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DISTRIBUTIVE LAWS VIA ADMISSIBILITY

CHARLES WALKER

Abstract. This paper concerns the problem of lifting a KZ doctrine P to the
2-category of pseudo T -algebras for some pseudomonad T . Here we show that
this problem is equivalent to giving a pseudo-distributive law (meaning that
the lifted pseudomonad is automatically KZ), and that such distributive laws
may be simply described algebraically and are essentially unique (as known to
be the case in the (co)KZ over KZ setting).

Moreover, we give a simple description of these distributive laws using
Bunge and Funk’s notion of admissible morphisms for a KZ doctrine (the
principal goal of this paper). We then go on to show that the 2-category of
KZ doctrines on a 2-category is biequivalent to a poset.

We will also discuss here the problem of lifting a locally fully faithful KZ
doctrine, which we noted earlier enjoys most of the axioms of a Yoneda struc-
ture, and show that a bijection between oplax and lax structures is exhibited
on the lifted “Yoneda structure” similar to Kelly’s doctrinal adjunction. We
also briefly discuss how this bijection may be viewed as a coherence result for
oplax functors out of the bicategories of spans and polynomials, but leave the
details for a future paper.
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1. Introduction

It is well known that to give a lifting of a monad to the algebras of another monad
is to give a distributive law [1]. More generally, to give a lifting of a pseudomonad
to the pseudoalgebras of another pseudomonad is to give a pseudo-distributive
law [22, 3]. However, in this paper we are interested in the problem of lifting a
Kock-Zöberlein pseudomonad P (also known as a lax idempotent pseudomonad),
as introduced by Kock [16] and Zöberlein [33], to the pseudoalgebras of some pseu-
domonad T . These KZ pseudomonads are a particular type of pseudomonad for
which algebra structures are adjoint to units; an important example being the free
cocompletion under a class of colimits Φ.

But what does it mean to give a lifting of a KZ doctrine to the setting of pseu-
doalgebras such that the lifted pseudomonad is also KZ? One objective of this
paper is to show that this problem is equivalent to giving a pseudo-distributive
law (meaning a lifting of this pseudomonad automatically inherits the KZ struc-
ture), and consequently that such pseudo-distributive laws have a couple of simple
descriptions. One simple description being purely algebraic (a generalization and
simplification of a description given in [22, Section 11]), and another being a novel
description purely in terms of left Kan extensions and Bunge and Funk’s admissible
maps of a KZ doctrine [2]. In fact, Bunge and Funk’s admissible maps are a cen-
tral tool in the proof of these results. We also see that these distributive laws are
essentially unique, a generalization capturing [25, Theorem 7.4] and strengthening
parts of [23, Prop. 4.1].

These two descriptions of a pseudo-distributive law correspond to two different
descriptions of a KZ pseudomonad. The first, which from now on we call a KZ
pseudomonad, is a well known algebraic description similar to Kock’s [16]; the
second, which we call a KZ doctrine, is to be the description in terms of left Kan
extensions due to Marmolejo and Wood [25, Definition 3.1].

Bunge and Funk showed that admissibility in the setting of a KZ pseudomonad
also has both an algebraic definition and a definition in terms of left Kan extensions.
Indeed, Bunge and Funk defined a morphism f to be admissible in the context of
a KZ doctrine P when Pf has a right adjoint [2, Definition 1.1], and showed that
this notion of admissibility also has a description in terms of left Kan extensions
[2, Prop. 1.5]. We refer to this as P -admissibility.

The central idea here is that instead of thinking about the problem of lifting a
KZ doctrine algebraically, we think about the problem in terms of algebraic left
Kan extensions. Moreover, this notion of admissibility is crucial here as it allows
us to show that certain left extensions exist and are preserved.

A well known and motivating example the reader may keep in mind is the KZ
doctrine for the free small cocompletion on locally small categories, with its lifting
to the setting of monoidal categories described by Im and Kelly [10] via the Day
convolution [4].

In Section 2 we give the necessary background for this paper, and recall the
basic definitions of pseudomonads, pseudo algebras and morphisms between pseudo
algebras. In particular, we recall the notion of a KZ pseudomonad and KZ doctrine
and some results concerning them. In addition, we recall some results concerning
algebraic left extensions. These notions will be used regularly throughout the paper.

In Section 3, which is the bulk of this paper, we use Bunge and Funk’s no-
tion of admissibility to generalize some results of Marmolejo and Wood concerning
pseudo-distributive laws of (co)KZ doctrines over KZ doctrines, such as the simple
form of such distributive laws [22, Section 11] or essential uniqueness of them [25,
Theorem 7.4]. Our first improvement here is to show that an axiom concerning the
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(co)KZ doctrine may be dropped, allowing us to generalize these results to pseudo-
distributive laws of any pseudomonad over a KZ doctrine. For example, this level
of generality allows us to capture the case studied by Im and Kelly [10]; showing
that the lifting of the small cocompletion from categories to monoidal categories is
essentially unique.

In addition, we use this simplification to give a simple algebraic description of
a pseudo-distributive law of a pseudomonad over a KZ pseudomonad, consisting
only of a pseudonatural transformation and three invertible modifications subject
to three coherence axioms, and prove this definition is equivalent to the usual notion
of pseudo-distributive law. However, the main new result of this section is a simple
description of pseudo-distributive laws over a KZ doctrine purely in terms of left
Kan extensions and admissibility.

Furthermore, through these calculations we find that in the presence of a such
a distributive law, the lifting of a KZ doctrine P to pseudo-T -algebras (for a pseu-
domonad T ) is automatically a KZ doctrine. The proof of these results is highly
technical, relying on T preserving P -admissible maps; however, the main result of
this section is simply stated in Theorem 35.

In Section 4 we study some properties of the lifted KZ doctrine P̃ , such as

classifying the P̃ -cocomplete T -algebras as those for which the underlying object
is P -cocomplete and the algebra map separately cocontinuous, thus justifying the
usual definition of algebraic cocompleteness. We also compare our results to that
of Im-Kelly [10], but seen from the KZ doctrine viewpoint.

After checking that the 2-category of KZ doctrines on a 2-category is biequivalent
to a poset, we go on to give some examples in which we apply our results. Our first
example concerns the case of the small cocompletion and monoidal categories, and
our second example concerns multi-adjoints as studied by Diers [6].

In Section 5 we consider the problem of lifting a locally fully faithful KZ doctrine.
These locally fully faithful KZ doctrines are of interest as they almost give rise to
Yoneda structures [29]. In particular, it is the goal of this section to describe a
bijection between oplax and lax structures on the lifted “Yoneda structure” when
we have such a distributive law; that is a bijection between cells α exhibiting L as
an oplax T -morphism

B
RL // PA

ϕL
⇐=

(
B, TB

y
→ B

)
(RL,β) //

(
PA, TPA

zx→ PA
)

ϕL
⇐=

A

yA

OO

L

^^❂❂❂❂❂❂❂❂❂❂❂ (
A, TA

x
→ A

)
(yA,ξx)

OO

(L,α)

hhPPPPPPPPPPPPP

and cells β exhibiting RL as a lax T -morphism for diagrams as on the right above,
underlain by a “Yoneda structure” diagram such as that on the left above. As an
instance of this result we recover Kelly’s bijection between oplax structures on left
adjoints and lax structures on right adjoints [13]. An interesting application of this
bijection is as a coherence result for the bicategories of spans and polynomials (and
in particular the oplax functors out of these bicategories). We briefly discuss the
applications here, but leave this to be explored in more detail in a forthcoming
paper.

2. Background

It is the purpose of this section to give the background knowledge necessary for
this paper. We start off by recalling the basic definitions of pseudomonads, pseudo
algebras, and morphisms between pseudo algebras, as these notions will be used
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regularly throughout the paper. We then recall the notion of a left extension in
a 2-category, and consider when these left extensions lift to the setting of pseudo-
algebras and morphisms between them (in a sense which will be applicable in later
sections). Finally, we go on to recall the notion of a KZ pseudomonad, a special
type of pseudomonad for which the algebra structure maps are adjoint to units,
and give their basic properties and some examples.

2.1. Pseudomonads and their Algebras. In order to define pseudomonads, we
first need the notions of pseudonatural transformations and modifications. The no-
tion of pseudonatural transformation is the (weak) 2-categorical version of natural
transformation. There are weaker notions also of lax and oplax natural transfor-
mations, however those will not be used here. Modifications, defined below, take
the place of morphisms between pseudonatural transformations.

Definition 1. A pseudonatural transformation between pseudofunctors t : F →
G : A → B where A and B are bicategories provides for each 1-cell f : A → B in
A , 1-cells tA and tB and an invertible 2-cell tf in B as below

FA
Ff //

tA

��

FB

tB

��
tf

=⇒

GA
Gf

// GB

satisfying coherence conditions outlined in [14, Definition 2.2]. Given two pseudo-
natural transformations t, s : F → G : A → B as above, a modification α : s → t
consists of, for every object A ∈ A , a 2-cell αA : tA → sA such that for each 1-cell
f : A → B in A we have the equality αB · Ff ◦ tf = sf ◦Gf · αA.

The following defines the (weak) 2-categorical version of monad to be used
throughout this paper. For brevity, we will suppress pseudofunctoriality constraints
in this definition and those following.

Definition 2. A pseudomonad on a 2-category C consists of a pseudofunctor
equipped with pseudonatural transformations as below

T : C → C , u : 1C → T, m : T 2 → T

along with three invertible modifications

T
uT //

id
  ❇

❇❇
❇❇

❇❇
❇❇

T 2

m

��

T
Tuoo

id
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

T 3 Tm //

mT

��

T 2

m

��

α
⇐=

β
⇐=

T T 2
m

// T

γ
⇐=

subject to the two coherence axioms

T 4 T 2m //

mT 2

��
TmT

❇❇❇
❇

  ❇
❇❇❇

T 3

Tm

  ❇
❇❇

❇❇
❇❇

❇ T 4 T 2m //

mT 2

��

T 3

Tm

  ❇
❇❇

❇❇
❇❇

❇

mT

��
Tγ
⇐=

m
−1
m

⇐=

T 3

mT   ❇
❇❇

❇❇
❇❇

❇
γT
⇐= T 3 Tm //

mT

��

T 2

m

��

= T 3

mT   ❇
❇❇

❇❇
❇❇

❇ Tm
// T 2

m

  ❇
❇❇

❇❇
❇❇

❇❇
γ

⇐= T 2

m

��

γ
⇐=

γ
⇐=

T 2
m

// T T 2
m

// T
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and

T 2

m

&&▲▲
▲▲▲

▲▲ T 3

Tm

&&▼▼
▼▼▼

▼

T 2 TuT // T 3

Tm
88qqqqqq

mT &&▼▼
▼▼▼

▼ ⇓γ T = T 2

TuT
88qqqqqq

TuT &&▼▼
▼▼▼

▼ id //
⇓Tα

⇓βT

T 2 m // T

T 2
m

88rrrrrrr
T 3 mT

88qqqqqq

Remark 3. One should note here that there are three useful consequences of these
pseudomonad axioms [21, Proposition 8.1] originally due to Kelly [11]. Of these,
we will only need the consequence that

(2.1) T 2

m

%%▲▲
▲▲▲

▲▲ T
uT

%%▲▲
▲▲▲

▲▲

1C

u // T

uT
99rrrrrrr

Tu %%▲▲
▲▲▲

▲▲ id //
⇓α

⇓β

T = 1C

u
99rrrrrrr

u %%▲▲
▲▲▲

▲▲
⇓u−1

u T 2 m // T

T 2
m

99rrrrrrr
T

Tu

99rrrrrrr

Given a pseudomonad (T, u,m) on a 2-category C one may consider its strict T -
algebras and strict T -morphisms, or the weaker counterparts where conditions only
hold up coherent 2-cells. These weaker notions are what will be used throughout
this paper, though usually with the coherent 2-cells in question being invertible.
For convenience, we will leave the modifications α, β and γ in the above definition
as unnamed isomorphisms throughout the rest of the paper.

Definition 4. Given a pseudomonad (T, u,m) on a 2-category C , a lax T -algebra
consists of an object A ∈ C , a 1-cell x : TA → A and 2-cells

T 2A

mA

��

Tx //

⇓µ

TA

x

��

A
id //

uA !!❇
❇❇

❇❇
❇❇

❇

⇓ν

A

TA
x

// A TA

x

==⑤⑤⑤⑤⑤⑤⑤⑤

such that both

⇓ν

TA

x

��❂
❂❂

❂❂
❂❂

❂❂
❂

⇓µ

A
uA //

id

""

⇓u−1
x

TA
x //

⇓µ

A ⇓Tν

TA

id
00

TuA

//

id --

T 2A

Tx

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

mA

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

A

TA
uTA

//

id

==

x

OO

T 2A

Tx

OO

mA

// TA

x

OO

∼=

∼=

TA

x

@@✂✂✂✂✂✂✂✂✂✂

paste to the identity 2-cell at x, known as the left and right unit axioms respectively.
Moreover, the associativity axiom asks that we have the equality

T 2A
Tx //

mA

""❊
❊❊

❊❊
❊❊

❊❊

⇓m−1
x

TA

x

  ❇
❇❇

❇❇
❇❇

❇❇

⇓µ

T 2A
Tx //

⇓Tµ

TA

x

  ❇
❇❇

❇❇
❇❇

❇❇

⇓µT 3A

T 2x

;;①①①①①①①①①

mTA ##❋
❋❋

❋❋
❋❋

❋❋
TA

x //

⇓µ

A = T 3A
TmA //

T 2x

;;①①①①①①①①①

mTA ##❋
❋❋

❋❋
❋❋

❋❋
T 2A

Tx

<<②②②②②②②②②

mA

""❊
❊❊

❊❊
❊❊

❊❊

∼=

A

T 2A
mA

//
Tx

<<②②②②②②②②②
TA

x

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤
T 2A

mA

// TA

x

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤
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If the above 2-cells ν and µ are isomorphisms, we call this a pseudo T -algebra. If ν
and µ are identity 2-cells, we call this a strict T -algebra.

These T -algebras may be regarded as the objects of a category, with morphisms
of (pseudo) T -algebras defined as follows.

Definition 5. Given a pseudomonad (T, u,m) on a 2-category C , an oplax T -
morphism of pseudo T -algebras

(L,α) :
(

A, TA
x
→ A

)
→

(
B, TB

y
→ B

)

consists of a 1-cell L : A → B and a 2-cell

TB
y //

⇑α

B

TA
x

//

TL

OO

A

L

OO

such that (leaving the pseudo T -algebra coherence cells as unnamed isomorphisms)

B
uB //

⇑uL

id

��
TB

y //

⇑α

∼=

B

A

L

OO

uA

//

id

BBTA
x

//

TL

OO

∼=

A

L

OO

is the identity 2-cell on L, and for which

TB
y

!!❇
❇❇

❇❇
❇❇

❇

T 2B
Ty //

⇑Tα

mB

<<①①①①①①①①
TB

y //

⇑α

∼=

B

=

T 2B
mB //

⇑mL

TB
y //

⇑α

B

T 2A

T 2L

OO

Tx
//

mA ""❋
❋❋

❋❋
❋❋

❋ TA
x

//

TL

OO

A

L

OO

T 2A

T 2L

OO

mA

// TA
x

//

TL

OO

A

L

OO

TA

x

==⑤⑤⑤⑤⑤⑤⑤⑤
∼=

If the 2-cell α goes in the opposite direction, this is the definition of a lax T -
morphism, and if α is invertible this is then the definition of a pseudo T -morphism.

The usual definition of T -transformation between oplax or lax T -morphisms is
not general enough for our purposes as we will be considering situations in which
we have both oplax and lax T -morphisms, and so we define T -transformations as
based on the double category viewpoint [8]. Such transformations are sometimes
referred to as generalized T -transformations.
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Definition 6. Suppose we are given a square of morphisms of pseudo T -algebras

(B, y)
(R,β) // (C, z)

ζ
⇐=

(D, w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(I,ξ)

OO

where the vertical maps are oplax T -morphisms and the horizontal maps are lax T -
morphisms. A T -transformation ζ as in the above square is a 2-cell ζ : I ·M → R·N
for which we have the equality of the two sides of the cube

TB
y //

⇑ϕ

B

R

��❄
❄❄

❄❄
❄❄

❄

⇑ζ

TB
y //

TR

""❉
❉❉

❉❉
❉❉

❉

⇑Tζ

B

R

  ❆
❆❆

❆❆
❆❆

❆

⇑β

TD
w //

TM ""❊
❊❊

❊❊
❊❊

❊

TN

<<②②②②②②②②
D

M !!❈
❈❈

❈❈
❈❈

❈

N

==④④④④④④④④

⇑ε

C = TD

TM ""❊
❊❊

❊❊
❊❊

❊

TN

<<②②②②②②②②
TC

z //

⇑ξ

C

TA
x

// A
I

??⑧⑧⑧⑧⑧⑧⑧
TA

x
//

TI

<<③③③③③③③③
A

I

>>⑥⑥⑥⑥⑥⑥⑥⑥

We will call the 2-category of pseudo T -algebras, pseudo T -morphisms, and T -
transformations ps-T -alg (we may consider squares where both horizontal maps
are identities or both vertical maps are identities to recover the usual notions of
transformation between lax/oplax/pseudo T -morphisms).

Remark 7. Note that in this language it makes sense to talk about the unit and
counit of an adjunction where the left adjoint is oplax and the right adjoint lax.
Indeed the oplax-lax bijective correspondence in Kelly’s doctrinal adjunction [13] is
unique such the counit ε (and unit η) of the adjunction is a T -transformation1. Note
also that in this setting of a doctrinal adjunction L ⊣ R (with an oplax structure α
on L corresponding a lax structure β on R via the mates correspondence) it makes
sense to view the unit and counit as T -transformations as we have squares

(B, y)
(id,id) // (B, y)

ε
⇐=

(B, y)
(R,β) // (A, x)

η
⇐=

(B, y)
(R,β)

//

(id,id)

OO

(A, x)

(L,α)

OO

(A, x)
(id,id)

//

(L,α)

OO

(A, x)

(id,id)

OO

As a convention, will will usually omit these identity T -morphisms. The reader
may just remember that it makes sense to consider T -transformations from a lax
followed by an oplax T -morphism, into an oplax followed by a lax T -morphism, and
that any such transformation may be uniquely expressed as a square in the form
of the above definition by inserting the appropriate identity T -morphisms; which is
what we have done in the case of the unit and counit above.

Example 8. One may define the category of Cat (the category of locally small
categories) enriched graphs, denoted CatGrph, with objects given as families of
hom-categories

(C (X,Y ) : X,Y ∈ obC )

and morphisms consisting of locally defined functors

(FX,Y : C (X,Y ) → D (FX,FY ) : X,Y ∈ C )

1This is shown in more generality in Proposition 72.
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which have not been endowed with the structure of a bicategory or a lax/oplax func-
tor respectively [18]. This gives rise to, via a suitable 2-monad T on CatGrph, the
2-category of bicategories, oplax functors and icons [19]. We may of course replace
oplax here with “lax” or “pseudo”. Note that inside this 2-category lives the one
object bicategories (isomorphic to monoidal categories), giving the 2-category of
monoidal categories, lax/oplax/strong monoidal functors and monoidal transfor-
mations (which may also be constructed directly via a suitable 2-monad [19]).

2.2. Left Extensions and Algebraic Left Extensions. In this section we will
consider how pseudomonads interact with left extensions. In particular, we start
off by recalling the notion of a left extension in a 2-category, and go on to give
conditions under which such a left extension lifts to a suitable notion of left ex-
tension in the setting of pseudo T -algebras, T -morphisms and T -transformations.
The results of this section are mostly due to Koudenburg, shown in a more general
double category setting [17].

Definition 9. Suppose we are given a 2-cell η : I → R · L as in the left diagram

⇑σ

B
R // C

η
⇐=

B R //

M

��
C

η
⇐=

A

I

OO

L

``❇❇❇❇❇❇❇❇
A

I

OO

L

``❇❇❇❇❇❇❇❇

in a 2-category C . We say that R is exhibited as a left extension of I along L by
the 2-cell η when pasting 2-cells σ : R → M with the 2-cell η : I → R · L as in the
right diagram defines a bijection between 2-cells R → M and 2-cells I → M · L.
Moreover, we say such a left extension (R, η) is respected (also called preserved) by
a 1-cell E : C → D when the whiskering of η by E, as given by the pasting diagram
below

B
R // C

η
⇐=

E //
id

⇐=

D

A

I

OO

L

``❇❇❇❇❇❇❇❇ E·I

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤

exhibits E · R as a left extension of E · I along L.

We now give a suitable description of when a lax T -morphism may be regarded
as a left extension in the setting of pseudo T -algebras.

Definition 10. Suppose we are given an oplax T -morphism (L,α) and lax T -
morphisms (R, β) and (I, σ) between pseudo T -algebras equipped with a T -transformation
η : I → R · L as in the diagram

(
B, TB

y
→ B

)
(R,β) //

(
C, TC

z
→ C

)

η
⇐=

(
A, TA

x
→ A

)
(I,σ)

OO

(L,α)

gg◆◆◆◆◆◆◆◆◆◆◆◆
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We call such a diagram a T -left extension if for any given pseudo T -algebra (D, w),
lax T -morphism (M, ε) and oplax T -morphism (N,ϕ) as below

(
D, TD

w
→ D

)

(M,ε)

((◗◗◗
◗◗◗

(
B, TB

y
→ B

)
(R,β)

//

(N,ϕ) 66♠♠♠♠♠ ⇑ζ (
C, TC

z
→ C

)

η
⇐=

(
A, TA

x
→ A

)
(I,σ)

OO

(L,α)

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

pasting T -transformations of the form ζ above with the T -transformation η defines
the bijection of T -transformations:

(D, w)
(M,ε) // (C, z)

ζ
⇐=

(D, w)
(M,ε) // (C, z)

ζ
⇐=∼ (B, y)

(N,ϕ)
OO

(B, y)
(R,β)

//

(N,ϕ)

OO

(C, z)

(id,id)

OO

(A, x)
(I,σ)

//
(L,α)

OO

(C, z)

(id,id)

OO

Remark 11. Note that if ζ and η are both T -transformations then so is the composite
ζL · η; this is a simple calculation which we omit.

In order to lift left extensions to T -left extensions as above we will require the
following algebraic cocompleteness property.

Definition 12. Given a pseudomonad (T, u,m) on a 2-category C , we say a left
extension (H,ϕ) in C as on the left below is T -preserved by a 1-cell z : TC → D
when

B
H // C

ϕ
⇐=

TB
TH // TC

Tϕ
⇐=

z // D
id

⇐=

X

F

OO

G

``❇❇❇❇❇❇❇❇
TX

TF

OO

TG

bb❊❊❊❊❊❊❊❊❊ z·TF

DD✟✟✟✟✟✟✟

the pasting diagram on the right exhibits (z · TH, z · Tϕ) as a left extension.

Remark 13. Given a pseudo T -algebra
(

C, TC
z

→ C
)

if we ask that the underlying

object C is cocomplete in the sense that all left extensions (along a chosen class of
maps) into C exist, and moreover that the algebra structure map z T -preserves these
left extensions, then this is (essentially) the notion of algebraic cocompleteness as
given by Weber [32, Definition 2.3.1] (except that we are not using pointwise left
extensions here). In the setting monoidal categories, this condition of z (when z is
an algebra structure map) T -preserving the left extensions is the analogue of asking
the tensor product be separately cocontinuous; see [32, Prop. 2.3.2].

We now recall a result for algebraic left extensions mostly due to Koudenburg
[17] (though we avoid working in a double categorical setting). We will include
some details of the proof as we will need them later.

Proposition 14. Suppose we are given a diagram

B
R // C

η
⇐=

A

I

OO

L

``❇❇❇❇❇❇❇❇❇
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which exhibits R as a left extension in a 2-category C equipped with a pseudomonad
(T, u,m). Suppose further that

(
A, TA

x
−→ A

)
,

(
B, TB

y
−→ B

)
,

(
C, TC

z
−→ C

)

are pseudo T -algebras. Suppose even further that the left extension (R, η) is T -
preserved by z, and the resulting left extension (z · TR, z · Tη) is itself T -preserved
by z. Then given a lax T -morphism structure σ on I and an oplax T -morphism
structure α on L, there exists a unique lax T -morphism structure β on R for which
η is a T -transformation. Moreover, this left extension is then lifted to the T -left
extension (

B, TB
y
→ B

)
(R,β) //

(
C, TC

z
→ C

)

η
⇐=

(
A, TA

x
→ A

)
(I,σ)

OO

(L,α)

gg◆◆◆◆◆◆◆◆◆◆◆◆

Proof. Given our structure cells σ and α as below

TA

TI

��

x //

⇑σ

A

I

��

TA

TL

��

x //

⇓α

A

L

��
TC

z
// C TB

y
// B

our lax constraint cell forR is given as the unique β such that η is a T -transformation,
that is the unique 2-cell such that

TB
y // B

R

��

TB
y //

TR

��

B

R

��

TA

TL

<<②②②②②②②②
x //

TI ""❊
❊❊

❊❊
❊❊

❊ A

I   ❇
❇❇

❇❇
❇❇

❇

L

>>⑤⑤⑤⑤⑤⑤⑤⑤
⇑η

⇑α

⇑σ

= TA

TL

<<②②②②②②②②

TI ""❊
❊❊

❊❊
❊❊

❊⇑Tη ⇑β

TC
z

// C TC
z

// C

as z · Tη exhibits z · TR as a left extension. From here, the proof of the coherence
axioms for β being a lax T -morphism structure on R is the same as in [32, Theorem
2.4.4]2. Checking that the lax T -morphism (R, β) is then a T -left extension is a
straightforward exercise, of which we omit the details. �

2.3. KZ Pseudomonads and KZ Doctrines. A KZ pseudomonad is a special
type of pseudomonad for which the algebra structure maps are adjoint to units;
with typical examples including the cocompletion of a category under some class
of colimits Φ. For this paper, we will use two different (but equivalent) charac-
terizations of KZ pseudomonads. The first characterization we will use is a well
known algebraic description of a KZ pseudomonad, described via conditions on a
“KZ structure cell” (similar to [16]), the second characterization is in terms of left
extensions, and will be referred to as a KZ doctrine.

Remark 15. Note that there are other (still equivalent) characterizations which
may be referred to as KZ pseudomonads or KZ doctrines. For example the char-
acterization through adjoint strings [21], or the characterization as lax idempotent
pseudomonads [15].

2The assumptions of [32, Theorem 2.4.4] concerning comma objects are not required for the
proof of the coherence axioms.
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Definition 16. A KZ pseudomonad (P, y, µ) on a 2-category C consists of a pseu-
domonad (P, y, µ) on C along with a modification θ : Py → yP for which

(2.2) P
yP

&&▼▼
▼▼▼

▼

1C

y // P

yP

%%

Py

<<⇑θ P 2 = 1C

y
88qqqqqq

y &&▼▼
▼▼▼

▼ ⇑yy P 2

P
Py

88qqqqqq

and

(2.3)
⇑α

P

yP
((

Py

66⇑θ

idP

��

idP

CCP 2 µ // P = ididP

⇑β

Remark 17. It is shown in [21, Prop. 3.1, Lemma 3.2] that given the adjoint string
characterization we recover the definition given above, and conversely given the
above definition it is not hard to recover the adjoint string definition, especially
since it suffices to give only one adjunction [21, Theorem 11.1].

The above is an algebraic description of a KZ pseudomonad; however there is
another description in terms of left Kan extensions given by Marmolejo and Wood
[25] which we refer to as a KZ doctrine.

Definition 18. [25, Definition 3.1] A KZ doctrine (P, y) on a 2-category C consists
of

(i) An assignation on objects P : obC → obC ;
(ii) For every object A ∈ C , a 1-cell yA : A → PA;
(iii) For every pair of objects A and B and 1-cell F : A → PB, a left extension

(2.4) PA
F //

cF
⇐=

PB

A

F

;;①①①①①①①①①①
yA

OO

of F along yA exhibited by an isomorphism cF as above.
Moreover, we require that:
(a) For every object A ∈ C , the left extension of yA as in 2.4 is given by

PA
idPA // PA

id
⇐=

A

yA

OO

yA

cc❋❋❋❋❋❋❋❋❋❋

Note that this means cyA
is equal to the identity 2-cell on yA.

(b) For any 1-cell G : B → PC, the corresponding left extension G : PB → PC
preserves the left extension F in 2.4.

Remark 19. These two descriptions are equivalent in the sense that each gives rise
to the other [25, 21]. In Section 4 we will express this relationship as a biequivalence
between the 2-category of KZ pseudomonads and the preorder of KZ doctrines.

The following definitions in terms of left extensions are equivalent to the preced-
ing notions of pseudo P -algebra and P -homomorphism, in the sense that we have
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an equivalence between the two resulting 2-categories of pseudo P -algebras arising
from the two different definitions [25, Theorems 5.1,5.2].

Definition 20 ([25]). Given a KZ doctrine (P, y) on a 2-category C , we say an
object X ∈ C is P -cocomplete if for every G : B → X

PB
G //

cG
⇐=

X PA
F //

cF
⇐=

PB
G // X

B

G

<<③③③③③③③③③
yB

OO

A

F

;;①①①①①①①①①①
yA

OO

there exists a left extension G as on the left exhibited by an isomorphism cG, and
moreover this left extension respects the left extensions F as in the diagram on
the right. We say a 1-cell E : X → Y between P -cocomplete objects X and Y is a
P -homomorphism (also called P -cocontinuous) when it preserves all left extensions
along yB into X for every object B.

Remark 21. It is clear that PA is P -cocomplete for every A ∈ C .

We now recall the notion of P -admissibility in the setting of a KZ doctrine P .
This notion of admissibility is useful for showing that certain left extensions exist,
and moreover are preserved. Note that this notion will be used regularly throughout
the paper.

Definition 22. Given a KZ doctrine (P, y) on a 2-category C , we say a 1-cell
L : A → B is P -admissible if any of the following equivalent conditions are met:

(1) In the left diagram below

B
RL // PA
ϕL
⇐=

B
RL // PA
ϕL
⇐=

H //
cH
⇐=

X

A

yA

OO

L

bb❉❉❉❉❉❉❉❉❉
A

yA

OO

L

bb❉❉❉❉❉❉❉❉❉ H

<<②②②②②②②②②

there exists a left extension (RL, ϕL) of yA along L, and moreover the
left extension is preserved by any H as in the right diagram where X is
P -cocomplete;

(2) Every P -cocomplete object X ∈ C admits, and P -homomorphism pre-
serves, left extensions along L. This says that for any given 1-cell K : A →
X , where X is P -cocomplete, there exists a 1-cell J and 2-cell δ as in the
left diagram below

B
J // X
δ

⇐=

B
J // X
δ

⇐=

E // Y

A

K

OO

L

``❆❆❆❆❆❆❆❆❆
A

K

OO

L

``❆❆❆❆❆❆❆❆❆

exhibiting J as a left extension, and moreover this left extension is preserved
by any P -homomorphism E : X → Y for P -cocomplete Y as in the right
diagram;

(3) PL := lanL given as the left extension

PA
PL //

cyB·L
⇐=

PB

A
L

//

yA

OO

B

yB

OO

has a right adjoint.



DISTRIBUTIVE LAWS VIA ADMISSIBILITY 13

Remark 23. For a proof that the descriptions (1), (2) and (3) above are equivalent,
we refer the reader to [2] or [29].

It is well known that pointwise left extensions along fully faithful maps are
exhibited by invertible 2-cells; in the following definition we give an analogue of
this fact for KZ doctrines.

Definition 24. Given a KZ doctrine (P, y) on a 2-category C , we say a 1-cell
L : A → B is P -fully faithful if PL is fully faithful.

Remark 25. The importance of the P -fully faithful maps stems from the fact that
for a P -admissible map L : A → B, this L is P -fully faithful if and only if every left
extension along L into a P -cocomplete object is exhibited by an isomorphism [29,
Remark 24]. Clearly each yA is both P -admissible and P -fully faithful.

For any given KZ doctrine P on a 2-category C a natural question to ask is:
what are the P -cocomplete objects; P -homomorphisms; P -admissible maps and
P -fully faithful maps? Let us consider a couple of examples.

Example 26. A well known example of a KZ doctrine is the free small cocomple-
tion operation on locally small categories, which sends a locally small category A
to its category of small presheaves. In particular, when A is small the free small co-
completion is PA = [Aop,Set]. In this example, the P -cocomplete objects are those
locally small categories which are small cocomplete and the P -homomorphisms are
those functors between such categories preserving small colimits. The P -admissible
maps are those functors L : A → B for which B (L−,−) : B → [Aop,Set] factors
through PA. Of these P -admissible maps, the P -fully faithful maps are precisely
the fully faithful functors.

Another example is the free large cocompletion KZ doctrine on locally small
categories. The reader should keep in mind a theorem of Freyd showing that any
locally small category which admits all large colimits is a preorder. Consequently,
a locally small category is large cocomplete precisely when it is a preorder with
all large joins. This KZ doctrine has some unusual properties. For example it is
a cocompletion KZ doctrine (in the simple sense that its algebras are described as
categories admitting a certain class of colimits) with unit components not always
fully faithful. Moreover, every functor is admissible against the large cocompletion.
We define this KZ doctrine P : Cat → Cat by the assignment

P : ob Cat → ob Cat : A 7→ [Aop,2]

with unit maps for each A ∈ Cat given by

yA : A → [Aop,2] : X 7→ A 〈−, X〉

with each A 〈−, X〉 is defined as

A 〈−, X〉 : Aop → 2 : S 7→

{
1, ∃ S

f
−→ X in A

0, otherwise.

For any functor F : A → D where D is a preordered category with all large joins
(such as PB for any B) we may define a left extension F : [Aop,2] → D as in the
left diagram

[Aop,2]
F // D

id
⇐=

F (H) = sup
X∈A : HX=1

FX

A

yA

OO

F

@@✂✂✂✂✂✂✂✂✂✂



DISTRIBUTIVE LAWS VIA ADMISSIBILITY 14

by the assignment on the right. Hence for this KZ doctrine, the P -cocomplete
objects are the large cocomplete categories, and the P -homomorphisms are the
order and join preserving maps between such categories. Every map is P -admissible,
and it is easily checked that a map L : A → B is P -fully faithful precisely when
there exists a map X → Y in A if and only if there exists a map LX → LY in B.

Remark 27. For a set X seen as a discrete category, the large cocompletion of X is
(PX,⊇); and dually, the large completion is (PX,⊆), where PX is the powerset
of X .

3. Pseudo-Distributive Laws over KZ Doctrines

It was shown by Marmolejo that pseudo-distributive laws of a (co)KZ doctrine
over a KZ doctrine have a particularly simple form [22, Definition 11.4]. Here
we show that one can give a description which is both simpler (in that less co-
herence axioms are required) and more general (in that the assumption of the
former pseudomonad being (co)KZ may be dropped). Hence the problem of lifting
a cocompletion operation to the 2-category of pseudo algebras may be more easily
understood.

Part of the motivation of our method comes from the observation that if a
KZ doctrine lifts to a pseudomonad on the 2-category of pseudo algebras, then
this pseudomonad is a KZ doctrine automatically3. Indeed, this fact means we
may consider the problem of lifting a KZ pseudomonad in terms of algebraic left
extensions.

In the proof we will make regular use of the admissibility perspective; in fact, the
preservation of admissible maps is crucial here, and it is the main goal of this paper
to describe such pseudo-distributive laws in terms of this admissibility property.

The proof of these results is quite technical, though the results are summarized
in Theorem 35.

3.1. Notions of Pseudo-Distributive Laws. Beck [1] defined a distributive law
of a monad (T, u,m) over another monad (P, y, µ) on a category C to be a natural
transformation λ : TP → PT rendering commutative the four diagrams

TP
λ // PT TP

λ // PT
= =

P

Pu

OO

uP

ff▼▼▼▼▼▼▼▼▼▼▼▼▼
T

yT

OO

Ty

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

TTP

mP

��

Tλ //

=

TPT
λT // PTT

Pm

��

TPP

=Tµ

��

λP // PTP
Pλ // PPT

µT

��
TP

λ
// PT TP

λ
// PT

A well known example on Set is the canonical distributive law of the monad
for monoids over the monad for abelian groups (whose composite is the monad for
rings).

More generally, one may talk about a pseudo-distributive law of a pseudomonad
over another pseudomonad on a 2-category [22, 12, 27, 3]. In this generalization
the four conditions above are replaced by four pieces of data (four invertible mod-
ifications) which are then required to satisfy multiple coherence axioms, which we
will omit here.

3A fact perhaps most easily seen from the adjoint string definition [21], in view of doctrinal
adjunction [13].
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Definition 28. A pseudo-distributive law of a pseudomonad (T, u,m) over a pseu-
domonad (P, y, µ) on a 2-category C consists of a pseudonatural transformation
λ : TP → PT , along with four invertible modifications ω1, ω2, ω3 and ω4 in place of
the four equalities above. These four modifications are subject to eight coherence
axioms; see [24, 22].

As a convention, we choose the direction of these four modifications to be from
right to left in the above four diagrams.

In this section, as in the background, we differentiate between “KZ doctrine”
defined in terms of left extensions, and “KZ pseudomonad” defined algebraically.

We now define a pseudo-distributive law over such a KZ pseudomonad, though
showing this data and these coherence conditions suffice will take some work.

Definition 29. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ pseudomonad (P, y, µ). Then a pseudo-distributive law over
a KZ pseudomonad λ : TP → PT consists of a pseudonatural transformation
λ : TP → PT along with three invertible modifications4

TP
λ // PT TP

λ // PT TTP

mP

��

Tλ //

ω3
⇐=

TPT
λT // PTT

Pm

��

ω1
⇐=

ω2
⇐=

P

Pu

OO

uP

cc❋❋❋❋❋❋❋❋❋❋
T

yT

OO

Ty

cc❋❋❋❋❋❋❋❋❋❋
TP

λ
// PT

subject to the three coherence axioms:

TP

TyP

}}④④
④④
④④
④④
④④
④④

λ //

yTP

��

y
−1
λ

⇐=

PT

PyT

��

yPT

��

θT
⇐=TP

TPy

��

TyP

��

Tθ
⇐=

λ //

λy
⇐=

PT

PTy

��

PyT

""❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉
coh 1
=

ω2P
⇐=

Pω2
⇐=

TPP
λP

// PTP
Pλ

// PPT
µT

// PT

TPP
λP

// PTP
Pλ

// PPT
µT

// PT

TP
λ
##●●

●●

P
uP //

uy
⇐=

TP
λ //

ω2
⇐=

PT P
Pu

//

uP <<③③③③

y
−1
u

⇐=

⇑ω1

PT

coh 2
=

1
u

//

y

OO

T

Ty

OO

yT

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
1

u
//

y

OO

T

yT

OO

TP

λ

((PP
PPP

PPP
PPP

PPP
P

TTP
mP // TP

my
⇐=

λ //
ω2

⇐=

PT TTP

mP

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ Tλ // TPT
λT //

⇑ω3

PTT
Pm //

y
−1
m

⇐=

PT

coh 3
=

Tω2
⇐=

ω2T
⇐=

TT
m

//

T 2y

OO

T

Ty

OO

yT

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
TT

m
//

T 2y

aa❈❈❈❈❈❈❈❈❈❈❈❈
yT 2

;;✈✈✈✈✈✈✈✈✈✈✈✈✈

TyT

OO

T

yT

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

4Note the direction of the modifications are different in [22]. We use here the direction in
which they will naturally arise from left extension and admissiblilty properties. Our direction
agrees with that of [28, Section 4].
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Remark 30. (1) We will see later that ω1 and ω3 are uniquely determined by ω2,
due to the last two axioms and left extension properties. (2) Actually, even the
naturality cells of λ may be determined given ω2 and the first coherence axiom. (3)
With the 2-cells ω1 and ω3 and the last two coherence axioms omitted, we still have
sufficient data to lift P to lax T -algebras. (4) These last two axioms may be seen
as invertibility conditions on ω1 and ω3, analogous to those in [22, Definition 11.4].
(5) During the proof, we will see that each component ωA

2 necessarily exhibits each
component λA as a left extension. As ω2 uniquely determines the rest of the data,
this will show that such pseudo-distributive laws are essentially unique. (6) In fact,
the first coherence axiom above is equivalent to preservation of admissible maps, in
the presence of such a pseudonatural transformation λ and invertible modification
ω2.

We will need a notion of separately cocontinuous in the context of KZ doctrines,
and so we define the following.

Definition 31. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ doctrine (P, y). We define a 1-cell z : TX → C where X and C
are P -cocomplete objects to be:

(1) TP -cocontinuous when every left extension along a unit component yA : A →
PA into X is T -preserved by z;

(2) TP -adm-cocontinuous when every left extension along a P -admissible map
L : A → B into X is T -preserved by z;

Remark 32. We will see later in Proposition 47 that these two notions are equivalent
in the presence of a pseudo-distributive law of T over P .

We are now ready to give the definition of a pseudo-distributive law over a KZ
doctrine in terms of admissibility and left extensions.

Definition 33. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ doctrine (P, y). Then a pseudo-distributive law over a KZ
doctrine λ : TP → PT consists of the following assertions:

(1) T preserves P -admissible maps;

and for every A ∈ C ,

(2) the exhibiting 2-cell ωA
2 of the left extension λA

5 in

TPA
λA // PTA

ωA
2

⇐=

TA

yTA

OO

TyA

dd❏❏❏❏❏❏❏❏❏❏

is invertible6;
(3) the 1-cell λA above is TP -cocontinuous7;
(4) the respective diagrams

PA
uPA // TPA

uyA
⇐=

λA //
ωA

2
⇐=

PTA T 2PA
mPA // TPA

myA
⇐=

λA //
ωA

2
⇐=

PTA

A
uA

//

yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉
T 2A

mA

//

T 2yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

exhibit both λA · uPA and λA ·mPA as left extensions.

5The left extension is unique up to coherent isomorphism, and exists since T yA is P -admissible.
6Equivalently one could ask that each T yA is P -fully faithful [29, Prop. 23].
7Equivalently one could ask that each λA is TP -adm-cocontinuous.
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Remark 34. Note that a pseudo-distributive law as defined above is unique, as it
contains only assertions, and these assertions are invariant under the choice of left
left extension (unique up to coherent isomorphism).

3.2. The Main Theorem. We are now ready to state the main result of this
section (and this paper), justifying our definitions above.

Theorem 35. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ pseudomonad (P, y, µ). Then the following are equivalent:

(a) P lifts to a KZ doctrine P̃ on ps-T -alg;

(b) P lifts to a KZ pseudomonad P̃ on ps-T -alg;

(c) P lifts to a pseudomonad P̃ on ps-T -alg;
(d) There exists a pseudo-distributive law over a KZ doctrine λ : TP → PT ;
(e) There exists a pseudo-distributive law over a KZ pseudomonad λ : TP → PT ;
(f) There exists a pseudo-distributive law λ : TP → PT .

The proof of this theorem is lengthy, and so we will leave the more difficult
aspects of the proof for subsequent subsections. Before moving on to these subsec-
tions, we give the remainder of the proof.

Proof of Theorem 35. In order to prove this theorem, we will complete the cycle of
implications

(a) +3 (b)
%-❘

❘❘❘
❘

❘❘❘
❘❘

(d)

19

(c)
qy ❧❧❧❧

❧❧❧❧❧
❧

(e)

em

(f)ks

where the more difficult implications left to later sections are dotted above.
(a) =⇒ (b) : A KZ doctrine gives rise to a pseudomonad whose structure forms

a fully faithful adjoint string by [25, Theorem 4.1], and this in turn gives rise to a
KZ pseudomonad by [21, Prop. 3.1, Lemma 3.2].

(b) =⇒ (c) : This implication is trivial.
(c) =⇒ (f) : For the correspondence between pseudo-distributive laws and lift-

ings to pseudo T -algebras see [3, Theorem 5.4].
(f) =⇒ (e) : Given a pseudo-distributive law λ : TP → PT where P is a KZ

pseudomonad, to check that we then have a pseudo-distributive law over a KZ
pseudomonad in the sense of Definition 29 we need only check the first axiom. But
this axiom follows from coherences 7 and 8 as given in [22, Section 4] along with
the KZ pseudomonad coherence axiom 2.3.

(e) =⇒ (d) : This is shown later in Theorem 44.
(d) =⇒ (a) : This is shown later in Theorem 48. �

3.3. Distributive Laws over KZ Monads to those over KZ Doctrines. We
will devote this entire subsection to showing that a pseudo-distributive law over a
KZ pseudomonad, as in Definition 29, gives rise to a pseudo-distributive law over
a KZ doctrine, as in Definition 33. This is (e) =⇒ (d) of Theorem 35. As this is
the most difficult implication to show, we will break the proof up into a number of
propositions and lemmata, starting with the following proposition.

Note for reader. During this subsection and the next, the reader will keep the
three equivalent characterizations of P -admissible maps (given in Definition 22)
in mind. Indeed, all three characterizations are to be used repeatedly throughout
these two subsections.

Remark 36. Most of our diagrams are constructed from the following 2-cells, where
P is a KZ doctrine and T a pseudomonad on a bicategory C :
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(1) As noted in Definition 22, for any P -admissible 1-cell L : A → B we have
a left extension (RL, ϕL) of yA along L. In particular if L = TyA is P -
admissible, we will denote this left extension by

(
λA, ω

A
2

)
. Moreover, by

[29, Remark 16], if we are given a chosen right adjoint resL to PL, then the
canonical way to define (RL, ϕL) is by

B
RL // PA
ϕL
⇐=

B
yB // PB

resL// PA

:=

yL
⇐=

PAlanL

XX
η

⇐= idPA

OO

A

yA

OO

L

__❄❄❄❄❄❄❄❄❄❄
A

L

ZZ

yA

OO

(2) As noted in Definition 18, for any 1-cell F : A → PB we have a left extension(
F , cF

)
of F along yA with cF invertible. If F = RL for a P -admissible L,

we will denote this left extension by (resL, cRL), and note that resL defined
this way is right adjoint to PL [29, Lemma 13].

Proposition 37. Suppose we are given a 2-category C equipped with a pseu-
domonad (T, u,m) and a KZ doctrine (P, y). Further suppose that for each object
A ∈ C , TyA is P -admissible, and the left extension8 which we denote λA in

TPA
λA // PTA

ωA
2

⇐=

TA

yTA

OO

TyA

dd■■■■■■■■■■

is exhibited by an isomorphism denoted ωA
2 . Then for every P -admissible 1-cell

L : A → B such that TL : TA → TB is also P -admissible, the respective pastings

(3.1) PTA TPA
λAoo

ωA
2

=⇒

TPB
T resLoo PTA PTB

resTLoo
cRTL
=⇒

TPB
λBoo

TcRL
=⇒

TϕL
=⇒

ϕTL
=⇒

ωB
2

=⇒

TA

TyA

OO

TL
//

yTA

dd■■■■■■■■■■
TB

TyB

OO

TRL■■■■

dd■■■■

TA
TL

//

yTA

dd❍❍❍❍❍❍❍❍❍❍
TB

TyB

OO

yTB■■■■

dd■■■■
RTL❚❚❚❚❚❚❚❚

ii❚❚❚❚❚❚❚❚

exhibit λA · T resL and resTL · λB as left extensions of yTA along TyB · TL; yielding
an isomorphism of left extensions:

TPB
λB //

T resL

��
⇑γL

PTB

resTL

��
TPA

λA

// PTA

Moreover, if the left diagram below exhibits RL as a left extension

B
RL // PA
ϕL
⇐=

TB
TRL // TPA

TϕL
⇐=

λA //
ωA

2
⇐=

PTA

A

L

bb❉❉❉❉❉❉❉❉❉
yA

OO

TA

TL

cc❍❍❍❍❍❍❍❍❍
TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

then the right diagram exhibits λA · TRL as a left extension.

8This left extension exists since T yA is P -admissible.
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Proof. Firstly, we consider the diagram

PTA TPA
λAoo

ωA
2

=⇒

TPB
T resLoo

TcRL
=⇒

TϕL
=⇒

TA

TyA

OO

TL
//

yTA

dd❏❏❏❏❏❏❏❏❏❏
TB

TyB

OO

TRL■■■■

dd■■■■

and note that λA · T resL is a left extension since for any 1-cell H : TPB → PTA
we have the natural bijections

λA · T resL → H
mates correspondence

λA → H · T lanL
since λA is a left extension

yTA → H · T lanL · TyA
PL · yA

∼= yB · L
yTA → H · TyB · TL

and one may check this is the correct exhibiting 2-cell using [29, Remark 16]. We
may also consider the diagram

PTA PTB
resTLoo

cRTL
=⇒

TPB
λBoo

ϕTL
=⇒

ωB
2

=⇒

TA
TL

//
yTA

dd❍❍❍❍❍❍❍❍❍
TB

TyB

OO

yTB■■■■

dd■■■■
RTL❚❚❚❚❚❚❚❚

ii❚❚❚❚❚❚❚❚

and note that since TyB is P -admissible the left extension λB is preserved by resTL.
Noting cRTL is invertible, we then apply the pasting lemma for left extensions (the
dual of [26, Prop. 1]) to see the outside diagram exhibits resTL · λB as a left
extension. By uniqueness of left extensions, we derive our desired isomorphism
γL : λA · T resL ∼= resTL · λB. Now, to show that

(3.2) TB
TRL // TPA

TϕL
⇐=

λA //
ωA

2
⇐=

PTA

TA

TL

cc❍❍❍❍❍❍❍❍❍
TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

exhibits λA · TRL as a left extension, it suffices to show that we have an isomor-
phism λA · TRL ∼= RTL and that pasting the left extension (RTL, ϕTL) with this
isomorphism yields the above. This is the case since all regions in the following
diagram commute up to isomorphism

∼=TcRL

TPA
λA

((❘❘
❘❘❘

❘
∼=γL

TB

yTB

88
TyB //

RTL

<<

TRL --

TPB
λB //

T resL 66❧❧❧❧❧❧
PTB

resTL // PTA
∼=ωB

2 ∼=cRTL

and it is easy to check ϕTL pasted with this isomorphism yields the pasting 3.2 if
one uses the definition of γL. �

Remark 38. Note that the above proposition tells us something about the com-
ponents of λ being separately cocontinuous, without any assumptions on pseudo-
naturality of λ. This may seem unusual in view of the following lemma, in which
we show pseudonaturality of λ is precisely equivalent to the TP -cocontinuity of its
components.
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Lemma 39. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ doctrine (P, y). Further suppose that for each object A ∈ C ,
TyA is P -admissible and the left extension which we call λA as on the left below

TPA
λA // PTA

ωA
2

⇐=

TPB
λB // PTB

TA

yTA

OO

TyA

dd■■■■■■■■■■
TPA

λA

//

TPL

OO

⇑λL

PTA

PTL

OO

is exhibited by an isomorphism ωA
2 . Then for all L : A → B the naturality squares

for λ as on the right above commute up to a coherent isomorphism λL, with coherent
meaning

TPB
λB

((❘❘❘
❘❘❘❘

TPA
λA //

TPL 55❧❧❧❧❧❧❧
PTA

ωA
2

⇐=

PTL //

y
−1
TL

⇐=

⇑λL

PTB TPA
TPL //

Ty
−1
L

⇐=

TPB
λB // PTB

=
ωB

2
⇐=

TA

yTA

OO

TyA

cc●●●●●●●●●●●

TL
// TB

yTB

OO

TA

TyA

OO

TL
// TB

yTB

;;✇✇✇✇✇✇✇✇✇✇✇

TyB

OO

(the condition for ω2 to be a modification), if and only if each λA is TP -cocontinuous.

Proof. The following implications prove the logical equivalence.
(=⇒) : Suppose that for each L : A → B the naturality square of λ commutes

up to a coherent isomorphism λL. Then noting that idPB = RyB
, we see that for

any left extension as on the left (which is isomorphic to
(
F , cF

)
by uniqueness)

PA
PF //

y
−1
F

⇐=

P 2B
resyB // PB TPA

TPF //

Ty
−1
F

⇐=

TP 2B
T resyB // TPB

λB // PTB
cidPB
⇐=

TcidPB
⇐=

A

yA

OO

F
// PB

yPB

OO

idPB

;;✇✇✇✇✇✇✇✇✇
TA

TyA

OO

TF
// TPB

TyPB

OO

T idPB

::tttttttttt

it suffices to check that the right diagram above exhibits λB ·T resyB
·TPF as a left

extension. To see this we note that the pasting

PTA
PTF //

⇑λ−1
F

PTPB
resTyB

$$■
■■

■■
■■

■■
■

⇑γyB

TPA
TPF //

Ty
−1
F

⇐=

λA

::✉✉✉✉✉✉✉✉✉✉
TP 2B

T resyB //

λPB

99ssssssssss
TPB

λB // PTB
TcidPB

⇐=

TA

TyA

OO

TF
// TPB

TyPB

OO

idTPB

99sssssssssss

is equal to the pasting (using λB = RTyB
)

TPA
λA // PTA

PTF //

y
−1
TF

⇐=

PTPB
resTyB // PTB

ωA
2

⇐=
cλB
⇐=

TA
TF

//

yTA

OO

TyA

dd❏❏❏❏❏❏❏❏❏❏
TPB

yTPB

OO

λB

99tttttttttt

This is shown by first using the coherence condition on λ−1
F , and then using the

definition of γyB
from Proposition 37. Note also this last diagram exhibits resTyB

·
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PTF · λA as a left extension since TyA is P -admissible (using preservation of the
left extension λA by P -homomorphisms).

(⇐=) : For any L : A → B, we know PTL · λA is a left extension of yTB · TL
along TyA since TyA is P -admissible. Also λB · TPL is such a left extension as λB

is TP -cocontinuous, giving us an isomorphism of left extensions λF coherent as in
the statement of this lemma. �

Remark 40. A Beck condition is satisfied here. Indeed, the 2-cell γL as in Propo-
sition 37 is the mate of λL as in the above lemma. This may be seen by pasting
the left diagram of 3.1 with the mate of λL and then recovering the right diagram
(making use of [29, Remark 16] and the coherence condition on λL).

In the following lemma we see that for a pseudo-distributive law over a KZ pseu-
domonad as in Definition 29, the modification components ωA

2 necessarily exhibit
each λA as a left extension, and from this we deduce the existence of invertible
components ωA

4 .

Lemma 41. Suppose we are given a 2-category C equipped with a pseudomonad
(T, u,m) and a KZ pseudomonad (P, y, µ). Suppose further that we are given a
pseudo-distributive law over a KZ pseudomonad λ : TP → PT . Then for each
A ∈ C , TyA is P -admissible, exhibited by an adjunction

PTyA ⊣ µTA · PλA

Moreover, the diagrams as on the left exhibit each λA as a left extension,

TPA
λA // PTA

ωA
2

⇐=

TPPA
λPA //

ωA
4

⇐=
TµA

��

PTPA
PλA // PPTA

µTA

��
TA

yTA

OO

TyA

dd■■■■■■■■■■
TPA

λA

// PTA

and there exists canonical isomorphisms as on the right for each A.

Proof. We now prove the three assertions of the above lemma.
Each TyA is P -admissible. Firstly, we note that the below diagram exhibits

µTA · PλA as a left extension

(3.3) PTPA
PλA //

y
−1
λA

⇐=

P 2TA
µTA //

∼=

PTA

TPA
λA

//

yTPA

OO

PTA

yPTA

OO

idPTA

::tttttttttt

Indeed, the construction of a KZ doctrine from a pseudomonad whose structure
forms a fully faithful adjoint string is outlined in [25], and the above is an instance
of this construction. Noting λA = µTA · PλA, we define our unit η as the unique
solution to the left extension problem

PTPA
λA

&&◆◆
◆◆◆

PTA
PTyA //

⇑y−1
TyA

PTPA
PλA //

⇑y−1
λA

P 2TA
µTA //

∼=

PTA

PTA
id

//

PTyA
88qqqqq ⇑η

⇑id

PTA =

TA
TyA

//

yTA

OO

yTA

::TPA
λA

//

yTPA

OO

⇑ωA

2

PTA

yPTA

OO

id

;;①①①①①①①①①①①①

TA

yTA

OO

yTA

BB
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Note that the unit η must then be given by

⇓PωA

2

∼=

PTA
PTyA //

PyTA

''

idPTA

""
PTPA

PλA // P 2TA
µTA // PTA

as y : 1 → P is a pseudonatural transformation. We define our counit ε as the
unique solution to the left extension problem

⇑ε
⇑(ωPA

2 )−1

PTPA
λA //

idPTPA

$$
PTA

PTyA // PTPA = TPA

TyPA

((

TPyA

99⇑Tθ

yTPA

��

λA ,,

TP 2A
λPA // PTPA

∼=

TPA

yTPA

OO

λA

GG

PTA PTyA

FF

⇑λyA

where the unnamed isomorphism above is 3.3. One could also define ε directly in
terms of θ, but that would result in a more complicated proof. Of the triangle
identities:

PTyA

idPTyA ((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘
PTyA·η // PTyA · λA · PTyA

ε·PTyA

��

λA

id
λA ''❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖
η·λA // λA · PTyA · λA

λA·ε

��
PTyA λA

the left identity, which is equivalent to asking for equality when whiskered by yTA,
can be proven using that ω2 is a modification. The right triangle identity, which is
equivalent to asking for equality when whiskered by yTPA, amounts to asking that
the pasting

PTA

yPTA

��

idPTA

��

⇑(ωPA

2 )−1

∼=

TPA

TyPA

((

TPyA

99⇑TθA

yTPA

��

λA ,,

λA

..

TP 2A
λPA // PTPA

PλA //

⇑yλA

P 2TA
µTA // PTA

⇑PωA

2

PTA

PTyA

FF

⇑λyA

PyTA

;;

idPTA

99

∼=

is the identity. This is where the first axiom for a pseudo-distributive law over a
KZ pseudomonad is used, in addition to the second coherence axiom 2.3 of a KZ
pseudomonad.
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Each ωA
2 exhibits λA as a left extension. As TyA is P -admissible, we

know by [29, Remark 16] that the pasting

TPA
yTPA // PTPA

resTyA // PTA

yTyA
⇐= PTA
PTyA

OO
η·yTA

⇐=

TA

yTA

OO

TyA

ZZ

yTA

ii❙❙❙❙❙❙❙❙

exhibits resTyA
· yTPA as a left extension, where resTyA

= λA = µTA · PλA, and η
is the unit of PTyA ⊣ resTyA

as just defined. From a substitution of the definition
of η (and pasting with a couple of isomorphisms) we see that the pasting

∼=

PTA
yPTA //

idPTA

��⇑yλA

P 2TA
µTA

▼▼
&&▼▼

TPA
yTPA //

λA
99rrrrr

PTPA

PλA
77♣♣♣♣♣

PωA
2

⇐=
∼= PTA

PTA

PTyA

aa❉❉❉❉❉❉❉❉ id

>>⑥⑥⑥⑥⑥⑥⑥⑥

PyTA

OO

=yTyA
⇐=

TA

yTA

OO

TyA

\\

yTA

``❆❆❆❆❆❆❆❆

exhibits λA as a left extension. Note that this pasting is equal to ω2 as a consequence
of ω2 being a modification as well as the coherence condition 2.1 satisfied by P .

There exists canonical isomorphisms ωA
4 . We have the left extension

TP 2A
λPA // PTPA

PλA //

y
−1
λA

⇐=

PPTA
µTA // PTA

ωPA
2

⇐=
∼=

TPA

yTPA

OO

TyPA

ee❑❑❑❑❑❑❑❑❑❑❑

λA

// PTA

yPTA

OO

idPTA

::tttttttttt

since TyPA is P -admissible, and also the left extension

TP 2A
TµA // TPA

λA // PTA
⇑Tcid

TPA

T id

::tttttttttt
TyPA

OO

since λA is TP -cocontinuous by Lemma 39, giving us our isomorphism of left ex-
tensions ωA

4 . Note that this means ω4 satisfies coherence axiom 7 of [22]. �

In the following proposition we show that the admissible maps are preserved.
Note that the proof relies on the existence of isomorphisms ωA

4 as above, which in
turn relies on the the admissibility of yA being preserved (also shown above).

Proposition 42. Suppose we are given a 2-category C equipped with a pseu-
domonad (T, u,m) and a KZ pseudomonad (P, y, µ). Suppose further that we are
given a pseudo-distributive law over a KZ pseudomonad λ : TP → PT . Then T
preserves P -admissible maps.

Proof. Suppose we are given a 1-cell L : A → B which is P -admissible, meaning that
we have an adjunction PL ⊣ resL with unit and counit denoted η and ε respectively.
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We show that TL : TA → TB must then be P -admissible, with the admissibility
exhibited by an adjunction

PTL ⊣ µTA · PλA · PT resL · PTyB

Firstly, we note that this right adjoint is exhibited as the left extension

(3.4) PTB
PTyB //

y
−1
TyB
⇐=

PTPB
PT resL//

y
−1
T resL
⇐=

PTPA
PλA //

y
−1
λA

⇐=

P 2TA
µTA //

∼=

PTA

TB

yTB

OO

TyB

// TPB

yTPB

OO

T resL
// TPA

λA

//

yTPA

OO

PTA

yPTA

OO

idPTA

::tttttttttt

and denote it RL for convenience. We then define our unit n as the unique 2-cell
rendering

PTB
RL

&&▲▲
▲▲

TA
yTA

// PTA
idPTA

//

PTL 99rrrr ⇑n

PTA

equal to

PTA
PTL //

y
−1
TL

⇐=

PTB
PTyB //

y
−1
TyB
⇐=

PTPB
PT resL //

y
−1
T resL
⇐=

PTPA
PλA //

y
−1
λA

⇐=

P 2TA
µTA //

∼=

PTA

TA
TL

//

yTA

OO

TyA //

yTA

99TB

yTB

OO

TyB

// TPB

yTPB

OO

T resL
//

⇑Tη

TPA
λA

//

yTPA

OO

PTA

yPTA

OO

idPTA

::tttttttttt

⇑TyL

TPA
TPL

OO

T id

::

⇑ωA

2

and note that the unit n is then given by

(3.5) PTA
PTL //

PTyA 00

PyTA

;;

idPTA

;;PTB
PTyB // PTPB

PT resL //

⇑PTη

PTPA
PλA // P 2TA

µTA // PTA

⇑PTyL

PTPA
PTPL

OO

PT id

==

⇑PωA

2
∼=

as y : 1 → P is a pseudonatural transformation. We define our counit e as the
unique solution to the left extension problem

⇑e ⇑(ωB

2 )−1

TB
yTB //

λA·T resL·TyB

<<PTB
RL //

idPTB

%%
PTA

PTL // PTB = TB

TyB

��

TyB //

yTB

%%
TPB

λB // PTB
∼=

=
⇑Tε

⇑λL

TPB

T id✈✈✈✈

::✈✈✈✈

T resL
// TPA

TPL

OO

λA

// PTA

PTL

OO

where the unlabeled isomorphism is 3.4. Of the triangle identities:

PTL

idPTL
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗
PTL·n // PTL · RL · PTL

e·PTL

��

RL

idRL ((PP
PPP

PPP
PPP

PPP
P

n·RL // RL · PTL · RL

RL·e

��
PTL RL
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the left identity (or equivalently the left triangle identity whiskered by yTA) easily
follows from the whiskered definitions of n and e as well as the corresponding
triangle identity for PL ⊣ resL, and ω2 being a modification. The right triangle
identity (or that whiskered by yTB) is more complicated. This identity amounts to
checking that
(3.6)

⇑(ωB

2 )−1

TB

TyB

��

TyB //

yTB

%%
TPB

λB // PTB
PTyB //

⇑PTyL

PTPB
PT resL // PTPA

PλA // P 2TA
µTA // PTA

⇑Tε

=
⇑λL

⇑PTη

∼=

TPB

T id✈✈✈✈

;;✈✈✈✈

T resL

// TPA

TPL

OO

λA

// PTA

PTL

OO

PTyA //
PyTA

;;

idPTA

::

PTPA

PTPL

OO

PT idrrrrr

99rrrrr

⇑PωA

2

is just the isomorphism 3.4. The first step here is to make our diagrams more like
the first axiom of a pseudo-distributive law over a KZ doctrine. Upon using that
ω2 is a modification and the coherence axiom 2.3, the problem reduces to showing
that 3.6 with the unnamed isomorphism and cell ωB

2 removed is equal to
(3.7)

PTB
PTyB //

⇑λ−1
yB

PTPB
PT resL //

⇑λ−1
resL

PTPA
PλA //

y
−1
λA

⇐=

P 2TA
µTA // PTA

TPB
TPyB //

λB
99sssss

TP 2B
TP resL //

λPB
88qqqqq

TP 2A ωPA
2

⇐=

λPA
88♣♣♣♣♣

θTA

⇐=

TB
TyB

//TyB

ee❑❑❑❑❑ ⇑Ty−1
yB

TPB
T resL

//TyPB

ff◆◆◆◆◆ ⇑Ty−1
resL

TPA
λA

//

yTPA

OO

TyPA

gg◆◆◆◆◆
PTA

yPTA

CC

PyTA

[[

We then simplify 3.7 using the first axiom of a pseudo-distributive law over a KZ
doctrine, canceling PωA

2 , and pasting λyB
, λyA

and λresL to the other side of the
desired equation. By pseudonaturality of λ, the problem may then be reduced to
showing that

TB

TyB

��

TyB // TPB
TPyB // TP 2B

TP resL// TP 2A
λPA // PTPA

PλA // P 2TA
µTA // PTA

⇑Tε

=
⇑TPyL

⇑TPη

TPB

T id✇✇✇✇

;;✇✇✇✇

T resL

// TPA

TPL

OO

TPyA

// TP 2A

TP id

::✉✉✉✉✉✉✉✉✉✉
TP 2L

OO

is equal to

TPB
TPyB // TP 2B

TP resL// TP 2A
λPA // PTPA

PλA // P 2TA
µTA // PTA

⇑Ty−1
yB

⇑Ty−1
resL

TθA

⇐=

TB
TyB

//

TyB

OO

TPB
T resL

//

TyPB

OO

TPA

TyPA

DD

TPyA

ZZ

Since we have the isomorphism ωA
4 as in Lemma 41, and as TθB · TyB is invertible

(meaning we can paste with TθB and maintain the logical equivalence), we may
reduce the problem to showing that

TB

TyB

��

TyB // TPB
TPyB

22

TyPB ,,
⇑TθB TP 2B

TP resL // TP 2A
TµA // TPA

λA // PTA

⇑Tε

=

⇑TPyL

⇑TPη

TPB

T id✇✇✇✇

;;✇✇✇✇

T resL

// TPA

TPL

OO

TPyA

// TP 2A

TP idPA

::✉✉✉✉✉✉✉✉✉✉
TP 2L

OO
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is equal to

TPB
TPyB

22

TyPB ,,
⇑TθB TP 2B

TP resL // TP 2A
TµA // TPA

λA // PTA

⇑TyyB ⇑Ty−1
resL

TθA

⇐=

TB
TyB

//

TyB

OO

TPB
T resL

//

TyPB

OO

TPA

TyPA

DD

TPyA

ZZ

From here, use that θ is a modification, the axioms 2.2 and 2.3, and pseudonaturality
of y to deduce the triangle identity from that of the adjunction PL ⊣ resL. �

Remark 43. Note that here, as well as in the preceding lemma, we only used that
ω2 is an invertible modification and the first axiom for a pseudo-distributive law
over a KZ doctrine, along with pseudo naturality of λ.

We are now ready to prove the main result of this subsection.

Theorem 44. In the statement of Theorem 35 (e) implies (d).

Proof. We first note by Proposition 42 that T preserves P -admissible maps. Also,
we know by Lemma 41 that each λA is a left extension exhibited by the distributive
law data as in

TPA
λA // PTA

ωA
2

⇐=

TA

yTA

OO

TyA

dd❏❏❏❏❏❏❏❏❏❏

with ωA
2 invertible by assumption. That each λA is TP -cocontinuous is a conse-

quence of Lemma 39 and ω2 being a modification. Finally, that the diagrams

PA
uPA // TPA

uyA
⇐=

λA //
ωA

2
⇐=

PTA T 2PA
mPA // TPA

myA
⇐=

λA //
ωA

2
⇐=

PTA

A
uA

//

yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉
T 2A

mA

//

T 2yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

exhibit both λA ·uPA and λA ·mPA as left extensions is due to the last two axioms
for a pseudo-distributive law over a KZ pseudomonad (as pasting a left extension
with an isomorphism ω1 or ω3 will preserve the left extension property). Indeed, it
is clear the left diagram below exhibits PuA as a left extension.

PA
PuA //

y
−1
uA

⇐=

PTA T 2PA
TλA // TPTA

TωA
2

⇐=

λTA //
ω2T

A

⇐=

PT 2A
PmA //

y
−1
mA

⇐=

PTA

A
uA

//

yA

OO

TA

yTA

OO

T 2A

TyTA

OO

T 2yA

ee❑❑❑❑❑❑❑❑❑❑ yT2A

99ssssssssss

mA

// TA

yTA

::✉✉✉✉✉✉✉✉✉✉

A

To see that the composite PmA · λTA · TλA on the right is a left extension, note
that Proposition 37 shows λTA · TλA is a left extension above, and since T 2yA

is P -admissible by Proposition 42, the left extension property is respected upon
whiskering by PmA. �

3.4. Lifting a KZ Doctrine to Algebras via a Distributive Law. In this
subsection we show that given a pseudo-distributive law of a pseudomonad T over

a KZ doctrine P , we may lift P to a KZ doctrine P̃ on the 2-category of pseudo
T -algebras. This is (d) =⇒ (a) of Theorem 35. However, before we show this
implication we will first need to verify the following proposition.
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Proposition 45. Suppose we are given statement (d) of Theorem 35. It then
follows that:

(1) T preserves P -admissible maps;

and for every pseudo T -algebra
(

A, TA
x
→ A

)
,

(2) there exists a 1-cell zx given as the left extension via an isomorphism ξx

TPA
zx // PA

TA
x

//

TyA

OO

⇑ξx

A

yA

OO

which we call the Day convolution at x;
(3) each zx is TP -cocontinuous;
(4) the respective diagrams

PA
uPA // TPA

⇑uyA

zx //

⇑ξx

PA T 2PA
mPA // TPA

⇑myA

zx //

⇑ξx

PA

A
uA

//

yA

OO

TA

TyA

OO

x
// A

yA

OO

T 2A
mA

//

T 2yA

OO

TA

TyA

OO

x
// A

yA

OO

exhibit zx · uPA and zx ·mPA as left extensions.

Proof. (1) This property is straight from the definition. We include this property
here so that this proposition may be taken as one the equivalent conditions of
Theorem 35. We will remark about this later in this subsection. Now, let a pseudo

T -algebra
(

A, TA
x
→ A

)
be given. (2) The left extension (zx, ξx) is given by the

diagram

TPA
λA // PTA

ωA
2

⇐=

Px //

y
−1
x

⇐=

PA

TA

yTA

OO

TyA

dd❏❏❏❏❏❏❏❏❏❏

x
// A

yA

OO

where the left extension λA is preserved by Px as TyA is P -admissible. (3) Suppose
we are given a left extension as on the left below.

PD
F // PA TPD

TF // TPA
zx // PA

cF
⇐=

TcF
⇐=

D

yD

OO

F

<<②②②②②②②②②
TD

TyD

OO

TF

::✈✈✈✈✈✈✈✈✈✈

As this left extension is T -preserved by λA, which in turn is preserved by Px as
TyD is P -admissible, the diagram on the right exhibits zx · TF = Px · λA · TF
as a left extension. (4) Again noting each TyA is P -admissible, we see the left
extensions

PA
uPA // TPA

uA
y

⇐=

λA //
ωA

2
⇐=

PTA T 2PA
mPA // TPA

mA
y

⇐=

λA //
ωA

2
⇐=

PTA

A
uA

//

yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉
T 2A

mA

//

T 2yA

OO

TA

TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

are preserved upon composing with Px. Trivially, these left extensions are then
preserved upon pasting with the isomorphism yx. �
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The following remark is not needed for the proof of Theorem 35, it merely ex-
plains why the consequences in the above proposition are equivalent to the condi-
tions (a) through to (f ) of this theorem.

Remark 46. Note that from this proposition one may recover statement (d) of
Theorem 35. This is since given the data of this proposition, one may recover a
choice of each λA and its exhibiting invertible 2-cell ωA

2 as a left extension, by
taking the pasting

TPA

⇑Ty−1
uA

TPuA // TPTA
zmA //

⇑ξmA

PTA

TA

TyA

OO

TuA

// T 2A

TyTA

OO

mA

// TA

yTA

OO

The condition of each λA being TP -cocontinuous is inherited from the corre-
sponding condition on each zmA

. Condition (4) of this proposition yields the cor-
responding conditions on the maps λA. We omit this last calculation, as it is not
required for the proof of the main theorem. We just note that this last calculation
relies on the pseudo-algebra structure of the maps zx : TPA → PA constructed
later on in this subsection. The construction of the algebra structure may be done
with all of the axioms for a pseudo-distributive law over a KZ doctrine without
the last (which we have recovered from the proposition), in addition to the last
condition of the proposition.

The following proposition will be useful in the proof that (d) implies (a).

Proposition 47. Suppose we are given a 2-category C equipped with a pseu-
domonad (T, u,m) and a KZ doctrine (P, y). Further suppose that we are given
a pseudo-distributive law over a KZ doctrine λ : TP → PT . Then for any two
P -cocomplete objects C and D, a 1-cell u : TC → D is TP -cocontinuous if and only
if it is TP -adm-cocontinuous.

Proof. Supposing that u is TP -cocontinuous we check that u is necessarily TP -adm-
cocontinuous. To see this, we first note that we have an induced isomorphism of
left extensions as a consequence of having the two left extensions

TPC
λC // PTC

Pu // PD
(yD)

∗ // D TPC
T (yC)

∗ // TC
u // D

ωC
2

⇐=
TcidC
⇐= ∼=

TC

TyC

OO

yTC

::✉✉✉✉✉✉✉✉✉✉
u

// D

yD

;;①①①①①①①①①①

y
−1
u

⇐=

idD

>>

cidD
⇐=

TC

TyC

OO

T idC

;;✇✇✇✇✇✇✇✇✇
u

>>

We must check that the left extension (where L is P -admissible)

B
RL // PA
ϕL
⇐=

PH // PC
(yC)

∗ // C
cidC
⇐=

A

L

bb❉❉❉❉❉❉❉❉❉
yA

OO

H
//

y
−1
H

⇐=

C

yC

OO

idC

==④④④④④④④④④

is T -preserved by u. Indeed, on applying T and whiskering by u, and then pasting
with this isomorphism of left extensions and a naturality isomorphism of λ (which
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we have by Lemma 39), we obtain

PTA
PTH // PTC

Pu // PD
(yD)

∗

""❉
❉❉

❉❉
❉❉

❉❉

TB
TRL // TPA

TϕL
⇐=

TPH //

λA

OO
λ

−1
H

⇐=

TPC
T (yC)

∗ //

λC

OO
∼=

TC
u // D

TcidC
⇐=

TA

TL

cc❍❍❍❍❍❍❍❍❍
TyA

OO

TH
//

Ty
−1
H

⇐=

TC

TyC

OO

T idC

;;✈✈✈✈✈✈✈✈✈

Then noting that pasting with invertible 2-cells preserves left extensions and that

TB
TRL // TPA

TϕL
⇐=

λA //
ω2

⇐=

PTA
PTH // PTC

Pu // PD
(yD)

∗ // D

TA

TL

cc❍❍❍❍❍❍❍❍❍
TyA

OO

yTA

::✉✉✉✉✉✉✉✉✉✉

is a left extension as a consequence of TL being P -admissible (thus the left extension
λA · TRL in Proposition 37 being preserved), we have the result. �

We now have everything required to complete the proof of the main theorem.

Theorem 48. In the statement of Theorem 35 (d) implies (a).

Proof. Firstly, we observe that each zx is TP -adm-cocontinuous as a consequence
of Proposition 47. It follows that we have the left extensions

T 2PA
Tzx // TPA

⇑Tξx

zx //

⇑ξx

PA T 3PA
T 2zx // T 2PA

Tzx //

⇑T 2ξx

TPA

⇑Tξx

zx //

⇑ξx

PA

T 2A
Tx

//

T 2yA

OO

TA

TyA

OO

x
// A

yA

OO

T 3A
T 2x

//

T 3yA

OO

T 2A
Tx

//

T 2yA

OO

TA

TyA

OO

x
// A

yA

OO

upon noting that each T 2yA and T 3yA is P -admissible.
Secondly, we check that each (PA, zx) is a pseudo T -algebra. We define our

algebra structure maps as the unique solutions to the following left extension prob-
lems (and note they are invertible as they are isomorphisms of left extensions by
Proposition 45)

TPA
zx

##●
●●

●●
●●

●●
TPA

zx //

⇑ξx

PA

PA
idPA //

uPA

::ttttttttt
⇑σx

PA = PA

uPA

::ttttttttt
⇑uyA TA

x
//

TyA

OO

∼=

A

yA

OO

A

yA

OO
id

⇐=

yA

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚
A

uA

::tttttttttt
idA

<<

yA

OO

TPA
zx

##●
●●

●●
●●

●●
TPA

zx //

⇑ξx

PA

T 2PA
Tzx //

mPA

::✉✉✉✉✉✉✉✉✉

⇑Tξx

TPA
zx //

⇑ξx

⇑δx

PA = T 2PA

mPA

::✉✉✉✉✉✉✉✉✉
⇑myA TA

x
//

TyA

OO

∼=

A

yA

OO

T 2A
Tx

//

T 2yA

OO

TA
x

//

TyA

OO

A

yA

OO

T 2A

mA

::✉✉✉✉✉✉✉✉✉
T 2yA

OO

Tx
// TA

x

;;①①①①①①①①①
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Note that these are the axioms for ξx to exhibit yA as a pseudo T -morphism. To
check that the algebra structure coherence axioms are satisfied, we note that the
equalities

T 2PA
mPA //

Tzx
&&▼▼

▼▼▼

∼=

TPA
zx
$$❏

❏❏
❏

TPA id //
TuPA

88

idTPA

$$

⇑Tσx

TPA
zx //

⇑ξx

⇑δx

PA TPA
zx //

⇑ξx

PA
=

=

TA
x

//

TyA

OO

TyA

77♣♣♣♣♣♣♣♣♣♣♣♣♣♣
A

yA

OO

TA

TyA

OO

x
// A

yA

OO

TPA
zx

��

T 2PA
Tzx //

mPA
44❤❤❤❤❤❤❤❤❤❤❤

∼=

TPA
zx
$$❏

❏❏
❏

⇑δx

TPA
zx

//
uTPAqq

88qq

idTPA ,,

PA
idPA

//

uPA
99rrrrr⇑u−1

zx ⇑σx

PA TPA
zx //

⇑ξx

PA
=

=

TA
x

//

TyA

OO

⇑ξx

A

yA

OO

yA

ff▼▼▼▼▼▼▼▼▼▼▼▼▼▼
TA

TyA

OO

x
// A

yA

OO

and the equality between

T 2PA

mPA

((
∼= T 2PA

mPA //

Tzx

$$■
■■

■■
■■

■■
■ TPA

zx

##❋
❋❋

❋❋
❋❋

❋❋

T 3PA
T 2zx //

TmPA

99tttttttttt
mTPA

OO

T 2PA
Tzx //

⇑Tδx

TPA
zx //

⇑δx

PA

T 3A
T 2x

//

T 3yA

OO

⇑T 2ξx

T 2A
Tx

//

T 2yA

OO

⇑Tξx

TA
x

//

TyA

OO

⇑ξx

A

yA

OO

and

TPA

zx

��

T 2PA
Tzx //

mPA

::✉✉✉✉✉✉✉✉✉
TPA

zx

##❋
❋❋

❋❋
❋❋

❋❋

⇑δx

T 3PA
T 2zx //

mTPA

::✉✉✉✉✉✉✉✉✉✉
T 2PA

Tzx //

mPA

::✉✉✉✉✉✉✉✉✉✉
⇑m−1

zx

TPA
zx //

⇑δx

PA

T 3A
T 2x

//

T 3yA

OO

⇑T 2ξx

T 2A
Tx

//

T 2yA

OO

⇑Tξx

TA
x

//

TyA

OO

⇑ξx

A

yA

OO

easily follow from the respective conditions on (A, x) being a pseudo T -algebra and
the definitions of δx and σx.

We now use the above to define our KZ doctrine

P̃ : ps-T -alg → ps-T -alg
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We use the assignment on objects (A, x) 7→ (PA, zx). We take our units as the
pseudo T -morphisms (yA, ξx) : (A, x) → (PA, zx). Now suppose that we are given

a pseudo T -morphism (F, φ) : (A, x) → (PB, zr), where (PB, zr) = P̃ (B, r), as in
the diagram

(PA, zx)
(F,φ)

//
cF
⇐=

(PB, zr)

(A, x)

(F,φ)

88rrrrrrrrrrr
(yA,ξx)

OO

Since zr is TP -cocontinuous, we may apply Proposition 14 to find a lax T -morphism(
F , φ

)
as above. Indeed the lax structure map φ is given as the unique solution to

TPA
zx // PA

F

��

TPA
zx //

TF

��

PA

F

��

TA
x //

TyA

;;✇✇✇✇✇✇✇✇✇

TF ##●
●●

●●
●●

●●
A

F

##●
●●

●●
●●

●●

yA

;;✇✇✇✇✇✇✇✇✇
⇑cF

⇑ξx

= TA

TyA

;;✇✇✇✇✇✇✇✇✇

TF ##●
●●

●●
●●

●●
⇑TcF ⇑φ

TPB
zr

//

⇑φ

PB TPB
zr

// PB

But we notice that

TPA
TF //

TcF
⇐=

TPB
zr // PB TPA

zx // PA
F // PB

cF
⇐=

TA

TyA

OO

TF

::✉✉✉✉✉✉✉✉✉✉
TA

x
//

TyA

OO

⇑ξx

TF ..

A

yA

OO

F

88qqqqqqqqqqqqq

∼=φ

TPB

zr

FF✌✌✌✌✌✌✌✌✌✌✌✌

are both left extensions since zr is TP -cocontinuous and TyA is P -admissible re-
spectively. It follows that the lax T -morphism structure map φ is an isomorphism
of left extensions, making

(
F , φ

)
a pseudo T -morphism. Of course, if we only as-

sume (F, φ) to be a lax T -morphism then we can only expect F to admit a lax
T -morphism structure.

We now check that such left extensions are preserved by other left extensions
of this form. Suppose we are given two left extensions of pseudo T -algebras and
pseudo T -morphisms

(PA, zx)
(F,φ)

//
cF
⇐=

(PB, zr) (PB, zr)
(G,σ)

//
cG
⇐=

(PC, zh)

(A, x)

(F,φ)

88rrrrrrrrrrr
(yA,ξx)

OO

(B, r)

(G,σ)

99rrrrrrrrrrr
(yB,ξr)

OO

To see that

(PA, zx)
(F,φ)

// (PB, zr)
(G,σ)

// (PC, zh)

(G,σ)cF
⇐=

(PB, zr)
(G,σ)

55❦❦❦❦❦❦

(A, x)
(F,φ)

55❦❦❦❦❦❦❦❦

(yA,ξx)

OO

is a left extension we need only observe that the T -morphism structure on GF
resulting from an application of Proposition 14 (on the outside diagram) is given
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by composing φ and σ as above. This is shown by pasting the defining diagram for
φ with σ which gives

(3.8) TPA
zx // PA

F

��

TPA
zx //

TF

��

PA

F

��

TA
x //

TyA

;;✇✇✇✇✇✇✇✇✇

TF ##●
●●

●●
●●

●●
A

F

##●
●●

●●
●●

●●

yA

;;✇✇✇✇✇✇✇✇✇
⇑cF

⇑ξx

TA

TyA

;;✇✇✇✇✇✇✇✇✇

TF ##●
●●

●●
●●

●●
⇑TcF ⇑φ

TPB
zr

//

⇑φ

TG

��

PB

G

��

= TPB
zr

//

TG

��

PB

G

��

⇑σ ⇑σ

TPC
zh

// PC TPC
zh

// PC

which is the defining diagram for the induced lax structure on G ·F from an appli-
cation of Proposition 14.

It is an easy consequence of Proposition 14 that each (yA, ξx) is dense. Indeed
since zx T -preserves the left extension

PA
idPA // PA

=

A

yA

OO

yA

<<②②②②②②②②②

(as well the resulting left extension) the density property may be lifted to pseudo-
T -algebras applying Proposition 14. �

4. Consequences and Examples

In this section we point out some consequences of Theorem 35 proven in the

previous section, and in particular some properties of the lifted KZ doctrine P̃ on

ps-T -alg. Before considering the properties of P̃ , we mention two easy corollaries.

Corollary 49. Pseudo-distributive laws over KZ pseudomonads are essentially
unique.

Proof. As shown in Lemma 41, the modification components ωA
2 exhibit λA as a

left extension. The last two coherence axioms of a pseudo-distributive law over a
KZ pseudomonad then define the components ωA

1 and ωA
3 as unique solutions to a

left extension problem. Note that ωA
4 is also defined as the unique solution to a left

extension problem (see the proof of 41). The essential uniqueness of left extensions
then tells us these pseudo-distributive laws are essentially unique. �

Corollary 50. When the conditions of Theorem 35 are met, the lifted pseudomonad
arising from the pseudo-distributive law is automatically KZ.

Proof. As a consequence of the essential uniqueness of pseudo-distributive laws
over KZ pseudomonads, any lifted pseudomonad must be equivalent to the KZ
pseudomonad whose existence is guaranteed by Theorem 35. �
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4.1. The Lifted KZ Doctrines. We first check that in addition to having a lifting
to ps-T -alg, we have a lifting to the 2-category of pseudo-T -algebras, lax (or oplax)
T -morphisms, and T -transformations.

Proposition 51. Suppose any of the equivalent conditions of Theorem 35 are
satisfied. Then

(a) P lifts to a KZ doctrine P̃oplax on ps-T -algoplax;

(b) P lifts to a KZ doctrine P̃lax on ps-T -alglax;

Proof. (a) : P lifts to a KZ doctrine P̃oplax on ps-T -algoplax since given any oplax
structure cell ϕ on a map F : A → PB as below

(PA, zx)
(F,ϕ)

//
cF
⇐=

(PB, zr)

(A, x)

(F,ϕ)

88rrrrrrrrrrr
(yA,ξx)

OO

we get an oplax structure cell ϕ given as unique the solution to

TPB
zr //

⇑ϕ

PB TPB
zr //

⇑ϕ

PB

TPA
zx //

⇑ξx

TF

OO

PA

F

OO

= TPA

TF

::✈✈✈✈✈✈✈✈✈
Tc

−1
F

=⇒

cF
=⇒ PA

F

bb❊❊❊❊❊❊❊❊❊

TA

TyA

OO

x
// A

yA

OO

TA

TyA

dd❍❍❍❍❍❍❍❍❍

x
//

TF

OO

A

yA

<<②②②②②②②②②

F

OO

with the coherence conditions for ϕ being an oplax T -morphism structure following
from Proposition 45 (Part 4). Note that the induced oplax structure when composed
by an oplax T -morphism

(
G, τ

)
as below

(PA, zx)
(F,ϕ)

//
cF
⇐=

(PB, zr)
(G,τ)

// (PC, zk)

(A, x)

(F,ϕ)

88rrrrrrrrrrr
(yA,ξx)

OO

is still
(
G, τ

)
·
(
F , ϕ

)
. To see that

(
F , ϕ

)
is a left extension in the sense of transfor-

mations, suppose we are given a transformation σ : (F, ϕ) → (H,ψ) · (yA, ξx), then
the induced cell σ : F → H is a transformation since

TPB
zr //

⇑ϕ

PB TPB
zr //

⇑ψ

PB

Tσ
⇐=

σ
⇐=

TPA
zx //

⇑ξx

TF

OO

TH

88

PA

F

OO

= TPA
zx //

⇑ξx

TH

88

PA

F

OO

H

88

TA

TyA

OO

x
// A

yA

OO

TA

TyA

OO

x
// A

yA

OO

as a consequence of σ being a transformation. By Proposition 14 the density prop-
erty is still valid in the setting of oplax T -morphisms; this being why we proved the
general case of Proposition 14 in terms of composites of lax and oplax morphisms.

(b) : The proof that P lifts to a KZ doctrine P̃lax on ps-T -alglax is essentially
given in Theorem 48. �
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We now check that the KZ structure cell θ : Py → yP remains the same upon
lifting to algebras.

Proposition 52. Suppose any of the equivalent conditions of Theorem 35 are sat-
isfied. Then the KZ structure cell θ : Py → yP for P is also the KZ structure cell

for P̃ .

Proof. Recall that the components of θ are recovered as the induced cells out of
the left extensions PyA as in the diagram below

PA
PyA //

⇑y−1
yA

P 2A

A
yA

//

yA

OO

PA

yPA

OO

such that the composite with this diagram is an identity. Now apply Proposition
14 to this naturality square noting that each yA extends to a pseudo T -morphism

(yA, ξx) in order to recover the components of the KZ structure cell for P̃ . �

If we are to study the lifted KZ doctrine P̃ , we should consider the P̃ -cocomplete

objects and the P̃ -admissible maps. We start with the former.
Algebraic cocompleteness is usually defined by asking that the underlying object

be cocomplete, and that the algebra structure map be separately cocontinuous.
The following proposition justifies this definition.

Proposition 53. Suppose any of the equivalent conditions of Theorem 35 are sat-
isfied. Then a pseudo T -algebra (A, x) is

(a) P̃ -cocomplete iff A is P -cocomplete and x : TA → A is TP -cocontinuous;

(b) P̃lax-cocomplete iff A is P -cocomplete and x : TA → A is TP -cocontinuous;

(c) P̃oplax-cocomplete iff A is P -cocomplete.

Moreover, the pseudo/lax/oplax T -morphisms (F, φ) which are P̃ /P̃lax/P̃oplax-cocontinuous
are all classified by those maps for which the underlying F is P -cocontinuous.

Proof. We start off by proving part (a).

(=⇒) : Suppose that (A, x) is a P̃ -cocomplete pseudo T -algebra. Then, by doc-
trinal adjunction [13], the pseudo T -morphism (yA, ξx) has a reflection left adjoint(
(yA)∗ ,

(
ξ−1
x

)
∗

)
for which

(
ξ−1
x

)
∗

is defined by the mates correspondence and is
invertible. That is, we have isomorphisms

TPA
zx //

⇓ξ−1
x

PA TPA
zx //

⇓(ξ−1
x )

∗
T (yA)

∗

��

PA

(yA)
∗

��
TA

TyA

OO

x
// A

yA

OO

TA
x

// A

Now (yA)∗ ⊣ yA via a reflection adjoint so A is P -cocomplete. We thus check that
x : TA → A is TP -cocontinuous. Suppose we are given a left extension as on the
left

PD
F //

⇑cF

A TPD
F //

⇑TcF

TA
x // A

D

F

<<③③③③③③③③③
yD

OO

TD

TF

;;✈✈✈✈✈✈✈✈✈
TyD

OO
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We check that the right diagram is a left extension. We first note this is equivalent
to showing that x T -preserves left extensions as on the left below

PD
PF //

⇑cyA·F

PA
(yA)

∗ //
⇑cidA

A TPD
TPF //

⇑TcyA·F

TPA
T (yA)

∗ //
⇑TcidA

TA
x // A

D
F

//

yD

OO

A

yA

OO

idA

<<③③③③③③③③③
TD

TF
//

TyD

OO

TA

TyA

OO

T idA

;;✈✈✈✈✈✈✈✈✈

and so it suffices to check the right diagram is a left extension. This is seen upon
pasting with the isomorphism

(
ξ−1
x

)
∗

as zx is TP -cocontinuous and (yA)∗ is a left

adjoint (and hence preserves all left extensions).
(⇐=) : Suppose that A is P -cocomplete and x is TP -cocontinuous. Then (A, x)

is P̃ -cocomplete as (A, x) admits left extensions along (yA, ξx) by Proposition 14,
and showing that such left extensions admit a pseudo T -morphism structure and
are preserved is a similar calculation to that in the proof of Theorem 48.

(b) : The proof of the classification of P̃lax-cocomplete pseudo P -algebras is
almost the same (as the reflection left adjoint must again be pseudo by doctrinal
adjunction [13]), and so we omit the details.

(c) : The P̃oplax-cocomplete pseudo P -algebras are those with an underlying
P -cocomplete object, as a consequence of doctrinal adjunction [13].

That the T -morphisms (F, φ) which are P̃ /P̃lax/P̃oplax-cocontinuous are all classi-
fied by those morphisms for which the underlying F is P -cocontinuous is a straight-
forward calculation. Indeed, given a pseudo T -morphism (F, φ) for which F is

P -cocontinuous, checking that (F, φ) is then P̃ -cocontinuous requires only check-

ing a coherence condition (similar to 3.8). Conversely, given that (F, φ) is P̃ -

cocontinuous, that is, a pseudo P̃ -morphism on ps-T -alg, we know the underlying
F must be a pseudo P -morphism on C (by forgetting that certain morphisms and

2-cells are T -algebraic), so that F is P -cocontinuous. The P̃lax and P̃oplax case may
be similarly seen. �

Proposition 54. Suppose any of the equivalent conditions of Theorem 35 are sat-
isfied. Assume (L,α) : (A, x) → (B, y) is a pseudo T -morphism and L : A → B

is P -admissible. Then (L,α) is P̃ -admissible if and only if for every P̃ -cocomplete
pseudo T -algebra (C, z) and pseudo T -morphism (I, ξ) as in the diagram

(B, y)
(R,β) // (C, z)

δ
⇐=

(A, x)

(I,ξ)

OO

(L,α)

dd■■■■■■■■■■

the induced lax structure cell β on the underlying left extension R as in Proposition
14 is invertible. Moreover, for pseudo, lax and oplax (L,α) respectively,

1. (L,α) is P̃ -admissible iff P̃ (L,α) has a pseudo right adjoint;

2. (L,α) is P̃lax-admissible iff P̃ (L,α) is pseudo;

3. (L,α) is P̃oplax-admissible iff P̃ (L,α) has a pseudo right adjoint.

Proof. The first part of this proposition follows an equivalent characterization of
P -admissibility as given by Bunge and Funk (discussed in [2, 29]), along with
Proposition 14. The last three properties are a direct consequence of doctrinal
adjunction [13]. �
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Remark 55. Note that the conditions of P̃ /P̃oplax-admissibility are analogous to
asking a Guitart exactness condition is satisfied [9] (in the presence of some addi-
tional structure, and in the context of pointwise left extensions). However, we omit
discussion of this as it would take us beyond the scope of this paper.

Remark 56. Note that if P (and thus P̃ ) is locally fully faithful, and (L,α) is a lax

T -morphism, then P̃ (L,α) being pseudo implies (L,α) is. Indeed, the lax structure
cell α when whiskered by yA is invertible (a direct consequence of how the structure

cell of P̃ (L,α) is defined in Proposition 14). As yA is fully faithful, this means α is
invertible. Hence, in this case, Statement 2 of the above proposition is equivalent
to saying (L,α) is pseudo.

Given a KZ doctrine P on a 2-category C we have an equivalence given by
composition with the unit yA, namely Cccts (PA,B) ≃ C (A,B), with Cccts (PA,B)
containing left extensions of maps A → B along the unit yA. This is clearly
essentially surjective as for an F : A → B we may take F : PA → B, and fully
faithful as yA is dense. We can thus recover Im and Kelly’s following result.

Corollary 57 (Im-Kelly [10]). Suppose we are given a 2-category C equipped with
a pseudomonad (T, u,m) and a KZ doctrine (P, y). Suppose any of the equivalent
conditions of Theorem 35 are met. Then for every pair of pseudo T -algebras (A, x)
and (B, r) where B is P -cocomplete, composition with the unit (yA, ξx) defines the
equivalence

Oplax [(A, x) , (B, r)] ≃ Oplaxccts [(PA, zx) , (B, r)]

where a morphism of pseudo T -algebras is cocontinuous when the underlying mor-
phism is. Suppose further that r is TP -cocontinuous. Then composition with the
unit (yA, ξx) also defines the equivalences

Lax [(A, x) , (B, r)] ≃ Laxccts [(PA, zx) , (B, r)]

Pseudo [(A, x) , (B, r)] ≃ Pseudoccts [(PA, zx) , (B, r)]

Moreover, the above three equivalences restrict to P -admissible underlying mor-
phisms.

Proof. We need only check the restriction. Note that if L : PA → B is P -admissible
then so is the composite L · yA

∼= L due to closure under composition. If L is P -
admissible, then L has a right adjoint by [29, Lemma 12], and so PL also does. �

4.2. The Preorder of KZ Doctrines on a 2-Category. In the following dis-
cussion of morphisms between KZ pseudomonads and doctrines we will omit most
of the details, as this would take us beyond the scope of this paper. Moreover, the
calculations are quite similar to those in Section 3.

It is the goal of this subsection to show that the 2-category of KZ pseudomonads
on a 2-category C is biequivalent to a preorder. This is a property one might expect
given the “property like structure” viewpoint [15]; and the tools of admissible maps
give us a method of proving this result.

Definition 58. Given KZ pseudomonads (P, y, µ) and (P ′, y′, µ′) on a 2-category
C , a morphism of KZ pseudomonads P =⇒ P ′ (corresponding to a lifting of the
identity on C ) consists of a pseudonatural transformation α : P → P ′ and an
invertible modification

P
α // P ′

ψy
⇐=

1C

y′

OO

y

``❆❆❆❆❆❆❆❆
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such that

P
α //

y′P

��

yP

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦

P ′

P ′y′

��
y′P ′

��
P

α //

Py

��

yP

��

P ′

P ′y

��

P ′y′

  ❇
❇❇

❇❇
❇❇

❇❇
❇

=
ψyP

⇐=

(y′)−1
α

⇐=
θ′

⇐=

θ
⇐=

αy
⇐=

P ′ψy
⇐=

PP
αP

// P ′P
P ′α

// P ′P ′

µ′

// P ′

PP
αP

// P ′P
P ′α

// P ′P ′

µ′

// P ′

The reader will notice the following is similar to Lemma 41, meaning we are
justified in omitting most of the details.

Lemma 59. Given a morphism of KZ pseudomonads as above, the 2-cell ψy ex-
hibits α as a left extension of y′ along y.

Proof. We first observe that P ′y ⊣ µ′ ·P ′α (note that this right adjoint is α, similar
to λ in Lemma 41) with unit η given by

P ′P
P ′α// P ′P ′

µ′

##●●
●●●

P ′

P ′y ;;①①①①

P ′y′

DD

idP ′

99

⇑P ′ψy
∼= P ′

We define the counit ε as the unique 2-cell for which

⇑ε
⇑(ψyP )−1

P
y′P //

α ,,

P ′P
P ′α //

id

&&
P ′P ′ µ′

// P ′ P ′y // P ′P = P

yP
))

Py

66⇑θ

y′P

��

α ..

PP
αP // P ′P

P ′

y′P
==

⇑(y′

α)−1

idP ′

88
∼=

P ′
P ′y

CC
⇑αy

We will omit the triangle identities (as this is almost the same calculation as earlier).
The result then follows from [29, Remark 16] and naturality and pseudomonad
coherence axioms. �

Remark 60. Given a morphism of KZ pseudomonads, we automatically have an
invertible modification

PP
α∗α //

µ

��

P ′P ′

µ′

��
∼=

P
α

// P ′

so that multiplication is respected. Indeed α · µ may be seen as a left extension of
y′ along Py · y exhibited by the bijections

α · µ → H
mates correspondence

α → H · Py
since α is a left extension

y′ → H · Py · y

and µ′ · α ∗ α may be seen as left extension of y′ along yP · y by recalling that
RL = resL · yB for admissible L : A → B [29, Remark 16] and taking L to be an
arbitrary component of yP ·y with respect to P ′-admissibility. In particular, noting
that P ′y ⊣ µ′ ·P ′α and P ′yP ⊣ µ′ ·P ′αP gives us the necessary data for constructing
RL. Finally, noting that yP · y ∼= Py · y gives the result.
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Definition 61. Given KZ doctrines (P, y) and (P ′, y′) on a 2-category C a mor-
phism of KZ doctrines P =⇒ P ′ consists of the assertions that:

(1) every P -admissible map is also P ′-admissible;
(2) for each A ∈ C , the resulting 2-cell exhibiting the left extension αA

PA
αA // P ′A

ψA
y

⇐=

A

y′

A

OO

yA

bb❋❋❋❋❋❋❋❋❋

is invertible;
(3) for each A,B ∈ C , left extensions along yA into PB are preserved by αB.9

Lemma 62. Suppose we are given two KZ doctrines (P, y) and (P ′, y′) on a 2-
category C , with corresponding KZ pseudomonads (P, y, µ) and (P ′, y′, µ′). Then
morphisms P =⇒ P ′ of KZ doctrines are in bijection with morphisms P =⇒ P ′

of KZ pseudomonads (identified via uniqueness of left extensions up to coherent
isomorphism).

Proof. Given that every P -admissible map is also P ′-admissible, we know that
P ′y has a right adjoint (and that we have a left extension α as above, assumed
invertible). In particular, this right adjoint may be constructed as in [29, Prop.
15], and thus we have an adjunction P ′y ⊣ µ′ · P ′α with unit and counit as above.
The triangle identities then force the coherence condition. Pseudonaturality of α
is equivalent to the preservation condition.

Conversely, given a morphism of KZ pseudomonads (which always gives rise to a
usual morphism of pseudomonads) we know that every P ′-cocomplete object is also
P -cocomplete (as the cocomplete objects may be characterized as algebras), and
similarly for homomorphisms. Hence given a P -admissible map L : A → B and map
K : A → X for a P ′-cocomplete (and thus also P -cocomplete) object X , there exists
a left extension J : B → X which is preserved by any P ′-homomorphism (as such is
necessarily a P -homomorphism also). Consequently, L must be P ′-admissible. �

Combining this with the results of [25], yields the following proposition.

Proposition 63. Given a 2-category C , the assignation of [25, Theorems 4.1,4.2]
underlies a biequivalence

KZdoc (C ) ≃ KZps (C )

where KZps (C ) is the 2-category of KZ pseudomonads, morphisms of KZ pseu-
domonads and isomorphisms of left extensions, and KZdoc (C ) is the preorder of
KZ doctrines and morphisms of KZ doctrines.

4.3. Examples. Consider the 2-monad T on locally small categories for strict
monoidal categories, and take P to be the free small cocompletion KZ doctrine on
locally small categories. Note that the pseudo-T -algebras are unbiased monoidal
categories (equivalent to (strict) monoidal categories [20]) and so we may write
ps-T -alg ≃ MonCatps with the latter being the 2-category of monoidal categories,
strong monoidal functors and monoidal transformations.

Given a monoidal category (A,�) we may define a monoidal structure on PA
by Day’s convolution formula

F �Day G :=

ˆ a,b∈A

A (−, a� b) × Fa×Gb

9Consequently, components of α are P -homomorphisms.
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for small presheaves F and G on A. Note that F �Day G is then small, see [5,
Section 7]. This can be shown to give a monoidal structure by the arguments of
Day [4], equivalent to the structure of a pseudo-T -algebra. As the convolution
algebra structure map is separately cocontinuous (and hence TP -cocontinuous [32,
Prop. 2.3.2]) we have enough of Proposition 45 to show condition (a) of Theorem
35 is met.

We thus know that T preserves P -admissible maps. This says that if we suppose
that L : A → B is P -admissible, meaning that each B (L−, b) is a small colimit of
representables, then each

TB (TL−,b) = TB [(L−, · · ·L−) , (b1, · · · , bn)] =

n∏

j=1

B (L−, bj)

is also a small colimit of representables.
For simplicity, we will consider the preservation of the admissibility of L = yA

(which is equivalent to preservation for all L). The existence of a pseudo-distributive
law of T over P then yields the following example.

Proposition 64. Let X,Y : Aop → Set be two small presheaves on A. Then

X × Y : (A × A)
op → Set, (a1, a2) 7→ X (a1) × Y (a2)

is a small presheaf on A × A.

Proof. Note that TyA is P -admissible, and hence

TPA (TyA−,X) : (TA)
op → Set

is a small presheaf on TA for each X = (X1, · · · , Xn) in TPA. In particular, if we
take X = (X,Y ) then

TPA (yA−,X) =

{
TPA [(yA−, yA−) , (X,Y )] , a ∈ (A × A)

op

∅, otherwise

=

{
X (−) × Y (−) , a ∈ (A × A)

op

∅, otherwise

is a small presheaf on
∑
n∈N

An and so X (−) × Y (−) is a small presheaf on A ×
A. �

Our results also apply to the less general setting of distributing (co)KZ doctrines
over KZ doctrines. The following is such an example.

Example 65. Consider the KZ doctrine for the free coproduct completion

FamΣ : Cat → Cat.

Here a map L : A → B is FamΣ-admissible when FamΣL is a left adjoint; that
is, when L is a left multiadjoint. As noted by Diers [6], this is to say that for any
Z ∈ B there exists a family of morphisms (hi : LXi → Z)i∈I which is universal in
the sense that given any k : LX → Z there exists a unique pair (i, f) with i ∈ I
and f : X → Xi such that hi · Lf = k.

It is well known the free product completion FamΠ distributes over this doctrine
[25, Section 8]. Thus, as a consequence of Theorem 35, we see that if a functor L
is a left multiadjoint, then the functor FamΠL is a left multiadjoint also.

The following is a simple consequence of the essential uniqueness of distributive
laws over KZ doctrines, shown in Corollary 49.



DISTRIBUTIVE LAWS VIA ADMISSIBILITY 40

Example 66. Let Prof be the bicategory of profunctors on small categories, and
let PROF be the Kleisli bicategory of the free small cocompletion KZ doctrine P
on locally small categories. Clearly Prof lies inside PROF. By Corollary 49, the
extension of a pseudomonad T on locally small categories to the bicategory PROF

is essentially unique.

5. Liftings of Locally Fully Faithful KZ Monads

In this section, we consider the case in which the KZ doctrine P being lifted is
locally fully faithful. The reader will recall that a KZ doctrine P is locally fully
faithful precisely when each unit map yA is fully faithful [2].

The main goal of this section is to deduce an analogue of “Doctrinal Adjunction”
on the “Yoneda structure” induced by the locally fully faithful KZ doctrine P . We
start however with the following basic properties concerning fully faithful and P -
fully faithful maps.

Proposition 67. Suppose any of the equivalent conditions of Theorem 35 are sat-
isfied. Then

(a) if yA is fully faithful for every A ∈ C , then every TyA is fully faithful;
(b) T preserves maps which are both P -admissible and P -fully faithful.

Proof. Firstly, note that if each yA is fully faithful (so that yTA is fully faithful)
then so is TyA, since we have an isomorphism

TP
λA // PT

ω2
⇐=

TA

yTA

OO

TyA

cc❋❋❋❋❋❋❋❋❋

Secondly, note that if L is a P -admissible P -fully faithful map, meaning the unit
η of the admissibility adjunction is invertible, then so is the unit n exhibiting the
admissibility of TL by Figure 3.5. �

5.1. Doctrinal Partial Adjunctions. In this subsection we study how pseu-
domonads interact with absolute left liftings (also called partial adjunctions or
relative adjunctions), which we now define. In particular, we show that we get an
induced oplax structure on a partial left adjoint under suitable conditions, which
gives a lifting of the partial adjunction to the setting of pseudo algebras in a suitable
sense.

This is in the same spirit as subsection 2.2 on algebraic left extensions, but not
completely analogous (and therefore not a dual). In particular, here we do not
require any algebraic cocompleteness conditions.

Definition 68. Suppose we are given a diagram of the form

(5.1) B
R // C

η
⇐=

A

I

OO

L

``❇❇❇❇❇❇❇❇

in a 2-category C equipped with a 2-cell η : I → R · L. We call such a diagram a
partial adjunction and say that L is a partial left adjoint to R if given any 1-cells M
and N as below, for any 2-cell ζ : I ·M → R ·N there exists a unique ζ : L ·M → N



DISTRIBUTIVE LAWS VIA ADMISSIBILITY 41

such that ζ is equal to the pasting

B
R // C

η
⇐=

ζ
⇐=

D
M

//

N

OO

A

I

OO

L❇❇❇❇

``❇❇❇❇

That is, pasting 2-cells of the form ζ above with η defines a bijection of 2-cells.

Remark 69. It is an easy and well known exercise to check that we have an adjunc-
tion L ⊣ R : B → A with unit η in a 2-category C if and only if

B
R // A

η
⇐=

A

idA

OO

L

``❇❇❇❇❇❇❇❇

exhibits L as a partial left adjoint.

We now define a notion of partial adjunction in the context of pseudo T -algebras
and T -morphisms.

Definition 70. Suppose we are given oplax T -morphisms (I, ξ) and (L,α) and a
lax T -morphism (R, β) equipped with a T -transformation η (as in Remark 7 with
appropriate identities) as in the diagram

(
B, TB

y
→ B

)
(R,β) //

(
C, TC

z
→ C

)

η
⇐=

(
A, TA

x
→ A

)
(I,ξ)

OO

(L,α)

gg◆◆◆◆◆◆◆◆◆◆◆◆

We call such a diagram a T -partial adjunction if for any given pseudo T -algebra
(D, w), lax T -morphism (M, ε), and oplax T -morphism (N,ϕ) as below

(
B, TB

y
→ B

)
(R,β) //

(
C, TC

z
→ C

)

η
⇐=

ζ
⇐=(

D, TD
w
→ D

)
(M,ε)

//

(N,ϕ)

OO

(
A, TA

x
→ A

)
(I,ξ)

OO

(L,α)❖❖❖❖❖

gg❖❖❖❖❖

pasting T -transformations of the form ζ above with the T -transformation η defines
the bijection of T -transformations:

(B, y) (B, y)

ζ
⇐=

(B, y)
(R,β) // (C, z)

ζ
⇐=∼

(D, w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(L,α)

OO

(D, w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(I,ξ)

OO

This operation of pasting the T -transformation ζ with η is given by pasting the
underlying 2-cells. The verification that such a pasting of T -transformations yields
a T -transformation is a simple exercise.
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Remark 71. We may be more general here by replacing (M, ε) and (N,ϕ) by a
lax followed by an oplax, and an oplax followed by a lax T -morphism respectively.
However, this level of generality will not be necessary for this paper.

We now give the doctrinal properties enjoyed by partial adjunctions.

Proposition 72. Suppose we are given a partial adjunction

B
R // C

η
⇐=

A

I

OO

L

``❇❇❇❇❇❇❇❇❇

in a 2-category C equipped with a pseudomonad (T, u,m). Suppose further that
(

A, TA
x

−→ A
)
,

(
B, TB

y
−→ B

)
,

(
C, TC

z
−→ C

)

are pseudo T -algebras. Then given an oplax T -morphism structure ξ on I and a lax
T -morphism structure β on R, there exists a unique oplax T -morphism structure α
on L such that η is a T -transformation. Moreover, this partial adjunction is then
lifted to the T -partial adjunction

(
B, TB

y
→ B

)
(R,β) //

(
C, TC

z
→ C

)

η
⇐=

(
A, TA

x
→ A

)
(I,ξ)

OO

(L,α)

gg◆◆◆◆◆◆◆◆◆◆◆◆

Proof. Given our 2-cells

TA

TI

��

x //

⇓ξ

A

I

��

TB

TR

��

x //

⇑β

B

R

��
TC

z
// C TC

z
// C

exhibiting I as an oplax T -morphism and R as a lax T -morphism, we can take our
oplax constraint cell of L (which we call α) as the unique solution to

TB
y //

⇑α

B

R

��❄
❄❄

❄❄
❄❄

❄ TB
y //

TR
❉❉❉

❉

""❉❉
❉❉

B

R

  ❆
❆❆

❆❆
❆❆

❆

⇑β

⇑η C = ⇑Tη TC
z //

⇑ξ

C

TA
x

//

TL

OO

A

L

OO

I

??⑧⑧⑧⑧⑧⑧⑧
TA

x
//

TL

OO

TI③③③③

<<③③③③

A

I

>>⑥⑥⑥⑥⑥⑥⑥⑥

which exists since L is a partial left adjoint. That is, α is the unique oplax structure
on L for which η : I → R · L is a T -transformation. The verification that α then
satisfies the unitary and multiplicative coherence axioms is a simple exercise which
we omit. �

The following example is an easy application of this result which does not involve
Yoneda structures.

Proposition 73. Suppose A ,B and C are bicategories. Consider a diagram

A
F //❴❴❴

H

77B
G // C



DISTRIBUTIVE LAWS VIA ADMISSIBILITY 43

where G is a lax and locally fully faithful functor, H is an oplax functor, and F is
a locally defined functor

(FX,Y : A (X,Y ) → B (FX,FY ) : X,Y ∈ A )

where G · F = H locally. It then follows that F extends to an oplax functor.

Proof. To see this, recall that the fully faithfulness of each GM,N (for objects
M,N ∈ B) may be characterized by saying that each

B (M,N)
GM,N // C (HM,HN)

id
⇐=

B (M,N)

idB(M,N)

gg❖❖❖❖❖❖❖❖❖❖❖❖
GM,N

OO

is an absolute lifting [30, Example 2.18]. As this absolute left lifting is preserved
upon whiskering by

FX,Y : A (X,Y ) → B (FX,FY )

we have the family of partial adjunctions

B (FX,FY )
GFX,FY // C (HX,HY )

id
⇐=

A (X,Y )

FX,Y

hhPPPPPPPPPPPPP
HX,Y

OO

Endowing with the bicategory structure of A , and full sub-bicategory structures
of B and C restricted to objects in the images of F and H respectively, we see by
Proposition 72 that F extends to an oplax functor F : A → B. �

Remark 74. Clearly, this may be stated more generally in the setting of a pseudo T -
algebras. Also, it suffices to only have an isomorphism GF ∼= H on the underlying
2-category.

Remark 75. In Kelly’s setting of a doctrinal adjunction [13], if both the left and
right adjoint are lax, exhibited by a counit and unit which are T -transformations of
lax T -morphisms, then the induced oplax structure on the left adjoint is inverse to
the given lax structure. In this partial adjunction case, the best we can say is that
if (I, ξ) is pseudo, (L,α∗) lax, and η : (I, ξ) → (R, β) · (L,α∗) a T -transformation
of lax T -morphisms, then the induced oplax structure on L given as α satisfies
α∗ · α = idL·x. This means the identity 2-cell is a generalized T -transformation
from (L,α) to (L,α∗), but not necessarily the other way around.

5.2. Doctrinal “Yoneda Structures”. Kelly [13] showed that given an adjunc-
tion L ⊣ R which lifts to pseudo algebras, oplax structures on the left adjoint are
in bijection with lax structures on the right adjoint. The goal of this section is to
give a similar result for “Yoneda structure diagrams”, that is diagrams of the form

B
R // PA
ϕL
⇐=

A

yA

OO

L

bb❉❉❉❉❉❉❉❉❉

for which L is an absolute left lifting, and R is a left extension exhibited by the
same 2-cell ϕL (as appear in Yoneda structures [26], or in the setting of a locally
fully faithful KZ doctrine [29]).

We state the following as one of the main results of this paper, due to its appli-
cations as a coherence result for oplax functors out of certain bicategories, such as
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the bicategories of spans or polynomials. This application will be briefly discussed
at the end of this section.

Theorem 76 (Doctrinal Yoneda Structures). Suppose we are given a 2-category
C equipped with a pseudomonad (T, u,m) and a locally fully faithful KZ doctrine
(P, y). Suppose that T pseudo-distributes over P . Suppose we are given pseudo
T -algebra structures

(
A, TA

x
−→ A

)
,

(
B, TB

y
−→ B

)

Then for any P -admissible map L : A → B we have a Yoneda structure diagram as
on the left, underlying a “doctrinal Yoneda structure” diagram as on the right

B
RL // PA

ϕL
⇐=

(B, y)
(RL,β) // (PA, zx)

ϕL
⇐=

A

yA

OO

L

``❇❇❇❇❇❇❇❇❇❇
(A, x)

(yA,ξ)

OO

(L,α)

ee❑❑❑❑❑❑❑❑❑❑

in that 2-cells α as on the left below exhibiting L as an oplax T -morphism

TB
y // B TB

y //

TRL

��

B

RL

��
⇑α ⇑β

TA
x

//

TL

OO

A

L

OO

TC
zx

// C

are in bijection with 2-cells β as on the right exhibiting RL as a lax T -morphism.

Proof. We need only check that the propositions concerning partial adjunctions
and left extensions10 are inverse to each other. But this is just a consequence of
the fact that we can go between the defining equalities for these propositions

TB
y //

⇑α

B
RL

!!❈
❈❈

❈❈
❈❈

❈ TB
y //

TRL

●●●
●

##●●
●●

B
RL

##●
●●

●●
●●

●●

⇑β

⇑ϕL PA = ⇑TϕL TPA
zx //

⇑ξx

PA

TA
x

//

TL

OO

A

L

OO

yA

==④④④④④④④④
TA

x
//

TL

OO

TyA✇✇✇

;;✇✇✇

A

yA

;;✇✇✇✇✇✇✇✇✇

and

TB
y // B

R

��

TB
y //

TRL

��

B

RL

��

TA

TL

;;✇✇✇✇✇✇✇✇✇
x //

TyA ##●
●●

●●
●●

●●
A

yA

##●
●●

●●
●●

●●

L

;;✇✇✇✇✇✇✇✇✇
⇑ϕL

⇑α

⇑ξ−1
x

= TA

TL

;;✇✇✇✇✇✇✇✇✇

TyA ##●
●●

●●
●●

●●
⇑TϕL ⇑β

TPA
zx

// PA TPA
zx

// PA

by pasting with ξx and ξ−1
x . �

Remark 77. In the “doctrinal Yoneda structure” of the above, ϕL is a T -transformation
exhibiting (RL, β) as a T -left extension and (L,α) as a T -partial left adjoint, pro-
vided α and β correspond via this bijection.

10Note that Proposition 14 applies since each zx is TP -cocontinuous by Proposition 45.
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We observe that the bijection between oplax structures on left adjoints and lax
structures on right adjoints as in “Doctrinal adjunction” [13] is a special case of
this theorem.

Corollary 78 (Kelly). Suppose we are given a 2-category C equipped with a pseu-
domonad (T, u,m), pseudo T -algebra structures

(
A, TA

x
−→ A

)
,

(
B, TB

y
−→ B

)

and an adjunction L ⊣ R : B → A in C . Then oplax structures on L are in bijection
with lax structures on R.

Proof. Let P be the identity pseudomonad on C , which is clearly a locally fully
faithful KZ doctrine. Trivially, any pseudomonad T pseudo-distributes over the
identity. Now observe that for the identity pseudomonad, the admissible maps are
the left adjoints and the “Yoneda structure diagrams” are the units of adjunctions
η : idA → R · L. Applying the above theorem then gives the result. �

5.3. Applications and Future Work. The motivating application of this result
is not to give an analogous result to doctrinal adjunction, but instead the observa-
tion that it may be seen as a coherence result. In particular, consider the following
special case of this theorem concerning the bicategory of spans in a category E with
pullbacks, denoted Span (E).

For the following corollary, we recall that locally defined functors are the mor-
phisms of CatGrph, and CatGrph gives rise to bicategories and oplax/lax func-
tors via a suitable 2-monad [19].

Corollary 79. Suppose we are given a small11 category with pullbacks E and a
bicategory C with the same objects, as well as locally defined functors

LX,Y : Span (E) (X,Y ) → C (X,Y )

with corresponding left extensions (RL)X,Y as components in the diagram

C
RL // ˆSpan (E)

ϕL
⇐=

Span (E)

Y

OO

L

cc❍❍❍❍❍❍❍❍❍❍❍

where ˆSpan (E) is the local cocompletion12 of Span (E). Then oplax structures on
L are in bijection with lax structures on RL.

To see why this is useful, recall that composition of spans is given by taking the
terminal diagram of the form

•

��✤
✤
✤
✤
✤
✤

��⑧
⑧
⑧
⑧

��❅
❅

❅
❅

��

❞❥
r

⑧
☛

✔

✚
��

❩ ❚ ▲
❅
✸
✯

✩

•
f

��⑧⑧
⑧⑧
⑧⑧
⑧

g

��❅
❅❅

❅❅
❅❅

•
h

��⑧⑧
⑧⑧
⑧⑧
⑧

k

��❅
❅❅

❅❅
❅❅

• • •

and so when evaluating the composite of two spans we may recover the two mor-
phisms of spans in the above diagram; that is, there is a relationship between the
way 2-cells are defined and how composition of 1-cells is defined.

11Note that one may work in a larger universe to work around this condition.
12The monoidal cocompletion as given by the Day convolution structure may be generalized

to the setting of bicategories; we call this the local cocompletion.
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This relationship between composition and 2-cells is captured in Day’s convo-
lution formula [4], and causes the coend defining the Day convolution to collapse

to a more workable sum. In particular, composition in ˆSpan (E) is given by the
convolution formula

GF (s; t) =
∑

T
h

−→Y

F (s;h)G (h; t)

where s; t is an arbitrary span from X to Z through Y , and F and G are presheaves
on Span (E) (X,Y ) and Span (E) (Y, Z) respectively. As a result, it is easier to show
that a locally defined functor L : Span (E) → C is oplax by instead showing that

the corresponding RL : C → ˆSpan (E) is lax. Indeed, the reader should notice here
that the problem of showing L is oplax involves pullbacks, whereas the equivalent
problem of showing R is lax does not (once this convolution formula has been
established).

A more involved application along the same lines deals not with the bicategory of
spans, but instead Polyc (E), the bicategory of polynomials with cartesian 2-cells as
studied by Gambino, Kock and Weber [31, 7]. We see that due to the complicated
nature of composition in Polyc (E), showing that a locally defined functor L :
Poly (E) → C is oplax becomes a large calculation (especially for the associativity

coherence conditions); however if we instead show that RL : C → ˆPolyc (E) is lax
our work will be reduced significantly; in fact by this method we can completely
avoid coherences involving composition of distributivity pullbacks.

In a soon forthcoming paper we will exploit this fact in more detail to give a
complete proof of the universal properties of polynomials which avoids the majority
of the coherence conditions.
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