � {1}), it suffices to prove that S ⊆ o(a).

Let ↓(S � {1}) =↓(o(a) � {1}). We shall show that c(a) ∩ S = O. Indeed, if 1 �= s ∈ S

and a ≤ s, then a ∈↓(o(a) � {1}), hence a ≤ a → x �= 1 for some x . But then a ≤ x and

therefore a → x = 1, a contradiction.

⇐ is trivial. ⊓⊔
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