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FURTHER RESULTS ON THE STRUCTURE OF (CO)ENDS IN
FINITE TENSOR CATEGORIES

KENICHI SHIMIZU

ABSTRACT. Let C be a finite tensor category, and let M be an exact left C-
module category. The action of C on M induces a functor p : C — Rex(M),
where Rex(M) is the category of k-linear right exact endofunctors on M. Our
key observation is that p has a right adjoint p™ given by the end

o (F) = /MEM Hom(M, M) (F € Rex(M)).

As an application, we establish the following results: (1) We give a description
of the composition of the induction functor C}, — Z(C},) and Schauenburg’s
equivalence Z(Ci ) ~ Z(C). (2) We introduce the space CF(M) of ‘class
functions’ of M and initiate the character theory for pivotal module categories.
(3) We introduce a filtration for CF(M) and discuss its relation with some ring-
theoretic notions, such as the Reynolds ideal and its generalizations. (4) We
show that Ext&(1, p™(idaq)) is isomorphic to the Hochschild cohomology of
M. As an application, we show that the modular group acts projectively on
the Hochschild cohomology of a modular tensor category.

1. INTRODUCTION

Let C be a finite tensor category. In recent study of finite tensor categories and

their applications, it is important to consider the end A = [ xec X ® X™ and the

coend L = fXEC X*® X. The end A is a categorical counterpart of the adjoint

representation of a Hopf algebra. By using the end A, we have established the
character theory and the integral theory for finite tensor categories in [Shil7D]
and [Shil7e], respectively. The coend L, which is isomorphic to A*, plays a central
role in Lyubashenko’s work on ‘non-semisimple’ modular tensor categories
[Lyu95b, [Lyu95d, [KLO1]. These results are used in recent progress of topological
quantum field theory and conformal field theories [GRI6l [GRI7, [FGRI17T].

Since these objects are defined by the universal property, it is difficult to analyze
its structure. The aim of this paper is to provide a general framework to deal
with such (co)ends. Let M be an indecomposable exact left C-module category in
the sense of [EO04]. We denote by Rex(M) the category of k-linear right exact
endofunctors on M. The action of C on M induces a functor p : C — Rex(M)
given by p(X)(M) = X ® M. Our key observation is that a right adjoint of p, say
p™®, is a k-linear faithful exact functor such that

(L1) or(F) = /MGM Hom(M, F(M)) (F € Rex(M)),

where Hom is the internal Hom functor (Theorem B)). The end A considered at

the beginning of this paper is just the case where M = C and F = id¢. This result

allows us to discuss interaction between several ends through p™. As applications,
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we obtain several results on finite tensor categories and their module categories as
summarized below:

(1) Let C}, be the dual of C with respect to M. We give an explicit description
of the composition of the induction functor C}, — Z(C},) and Schauen-
burg’s equivalence Z(C},) =~ Z(C). We note that this kind of method has
been utilized to compute higher Frobenius-Schur indicators [Sch16].

(2) Generalizing [Shil7b], we introduce the space CF(M) of class functions of
M. We also introduce the notion of pivotal module category and develop
the character theory for such a module category. Especially, we show that
the characters of simple objects are linearly independent.

(3) We introduce a filtration CF;(M) C CFy(M) C --- C CF(M) for the
space of class functions. If M is pivotal, then the first term CF;(M) is
spanned by the characters of simple objects of M and the second term has
the following expression:

CFy(M) = CFi(M)@ P Extj (L, L).

Lelrr(M)

(4) We show that Extj (1, Aaq) is isomorphic to the Hochschild cohomology of
M, where 1 is the unit object of C and Ay = p"*(idaq). As an application,
we show that the modular group SLo(Z) acts projectively on the Hochschild
cohomology of a modular tensor category, generalizing [LMSS17].

Organization of this paper. This paper is organized as follows: Section[2lcollects
several basic notions and facts on finite abelian categories, finite tensor categories
and their module categories from [ML98, [EGNO15] [DSS13| [DSS14! [FSS16].

In Section B we study adjoints of the action functor p : C — Rex(M) for a finite
tensor category C and a finite left C-module category M. We show that p is an
exact functor, and thus has a left adjoint and a right adjoint. It turns out that
a right adjoint p™ of p is expressed as in ([LI)). Moreover, p* is k-linear faithful
exact functor if M is indecomposable and exact (Theorem B.4)).

The functor p* has a natural structure of a monoidal functor and a C-bimodule
functor as a right adjoint of p. The structure morphisms of p™ are expressed
in terms of the universal dinatural transformation of p* as an end (Lemmas [3.7]
and B.8). By using the structure morphisms of p'®, we can ‘lift’ the adjoint pair
(p, p™) to an adjoint pair between the Drinfeld center Z(C) and the category
Rexc (M) of k-linear right exact C-module endofunctors on M (Theorem BII]).
As an application, we give an explicit description of the composition

Cj/[ — RQXC (M)rev induction Z(Cj\/l) Schauenburg’s equivalence Z(C)

in terms of the structure morphisms of p™ (Theorem B.14]).

In Section [l we consider an end of the form Ag := erS Hom(X, X) for some
topologizing full subcategory S of M in the sense of Rosenberg [Ros95]. The end
As has a natural structure of an algebra in C. The main result of this section states
that, if M is an indecomposable exact left C-module category, then As is a quotient
algebra of A4 and the map

{ topologizing full } { quotient algebras

subcategories of M of Ay in C }  Srrds
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preserves and reflects the order in a certain sense (Theorem[6)). Another important
result in Section Ml is that, if S is closed under the action of C, then Ag lifts to a
commutative algebra Ags in Z(C) (Theorem [.9).

In Section B we consider the space CF(M) := Home (A, 1) of ‘class functions’
of M. As we have seen in [Shil7b], CF(M) is an algebra if M = C. We extend
this result by constructing a map * : CF(C) x CF(M) — CF(M) making CF(M) a
left CF(C)-module (Lemma [5.3). We also introduce the notion of pivotal structure
of an exact module category over a pivotal finite tensor category (Definition [5.6])
in terms of the relative Serre functor introduced in [FSS16]. Let C be a pivotal
finite tensor category, and let M be a pivotal exact left C-module category. Then,
for each object M € M, the internal character chy((M) is defined in an analogous
way as [Shil7b] (Definition [.8]). Our main result in this section is the following
generalization of [Shil7b|: The linear map

chpg : Gry(M) — CF(M), [M]+— chpm(M)

is a well-defined injective map, where Gry(—) = k ®z Gr(—) is the coefficient ex-
tension of the Grothendieck group. Moreover, we have

ChM(X®M) = Chc(X)*ChM(M)

for all objects X € C and M € M.

In Section @] we introduce a filtration to the space of class functions. Let C be a
finite tensor category, and let M be an exact left C-module category. There is the
socle filtration My C Mgy C -+ of M. By the result of Section d, we have a series
Ampm = - = Apy, — Aaq, of epimorphisms in C. Thus, by applying the functor
Home(—, 1) to this series, we have a filtration

CF1(M) C CF3(M) C CF3(M) C --- C CF(M),

where CF,,(M) = Hom¢ (A, , 1). We investigate relations between this filtration
and some ring-theoretic notions, such as the Jacobson radical, the Reynolds ideal
and the space of symmetric linear forms. We see that CF;(M) is spanned by the
characters of simple objects of M. The second term CFz(M) is expressed in terms
of Exth(L, L) for simple objects L € M. For CF,, (M) with n > 3, we have no
general results but study some examples.

In Section [ we discuss the Hochschild (co)homology of finite tensor categories
and their module categories. One can define the Hochschild homology HHe (M)
and the Hochschild cohomology HH® (M) of a finite abelian category M in terms
of the Ext functor in Rex(M). We then show that, if M is an exact C-module
category, then there is an isomorphism

(1.2) HH®*(M) =2 Extg (1, Am)
If, in addition, M is pivotal, then there is also an isomorphism
HHo (M) =2 Extg (A, 1)

The isomorphism (2] is a generalization of the known fact that the Hochschild
cohomology of a Hopf algebra can be computed by the cohomology of the adjoint
representation. We use (L2) to extend recent results of [LMSS17].

Acknowledgment. The author is supported by JSPS KAKENHI Grant Number
JP16K17568.
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2. PRELIMINARIES

2.1. Ends and coends. For basic theory on categories, we refer the reader to the
book of Mac Lane [ML9I§|. Let C and D be categories, and let S and T be functors
from C°P x C to D. A dinatural transformation [MLI8, IX] from S to T is a family
E={&x:S(X,X) = T(X,X)}xec of morphisms in D satisfying
T(idx, f)oéx o S(f,idx) =T(f,idy) o &y o S(idy, f)

for all morphisms f: X — Y in C. An end of S is an object F € D equipped with
a dinatural transformation 7 : F — S that is universal in a certain sense (here the
object F is regarded as a constant functor from C°P x C to D). Dually, a coend of T
is an object C' € D equipped with a ‘universal’ dinatural transformation from 7" to
C. An end of S and a coend of T' are denoted by [y . S(X, X) and fXGC T(X,X),
respectively.

A (co)end does not exist in general. We note the following useful criteria for the
existence of (co)ends. Suppose that C is essentially small. Let C, D and S be as
above. Since the category Set of all sets is complete, the end

SHW) = /XEC Homyp (W, S(X, X))

exists for each object W € D. By the parameter theorem for ends [ML98, XI.7],
we extend the assignment W +— S¥(W) to the contravariant functor S%: D — Set.
The following lemma is the dual of [Shil7c, Lemma 3.1].

Lemma 2.1. An end of S exists if and only if S? is representable.
We also note the following lemma:

Lemma 2.2. Let A, B and V be categories, and let L : A — B, R: B — A and
H : B°® x A —V be functors. Suppose that L is left adjoint to R. Then we have
an tsomorphism

(2.1) H(V,L(V)) = (R(W), W),
VeA weB
meaning that if either one of these ends exists, then both exist and they are canon-

ically isomorphic.

This lemma is the dual of [BVI2l Lemma 3.9]. For later use, we recall the
construction of the canonical isomorphism 21I). Let £ and & be the left and the
right hand side of (2Z1), respectively, and let

7(V): &= H(V,L(V)) and 7' (W):& — HR(W),W)

be the respective universal dinatural transformations. We assume that (L, R) is an
adjoint pair with unit 7 : idp — RL and counit € : LR — id¢. By the universal
property of £, there is a unique morphism « : £ — £ in V satisfying
m(V)oa = H(nv,idw)) o7 (L(V))

for all objects V' € A. Similarly, by the universal property of £’, there is a unique
morphism f : £ — £’ satisfying

7'(W) o =n(R(W)) o H(idrw),ew)
for all objects W € B. By the zigzag identities and the dinaturality of = and 7',
one can verify that a and 8 are mutually inverse.
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2.2. Monoidal categories. A monoidal category [ML98, VII] is a category C
equipped with a functor ® : C x C — C, an object 1 € C and natural isomor-
phisms (X ®Y)®Z2X@Y®Z)and 1 X 2 X 22Xl (X,Y,Z ()
satisfying the pentagon and the triangle axiom. If these natural isomorphisms are
identities, then C is said to be strict. By the Mac Lane coherence theorem, we may
assume that every monoidal category is strict.

We fix several conventions on monoidal categories and related notions: Let C
and D be monoidal categories. A monoidal functor [MLI8| XI.2] from C to D is a
functor F': C — D equipped with a natural transformation

Y FX)®F(Y) = FX®Y) (X,Ye()

and a morphism f© : 1 — F(1) in D satisfying certain axioms. A monoidal
functor F = (F, f®, f9) is said to be strong if the structure morphisms £ and
£ are invertible.

Let L and R be objects of a monoidal category C, and let ¢ : L ® R — 1 and
n:1 — R® L be morphisms in C. We say that (L,e,n) is a left dual object of R
and (R,e,n) is a right dual object of L if the equations

(E@idL)O(idL(X)’I]):idL and (idR®E)O(n®idR):idR

hold. If this is the case, then the morphisms ¢ and 7 are called the evaluation and
the coevaluation, respectively.

A monoidal category C is said to be rigid if every object of C has a left dual
object and a right dual object. If C is rigid, then we denote by (X*,evx,coevx)
the left dual object of X € C. Let C* denote the category C equipped with the
reversed tensor product X ®VY =Y ® X. The assignment X — X* gives rise
to a strong monoidal functor (—)* : C°P — C™V called the left duality functor of C.
The right duality functor *(—) of C is also defined by taking the right dual object.
The left and the right duality functor are mutually quasi-inverse to each other.

2.3. Module categories. Let C be a monoidal category. A left C-module category
[EGNO15| is a category M equipped with a functor ® : C x M — M, called the
action of C, and natural isomorphisms

22) XoY)eM=Xo(Y®M) and 19M=M (X,Y €C,MecM)

satisfying certain axioms similar to those for monoidal categories. There is an
analogue of the Mac Lane coherence theorem for C-module categories. Thus, with-
out loss of generality, we may assume that the natural isomorphisms ([2.2)) are the
identity; see [EGNOI15, Remark 7.2.4].

Let M and N be left C-module categories. A laz left C-module functor from M
to N is a functor F' : M — N equipped with a natural transformation

sxmM: X@FM)—>FX®eM) (XeC,MeM)
such that the equations

sim =1idy and  sxev.m = Sx,yem o (idx ® sy,m)

hold for all objects X,Y € C and M € M. We omit the definition of morphisms of
lax C-module functors; see [DSS13], [DSS14].

An oplaz left C-module functor from M to N is, in a word, a lax left C°P-module
functor from M°P to N°P; see [DSSI4]. Now let L : M — N be a functor with
right adjoint R : N' — M, and let 7 : idpq — RL and € : LR — idy be the unit
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and the counit of the adjunction L 4 R. If (L, v) is an oplax left C-module functor,
then R is a lax left C-module functor by the structure morphism defined by

NXQR(N)

X @ R(N) —22*Y | RL(X @ R(N))

(23) R(UX,R(N))

R(X ® LR(N)) 202N | pix o N)
for X € C and N € N. Conversely, if (R, w) is a lax C-module functor, then L is
an oplax C-module functor by

L(idx ®nar)
—_—

L(X ® M) L(X ® RL(M))

(2.4)

L(wx, () EX®L(M)

LR(X ® L(M))
for X € C and M € M [DSS14, Lemma 2.11].

We say that an (op)lax C-module functor (F, s) is strong if the natural transfor-
mation s is invertible. If C is rigid, then every (op)lax C-module functor is strong
IDSS14l Lemma 2.10] and thus we refer to an (op)lax C-module functor simply as
a C-module functor.

R(X ® N)

2.4. Closed module categories. Let C be a monoidal category. A left C-module
category M is said to be closed if, for all objects M € M, the functor

(2.5) CoM, XXM

has a right adjoint (¢f. the definition of a closed monoidal category). Suppose that
M is closed. For each object M € M, we fix a right adjoint Hom(M, —) of the
functor [28). Thus, by definition, there is a natural isomorphism

(2.6) ¢ : Homam (X ® M, N) — Home (X, Hom(M, N))
for N € M and X € C. If we denote by
coevy i X — Hom(M, X ® M) and evy y:Hom(M,N)® M — N
the unit and the counit of the adjunction (—) ® M 4 Hom(M, —), respectively, then
the isomorphism (28] is given by
(2.7) ¢(f) =Hom(M, f) ocoevy, x  and ¢ (g) = vy v (9 ®ida)

for morphisms f: X ® M — N in M and g : X — Hom(M, N) in C.

By [ML98, IV.7], one can extend the assignment (M, N) — Hom(M,N) to a
functor from M° x M to C in such a way that the isomorphism (2:6) is natural
also in M. We call the functor Hom the internal Hom functor of M. This makes
M a C-enriched category: The composition

(2.8) comp s, ar, ar, - Hom(Ma, M3) @ Hom(My, Mz) — Hom(My, M)

is defined to be the morphism corresponding to

3 .
(2.9) ‘3—‘75\/1)1,1\/12,1\43 = SV, Ms o (idHom(Ms, M) ®e—VM1,M2)
via the isomorphism (2.6]) with X = Hom(Ms, M3) ® Hom(M;, Ms), M = M; and
N = Mj. The identity on M € M is coev; ;.
We suppose that C is rigid. Let M € M be an object. Since the functor 23] is
a C-module functor, so is its right adjoint Hom (M, —). We denote by

(2.10) ax.n ¢ X ® Hom(M, N) — Hom(M,X ® N) (X €C,N € M)
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the left C-module structure of Hom(M, —). There is also an isomorphism
(2.11) bx.arn : Hom(X ® M, N) — Hom(M, N) ® X*
induced by the natural isomorphisms

Home (W, Hom(Y ® M, N)) = Homy (W ® Y @ M, N)
=~ Home (W ® Y, Hom(M, N)) = Home (W, Hom(M, N) ®@ Y*)

for W)Y € C and N, M € M. It is convenient to introduce the morphism

(2.12) b% .y : Hom(X ® M,N) ® X — Hom(M, N)

defined by b% ;v = (iduom(ar,n) @ evx) o (bx ar,n ®idx). We note that b, v
is natural in the variables M and N and dinatural in X.

Lemma 2.3. For all objects X,Y € C and M, N € M, we have the equation

(2.13) b1,m,N = idHom(M,N)
and the following commutative diagrams:

bxey,M,N

(2.14) Hom(X @ Y ® M, N) Hom(M,N)®@ (X ®@Y)*
bX,Y®1W,N\L H

Hom(Y ® M, N) ® X* Hom(M, N)® Y* ® X*

by a, N ®idxx

idx®by,m,N

(215) X ® Hom(Y ® M, N) X ® Hom(M, N) ® Y*
aX,Y@M,N\L \LaX’ALN ®idy *

Hom(Y ® M, X @ N) — XN gom(M, X @ N) @ Y*

The category M°P x M is a C-bimodule category by the actions given by
(2.16) XQWMN)=(MP X®N) and (M’ N)@ X =(*X ® M,N)

for X € C and M, N € M. The above lemma means that the internal Hom functor
of M is a C-bimodule functor from M° x M to C with left C-module structure a
and the right C-module structure given by

(bymrn) "' i Hom(M,N)®Y — Hom(*Y ® M,N) (Y €C,M,N € M).

Although the above lemma seems to be well-known, we give its proof in Appen-
dix [Al for the sake of completeness. We will also give some equations involving the
natural isomorphisms a and b in Appendix [Al

In view of this lemma, we define the isomorphism

(2.17) cxarny : X ©Hom(M,N) @ Y* — Hom(Y ® M, X ® N)
for X, Y € C and M, N € M by

(2.18)  cx,mNy = 5{/711\47X®N o(ax, N ®idy+) = ax,yem,no(idx ® 5{/711\471\/)-
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2.5. Finite abelian categories. Throughout this paper, we work over an alge-
braically closed field k of arbitrary characteristic. Given algebras A and B over k,
we denote by A-mod, mod-B and A-mod-B the category of finite-dimensional left
A-modules, the category of finite-dimensional right B-modules, and the category
of finite-dimensional A-B-bimodules, respectively.

A finite abelian category [EGNO15, Definition 1.8.5] is a k-linear category that is
equivalent to A-mod for some finite-dimensional algebra A over k. For finite abelian
categories M and N, we denote by Rex(M, N') the category of k-linear right exact
functors from M to /. If A and B are finite-dimensional algebras over k, then the
Eilenberg-Watts theorem gives an equivalence

(2.19) B-mod-A —=— Rex(A-mod, B-mod), M — M ®4 (—)

of k-linear categories. Thus Rex(M,N) is a finite abelian category. The above
equivalence also implies that a k-linear functor F' : M — N is right exact if and
only if F' has a right adjoint.

A k-linear category M is finite abelian if and only if M°P is. Thus, by the dual
argument, we see that a k-linear functor F' : M — N is left exact if and only if
F has a left adjoint. We denote by Lex(M, ) the category of k-linear left exact
functors from M to N. For a k-linear functor F', we denote by F'® and F* a left
and a right adjoint of F'| respectively, if it exists.

Let M be an object of M. Then the functor Homa (M, —) : M — k-mod is left
exact, and thus has a left adjoint. We denote it by (—) ®x M. By definition, there
is a natural isomorphism

Homp (X ® M, N) = Homy (X, Homp (M, N)) (X € k-mod, N € M).

For two finite abelian categories M and N, we denote by M KA their Deligne
tensor product [EGNOTH, §1.11]. If M = A-mod and N = B-mod for some finite-
dimensional algebras A and B, then M KN is identified with (A ®; B)-mod. In
view of the equivalence (219, one has:

Lemma 2.4 ([Shil7d, Lemma 3.3]). The k-linear functor
(2.20)  Ppqpn i MP RN — Rex(M,N), M®PKXN — Homp(—, M)" @ N
is an equivalence. Moreover, the functor
(2.21) Rex(M,N) - MPRN, F — MR F(M)
MeM
is a quasi-inverse of (2.20)
The following lemma is proved by utilizing the equivalences (220) and 221]).

Lemma 2.5 ([Shil7al Lemma 2.5]). Let M and N be finite abelian categories. For
a k-linear right ezact functor F : M — N, the following are equivalent:
(1) F is a projective object of the abelian category Rex(M,N).
(2) F(M) is a projective object of N for all objects M € M and F*™(N) is an
injective object of M for all objects N € N.

For finite abelian categories M and N, there is also an equivalence

MeM
Ut Lex(M,N) = MP RN, F»—>/ M°P X F(M)
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[Shil7cd Lemmas 3.2 and 3.3]. Fuchs, Schaumann and Schweigert [FSS16] defined
the Nakayama functor of M by

N = (I)M,M\I/M,M(id./\/l) € RGX(M,M).
For later use, we recall from [FSS16| the following results:

(1) We say that M is Frobenius if the class of injective objects of M coincides
with the class of projective objects of M (or, equivalently, M =~ A-mod for
some Frobenius algebra A). The Nakayama functor N is an equivalence
if and only if M is Frobenius.

(2) We say that M is symmetric Frobenius if M = A-mod for some symmetric
Frobenius algebra A. The Nakayama functor N is isomorphic to id g if
and only if M is symmetric Frobenius.

(3) If F: M — N is a k-linear exact functor between finite abelian categories
M and N, then there is an isomorphism Ny o F'2 22 Fra o N /.

(4) The Nakayama functor of Rex(M,N) is given by

NRCX(M,N)(F):NNOFONM (FERGX(M,N))

2.6. Finite tensor categories and their modules. A finite tensor category
[EO04] is a rigid monoidal category C such that C is a finite abelian category,
the tensor product of C is k-linear in each variable, and the unit object 1 of C is a
simple object. A finite tensor category is Frobenius. The tensor product of a finite
tensor category is exact in each variable.

Let C be a finite tensor category. A finite left C-module category is a left C-module
category M such that M is a finite abelian category and the action of C on M is
k-linear and right exact in each variable. One can define a finite right C-module
category and a finite C-bimodule category in a similar manner.

Given an algebra A € C (= a monoid in C [ML98]), we denote by C4 the category
of right A-modules in C. The category C4 is a finite left C-module category in a
natural way. Moreover, every finite left C-module category is equivalent to C4 for
some algebra A € C as a C-module category. This implies that the action of C on a
finite C-module category is ezact in each variable [DSS14] Corollary 2.26], although
only the right exactness is assumed in our definition.

An ezact left C-module category [EO04] is a finite left C-module category M such
that P ® M is a projective object of M for all projective objects P € C and for all
objects M € M. It is known that exact module categories are Frobenius.

3. ADJOINT OF THE ACTION FUNCTOR

3.1. The action functor. Let C be a finite tensor category, and let M and A be

two finite left C-module categories. Then Rex(M,N) is a C-bimodule category by

the left action and the right action given by

(3.1) (X@F)(M)=X®FM) and (FX)(M)=FX®M),

respectively, for F' € Rex(M,N), X € C and M € M. The category M K N is

also a C-bimodule category by the left and the right action determined by
XQ@MPRN)=MPR(X®N) and (MPRN)®X =X M)’ X N,

respectively, for M € M, N € N and X € C. It is easy to see that the equivalence
(220) is in fact an equivalence of C-bimodule categories. Since M°P KN is a finite
C-bimodule category, so is Rex(M, N).
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Now we define the functor pa : C — Rex(M) := Rex(M, M) by X — X ®idm
and call ppq the action functor of M. Since the action of C on a finite C-module
category is k-linear and exact in each variable, we have:

Lemma 3.1. The action functor paq is k-linear and exact.

Thus the action functor paq has a left adjoint and a right adjoint. The aim of this
section is to study properties of adjoints of py¢. Before doing so, we characterize
some properties of M in terms of p.

Lemma 3.2. M is exact if and only if ppq preserves projective objects.

Proof. Suppose that M is an exact C-module category. We fix a projective object
P € C and set I = pp(P). By the definition of an exact module category, the
object F(M) = P ® M is projective for all M € M. Since C and M are Frobenius,
the object F™(M) = *P ® M is injective for all M € M. Thus, by Lemma 28]
F' is a projective object of Rex(M). Hence paq preserves projective objects. The
converse is easily proved by Lemma O

Let A and B be finite abelian categories. A k-linear functor F' : A — B is said
to be dominant if every object of B is a subobject of an object of the form F(X),
X € A. Suppose that F' is exact and B is Frobenius. Then, as remarked in [EGI7,
Lemma 2.3], the functor F' is dominant if and only if every object of B is a quotient
of F(X) for some X € A.

Lemma 3.3. An exact left C-module category M is indecomposable if and only if
the action functor paq is dominant.

Proof. Suppose that there are non-zero C-module full subcategories M; and Mo
of M such that M = M; & Ms. Then we have the decomposition

Rex(./\/l) =E11 D E12 D Ea1 D Eao, gij = ReX(Mi7 Mj)v

into four non-zero full subcategories. Since the image of paq is contained in the
diagonal part £11 @ Ea9, the action functor pas cannot be dominant. Thus the ‘if’
part has been proved. The ‘only if’ part is [EGI7, Proposition 2.6 (ii)]. O

3.2. Description of adjoints. For a while, we fix a finite tensor category C and a
finite left C-module category M. We write p = paq for simplicity. By Lemma B3]
the functor p has a right adjoint.

Theorem 3.4. For all k-linear right exact functor F : M — M, the end of
MPx M —C, (M,M")~ Hom(M,F(M'))

exists and a right adjoint of p is given by
P :Rex(M) =-C, Fm— Hom (M, F(M)).
MeM
We also have:

(a) If M is exact, then p"™ is exact.
(b) If M is exact and indecomposable, then p* is faithful.
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Proof. Let p™ be a right adjoint of p. Then we have
Home (X, p'(F)) = Nat(p(X), F)
= fMeM Homa (X @ M, F(M))

o fMeM Hom (X, Hom(M, F(M)))

for all X € C and F € Rex(M). Thus, by Lemma 2] we see that the end in
question exists and p' is given as stated.

(a) We suppose that M is exact. Let P be a projective generator of C. Then,
by Lemma B2 the object p(P) € Rex(M) is projective. Thus the functor

Home (P, p**(—)) = Home (p(P), —) : Rex(M) — k-mod

is exact. Since P is a projective generator, we conclude that p™ is exact.

(b) We suppose that M is exact and indecomposable. Since the functor p™ is
exact by Part (a), it is enough to show that p™ reflects zero objects. Let F be an
object of Rex(M) such that p™(F) = 0. By Lemma [B:3] there is an object X € C
such that F is an epimorphic image of p(X). If F' # 0, then we have

0 = Home (X, p™(F)) = Nat(p(X), F) #£ 0,
a contradiction. Thus F' = 0. The proof is done. (I

For M, M’ € M, we set coHom(M, M’) = *Hom(M', M). It is easy to see that
there is a natural isomorphism

Homp (M, X @ M) = Hom s (coHom(M, M"), X)
for X € C and M, M’ € M. A left adjoint of p is expressed as follows:
Theorem 3.5. For all k-linear right exact functor F': M — M, the coend of
MP x M —C, (M, M) coHom(M, F(M'))

exists. Moreover, a left adjoint of p is given by
MeM
p'*: Rex(M) = C, F s / coHom(M, F(M))

We also have:

(a) If M is exact, then p' is eract.

(b) If M is exact and indecomposable, then p'* is faithful.
Proof. Let p'? be a left adjoint of p. Then we have

Hom (p(F), X) 2 Nat(F, p(X))
= [yren Homa(F(M), X @ M)
= [yren Home (coHom (M, F(M)), X)
for all X € C and F' € Rex(M). Thus, by the dual of Lemma [ZT] we see that the
coend in question exists and p' is given as stated.
Suppose that M is exact. Then, since M is Frobenius, the Nakayama functor

of Rex(M) ~ M°P X M is an equivalence. Parts (a) and (b) of this theorem follow
from Theorem [B.4] and p'® = [NE1 0 p'* 0 NRex(m)- O
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Remark 3.6. In summary, for F' € Rex(M), we have
MeM
p"(F) = / Hom(M,F(M)) and p"(F)= / coHom (M, F(M)).
MeM

There is a left exact version of the action functor
A : C — Lex(M) :=Lex(M, M), Apm(X)(M) =X M.

By the same way as above, one can prove that A = Apq is a k-linear exact functor
and its adjoints are given by

MecC
AT (F) = /MECHo_m(M,F(M)) and A*(F) = / coHom (M, F(M))

for F' € Lex(M). Moreover, there are natural isomorphisms
(3.2) N(F) 2 (' (F) and  AP(F) 2 (p™(F1)
for F' € Lex(M). Indeed, we have natural isomorphisms
Home (X, *(p"(F'))) = Home (p"(F'*), X*) 2 Nat(F', p(X™))
=~ Nat(F'?, p(X)'*) 2 Nat(p(X), F) = Nat(A(X), F)

for F' € Lex(M) and X € C. The second isomorphism of ([B2)) is established in a
similar way. Theorems [3.4] and imply the following results:

(a) If M is exact, then Al* and A™ are exact.
(b) If M is exact and indecomposable, then A!* and A™ are faithful.

3.3. The unit and the counit of (p,p™). In what follows, we concentrate to
study the structures of the right adjoint of p = pa¢. For this purpose, it is useful
to describe the unit and the counit of the adjunction p 4 p™. For F' € Rex(M)
and M € M, we denote by

(3.3) (M) : p™(F) — Hom(M, F(M))

the universal dinatural transformation and define

(34) EF.M :e_VM)F(M)O(ﬂ'F(M)@idM)-

By the proof of Theorem B.4] the adjunction isomorphism

(3.5) Home (X, p™(F)) ——— Hompex(ar)(p(X), F) = Nat(p(X), F)
sends a € Home (X, p*@(F)) to the natural transformation @ given by

(36) ’dM =EpFM O (CL X ldM) (M S M)

This implies that € = {ep s} r s is the counit of (BE). We also observe that the
morphism a is characterized by the property that the equation

(3.7) Hom(M, @) o coevy yy = mr(M)oa

holds for all objects M € M. Let n : id¢ — p™ o p be the unit of the adjunction
isomorphism ([BE). By substituting a = nx and F = p(X) into B.1), we see that
7 is characterized by the property that the equation

(3.8) To(x) (M) 0onx = coevy y

holds for all objects X € C and M € M. We also have

(3.9) mp(M) = Hom (M, er,nm) © COEV pra( ) ps
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by substituting X = p"*(F') and a = id into (B1)).

3.4. Bimodule structure of p™. Since p : C — Rex(M) is a C-bimodule functor,
its right adjoint p™ is also a C-bimodule functor such that the unit and the counit
are C-bimodule transformations. We denote by

E0r X ®p™(F) = (X @ F) and £ : p™(F) @ X — p™(F ® X)

the left and the right C-module structure of p*. These morphisms are expressed in
terms of the universal dinatural transformation 7 as follows:

Lemma 3.7. For all objects F' € Rex(M), X € C and M € M, we have

(3.10) mxer(M) o £ = ax arron o(idx ® mp(M)),
(3.11) Trex (M) 0 ¢ = b4 1/ pixomn o(Tr(X ® M) @ idx).

See Subsection 24 for definitions of a and b®. By the universal property of p**(F)
as an end, the isomorphisms fgf)F and {g)x are characterized by equations (3.10)

and (3.I0)), respecively. We postpone the proof of this lemma to Appendix [Alsince
it is straightforward but lengthy.

3.5. Monoidal structure of p™. Since the action functor p : C — Rex(M) is a
strong monoidal functor, its right adjoint p™ has a canonical structure of a (lax)
monoidal functor. We denote the structure morphisms of p™ by

Mg)c: CP(F) @ (G) = P (Fo@) and p9:1 — p™(idy)

for F,G € Rex(M). They are expressed in terms of the universal dinatural trans-
formation 7 as follows:

Lemma 3.8. For all objects F,G € Rex(M) and M € M, we have

(3.12) mrG(M) o pi = compyy ¢ ran o (Tr(G(M)) @ ma(M)),
(3.13) Tidn (M) o p® = coevy -

By the universal property, u(? and p(®) are characterized by equations (3.12)
and ([B.I3), respectively. The proof is postponed to Appendix [Al

3.6. Lifting the adjunction to the Drinfeld center. Given two finite left C-
module categories M and A, we denote by Rexc(M,N) the category of k-linear
right exact C-module functors from M to N. The aim of this subsection is to show
that the adjoint pair (p, p*) can be ‘lifted’ to an adjoint pair between the Drinfeld
center of C and Rexe (M, M).

We first introduce the following generalization of the Drinfeld center construc-
tion: For a C-bimodule category M, we define the category Z(M) as follows: An
object of this category is a pair (M, o) consisting of an object M € M and a natural
isomorphism ox : M @ X - X @ M (X € C) satisfying the equations

o1 =idy and oxgy = (ldX ® Uy) o (O'X ® ldy)
for all objects X, Y € C. If M = (M, o)) and N = (N, op) are objects of Z(M),
then a morphism f : M — N is a morphism f : M — N satisfying
(idx ® f)oom;x =on;x o (f ®idx)

for all objects X € C. The composition of morphisms in Z(M) is defined by the
composition of morphisms in M.
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Ezxample 3.9. The category C is a finite C-bimodule category by the tensor product
of C. The category Z(C) is the Drinfeld center of C. If this is the case, then Z(C)
is not only a category but a braided finite tensor category [EO04].

Ezample 3.10. If M and NV are finite left C-module categories, then F := Rex(M, N)
is a finite C-bimodule category by the actions given by ([Bl). The category Z(F)
can be identified with Rexc(M,N).

Now let C-bimod be the 2-category of finite C-bimodule categories, k-linear right
exact C-bimodule functors and C-bimodule natural transformations. Given a 1-cell
F: M — N in C-bimod with structure morphisms

lxm: XQFM)—>F(X®@M) and ryx:FM)®X — F(M® X),
we define the k-linear functor Z(F) : Z(M) — Z(N) by
Z(F)(M) = (F(M), £ *oF(c)or)

for M = (M, o) in Z(M). It is routine to check that these constructions extends
to a 2-functor Z : C-bimod — k-Cat, where k-Cat is the 2-category of essentially
small k-linear categories, k-linear functors and natural transformations.

We apply the 2-functor Z to the action functor and its adjoint. Let M be a finite
left C-module category. Since p = paq is a C-bimodule functor, its right adjoint p™
is a C-bimodule functor in such a way that the unit and the counit of the adjunction
are bimodule natural transformations. Namely, there is an adjoint pair (p, p") in
the 2-category C-bimod. By applying the 2-functor Z, we obtain:

Theorem 3.11. There is an adjoint pair
(3.14) (Z(p) : Z(C) = Rexc(M), Z(p™) : Rexc(M) — Z(C)),
where we have identified Z(Rex(M)) with Rexc(M).

It is instructive to describe the functors Z(p) and Z(p'™) explicitly. Given an
object X = (X,0) € Z(C), we have Z(p)(X) = p(X). The left C-module structure
of X := Z(p)(X) is given by

(ow) ' @idy : WRXM)=WaXoM—-XWeM=XWeM)
for W € C and M € M. For an object F = (F,s) € Rex¢(M), we have
Z(p™)(F) = (p™(F),0%), where o% = (€)™ op™(s7 ) o £l
for X € C. More explicitly:

Lemma 3.12. The half-braiding oF is a unique natural transformation such that
the following diagram commutes for all objects X € C and M € M.

T (XQM)®id

o (F)® X Hom(X ® M, F(X @ M)) ® X

i bx, M, F(xX@M)
Hom(M, F(X © M)
ok || Hom(rr,s=)
Hom(M, X @ F(M))

—1
\L X M,F(M)

id®mr(X) X ® Hom(M, F(M)).

X ®p™(F)
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Proof. The commutativity of this diagram follows from Lemma Bl By the Fubini
theorem for ends, we see that X ® p™(F') is an end of the functor

MP x M —C, (M°® M)~ X @Hom(M,F(M)).
The universal property proves the ‘uniqueness’ part of this lemma. (|

3.7. Induction to the Drinfeld center. The k-linear monoidal category
Ci = Rex¢(M)™Y

is called the dual of C with respect to M. By Schauenburg’s result [Sch01] (which
we recall later), there is an equivalence Z(C) = Z(Cj,) of k-linear braided monoidal
categories. In this subsection, we show that Z(p'%) is right adjoint to the compo-
sition

Schauenburg’s equivalence the forgetful functor

Z(C) Z(Ch) Ciu-

We first recall Schauenburg’s result [SchO1] on the Drinfeld center of the category

of bimodules. Let A be an algebra in C with multiplication m : A® A — A and

unit w : 1 — A. Then the category 4C4 of A-bimodules in C is a k-linear abelian

monoidal category with respect to the tensor product over A. There is a k-linear

braided strong monoidal functor 84 : Z(C) — Z(4Ca) defined as follows: For an

object V = (V,0) € Z(C), we set 04(V) = (A® V,7), where the left action of A
on A® V is given by m ® idy, the right action is given by the composition

(ARV)® A 4489 , pgAgy —28 _, 4gv,

and the half-braiding o is determined by the commutative diagram

(AR V)®a4 M o M @4 (A® M)
ARV @M —MEM v o Ag M — X2 Mo X

for an A-bimodule M in C with left action >pr : A® M — M. For a morphism f
in Z(C), we set 04(f) = ida ® f. The monoidal structure of 04 is given by the
canonical isomorphism

0a(V)@404(W)=(AQV)Q4 (AQW)Z AR (VRW)=04(VRW)

for V.= (V,0),W = (W, 7) € Z(C). Schauenburg [Sch01] showed that the functor
0 4 is in fact an equivalence of k-linear braided monoidal categories.

Now let M be a finite left C-module category. Then there is an algebra A in C
such that M =~ C4 as a left C-module categories. Moreover, the functor

(3.15) ACa = Rexe(Ca,Ca)™, M (=) ®a M

is an equivalence of k-linear monoidal categories. Thus Z(C},) and Z(C) are equiv-
alent as k-linear braided monoidal categories.

Since we are interested in the general theory of finite tensor categories and their
module categories, it is preferable to describe the equivalence Z(C) ~ Z(Cj,) with-
out referencing the algebra A such that M ~ C4. Thus, for a finite left C-module
category M, we define the functor 0, : Z(C) — Z(C},) as follows: For an object
V = (V,o) € Z(C), we set O,((V) = p(V) as an object of Rex(M). We make p(V)
into a left C-module functor by the structure morphism given by

(ox) ' @idy : X@p(V)(M)=XQVOM-VoXM=p(V)(X M)
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for X € C and M € M. The half-braiding of 6 ,((V) is given by
svm:(Om(V)oF)(M)=VRF(M)— F(VeM)=(Fobm(V))(M)

for F = (F,s) € Ci, and M € M. The following theorem is obtained by rephrasing
Schauenburg’s result.

Theorem 3.13. The functor O : Z(C) — Z(Ciy) is an equivalence of k-linear
braided monoidal categories.

Proof. If finite left C-module categories M and A are equivalent, then there is an
equivalence F': C}, — Cx, of k-linear monoidal categories. It is easy to check

ﬁoeM:eNa

where F : Z (Cig) = Z(Cxr) is the braided monoidal equivalence induced by the
monoidal equivalence F'. Thus, to show that 0, is an equivalence, we may assume
that M = C4 for some algebra A in C. We consider the equivalence

by BI5)

= (2(0) —2— Z(aCa) Z(Ci)

of k-linear braided monoidal categories. One can check that 0 = 0, ; as monoidal
functors via the isomorphism given by

OM(V)M)=VOM —2 5 MV ——— M®s (A V) =0, (V)(M)

for V.= (V,o) € Z(C) and M € M. Thus 0, is also an equivalence of k-linear
braided monoidal categories. O

Now we prove the result mentioned at the beginning of this subsection:
Theorem 3.14. Let U : Z(C},) — Cj be the forgetful functor. Then
(UoBar: Z(C) = Chus Z(0%0) : Chu = 2(0))
is an adjoint pair.

Proof. By Theorem B.13] the functor U o 0, is identical to Z(paq) and therefore
it is left adjoint to Z(p’3). O

Corollary 3.15. Let U¢ : Z(C) — C and Up : Z(D) — D be the forgetful functors,
where D = C},. Then Up has a right adjoint. The composition

us 97\41 Uc

D Z(D) Z(0)

C
sends an object F = (F,s) € D to the end [, Hom(M, F(M)).

Proof. Theorem B.14] implies that ¢ o Z(p’%) is right adjoint to Up. Thus UJ
exists and is isomorphic to O, o Z(p'y). Hence the composition in question is
isomorphic to Ue o Z(p%%). Now the result follows from the explicit description of
Z(p%y) given in the previous subsection. O
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4. INTEGRAL OVER A TOPOLOGIZING FULL SUBCATEGORY

4.1. Topologizing full subcategory. We first introduce the following terminol-
ogy and notation: A full subcategory of an abelian category is said to be topologiz-
ing [Ros99] if it is closed under finite direct sums and subquotients. We denote by
Top(A) the class of topologizing full subcategories of an abelian category \A.

Let M be a finite module category over a finite tensor category. In Section [B] we
have considered several ‘integrals’ over the category M. In this section, based on
our results on adjoints of the action functor, we extend techniques used in [Shil7b]
and provide a framework to deal with ‘integrals’ of the form [ s Hom(X, X) for
some S € Top(M).

We first summarize basic results on topologizing full subcategories of a finite
abelian category. Let M be a finite abelian category, and let S be a topologizing
full subcategory of M with inclusion functor ¢ : § - M. For M € M, we set

(4.1) i* (M) = (the largest subobject of M belonging to S).

By the assumption that S is a topologizing full subcategory, one can extend the
assignment M s i* (M) to a k-linear functor from M to S. Dually, we set

(4.2) ks(M)=({XCM|M/X €S} and ’(M)=M/xs(M)

for M € M. One can also extend the assignment M + i’(M) to a k-linear functor
from M to S. It is easy to see that if and i* are a right and a left adjoint of i,
respectively. We now define

(4.3) Ts:=ioi’ and Tg:=ioil.
Since i* 4 i 4 i, we have natural isomorphisms
(4.4) Hom i (ts(M), N) = Homg (i’ (M), i*(N)) = Homp (M, T5(N))

for M, N € M. Thus 1s € Rex(M) and Ts = 7. Moreover, since i’ 0 = idg, the
endofunctor ts is an idempotent monad on M whose category of modules coincides
with S. By this observation, we have the following consequence:

Lemma 4.1. A topologizing full subcategory of a finite abelian category is a fi-
nite abelian category such that the inclusion functor preserves and reflects exact
sequences.

Now we choose a finite-dimensional algebra A such that M =~ A-mod. If we iden-
tify Rex(M) with A-mod-A, then idas € Rex(M) corresponds to the A-bimodule
A. Thus a subobject of idaq in Rex(M) corresponds to an ideal of A. By abuse of
terminology, we call a subobject of idas in Rex(M) an ideal of M. Then we have
the following correspondence (c¢f. Rosenberg [Ros95, Chapter I11]):

Lemma 4.2. For a finite abelian category M, there is a one-to-one correspondence
between the class Top(M) and the set of ideals of M.

For S € Top(M), we define ks by ([@2]). The correspondence of the above lemma
assigns ks C ids[to S. Conversely, given an ideal I of M, we consider the quotient
7 :=1idpm/I. If we identify M with A-mod as above, then I can be regarded as an
ideal of the algebra A and the functor 7 is identified with (A/I) ® 4 (=). Thus 7 is
a k-linear right exact idempotent monad on M. The correspondence of Lemma [£.2]
assigns the category of 7-modules to the ideal I.
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4.2. Integral over a full subcategory. Let C be a finite tensor category, and let
M be a finite left C-module category. Given S € Top(M), we consider the end

Al = 05 (ts) = / Hom (M, ts(M)),
MeM

where Ts is defined by [@3]). Let i : S — M be the inclusion functor. By applying
Lemma [Z2 to the adjunction i* - i, we see that the end of the functor

(4.5) S§Px8—C, (X,X')— Hom(i(X),i(X"))
exists and is canonically isomorphic to A’s. We denote the end of (LX) by

As :/ Hom(X, X)
Xes

with omitting the inclusion functor. Let 8s : Ay — As be the canonical isomor-
phism given by Lemma If we denote by

7s(X): As - Hom(X, X) and (M) : Al — Hom(M, ts(M))

the respective universal dinatural transformations, then the isomorphism s is char-
acterized as a unique morphism in C such that the equation

(4.6) 7s(X) 0 Bs = 5(X)

holds for all X € S.

We recall that Ts is an idempotent monad on M. Thus A’ is an algebra in C
as the image of an algebra under the monoidal functor p%%. On the other hand, by
the universal property of the end As, we can define

(4.7) ms:As @ As — As and wus:1 — Ag
to be unique morphisms such that the equations

Ts(X) oms = comp}'y y o(ns(X) @ ws(X)) and ws(X)ous = coevy
hold for all objects X € S. It is easy to see that As is an algebra in C with
multiplication ms and unit ugs.
Lemma 4.3. The morphism Bs is an isomorphism of algebras in C.

Proof. Noting 15(X) = X for all X € S, we easily verify that the equations
ms(X) 0 Bs o pf) oy = compy y x = 7s(X) oms o (Bs © Bs),
7s(X) o fsopul® = coevy x =7s(X)ous

hold for all objects X € S. By the universal property of the end Ags, we conclude
that Bs is a morphism of algebras. O

For § € Top(M), we denote by gs : idps — Ts the quotient morphism. We recall
that the kernel of gs is ks. For 81, Sa € Top(M) with §; D S, we have ks, C Ks,
as subobjects of idaq. Thus there is a unique morphism g¢s, s, : Ts, — Ts, such
that gs,|s, © gs, = gs,-

For 81,82 with &1 O Sz, we also define a morphism ¢s, s, : 4s, — As, to be a
unique morphism such that the equation

(48) TS,y (X) o (bSl\Sz =78 (X)
holds for all objects X € Ss.
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Lemma 4.4. With the above notation, we have
?s,18, © Bs, = Bs, 0 Pr(ds, s, )-
Proof. For all objects X € Sz, we have
75,(X) 0 ds, s, © Bs, = s, (X) 0 Bs, = 7, (X)
by ([A.6) and ([4.8). Noting ts,(X) = X and (gs,|s,)x = idx, we also have
75, (X) 0 Bs, 0 Py (gsys,) = Wisg (X) o pi(gsy)s,)
= Hom(idx, (gs,|s,)x) © 75, (X) = 75, (X).

The claim follows from the universal property of As,. (|
For §1,85,83 € SUP(M) with &1 D &2 D 83, we have

(4.9) 45,155 © 45,18, = 45,1S;  and  Ps, (s, © Ps, |5, = Ps, (S5

Lemma 4] says that the inverse system ({As}, {#s,|s,}) in C is obtained from the
inverse system ({Ts}, {¢s,|s,}) in Rex(M) by applying p'f;. We note that an exact
functor preserves epimorphisms. By Theorem [B.4] and Lemma 4] we have:

Lemma 4.5. If M is an exact C-module category, then ({As},{¢s,|s,}) is an
inverse system of epimorphisms in C.

We use the above observation to state the main result of this section. For an
object X of an essentially small category £, we denote by Quo(X) and Sub(X)
the set of quotient objects of X and the set of subobjects of X, respectively. We
introduce partial orders on these sets as follows: For Q1,Q2 € Quo(X), we write
@1 > Q2 if there is a morphism @1 — @2 in £ compatible with the quotient
morphisms from X. Dually, for S1,S2 € Gub(X), we write S; > Sy if there is a
morphism S — S in £ compatible with the inclusion morphisms to X.

Theorem 4.6. Let M be an exact C-module category. Then the map
Top(M) = Quo(An), S Ag = / Hom (X, X)
XeS

preserves the order. If, moreover, M is indecomposable, then this map reflects the
order.

Proof. Lemmal[LH means that the map in question preserves the order. To complete
the proof, we suppose that M is indecomposable. Let S; and S, be topologizing full
subcategory of M such that As, > As, in Quo(Axq). Then we have p}d(ks,) <
Pt (Ks,) in Gub(Aaq). Since pld is exact, we have

ot ( KS, ) _ p.];\b}l(Ksz) _ p.];\%l(KS2) =0
M Ks, M Ks, pfA@l(K$2) N p?/\a/l(KSl) pfA@[(K$2)

Since p'y is faithful by Theorem B4, we have ks, /(ks, N ks,) = 0. This implies
that ks, C ks,. Hence &1 C S2. The proof is done. [l

The dual of Theorem [4.6] is also interesting. Let Apq : C — Lex(M) be the left
exact version of the action functor. By Remark B.6land the dual of Lemma 2.2 (see
[BV12, Lemma 3.9]), the coend of the functor

(4.10) SPx8—C, (X,X')+ coHom(X,X")
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exists for all S € Top(M) and is canonically isomorphic to the coend
Mem
A () = / coHom(M, T (M)).

We denote the coend of (£I0) by Ls = fXES coHom(X, X). Since the duality
functor is an anti-equivalence, the object *As is also a coend of the functor (ZI0)
with universal dinatural transformation

*rs: *As — "Hom(X, X) = coHom(X, X) (X €38).

Thus there is an isomorphism *As = Lgs respecting the universal dinatural trans-
formations. By the above observation, we now obtain the following theorem:

Theorem 4.7. Let M be an exact C-module category. Then the map
Top(M) = Gub(Lpy), S+ Ls

preserves the order. If, moreover, M is indecomposable, then this map reflects the
order.

4.3. Integral over a module full subcategory. Let C be a finite tensor cate-
gory, and let M be a finite left C-module category. We introduce the following
terminology:

Definition 4.8. A C-module full subcategory of M is a topologizing full subcategory
of M closed under the action of C.

Let S be a C-module full subcategory of M, and let ks and Ts be the endofunc-
tors on M defined by (£2) and [@3)), respectively. Then we have

VM) (Veaks(M)2Ve(M/ks(M))=Veats(M)eS
for all V € C and M € M. Thus we have a natural transformation
ws(VeM)—=Vets(M) (VeC,MeM)

making ts € Rex(M) an oplax C-module endofunctor on M. Since C is rigid, we
may regard Ts as a strong C-module functor.

By Theorem [B.11] we endow the algebra A’y = p"(ts) with a half-braiding o’
such that (A%, 0%) is an algebra in Z(C). Since Ags is isomorphic to A’s, the algebra
Ags also give rise to an algebra in Z(C). By Lemma B2 the half-braiding

Us(V):A5®V—)V®A5 (VGC)
of As inherited from p*(ts) is the unique morphism such that the diagram

7T5(V®X)®idv

411) AsaV Hom(V ® X,V ® X) @V
US(V)\L \LbV,X,V(@X
idy ®@ms av,x,x
V®As —V @ Hom(X, X) Hom(V ® X, X)

commutes for all objects X € S. We write As := (As,0s) € Z(C). The following
result is well-known in the case where M =8 =C.

Theorem 4.9. The algebra As € Z(C) is commutative.

Proof. We postpone the proof of this theorem to Appendix [Alsince it requires some
technical results on the natural isomorphisms a and b. (|
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Let &1 and S; be C-module full subcategories of M such that S O S3. We have
introduced the morphism ¢s, s, : As, = As, in C in the previous subsection. By
the definition of ¢s,|s, and the above explicit description of the half-braiding, we
have the following result:

Theorem 4.10. ¢5,|s, : As, — As, is a morphism in Z(C).
Thus, if M is exact, then we have an order-preserving map
{C-module full subcategories of M} — {quotient algebras of A in Z(C)}

defined by § — Ag. If, moreover, M is indecomposable, then this map reflects the
order.

5. CLASS FUNCTIONS AND CHARACTERS

5.1. The space of class functions. Let C be a finite tensor category. By the
result of the last section, we have the algebra A € C for each finite left C-module
category M. The vector space Home (A, 1) with M = C is called the space of
class functions in [Shil7h] as it generalizes the usual notion of class functions on
a finite group. The aim of this section is to explore the structure of the space of
class functions and its generalization to module categories. We first introduce the
following notation:

Definition 5.1. For a finite left C-module category M, we define the space of class
functions of M by CF(M) = Home (A, 1).

Let U : Z(C) — C be the forgetful functor. To study class functions, we consider
the functor Z := U™ o U. There is an equivalence p’ : C — C} given by o'(V) =
ide ® V. By applying Theorem 314 to M = C, we have

Z(V)=pFp' (V) = XeVeX* (Vel).
XeC
Now let 74 (X): Z(V) - X ®V ® X* (V, X € C) be the universal dinatural trans-
formation for the end Z(V'). The assignment V +— Z(V') extends to an endofunctor
on C in such a way that 7% (X) is natural in V and dinatural in X. By the universal
property, we define natural transformations A% : Z — Z? and €% : Z — id¢ by

(idx @ 7{ (V) @ idx+) o 151y (X) 0 AL, = 7H(X ®Y) and e} = 7%(1)

for all objects V, X, Y € C. The functor Z is a comonad on C with comultiplication
AZ and counit £2.

Given an object V = (V,0) € Z(C), we define the morphism 6 : V- — Z(V) in C
to be the unique morphism such that the equation

15(X) 06 = (0x @idx-) o (idy ® coevy)

holds for all objects X € C. The assignment (V,0) — (V,4) allows us to identify
Z(C) with the category of Z-comodules. If we identify them, then a right adjoint
of U is given by the free Z-comodule functor

U™ : C — (the category of Z-comodules), V s (Z(V),A%).

By Theorem [£.9] for each finite left C-module category M, there is a commutative
algebra A = (Am,om) in Z(C) such that Ay = U(A ).
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Definition 5.2. Let M be as above, and let duq : Ay — Z(Apn) be the coaction
of Z associated to the half-braiding oaq. For f € CF(C) and g € CF(M), we define
their product f g € CF(M) by

(5.1) fxg=foZ(g)odm-

In particular, we have a binary operation on CF(C) by counsidering the case
where M = C in the above definition. As we have observed in [Shil7b], CF(C) is
an associative unital algebra with respect x. Moreover, we have:

Lemma 5.3. CF(M) is a left CF(C)-module by x.
Proof. We remark A¢ = U™(1). Thus there is an isomorphism

P s CF(M) — Homzc)(Ar, Ac), [ Z(f)odm.
Then, noting ¢ = A%, we compute

Dc(f) o Pmlg) = Z(f) 0 Af 0 Z(g) 0 6m = Z(f) 0 Z°(g) 0 A%, 0 5
=Z(f)0Z*(g) 0 Z(6m) 06 = Z(f *x g) 0 Op1 = Prq(f * 9)

for all elements f € CF(C) and g € CF(M). Since the composition of morphisms
is unital and associative, the action *x : CF(C) x CF(M) — CF(M) is also unital
and associative. The proof is done. ([l

We set F' = CF(C) and E = Endz(A¢) for simplicity. The proof of the above
lemma implies the following interesting consequence:

Theorem 5.4. There is an isomorphism E = F of algebras. Moreover, the left
F-module CF(M) corresponds to the left E-module Homzc)(A i, Ac) under the

isomorphism E = F.

5.2. Pivotal module category. We recall that a pivotal monoidal category is a
rigid monoidal category C equipped with a pivotal structure, that is, an isomorphism
X — X** (X € C) of monoidal functors. Let C be a pivotal finite tensor category
with pivotal structure j. For an object X € C, we set

trc(X) = evxx O (.]X ®1dx*)
and define the internal character [ShilTb] of X by
ch(X) = tre(X) o me(X) € CF(C).

Some applications of this notion are given in [Shil7h]. It is interesting to extend
results of [Shil7b] to module categories. We first introduce the notion of pivotal
module category. To give its precise definition, we recall the following notion:

Definition 5.5 ([FSS16]). For an exact C-module category M, there is a unique
functor $( : M — M equipped with a natural isomorphism

(5.2) Hom(M, N)* = Hom(N, 3 pm(M))
for M, N € M. We call S, the relative Serre functor of M.

Let M be an exact left C-module category. We make M°P x M a C-bimodule
category by (2.I6). Then Hom is a C-bimodule functor. Given a strong monoidal
functor T : C — C and a left C-module category N, we denote by 7 A the left
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C-module category whose underlying category is A/ but the action of C on N is
twisted by 7. The functor

MP XM = (y«C, (M,N)+ Hom(N, M)*
is a C-bimodule functor by (2.I0) and (A.2). By [FSS16, Lemma 4.22], there is a
unique natural isomorphism
(5.3) X*@3mM) = Sm(XoM) (XelC,MeM)

making $xq a left C-module functor $p4 : M — (_)-- M such that (5.2) is an
isomorphism of C-bimodule functors.

Definition 5.6. Let C be a pivotal finite tensor category with pivotal structure j,
and let M be an exact C-module category. A pivotal structure of M is a natural
isomorphism 5’ : idaq — S such that the equation

Ix®jm

(5:4) xen = (X @M L2 X 0§, (M) — 89, Sm(X @ M))

holds for all X € C and M € M. A pivotal left C-module category is an exact left
C-module category equipped with a pivotal structure. Let M be such a category,
and let j' be the pivotal structure of M. Then we define the trace

trp(M) : Hom(M, M) -1 (M e M)
to be the morphism corresponding to ji, : M — (M) via
Homp (M, S p(M)) = Hompag (1, Hom(M, S (M))
>~ Hom (1, Hom(M, M)*) = Hom y(Hom(M, M), 1).
Remark 5.7. Let C and M be as above. Then, for a morphism f: M — M in M,
the pivotal trace ptr(f) € k is defined by
(5.5) ptr(f) -idy = tra(M) o Hom(id s, f) o coevy ;-

As in the ordinary trace, the pivotal trace is cyclic, multiplicative with respect to
® and additive with respect to exact sequences; see Propositions and [B.4] in
Appendix Bl

5.3. Internal characters for module categories. Let C be a pivotal finite tensor
category, and let M be an pivotal exact left C-module category. We now define:

Definition 5.8. The internal character of M € M is defined by
(5.6) chp (M) = trpg (M) o T (M) € CF(M).
We give basic properties of internal characters:
Lemma 5.9. For all X € C and M € M, we have
che (X)) x chp (M) = chp (X @ M).
Proof. Straightforward. See Appendix [B] for the detail. O

Lemma 5.10. The internal character is additive in exact sequences: For any exact
sequence 0 — My — My — M3 — 0 in M, we have

chpag (M) = chp(My) + chaq(Ma).
Proof. Tt is well-known that the pivotal trace is additive in exact sequences. One

can find a detailed proof of this fact in [GKPMI1l Lemma 2.5.1]. The proof of this
lemma goes along the same line; see Appendix [Bl for the detail. (|
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For a finite abelian category A, we denote by Gr(A) the Grothendieck group
of A, that is, the quotient of the additive group generated by the isomorphism
classes of objects of A by the relation [Ms] = [M;] + [M3] for all exact sequences
0— My — My — Ms — 0in A. We set Gri(A) = k ®z Gr(A).

Now let {L1,..., L,} be a complete set of representatives of isomorphism classes
of simple objects of M. As a generalization of the main result of [Shil7bh], we prove
the following theorem:

Theorem 5.11. The set {ch(L;)}!"; C CF(M) is linearly independent.

Proof. The proof goes along the same way as [Shil7h]. Let S be the full subcategory
of M consisting of all semisimple objects of M. Then, since S is semisimple, we
may assume As = @, Hom(L;, L;) and 7ws(L;) is the projection to Hom(L;, L;)
fori=1,...,n. Let s : Am — As be the morphism defined by (LE]). Since
®m|s is an epimorphism, the map

Home (éaq)5,1)

@ Home (Hom(L, Li), 1) = CE(S) CF(M)

=1

is injective. Since the morphism chaq(L;) is the image of the morphism tra(L;)
under this map, the set {ch(L;)}?, is linearly independent in CF(M). O

Let C and M be as above. By Lemma [5.10] and Theorem [5.11] the linear map
chpg : Grp(M) = CF(M), [M]w~ chpm(M) (M e M)

is well-defined and injective. Lemma [5.9 implies that che : Gry(C) — CF(C) is an
algebra map and chag : Grig(M) — CF(M) is Gry(C)-linear if we view CF(M) as
a left Gry(C)-module through the algebra map che.

By the proof of the above lemma, we see that the linear map cha is bijective if
M is semisimple. We have proved that, under the assumption that C is unimodular
in the sense of [EO04], the map che : Gry(C) — CF(C) is bijective if and only if C
is semisimple [Shil7h]. It would be interesting to establish an analogous result for
module categories. The unimodularity of module categories, introduced in [FSS16],
may be useful to formulate such a result.

5.4. Class functions of the dual tensor category. Let C be a finite tensor
category, and let M be an indecomposable exact left C-module category. As an
application of our results, we give the following description of the algebra of class
functions of the dual tensor category:

Theorem 5.12. CF(C},) = Endz(c)(Anrm) as algebras.

Proof. Set D = C},. Let U : Z(D) — D be the forgetful functor. By Theorems[3.13]
B.14 and 5.4 we have isomorphisms

CF(D) = Endz(p) (U5 (1p)) = Endz(¢)(8 U (1p)) = Endz(c)(Anm)

of algebras. The proof is done. O

A semisimple finite tensor category is called a fusion category [ENOQS]. Our
results give some new results on fusion categories. For example:
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Corollary 5.13. Suppose that the base field k is of characteristic zero. Let C be a
fusion category, and let M be an indecomposable exact left C-module category such
that C}, admits a pivotal structure. Then there is an isomorphism

Gri(Ciy) = Endzc)(Arm)
of algebras.

Proof. C}, is a pivotal fusion categories by the assumption [ENOO5]. Thus the
result follows from the results of the previous subsection. O

The following result generalizes [Ost13, Example 2.18]:

Corollary 5.14. Under the same assumption on the above corollary, the following
two assertions are equivalent:

(1) The Grothendieck ring of C}, is commutative.

(2) The object Apq € Z(C) is multiplicity-free.

Proof. Since k is of characteristic zero, Z(C) is a fusion category [ENO05|. More-
over, the ring Gr(D) is commutative if and only if the k-algebra Gry(D) is. Now
the claim follows from the above corollary. (|

6. A FILTRATION ON THE SPACE OF CLASS FUNCTIONS

6.1. A filtration on the space of class functions. Let M be a finite abelian
category. For an object M € M, we denote by soc(M) the socle of M. Every
object M € M has a canonical filtration

O=MyCcM,CMyCMsC---CM

such that M;1/M; = soc(M/M;). We denote M,, by soc,(M). Then the assign-
ment M — soc, (M) extends to a k-linear left exact endofunctor on M, which we
call the n-th socle functor. The number

Lw(M) =min{n =0,1,2,...]| soc,(M) = M}

is called the Loewy length of M. We define M, to be the full subcategory of M
consisting of all objects M with Lw(M) < n. Since M is finite, the number

Lw(M) :=min{n =0,1,2,... | M, = M} = max{Lw(M) | M € M}
is finite. We call Lw(M) the Loewy length of M and the filtration
(6.1) 0=MoyCM;CMaC---CMy=M (w=Lw(M))

the socle filtration of M.

It is easy to see that each M,, is a topologizing full subcategory of M. Thus, if
C is a finite tensor category and M is an exact left C-module category with Loewy
length w, then we have a series

(62) AM = AMw - AMw71 T AM2 - AMl

of epimorphisms of of algebras in C by Theorem Applying Home(—, 1) to this
series, we obtain the filtration of the space of class functions

(6.3) CF1(M) C CFy(M) C -+ C CFy_1(M) C CFp(M) = CF(M),

where CF,, (M) = Home (A, , 1). In this section, we investigate how this filtration
relates to representation-theoretic properties of M.
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6.2. Jacobson radical functor. For further study of the series (62) and the fil-
tration (6.3]), we introduce the following abstract definition of the Jacobson radical:
Let M be a finite abelian category. For an object M € M, we define the subobject
rad(M) of M to be the intersection of all maximal subobjects of M. It is easy to
see that M +— rad(M) extends to a k-linear right exact endofunctor on M. We call
rad € Rex(M) the Jacobson radical functor of M.

We rephrase several known results in the representation theory in terms of the
Jacobson radical functor. Let A be a finite-dimensional algebra such that M =
A-mod, and let J be the Jacobson radical of A. Then the Jacobson radical functor
may be identified with J ® 4 (—). Thus we have the series

(6.4) idp =:rad’ Drad Drad®> D .- Drad” ! Drad” =0 (w = Lw(M))

of subobjects in Rex(M). We have radﬁw #* radﬁ\fll forall i =0,...,w— 1 by the
Nakayama lemma.

For a positive integer n, we define the n-th capital functor cap,, € Rex(M) as the
quotient object idaq/rad™. If we identify Rex(M) with A-mod-A, then this functor
corresponds to the bimodule A/J" and therefore
(6.5) cap, (M) = (A/J") @a M =M/J"M
for all M € M. By Sakurai [Sak17b, Lemma 2.3], there is an adjunction
(6.6) Hom nq(cap,, (M), M") = Homaq (M, soc, (M')) (M, M’ € M).

The n-th term M,, of the socle filtration (6I) coincides with the full subcategory
of M consisting of all objects M such that soc, (M) = M. Comparing (6.6]) with
(#4), we have cap,, = Trq, with the notation in Subsection Il In other words,
M., corresponds to rad” via the correspondence of Lemma

Now we consider the case where C is a finite tensor category and M is an exact
left C-module category with Loewy length w. There is a series
(6.7) idpg = cap,, — cap,,_; — -+ — cap, —» cap,

of epimorphisms in Rex(M). We have a canonical isomorphism
p™(cap,) = / Hom(X, X),
XeMy,
and the series (G.2)) is obtained by applying p™ to (G.7)).
6.3. Reynolds ideal and its generalization. Let A be a finite-dimensional al-
gebra. For n € Z, we define the n-th Reynolds ideal [Sak17a] of A by
(6.8) Rey,,(4) = soc,(A) N Z(A),

where soc,, (A) is the n-th socle of the left A-module A. As Rey, (A) is a Morita
invariant [Sak17al, it is natural to expect that the n-th Reynolds ideal of a finite
abelian category is defined in an intrinsic way. For n = 1, this was achieved by
Gainutdinov and Runkel in [GR17]. By using the Jacobson radical functor, we
propose the following definition, which is different to [GR17]:

Definition 6.1. Let M be a finite abelian category. For a non-negative positive
integer n, we define the n-th Reynolds ideal of M by

Rey, (M) = {£ € End(idm) | § 0in = 0},

where 4, : rad” — id, is the inclusion morphism.
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Let A be a finite-dimensional algebra. We explain that Rey,,(M) can be identi-
fied with the n-th Reynolds ideal of A when M = A-mod. Let J be the Jacobson
radical of A. Then the n-th socle of M € A-mod is given by

socp,(M)={m e M |rm =0 for all r € J"},
and hence the n-th Reynolds ideal of A is expressed as follows:
(6.9) Rey, (A) ={z€ Z(A) |rz=0for all r € J"}.

If M = A-mod, then Rex(M) can be identified with A-mod-A. Under this identi-
fication, id 4 and rad™ correspond to the A-bimodule A and its subbimodule J™,
respectively. By (63), it is easy to check that the isomorphism Z(A) = End(ida)
restricts to an isomorphism Rey,,(A) 2 Rey,,(A-mod) for each n.

We consider the case where C is a finite tensor category and M is an indecom-
posable exact left C-module category with action functor p = paq. Then we have
an adjunction isomorphism

(610) HOch(]]., AM) = HOmc(]]., pra(id/\/[)) = Nat(p(]l),idM) = End(ldc)
Moreover, since p** is exact by Theorem B4l the object J}, := p™(rad™) is a

subobject of Axq. The following description of Rey,,(M) may be regarded as a
generalization of (6.9)).

Lemma 6.2. For an indecomposable exact C-module category M, we define
Rn(./\/l) = {a € Homc(]l,AM) | mo (a®1i) = ()}7

where m is the multiplication of Ay and i : Jy, — Aaq is the inclusion morphism.
Then (6I0) restricts to an isomorphism between R, (M) and Rey,,(M).

Proof. We use the monoidal structure of p™ described in Lemma B8 Let a : 1 —
A be a morphism in C, and let @ € End(id¢) be the natural transformation
corresponding to a via (GI0). By the definition of u(?), we have a = p'(a@) o u(?).
Let i, : rad” — idaq be the inclusion morphism. Since i = p™(i,,), we have

mo (@®i) = i, a,, © (07(@) © ™(in)) 0 (10 @iy,
= (@0 in) 0 ulihy 0y, © (10 @idyy,) = P (@0 ).
Thus, by the faithfulness of p*® (Theorem [34]), the morphism a belongs to R, (M)
if and only if @ € Rey,(M). The proof is done. O

We recall that an algebra A in C with multiplication m is said to be Frobenius
if there is an isomorphism ¢ : A — A* of right A-modules in C. Given such an
isomorphism ¢, we define

ep =evao(p®ida) and dg = (ida ® ¢ ') ocoeva.
Then the triple (4, e4,dy) is a left dual object of A. Thus the map
(6.11) Home (A, 1) — Home(1, A) € (€ ®ida) ody
is an isomorphism of vector spaces with inverse
(6.12) Home (L, A) — Home(A, 1), aego(a®idy).
The A-linearity of ¢ imply
(6.13) eg 0 (m®ida) = ey o (ida ® m),
(6.14) (ida ®@m) o (dyp ®ida) = (m®ida) o (ida ® dy).
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The following lemma may be well-known:

Lemma 6.3. Let J be an ideal of A with inclusion morphism i : J — A. Then the
isomorphisms ([@I1)) and ([I2) restricts to an isomorphism

Home(A/J,1) = {a € Home(1,A) | mo (a®1) = 0}.

Proof. Let £ : A — 1 be a morphism in C, and let a : 1 — A be the mor-
phism corresponding to £ by (G.I1]) and ([EI2]). We first suppose that £ belongs to
Home(A/J, 1), that is, £ o4 = 0. Then we compute

mo(a®i)=(£®ida)o (ida @ m)o (dy ®ida) o
= (¢ ®ida)o(m®ida)o (ida ®d¢) o1
— (€omo(i®ida)) @ida) o (idy @ dy)
by (6I4). Since J is an ideal of A, the image of m o (i ® id4) is contained in J.
Thus we have Eomo (i ®1id4) = 0. Therefore mo (a ® i) = 0. If, conversely, this
equation holds, then we have
foi=ego(i®@a)=ego(m®ida)o (Ui a)
=epo(lda@m)o(u®i®a)=0

by (@I3]), where v : 1 — A is the unit of A. Thus £ € Hom¢(A/J, 1). The proof is
done. g

Now we have the following representation-theoretic description of CF,,.

Theorem 6.4. Let M be an indecomposable exact C-module category. If Aaq is a
Frobenius algebra, then the isomorphism

(6.15) CF(M) = Home (Ans, 1) — 2 Home (1, Ap) — o End(id )

restricts to isomorphisms
CF,(M) = Rey, (M) (n=1,2,3,...).

Proof. The subobject p™(rad”) is an ideal of Ayq = p™(idaq). The proof is done
by applying the above two lemmas to this ideal. ([

A finite tensor category D is said to be unimodular [EO04] if the projective
cover of the unit object 1 € D is also an injective hull of 1. Following [Shil7c|, a
finite tensor category D is unimodular if and only if the algebra R(1) € Z(D) is
Frobenius, where R: D — Z(D) is a right adjoint of the forgetful functor.

Let M be an indecomposable exact left C-module category. Then D :=Cj}, is a
finite tensor category. By Theorem [B.14 and the above-mentioned fact, the algebra
A € Z(C) is Frobenius if and only if D is unimodular. Thus the algebra Ay € C
is Frobenius if D is unimodular. By the above theorem, we have:

Corollary 6.5. Let M be an indecomposable exact C-module category. If C), is
unimodular, then we have CF, (M) = Rey,, (M).

In particular, if C is unimodular, then CF,,(C) = Rey,,(C).
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6.4. Symmetric linear forms on an algebra. For a finite-dimensional algebra
A with Jacobson radical J, we set

SLF(A) = {f € A" | f(ab) = f(ba) for all a,b € A},
SLF,(A) ={f € SLF(A) | f(J") =0} (n€Zy).
If G is a finite group, then SLF(kG) is the space of class functions on G. Thus,
for a finite module category M such that M ~ A-mod, it is natural to ask how

CF(M) relates to SLF(A). To consider this problem, we first introduce the follow-
ing categorical definition of the space of symmetric linear forms:

Definition 6.6. For a finite abelian category M and n € Z,, we set
SLF(M) := Nat(idpq, Noq) and SLF,(M) ={f € SLF(M) | f o4, =0},
where i, : rad™ — id 4 is the inclusion morphism.

If M is a finite abelian category such that M ~ A-mod, then Rex(M) can be
identified with A-mod-A. Under this identification, id s and N4 correspond to the
A-bimodules A and A*, respectively. Thus we have

(6.16) SLF(M) = Homa-mod.4 (A, A*) = SLF(A),

where the second isomorphism is given by f — f(1). If we identify SLF(M) with
SLF(A) by this isomorphism, then SLF,, (M) is identified with SLF,,(A).

Remark 6.7. Let M be a finite abelian category. We suppose that M is symmetric
Frobenius and choose an isomorphism A : idys — Nas. Then the map

End(idap) — SLF(M), z+— Aoz
is an isomorphism. By Definitions and [6.6], we also have isomorphisms
Rey,, (M) — SLF, (M), z+— Aoz (n€Zy).

In ring-theoretic terms, this means: Let A be a symmetric Frobenius algebra, and let
A: A — A* be an isomorphism of A-bimodules. For each n € Z,, the isomorphism
A restricts to an isomorphism between Rey,, (4) and SLF,,(A).

Now we consider the case where M is an exact module category over a finite
tensor category C. Although CF(M) is an analogue of the space of class functions,
it does not seem to be isomorphic to SLF(M) in general. To see when they are
isomorphic, we provide the following lemma:

Lemma 6.8. There is a natural isomorphism
Home (p™(Spm o F), X*) 2 Nat(F, X @ Nyg) (F € Rex(M),V €C).

Proof. Let D be the distinguished invertible object of C introduced in [ENOO4].
Then there are natural isomorphisms

Ne(X) 2 D*® X* and N (M) 2 D* @ $pq(M)

for X € C and M € M [FSS16]. Since $rq : M — (_y+- M is a C-module functor,
and since D is an invertible object, we have natural isomorphisms

(N 0Sa)(M) =83 (D @Su(M)) = D™ @3 Sm(M) =DM
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for M € M. By using these isomorphisms and basic results on the Nakayama
functor recalled in Subsection 2.5, we have natural isomorphisms

Home (p™*(Saq 0 F), X ™)

= Home (p™™(Nf 0 Sam o FoNyp), NoH(X™))

=~ Nat(N g oS0 FoNyy, No'(X™) @idu)

=~ Nat(Nyf oS0 F, No'(X*) @ Nag)

“Nat(DQF, D®X @ Naq) = Nat(F, X @ Nag)
for F' € Rex(M) and X € C. The proof is done. O

The following theorem is an immediate consequence of the above lemma.
Theorem 6.9. If M is an exact C-module category whose relative Serre functor is
isomorphic to the identity functor, then there is a natural isomorphism
Home (p™(F), X**) = Nat(F, X @ Naq)
for F € Rex(M) and X € C. In particular, we have an isomorphism
CF(M) 2 SLF(M),
which restricts to isomorphisms
CF,(M) 2 SLF,,(M) (n€Zy).

6.5. Dimension of CF;. For a finite abelian category A, we denote by Irr(A) the
set of isomorphism classes of simple objects of M. Let C be a finite tensor category,
and let M be an exact C-module category. Then, by the proof of Theorem [5.1T]
we have isomorphisms

(6.17) CFi(M)= (P Home(Hom(L,L),1)= € Home(L,Sm(L)).
Lelrr(M) Lelrr(M)

Thus, by Schur’s lemma, we have
dimg CF1 (M) = #{L € Irr(C) | Sm(L) = L}.

We suppose, moreover, that C is a pivotal finite tensor category and M is a pivotal
C-module category with pivotal structure j'. Again by the proof of Theorem BE.TT]
the internal character of L € Irr(M) corresponds to j7 via (GI7). Thus the set
{ch(L) | L € Irr(M)} of ‘irreducible characters’ is a basis of CFy(M).

6.6. Dimension of CF;. As we have seen in the above, the dimension of CF;
is expressed in representation-theoretic terms. It is interesting to give such an
expression for the dimension of CF,, for n > 2. Here we give the following result:

Theorem 6.10. Let C be a finite tensor category. For an exact C-module category
M such that Sy = id g, there is an isomorphism

CFy(M) =CFi(M)e P  Extj (L, L).
Lelrr(M)

To prove Theorem [BI0, we recall the following expression of Ext': Let A be a
finite-dimensional algebra. Given X € A-mod, we denote by gx : A — Endy(X)
the algebra map induced by the action of A on X. For V,WW € A-mod, the vector
space Ext’ (V, W) is identified with the set of equivalence classes of short exact
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sequences of the form 0 - W — X — V — 0in A-mod. If X € A-mod fits into
such an exact sequence, then we may assume that X =V & W as a vector space
and the algebra map gx is given by

_(9v(a) 0
gx(a) = <§V(a) gw(a)> € Endg(X) (a€ A)
for some ¢ € Homy (A, Homy(V, W)). Since gx is an algebra map, we have
(6.18)  £1)=0 and &(ab) = £(a)o gy (b) + gw (@) o€(B) (a,b € A).
We define 0 : Homy (V, W) — Homy (A, Homy(V, W)) by

(f)(a) = fogv(a) —gw(a)of (f €Homp(V,W),a € A).
For two linear maps & : A — Homy(V, W) (i = 1,2) satisfying ([6.I8]), the corre-

sponding short exact sequences are equivalent if and only if & — & € Im(9). Thus
the vector space Exth (V, W) is identified with

(6.19) EL(V, W) := {¢ € Homy (A, Homy (V, W)) satisfying (6I8)}/ Im(3).

Theorem[G.10is in fact an immediate consequence of Theorem [6.9 and the following
theorem:

Theorem 6.11. For M € A-mod, we define
Trly ¢ Extly (M, M) = E4(M, M) — SLF(A), &+ Trot.
The map Try ; is injective for all L € Irr(A). Moreover, we have
SLFy(A) =SLFy(A) & P Im(Tr) ;).
Lelrr(A)
Remark 6.12. Our construction of the map Tr ,, is inspired from the construction
of pseudo-trace functions introduced by Miyamoto [Miy04] and further studied in

[Aril0bl [Ari10al [ANT3] in relation with conformal field theory and vertex operator
algebras.

Remark 6.13. Theorem is inspired by the following Okuyama’s result: For a
symmetric Frobenius algebra A, Okuyama [Oku81] showed

dimg Rey,(A) = |Tr(A)| + > dimy Exty(L, L)
Lelrr(A
(see also Koshitani’s review [Koshil6, Section 2]). This formula follows from the

above theorem and Remark [6.71 We note that Theorem B.11] does not require A to
be a symmetric Frobenius algebra.

We give a proof of Theorem Let A be a finite-dimensional algebra, and
write Irr(A) = {S1,...,Sm}. For each i = 1,...,m, we fix a primitive idempotent
e; € A such that Ae; is a projective cover of S;. Set e = e; + -+ + e, Then
A := eAe is a basic algebra and the functor
(6.20) A-mod — Ab-mod, X > eX

is an equivalence. The following lemma is well-known [NS43], but we give a proof
from the viewpoint of Definition

Lemma 6.14. The following map is bijective:
(6.21) SLF(A) — SLF(A%), f+ flas
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Proof. The equivalence (6.20) induces an equivalence A-mod-A ~ A’-mod-A® send-
ing M € A-mod-A to eMe. By (6.16]) and this equivalence, we have

SLF(A) = Hom g-mod-4 (A, A*) 2 Hom gs_noq 45 (A%, (A®)*) = SLF(AY).
The composition yields the map (G.2T]). O
The equivalence ([6.20) also induces an isomorphism
(6.22) EN(V,W) = Extl(V, W) = Extly, (eV, eW) = EL, (eV, W)
for V,W € M, which sends ¢ € £4(V, W) to
€ A" — Homy(eV,eW), eae s e€(eae)(ev) (a € A,veV).

Lemma 6.15. For V € A-mod, the following diagram commutes:

Tr?
EL(V,V) SLF(A)
€2 ) . | &z
EL,(eV,eV) — . SLF(AY)

Proof. Let g : A — Endg (V) be the algebra map defined by the action of A. For
£ e E4(V,V) and a € A, we have &(e) = £(e?) = £(e)gle) + gle)(e) by @IH). By
multiplying g(e) to both sides, we obtain g(e)¢(e)g(e) = 0. Again by (GI])),
Tr(£(eae)) = Tr(é(e - eae - €))

= Tr(¢(e)g(eae)g(e) + g(e)é(eae)g(e) + g(e)g(eae)é(e))

= Tr(§(e)g(eae)g(e)) + Tr(g(e)¢(eae)g(e)) + Tr(g(e)g(eae)é(e)).
The first term is zero, since Tr(£(e)g(eae)g(e)) = Tr(g(e)é(e)g(e)g(eae)) = Tr(0) =
0. By a similar computation, the third term is also zero. Thus we have

Tr(€ (eae)) = Tr(g(e)€(cac)g(e)) = Tr(€"(eac)).

This means that the diagram in question commutes. O
Proof of Theorem[6. 11l Let A be a finite-dimensional algebra, and let J be the

Jacobson radical of A. Since the n-th power of the Jacobson radical of A° is eJ™e,
we see that (62I]) restricts to isomorphisms

(6.23) SLF, (A) — SLF,(A%), f— flav (n€Zy)

Thus, by Lemma [B.15, it is sufficient to consider the case where A is basic.

We assume that A is basic. Then C := A* is a pointed coalgebra. Let A and ¢
denote the comultiplication and the counit of C, respectively. We note that the set
Irr(A) is identified with the set

G(C):={ceC|Alc) =c®cand e(c) =1}
of grouplike elements of C. Let g, h € G(C). By ([6.19), the vector space Extly (g, h)
is identified with the space of (g, h)-skew-primitive elements
Popi={zeC|Ax)=z0g+hQx},

and the map Tr} , is just the inclusion map P, ; — C. Thus, to prove this theorem,
it is enough to show the following equation'

(6.24) SLF2(A) =Co® €D Poy-
geG(C)
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Let J be the Jacobson radical of A. By [Mon93| Proposition 5.2.9], the coradical
filtration {C,, },>0 of C is given by C,, = (4/J"T1)*. Thus,

(6.25) SLF,(A) = C,-1 NSLF(4) (n€Zy).
For each g, h € G(C), we choose a subspace P, ;, of P such that Py = P, , ®
k(g — h). The Taft-Wilson theorem [Mon93, Theorem 5.4.1] states
(6.26) Ci=Cod € P
g,heG(C)
Thus C7 ® C7 is decomposed as follows:
Ci®C = (CO ® Co)
(6.27) & @ (foP,)® Py, f)® @ Ply®P,,.
f.9,heG(C) e,f,9,h€eG(C)

Let z € SLF2(A). By (6.25) and (6.26), we have z = 20+ }_, ,cq(c) Tg,n for some
zg € Co and xg, € P, . Let mp g be the projection to f ® Py, along the direct

sum decomposition ([6.27)). Since z € SLF(A), we have
Of.n-h@wgn=mrgnAx) =750 nAP(2) = 8549 @ Tgn-

This implies that z, 5 = 0 unless g = h. Hence,

SLF2(A4) c Co® D P,, = Co® P Py

9eG geq
Thus the left-hand side of ([6.24]) is contained in the right-hand side. It is easy to
show the converse inclusion. The proof is done. (Il

6.7. Examples. We have no general results on CF,, for n > 3. Here we give some
computational results on CF,,(C) for the case where C is the category of modules
over a finite-dimensional Hopf algebra.

Let H be a finite-dimensional Hopf algebra with comultiplication A, counit &
and antipode S. We use the Sweedler notation A(h) = h(1) ® h(2) to express the
comultiplication of h € H. Set C = H-mod. If we identify Rex(C) with H-mod-H,
then the action functor p : C — Rex(C) is given by p(X) = X ® H, where the left
and the right action of H on p(X) are given by

h-(x@h')=hnyz®@hgoh' and (z@h')-h=x&hh,

respectively, for z € X and h,h' € H. A right adjoint of p is given as follows: As
a vector space, p**(M) = M. The action of H on p"(M) is given by

hm:h(l)mS(h(g)) (hEH,mGM).
Indeed, one can check that the map
HomH(p(X), M) - HomH—mod—H(Xv pra(M))v f = f(lH @ _)

is a natural isomorphism for X € H-mod and M € H-mod-H.
In particular, as remarked in [Shil7b], the algebra Ac = p™(id¢) € C is the
adjoint representation of H. Thus the space of class functions is given by

CF(H-mod) = {f € H* | f(hqyzS(h))) = (h) f(x) for all h,z € H}
={f e H*| f(ab) = f(bS?*(a)) for all a,b € H}.
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By the above description of p™, we also have
CF,(H-mod) = {f € CF(H-mod) | f(J") =0}

for all positive integer n, where J is the Jacobson radical of H. As these expressions
show, if S2 is inner, then there are isomorphisms

(6.28) CF(H-mod) 2 SLF(H) and CF,(H-mod) 2 SLF,,(H).

Ezxample 6.16. Suppose that the base field k is of characteristic p > 0. We consider
the cyclic group G = (g | g? = 1) of order p. It is easy to see that the Jacobson
radical of kG is generated by x := g — 1. We note that the set {1,z,...,2P 1} is a
basis of kG. Since the square of the antipode of kG is the identity, we have

CF,(kG-mod) = SLF,,(kG) = {f € (kG)* | f(z") =0 for all r > n}.
Hence the dimension of CF,, := CF,,(kG-mod) is given by
dimy CF,=n (n=1,2,...,p) and dim;CF,=p (n>p).

A basis of CF := CF(kG-mod) can be constructed in the following roundabout but
interesting way: There is a matrix representation

1 0
11

p: kG — Maty(k), g+~
0 11

Let p;; € (kG)* be the (i,j)-entry of p. Then the set {pn1}n=1,..p is a basis of
CF such that p,1 € CF,, and p,1 ¢ CF,,_1 for all n = 1,...,p (with convention
CFo = {0}).

Ezample 6.17. Suppose that the base field k is of characteristic zero. Let p > 2 be an
integer, and let ¢ € k be a primitive 2p-th root of unity. The algebra U, := U4(sl2)

is generated by E, F' and K subject to the relations
2 2 —2 K-K!
EP=F" =0, K"=1, KE=q¢EK, KF =q °FK, [E,F| = ———.
q9—9q

The algebra Uq has the Hopf algebra structure determined by
AE)=EK+1®E, AF)=F1+K'oF AK)=K®K.

The antipode is given by S(E) = —EK~!, S(F) = —KF and S(K) = K~! on
the generators. Thus S? is the inner automorphism implemented by K. In view
of ([6.28), we consider SLF,,(U,) instead of CF,,(U,-mod).

An explicit basis of SLF(U,) is given by Arike [Aril0a]. We recall his construc-
tion: For @ € {+,—} and s € {1,...,p}, there is an s-dimensional simple left
U,-module X (see [Aril0al Subsection 3.4] for notations). The module X is pro-
jective. For s < p, the module XY is not projective. Let P be the projective cover
of X%. Arike [Aril0al Subsection 5.1] showed that Pg has a matrix presentation of
the form

£@ 0 00
ps : Uq = Matgy(k),  pS(z) = Zég? gp_(s)(x) gpo‘(:(:v) 8 ,
he(x) apZs(x) b0 (2)  g¢(2)
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where g% : U, — Matg(k) is a matrix presentation of X and a2, b and h® are
certain matrix-valued linear functions on U, (given by af = A,_s 5, a; = Cs s,
bt = Bp_ss, by = Dsp_s hf = Hy and hy = H, with Arike’s original notation).
Now we define linear forms x¢ (v € {+,—},s=1,...,p)and ¢y (s'=1,...,p—1)
on Uq by

X () = Tr(gg () and  pu(z) = Ta(hy (@) + Tr(h,_o(2)) (v €T,).

Then the following set is a basis of SLF(U,) [Aril0a, Theorem 5.5]:

IXFoxs |s=1,...,p}U{ps |s=1,...,p—1}.
Arike’s basis respects the filtration of SLF(U,). More precisely, we have:

(6.29) SLF1(U,) = span{x{, x5 |1<s<p},
(6.30) SLF3(U,) = SLF1(U,),
(6.31) SLF3(U,) = SLF3(U,) ® span{p, | 1 < s <p—1}.

Indeed, (629) follows from the fact that SLF;(U,) is spanned by the characters of
simple modules. Equation ([6:30) follows from Theorem [6:11] and the fact that the
self-extension vanishes for every simple U,-module [Sut94, p.379]. To show (E.31]),
we note Lw(U,) = 3 [Sut94} p.367]. Thus we have SLF,,(U,) = SLF(U,) for n > 3.

This implies (6.31]).

7. HOCHSCHILD (CO)HOMOLOGY

7.1. Hochschild (co)homology of a finite abelian category. For an algebra
A, the Hochschild homology and the Hochschild cohomology of A are defined by

HH,(A) = Tor2"(A,A) and HH®(A4) = Ext%.(4, A),

respectively, where A¢ = A ®; A°P?. We note that the 0-th Hochschild cohomology
HH"(A) = Homa. (A, A) is the center of A. Tt has been known that the modular
group SLo(Z) acts projectively on the center of a ribbon factorizable Hopf alge-
bra [SZ12]. Recently, Lentner, Mierach, Schweigert and Sommerhéuser [LMSS17]
showed that SLs(Z) also acts projectively on the higher Hochschild cohomology of
such a Hopf algebra.

A modular tensor category (in the sense of Kerler-Lyubashenko [KLO0I]) is a
category-theoretical counterpart of a ribbon factorizable Hopf algebra. The aim of
this section is to extend the construction of [LMSS17] to modular tensor categories.
To accomplish this, we first need to discuss what the Hochschild cohomology of a
finite abelian category is. Our proposal is the following definition:

Definition 7.1. For a finite abelian category M, we define the Hochschild coho-
mology HH®* (M) of M by HH®*(M) = ExtRexaq) (ida, ida).

If M =~ A-mod for some finite-dimensional algebra A, then Rex(M) is equivalent
to A-mod-A and the identity functor idyps € Rex(M) corresponds to A via the
equivalence. Since a category equivalence preserves Ext®, we have

HH® (M) = Eth.:{ex(M) (1dM7 ldM) = EXt:‘l—mod—A(Av A) = HH* (A)a

which justifies the definition.
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Although it is not directly related to our main purpose of this section, it is
also interesting to give a definition of the Hochschild homology of a finite abelian
category. Our proposal is:

Definition 7.2. For a finite abelian category M, we define the Hochschild ho-
mology HHe(M) of M by HHe(M) = ExtReyaq)(idat, Nag)*, where Nag is the
Nakayama functor on M.

This definition is justified as follows: If M < Py <— P; < --- is a projective
resolution of M € A-mod-A, then Tory (A, M) is the homology of

(7.1) 0+ AQue Po+ ARpe Py < --- .
By the tensor-hom adjunction, the dual of this chain complex is:
(A®ae Ps)* = Homy (A ®4c Po, k) = Hom ge (Po, Homy (A, k)) = Hom ge (Ps, A™).

Thus we have Tor2” (A, M)* = Ext®. (M, A*) by taking the cohomology of the dual
of (). If M = A-mod, then A and A* corresponds to idas and N4, respectively,
via the equivalence A-mod-A = Rex(M). Hence we have

HH, (M) = Extee v (idar, Nag)* 2 Extdye (A, A%)* = Torl" (A, A) = HH,(A).

7.2. Formulas of HH®* and HH, by the adjoint algebra. Let H be a finite-
dimensional Hopf algebra, and let A be the adjoint representation of H. It is known
that there is an isomorphism

(7.2) Ext?, (k, A) = HH*(H),

where k is the trivial H-module. We now generalize this result to exact module
categories. Let C be a finite tensor category, and let M be a finite left C-module
category over C with action functor p : C — Rex(M).

Theorem 7.3. If M is exact, then there is a natural isomorphism
Exto(V, p'*(F)) = Ext;{eX(M) (p(V), F)
for Ve, F € Rex(M).

Proof. We set £ = Rex(M) for simplicity. Let V «- P? «+ P! < ... be a projective
resolution of V in C. By applying Homg(—, p™(F')) to this resolution, we have the
following commutative diagram:

0 —= Home (P?, p**(F)) —= Home (P?, p**(F)) —= Home (P2, p*8(F)) — - - -

- - |

0 —— Homg (p(P°), F) — Homg (p(P"), F) — Homeg (p(P?), F) —> - --

IR

By Lemmas B0 and B2 the sequence 0 < p(V) < p(P°) « p(P!) < --- isa
projective resolution of p(V). Now the claim is proved by taking the cohomology
of the rows of the above commutative diagram. O

Theorem 7.4. If M is an exact C-module category and the relative Serre functor
of M is isomorphic to idaq, then there is a natural isomorphism

EXtE(pra(F)v V**) = Eth.:{cx(M)(Fa Ve [NM)
for Ve C and F € Rex(M)
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Proof. We set & = Rex(M) for simplicity. Let F' < P? <~ P! < ... be a projective
resolution of F in £. By applying Home(—, V' ® Nay) to this resolution and using
Lemma [6.8] we obtain the following commutative diagram:

0 —= Homg (P%, V @ Np¢) —= Homg (P, V ® Npog) —= Homg (P%,V @ Npg) — - - -

IR
1R

| l i

0 — Homge (p™(P?), V**) — Home (p™2(P*), V**) — Home¢ (p*2(P?), V**) — - -

The claim is proved by taking the cohomology of the rows of this commutative
diagram. O

Specializing the above theorems, we obtain:

Corollary 7.5. For an exact left C-module category M, we have

(7.3) HH®* (M) = Extd (1, Am).
If S 2 id g, then we also have an isomorphism
(7.4) HHo (M) 2 Extg(Apn, 1),

We consider the case where C = H-mod for some finite-dimensional Hopf algebra
H and M = C. Let A be the adjoint representation of H. Since Ay = A in this
case, the isomorphism (73] specializes to (T.2)) in this case. Since the relative Serre
functor of M is the double dual functor, $¢ = idpg if and only if the square
of the antipode of H is inner. If this is the case, then we have an isomorphism
HH.(H) = Exty (4, k)* by ([T4).

7.3. Modular group action on the Hochschild cohomology. Let C be a rib-
bon finite tensor category with braiding ¢ and twist §. Then the coend L :=
fXGC X* ® X has a natural structure of a Hopf algebra in C. We note that the
algebra A := (A¢,me,uc) is dual to the coalgebra L, and thus A is also a Hopf
algebra (see (A7) for the definition of m¢ and u¢). By using the universal property,
we define @ : 1 — A ® A to be the unique morphism such that the equation

(me(X)@me(Y)) o @ = (idx ® oy, x+0x+y ®idy~) o (coevx ® coevy)
holds for all X,Y € C. The morphism @ is dual to the Hopf pairingw : L& L — 1
used in [Lyu95al [Lyu95b] [Lyu95c to define the modularity of C. Thus we say that
C is a modular tensor category if there is a morphism e : A ® A — 1 such that
(A,e,Q) is a left dual object of A [KLOI, Definition 5.2.7].

Now we suppose that C is a modular tensor category. Then the Hopf algebra A
has a morphism A : A — 1, unique up to sign, such that

(7.5) ([da®MNoA=ucod=(A®ida)oA and (A®N)oQ =idy,

where A is the comultiplication of A. We fix such a morphism A and then define
two morphisms &,% : A — A by

6:()\@idA)O(mcéi)idA)O(idA@Q) and T = Ox ®idx=.
XecC

The morphisms & and ¥ are the dual of the morphisms S and T', respectively, given
in [Lyu95a, Definition 6.3]. Thus & and ¥ are invertible and there is an element
¢ € k* such that the following ‘modular relation’ hold:

(7.6) (6T =c-&* and G*=0;"



38 K. SHIMIZU

Theorem 7.6. With the above notation, we set
S =Ext(1,8) and T = Exts(1,%).
Then we have a well-defined projective representation

Md@aP@(mN@) G ?>Hé,(éi>H§

Proof. Tt is enough to show that & and T satisfy (6%)? = &2 and &4 = id up to
scalar multiple. By the funtorial property of Ext and (.0]), we have

(6% =¢- 6% and &' =Extd(1,0,') = Ext& (07, A) = id. O

Let H be a finite-dimensional ribbon Hopf algebra with universal R-matrix R
and ribbon element v. We consider the case where C = H-mod. Then A is the
adjoint representation of H. For X € H-mod, the composition

A ® X Trc(X)@idx X ® X* ® X idx ®evx X

sends a @ x € A® X to ax [Shil7hl Subsection 3.7]. From this, we see that m¢(X)
is given as follows: Let {x;} be a basis of X, and let {z°} be the dual basis of {z;}.
With the Einstein notation, we have

(7.7) me(X)(a) = ar; @' (a € A).

The morphism ) is in fact a suitably normalized left integral on H. The morphism
Q@ can be regarded as an element of A ®j A. For simplicity, we express R and @ as
R=R; ® Ry and Q = Q1 ® Q2, respectively. Then the braiding is given by

oxy(x®y) =Ry @Rz (re€X,yeY)

for X, Y € H-mod. Let {h;} and {h‘} be a basis of H and the dual basis of H*,
respectively. Then, by (Z.7) and the definition of @, we have

Q1hi ® h' ® Qah; @ h' = (m¢(H) @ me(H))(Q)
=h;® O'HﬁH*O'H*yH(hi ® hi) @ h'
=h; ® RyR1h' @ Ry Roh; @ h'
= S(RyR1)h; ® h' ® R Roh; @ R,

where R’ = R} ® R}, is a copy of R. Thus we have Q) = S(R5R1) ® R} R2. By using
the element @, the morphisms &,% : A — A are given by

S(a) =AMaQ1)Q2 and %(a) =va (a€ A),

respectively. Thus our & and ¥ coincide with those in [LM94] Theorem 4.4]. If we
replace (H, R,v) with (H°P°P R v), then the morphisms & and ¥ coincide with
the morphisms considered in [LMSS17].

In [LMSSI17], the action SLg(Z) — PGL(HH"(H)) is defined as follows: First,
they extend G and ¥ to cochain maps &°® and T° of a cochain complex C7 com-
puting the cohomology Ext$; (k, A). They also established an explicit isomorphism
between the complex C7 and the Hochschild complex C§ computing the Hochschild
cohomology of H. The isomorphism C? 2 C3 induces ([[2)). The projective action
of SLa(Z) on HH®*(H) is then given by &* and T* through (7.2). By the definition
of Ext functor, we see that their action is expressed as in Theorem Thus, in
conclusion, we have obtained a generalization of [LMSSIT7].
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APPENDIX A. COMPUTATION OF STRUCTURE MORPHISMS OF p'?

A.1. Bimodule structure of Hom. Let C be a rigid monoidal category, and let M
be a closed left C-module category in the sense of Subsection[2.4l1 We establish some
results on the natural transformations a, b and b’ introduced in that subsection.
For simplicity, we write Hom(M, N) = [M, N]. We recall that [M,—] is defined
to be a right adjoint of the functor C — M given by X — X ® M. As before,
we denote by COEV(_y pr and eVar,(—) the unit and the counit of this adjunction,
respectively. Then, by (2.3)), we have

(A-l) ax M,N = HO_m(idM,idX ®e_VM7N) © COCV x @ Hom(M,N),M
for X € C and M, N € M. By ([2.7), we have
(A.Q) by, v, N = (bgf,M,N ®idy*) o (idM(M,N) ® COGVy)

for Y € C and M, N € M, where

(A.3) bg’,M,N = Hom(M, e_VY®M,N) © COCVHom (Y @ M,N)QY,M *

By the zig-zag identities for the adjunction (—) ® M < Hom(M, —), we have

(A.4) eV xem O(coevy y ®idar) = idxen,

(A.5) [idee—VM,N] O COCV N N, M = icl[M,N]

for X € C and N € M. By (A.d)), (A.5) and the naturality of ev,, ), we have
(A.6) evyy n olax v, N ®idy) = idx ®@evy,

(A7) eVar N o(biﬁM,N ®idy) = evygu N

for all objects X,Y € C and M, N € M. We now prove:

Lemma A.1 (= Lemma[23). The equations

2I13) br, v, v = idpar, Ny
Z13) bxey,m,n = (by,v,n Qidx+) o bx yeom N,
eI15) (ax am,n ®idy) o (idx ® by m.N) = by, M XxeN © X, Y 0MN

hold for all objects X,Y € C and M, N € M.
Proof. Equation (2.I3)) is trivial. By the canonical isomorphisms
Home([X @ Y © M,N],[M,N]@ Y* @ X*)
~ Home([X @ YM,N|® X ® Y,[M, N])
> Home([X @ YM,N|@ XY @ M,N),
we see that ([2.I4) is equivalent to the equation
eVar N O(bg(®Y,M,N ®@ida) = evay N o(bg’,M,N ®idas) o (bg(,Y®M,N ®@idy @ idar).

By (A7), the both sides are equal to eVygygas, - Thus 2I4) is verified. In a
similar way, we see that (ZI0)) is equivalent to the equation

eV xen o(ax,m,n ®idar) o (idx ® bE/,M,N ®idp)

=&V X®N O(bi/,M,X@gN ®id) o (ax,y@;M,N ®idy ®iday).
By (A4)-(AD), the both sides are equal to idx ® evy g s - The proof is done. [
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In view of this lemma, we have defined the natural isomorphism
cx, MmNy  X®MNIQY" - [ YoM X®N] (X,YeC,M,NeM)
by @I8)). The following Lemmas and [A.3] will be used in later:
Lemma A.2. For all X € C and M € M, the following equation holds:
(A.8) coevy yen = x,m,M,x o(idx ® coev; 5y ®idx-) o coevi.
Proof. By the definition of ¢, the claim is equivalent to that the equation
b s x@nr ©(€0VT ygnr ®idx) = ax,a,a o(idx @ coevy yy)

holds for all X € C and M € M. By (A4)-([AT), the both sides correspond to the
identity morphism under the canonical isomorphism

Home (X, Hom(X ® M, M)) 2 Homm (X @ M, X @ M). O
Lemma A.3. For all M1, Ma, Ms € M, the following diagram commutes:
[My, M3] @ [My, M) [ev o, 2, i)

a[szMS],Ml’Mz/ \

[My, [Ma, M3] @ Ms] comp [M1, M) @ My, Ms] @ [My, M|
[id,ﬂ]&fzd&@] [Ml, Mg] /6?1\41,1\/12],M1,Z\/I3

Proof. By the naturality of ev,,, ) and (A.6), we compute

eVar, it O([idasy, €V, ar,) 01y, M) 0y 0 ®idar,)
= Vs, Mj © €V, [Ma, Msl@ M, O(A[M,, M), My, My ®idag, )
_ : )]
= eV, vy ©(d(ass 115) @ Vg, ar) = VAL M -
This shows the commutativity of the left triangle of the diagram. Similarly, by
(A7) and the dinaturality of ev(_) »,, we compute

Vs, 1ty ©(O0rs vt Ot a1, 1d0,] @ idiag, 10a))) © i, )
= eV, Ml M OVar ar 1] @ id s a) @ idar, )
. 3
= &0, Ms o(ld[M2»M3] ® e_VMlyMQ) = e—VS\/I)1,M2,M3 :
Thus the left triangle of the diagram also commutes. (I

A.2. Structure morphisms of p™. Now we consider the case where C is a finite
tensor category and M is a finite left C-module category. To save space, we set
P = Py Let €@ and £) be the left and the right C-module structure of P,
respectively. By (2.3]) and its right module version, we have

(A9)  €¢p =Plidx ®er) onxapry and Exy =Bler @idx) 0 Np(ryex

for F € Rex(M) and X € C. By using the universal dinatural transformation 7p
of the end p(F'), these structure morphisms are given as follows:

Lemma A.4 (= Lemma[B7). The equations
G.10) txer(M) oY = axarran olidx ® mp(M)),
E1m) Trax (M) o €0k = by 4 pixen (T (X ® M) ®idy)
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hold for all F € Rex(M) and X € C.
Proof. Equation [BI0) is proved as follows:

mxer(M)o gﬁ)F

= [idar,idx @ el 0 T (x@p(r)) (M) © Nxp(F)

= [idar, (idx ® evyy peapy) © (idx @ Tr(M) @ idar)] 0 cOeV xg5(r), 1

= [ld]\/[, ldX & e—VM,F(M)] o COGVX@[M,F(M)],M O(ldX ® WF(M))

= ax,m,r(m) ©(ldx @ mp(M)).
Here, the first equality follows from (A.9) and the naturality of 7(_)(M), the second
from (3.4) and (3.8), and the third from the naturality of coev_) y;.

To prove equation (3.I1]), we note that the symbol er ® idy in (A9) means the

natural transformation whose component is given by (er @ idx)m = er,xgm for
M € M. Thus we compute:

Trex (M) o €
= [idar, er xoMm] © TomR)ax) (M) o n(mex
= [idM,e_VX®M)F(X®M)] o[idy, 7p(X ® M) ® idxenm] 0 coevg(pygx,m
= [idee—VX®M,F(X®M)] o coevixgm,F(xeM)ex,M © (TF(X ® M) ®idx)
= b% v p(xean o (TF(X @ M) @ idx)
in a similar way as above. The proof is done. O

We recall that p = paq is a strict monoidal functor. Hence its right adjoint p
has a structure of a monoidal functor. We denote the structure morphisms by

Hiy  B(F) ©B(G) > B(FG) and @+ 1 — pidu)
for F, G € Rex(M). With the use of  and ¢, they are expressed by
(A.10) Hig = Pler 0 ca) onpmene) and ¥ =y,

where e o e means the tensor product of e and e¢ in Rex(M), or, equivalently,
the horizontal composition of e and eg.

Lemma A.5 (= Lemma[BX). The equations

(&AW mra(M) o gy, = compyy aan. reon ©(Tr(G(M)) ® ng(M)),
E13) Tidn (M) 0 p© = coevy 5

hold for all F,G € Rex(M) and M € M.

Proof. Equation (3I3)) follows from ([B.8) and (A1Q). To prove (3.12]), we set
w= evg\‘:’j)yc(M)’FG(M) o(mpa(M) @ ng(M) @ idy).

We note that there is an isomorphism

(A.11)  Home(p(F) ® p(G), [M, FG(M)]) = Home (p(F) ® p(G) © M, FG(M)).

The right-hand side of ([3.12)) corresponds to w via (AII)). On the other hand, the

left-hand side of ([3.12]) corresponds to (ep o eg)y via (AII). By (B4) and the
definition of the horizontal composition, we have

(EF o 5G)M = EF,G(M) © (ida(p) ®5G,M) = w.
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Thus BI2) is verified. The proof is done. O

A.3. Commutativity of As. For a C-module full subcategory S C M, we have
proved that the end As := | geg Hom(S, S) has the half-braiding os given by the
commutative diagram (£I1). Namely, the equation

(A12)  axwwolidx ® ms(W)) 0 0s(X) = by x o o(Ts(X ® W) ®idx)

holds for all X € C and W € S, where 7s(X) : As — Hom(X, X) is the universal
dinatural transformation. Let ms : As ® As — As be the multiplication of Ag,
and set m& =mgs o os(As).

Proof of Theorem[{.9 The claim of this theorem is that As = (As,0s) is a com-
mutative algebra in Z(C). Thus it is sufficient to show ma = ms. We fix W € S
and set E = [W, W] for simplicity. Then we compute

7s(W) omg = compy vy o(1s(W) @ ms(W)) 0 05(As)
= [idW,e_vwﬁw] o AR wW,W O(ﬂ's( ) ® ldx) o 0’5( ) (idAS ® WS(W))
= lidw, evyw] 0 b5 1 pw o(rs(E © W) @ ms(W))
= 0% o o(lidpow, vy w] ®idp) o (ws(E © W) @ ms(W))
= bl o oy idw] ®idp) o (ms (W) © ms (W)
= compyyyw ©(Ts(W) @ 1s(W)) = (1s(W) @ ms(W)) o mss.
Here, the first and the last equalities follow from the definition of mgs, the second
and the sixth from Lemmal[AZ3] the third from (A12)), the fourth from the naturality

of bij Wi(—) and the fifth from the dinaturality of ms. We now obtain mosp =ms
by the universal property of As. The proof is done. (I

APPENDIX B. ON THE PROPERTIES OF THE PIVOTAL TRACE

We complement properties of the trace in a pivotal module category. Let C
be a finite tensor category, and let M be an exact left C-module category. For
simplicity, we write [M, N] = Hom(M, N). By the definition of the relative Serre
functor, there is a natural isomorphism

E2) Oy N [M,N]* = [N,$S(M)] (M,N e M),
where $ = $ 0. There is also a natural isomorphism
G3) Cxm : X"8(M) - S(X@M) (XelC,MeM)

such that 0 is an isomorphism of C-bimodule functors from M°P x M to (_)--C,
that is, the equations (1 as = idg(as) and

B.1) lidxen, Cv,mlo dvem, xen (¢ arn,y)
. = CY**,N,E’B(M),X O(idy** ®DM7N ®1dX*)

hold for all objects X,Y € C and M, N € M.
Now we suppose that C and M are pivotal with pivotal structures j and j’,
respectively. By Definition [5.6] we have

(B.2) Cx,M 0 Jxeon =Jx @iy (X €eC,MeM).
The trace traq, defined in Subsection [5.2] is characterized by
(B.3) Oar,m otra (M)* = [iday, jiyg) o coevy (M € M).
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We recall that tre is defined by tre(X) = evx« o (jx ®idy) for X € C. Thus,
(B.4) tre(X)" = (Idx+ ® j%) ocoevxs+ = (jx ®idx~) o coevx.
Lemma B.1. The trace trpq is dinatural, and the equation

(B.5) tram (X @ M) oex pmx = tre(X) o (idx @ traq (M) ® idx«)

holds for all objects M € M and X € C.

Proof. The dinaturality of tr ¢ follows from the naturality of j' and the dinaturality
of coevy (). Equation (B.5) is proved as follows:

(idx-» @ Oar.as @idx) o (tre(X) o (idx ® trag(M) @ idx-))*
= (idx++ @ [idas, jjs] coevy py ®idx+) o (jx ®idx-) o coevy (by (B3), (B4))
= (Jx @ [idar, i) ® idx+) o (idx ® coevy py @idx+) o coevy

= (ix ® [idar, jay] ®idx+) 0 exlag ar x O C0Vxgy  (by (B))

= c;ﬁ*’M’S(M))X olidxen, jx ® ja) 0 coevxgy,  (by the naturality of c)

= ¢xoe arsan.x Olidxen, G © fidxenr, fxgar) © coevy xgn  (by (B2))

= C;{L,M,s(M),X ofidxear, Cx,m] 0 dxem, xeom otram (X @ M) (by (B.3))

= (dx++ ®@ 0ps,p ®idx+) 0 X oararx otrm (X @ M)*  (by (BI). O

For a morphism f: M — M in M, we have defined ptr,(f) € k of f by

ER) tr(M) o [idar, f] o coevy p, = ptr(f) - idy.

Proposition B.2. For morphisms f: M — N and g: N — M in M, we have
(B.6) ptr(fg) = ptr(gf)-

For morphisms f: M — M in M and a: X — X in C, we have

(B.7) ptr(a ® f) = ptr(a) - ptr(f)

Proof. Equation (B.6) follows from the dinaturality of tras and coevy (. Equa-

tion (B follows from (B.3]). O
For M € M, we have defined the internal character chy(M) € CF(M) by
E.6) chp (M) = trp (M) o mag (M),
where maq 1 Ay — [M, M] is the universal dinatural transformation.
Proposition B.3 (= Lemma[59). For all X € C and M € M, we have
cha (X @ M) = che(X) * chag (M),
where x is the action (B of CF(C) on CF(M).

Proof. We recall that Axq has the Z-coaction dpq : Apr — Z(Apaq) induced from
the half-braiding of A . By definition,

(idx @ mpm(M) ®idx-) o (Am) 0 6 = cx'pyar x oTm(X © M)
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for all objects X € C and M € M. Thus, by Lemma [B.I] we have

che (X) x chpaq (M) = che(X) o Z(chp (M) 0 dpmq

= tre(X) o (idx ® (traq (M) o maq(M)) @ idx+) o w4(Apq) 0 dpq

= tre(X) o (idx ® traq (M) @idx+) o ex'yy s x oTm(X @ M)

=tre(X @ M) ompm(X ® M) = chp(X @ M). O

Finally, we give a proof of Lemma [5. 10 in the following general form: Let A and

B be abelian categories, and let (—, —) : A°? x A — B be a functor that is additive
and exact in each variable. Let X and Y be objects of B. Suppose that there

are two dinatural transformations d(M) : X — (M, M) and e(M) : (M, M) - Y
(M € A). For a morphism f: M — M in A, we define

t(f) =e(M)o(idas, f) od(M) € Homp(X,Y).
Proposition B.4. Suppose that

T S

0 M, M, M5 0
f1 \L fa \L f3 \L
0 M, —5> My —5> M, 0

is a commutative diagram in A with exact rows. Then we have

t(f2) = t(f1) +t(f3).

We note that the internal Hom functor of an exact module category is exact in
each variable. Lemma is the case where A = M, B =C, (—,—) = [-, -],
d=7nm, e=trp and f; =idyy, for i = 1,2, 3. If we consider d = coevy (_ instead
of d = maq, then we obtain the additivity of the pivotal trace with respect to exact
sequences.

Proof. By the assumption on (—, —), we obtain the following commutative diagram
with exact rows and exact columns:
0 0 0
(id,r) \L (id, s) \L
0 —— (M3, M) ——— (M3, My) ——— (M3, M3) —— 0
(s,id)\L (s,id)\L (s,id)\L
id,r id,s
0 ——— (My, My) RN (My, My) LN (My, M3) ——0
(r,id) (r,id) (r,id)
\L (id,r) \L (id, s) \L

00— (M1, M) ——— (M, My) ———— (M, M3) ——0
i i
We set K = Ker({r, s) : (Ma, Ma) — (M7, M3)). Then we have K = I + I5, where
L =Im({idpg,, ) : (Ma, M1) — (M, Ma)),
Iy = Tm({s,idpg,) : (M3, Ma) — (M2, Ma)).
Moreover, there are morphisms p; : K — (M;, M;) (i = 1,3) such that
(B.8) (idpgy, 1) op1 = (r,idar,) and  (s,idps,) o p3 = (idas, $)-

O <—
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These claims are checked by chasing the diagram. See [GKPM11], Lemma 2.5.1] for
the detail of the verification, since the proof up to here is completely same.
For simplicity of notation, we set d; = (iday,, fi) o d(M;). By fas = sf3 and the
dinaturality of d, we have
(Bg) <idM2,S>Od2 = <S,idM3> Odg,
(BIO) <T,idM2>Od2 = <idM1,T> Odg.
Thus (r, s) ody = (r,id) o (id, s) o da = (r,id) o (s,id) o dg = 0, that is, Im(ds) C K.
Hence the following morphism is defined:
(B.11) T :=e(M;) o py ods + e(M3) o p3 o da.
We first show that T' = ¢(f1) + t(f3). By (B) and (BI0), we have
(idwm,,7) op1oda = (r,idas,) o do = (idar,, ) 0 di.
Since r is monic, so is (idas,7). Thus we have p; o do = di. Therefore the first
term of (BII) is ¢(f1). Similarly, we have
(s,idpr,) o p3ode = (idps,, 8) o da = (s,idpr, ) 0 ds

by (BR) and (B3), and thus p3 o do = d3. From this, we see that the second term
of (BI1)) is t(f3). Thus the claim follows.
To complete the proof, we show I' = ¢(f2). To see this, we remark

<idM1aT> op1° <SaidM2> = <Ta 1dM2> © <SaidM2> =0,
(s,id sy ) © p3 o (idpg,, 7y = (idas,, 8) o (idas,, 7y =0

by (B:8)). Since both (idas, ,7) and (s,idaz, ) are monic, pjo(s,idas,) and pso(iday,, )
are zero morphisms. Set IV = e(My) o p1 + e¢(M3) o p3. We have

I o (s,idas,) = e(Ms) o (s,idps,) and TV o (idas,,r) = e(Mz) o (idas,, )
by the dinaturality of e. These equation imply that IV = e(M3) on K = I + I».

Since Im(d3) C K, we conclude that I' = £(f2). The proof is done. O
p
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