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HOMOLOGY GROUPS OF CUBICAL SETS WITH CONNECTIONS

HÉLÈNE BARCELO, CURTIS GREENE, ABDUL SALAM JARRAH, AND VOLKMAR WELKER

Abstract. Toward defining commutative cubes in all dimensions, Brown and Spencer
introduced the notion of “connection” as a new kind of degeneracy. In this paper, for a
cubical set with connections, we show that the connections generate an acyclic subcomplex
of the chain complex of the cubical set. In particular, our results show that the homology
groups of a cubical set with connections are independent of whether we normalize by the
connections or we do not, that is, connections do not contribute to any nontrivial cycle in
the homology groups of the cubical set.

1. Introduction

Cubical sets stemmed naturally from the development of homology theory of various
spaces. Instead of simplices, cubes were, for the first time, used by Serre to develop
(co)homology theory for fiber spaces [18], and Eilenberg and MacLane [12] developed
the singular, cubical homology theory of topological spaces. Massey’s classical book [17]
presents a comprehensive treatment of singular homology using the cubical approach.

Kan introduced and studied abstract cubical sets for the purpose of developing a gen-
eral homotopy theory, see [15]. Cubical sets come with a singular homology theory [10,
Section 14.7] and a geometric realization [10, Definition 11.1.11]. Federer [13, Theorem
3.9.12] showed that the singular homology groups of a cubical set and that of its geometric
realization are isomorphic.

Toward the development of a general abstract homotopy theory, Brown and Spencer
[11] identified the need, in higher dimensions, for what they call “commutative” cubes,
and introduced a new kind of degeneracy which they call “connections.” Cubical sets with
connections were then introduced and studied by Brown and Higgins in [7]. The recent
paper [6] explains the origin of the notion of connection as well as the need for it.

Not all cubical sets admit connections. However, cubical sets with connections have
been shown to have many desirable properties [8], and have characteristics similar to that
of simplicial sets [14]. For examples, cubical abelian groups with connections are equiv-
alent to chain complexes [9], and cubical groups with connections are Kan fibrant [20],
a property shared with simplicial sets. Recently, in [16], it was shown that cubical sets
with connections form a strict test category. In particular, the geometric realization of the
product of cubical sets with connections has the “right” homotopy type; a property that
cubical set (without connections) do not have in general.

This material is based upon work supported by the National Science Foundation under Grant No. DMS-
1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley,
California, USA.
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In this note we study the singular homology groups of cubical sets with connections. We
were originally motivated by computational considerations encountered in [5]. Since the
chain groups are very large, we explored cutting down the size of the the chain complex by
dropping connection cubes. For this purpose, we investigate the contribution of connections
to the nontrivial cycles in the homology groups. We do so by studying the relations between
the singular cubical differential, the face maps, the degeneracy maps and the connections
maps. This study culminates in Theorem 3.1 from which we then deduce in Corollary 3.2
that connections generate a chain subcomplex of the singular chain complex of the cubical
set. Furthermore, using a chain homotopy given in Theorem 3.8 we deduce in Corollary 3.10
that the homology groups of this subcomplex are trivial. In particular, the quotient of the
singular chain complex of the cubical set by the subcomplex generated by the connection
cubes computes the same homology as the singular chain complex itself.

In an appendix we provide the arguments showing that this quotient complex indeed is
the cellular chain complex of the canonical CW-structure on the geometric realization of
a cubical set with connections (see Theorem 3.17). In particular, for a cubical set with
connections, we state in Corollary 3.18 that the singular homology groups of the geometric
realizations with and without connection identifications coincide.

The latter result is also a consequence of a result by Antolini [2], who states that the
two realizations are homotopy equivalent. Since we consider Antolini’s arguments hard to
penetrate, we see some value of our down to earth derivation.

2. Background and Notations

In this section we recall the definition of a cubical set with connections and the homol-
ogy theory of cubical sets. Then we give two examples of such sets to demonstrate the
motivation for this study.

Throughout the paper, R denotes a commutative ring with unit which shall be the ring
of coefficients. For any positive integer n, let [n] := {1, . . . , n}.

Definition 2.1 ([15]). A cubical set K is a collection of sets {Kn}n≥0 together with, for
each n ≥ 1 and each i ∈ [n],

(1) two maps f+
i , f

−
i : Kn −→ Kn−1, which are called face maps, and

(2) a map εi : Kn−1 −→ Kn, which is called a degeneracy map,

satisfying the following relations: For α, β ∈ {+,−},

(i) fα
i f

β
j = fβ

j−1f
α
i if i < j.

(ii) εiεj = εj+1εi if i ≤ j.

(iii) fα
i εj =











εj−1f
α
i if i < j;

εjf
α
i−1 if i > j;

id if i = j.

In a cubical set K, an element σ ∈ Kn is called a singular n-cube. A singular n-cube σ is
said to be degenerate if σ = εif

+
i σ for some i ∈ [n]. Otherwise, σ is called non-degenerate.
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Definition 2.2 ([1]). A cubical set with connections is a cubical set K together with, for
n ≥ 1 and each i ∈ [n], two additional maps (called connections)

Γ+
i ,Γ

−
i : Kn −→ Kn+1.

such that, for α, β ∈ {+,−} and i, j ∈ [n], the following relations are satisfied:

(i) Γα
i Γ

β
j = Γβ

j+1Γ
α
i if i ≤ j.

(ii) Γα
i εj =











εj+1Γ
α
i if i < j;

εjΓ
α
i−1 if i > j;

ε2i = εi+1εi if i = j.

(iii) fα
i Γ

β
j =























Γβ
j−1f

α
i if i < j;

Γβ
j f

α
i−1 if i > j + 1;

id if i = j, j + 1, α = β;

εif
α
i if i = j, j + 1, α 6= β.

Homology Groups of Cubical Sets. Let K be a cubical set and let R be the ring of
coefficients. For each n ≥ 0, let Ln(K) be the free R-module generated by the singular
n-cubes with coefficients from R, that is,

Ln(K) := {
∑

σ∈S

rσσ : S finite subset of Kn and rσ ∈ R}.

For n > 0, define the map ∂n : Ln(K) −→ Ln−1(K) such that, for each singular n-cube σ,

∂n(σ) =

n
∑

i=1

(−1)i(f−
i σ − f+

i σ)

and extend linearly to all elements of Ln(K). Furthermore, define the map ∂0 : L0(K) −→
L−1(K)(= {0}) to be the zero map, that is ∂0(σ) = 0 for all σ ∈ L0.

For each n ≥ 1, let Dn(K) be the R-submodule of Ln(K) that is generated by all
degenerate singular n-cubes, and let Cn(K) be the free R-module Ln(K)/Dn(K), whose
elements are called n-chains. Clearly, the cosets of non-degenerate singular n-cubes freely
generate Cn(K).

Using Definition 2.1(iii), it is easy to check that ∂n[Dn(K)] ⊆ Dn−1(K) and, for n ≥ 1,
∂n−1∂n = 0, see [4, 17]. Hence, ∂n : Cn(K) −→ Cn−1(K) is a boundary operator, and
C(K) = (C•(K), ∂•) is a chain complex of free R-modules. We call C(K) the non-degenerate
chain complex of the cubical set K.

The homology groups of K are defined to be the homology groups of the chain complex
C(K), that is, Hn(K) := Ker(∂n)/Im(∂n+1), see [15]. For more information about the
homology and homotopy of cubical sets see [10, Sections 14.7 and 13.1].

Cubical Sets of Topological Spaces. LetX be a topological space, and, for n ≥ 0, let In

be the geometric n-dimensional cube, that is, In := {(x1, . . . , xn) : xi ∈ [0, 1], i ∈ [n]} with
the standard topology. Define KXn to be the set of all continuous maps σ : In −→ X .
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For each i ∈ [n] and σ ∈ KXn, define face maps f+
i σ, f

−
i σ ∈ KXn−1 such that, for

(a1, . . . , an−1) ∈ In−1,

(f+
i σ)(a1, . . . , an−1) := σ(a1, . . . , ai−1, 1, ai, . . . , an−1),

(f−
i σ)(a1, . . . , an−1) := σ(a1, . . . , ai−1, 0, ai, . . . , an−1).

Also, define εiσ ∈ KXn+1 such that, for (a1, . . . , an+1) ∈ In+1,

(εiσ)(a1, . . . , an+1) := σ(a1, . . . , ai−1, ai+1, . . . , an+1).

It is easy to check that KX := {KXn}n≥0 along with the face maps f±
i and degeneracy

maps εi is a cubical set.
Furthermore, KX is a cubical set with connections defined as follows. For each i ∈ [n],

set

Γε
iσ(a1, . . . , an+1) := σ(a1, . . . , ai−1, mε(ai, ai+1), ai+2, . . . , an+1)

where

mε(x, y) =

{

min(x, y) if ε = +;
max(x, y) if ε = −.

The set KX was initially constructed by Eilenberg and Mac Lane [12] and was used to
define the cubical singular homology groups of X , which turned out to be the same as the
(classical) singular homology groups of X , that is, Hn(X) = Hn(KX) for all n, see [17,
Section 2, Chapter II]. Furthermore, the geometric realization |KX| of KX and X are
weakly homotopy equivalent [10, Proposition 11.1.16], in particular Hn(|KX|) and Hn(X)
are isomorphic for all n, see [19, Theorem 7.6.25].

Discrete Cubical Sets of Graphs. Another cubical set with connections arises from the
development of a discrete homology theory for metric spaces [3, 4]. For a given metric space
X , the singular (n, r)-cubes are defined to be the r-Lipschitz maps from the n-dimensional
Hamming cube to the metric space X , and the (discrete) homology groups of the metric
space X are defined to be the singular homology groups of the resulting singular chain
complex.

In a recent paper [5] we study the theory from [4] in the combinatorially interesting
case where the singular n-cubes are the graph homomorphisms from the n-dimensional
Hamming cube to a given undirected, simple graph G. This results in a cubical set KG
which is used to define a (discrete) cubical homology of the graph G.

For n ≥ 0, let Qn be the Hamming n-dimensional cube, that is, Qn := {(x1, . . . , xn) :
xi ∈ {0, 1}, i ∈ [n]}. Define KGn to be the set of all graph homomorphisms σ : Qn −→ G.
For each i ∈ [n] and σ ∈ KGn, define face maps f+

i σ, f
−
i σ ∈ KGn−1 such that, for

(a1, . . . , an−1) ∈ Qn−1,

(f+
i σ)(a1, . . . , an−1) := σ(a1, . . . , ai−1, 1, ai, . . . , an−1),

(f−
i σ)(a1, . . . , an−1) := σ(a1, . . . , ai−1, 0, ai, . . . , an−1).

Also, define εiσ ∈ KGn+1 such that, for (a1, . . . , an+1) ∈ Qn+1,

(εiσ)(a1, . . . , an+1) := σ(a1, . . . , ai−1, ai+1, . . . , an+1).
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Furthermore, for each i ∈ [n], define connection maps Γ+
i σ,Γ

−
i σ ∈ KGn+1 such that

Γε
iσ(a1, . . . , an+1) := σ(a1, . . . , ai−1, mε(ai, ai+1), ai+2, . . . , an+1),

where

mε(x, y) =

{

min(x, y) if ε = +;
max(x, y) if ε = −.

The proof of the following lemma is straightforward and is similar to that of KX being a
cubical set with connections.

Lemma 2.3. The collection KG := {KGn}n≥0 along with the face maps f±
i , degeneracy

maps εi and connections Γ±
i is a cubical set with connections.

Even though we were able to compute the homology groups of many classes of graphs [5,
Sections 4 and 7], in general such computations are not feasible and, once again, the need
for better understanding of the cubical set itself is evident. Investigating the role of the
connections in the nontrivial cycles in the homology groups of KG seems a natural step.

3. Homology of the Connection Chain Subcomplex

Let K be a cubical set with connections and let C(K) be its non-degenerate chain
complex. It is easy to see that the set of connections of K does not form a cubical subset
of K as not all faces of a connection are necessarily connections. However, we will show in
this section that the connections generate a chain subcomplex of C(K). Furthermore, the
homology groups of this subcomplex are trivial.

Theorem 3.1. Let K be a cubical set and C(K) be its chain complex as above. Let τ ∈ Kn

be a singular n-cube and β ∈ {+,−}. Then,

(i) ∂n+1Γ
β
1 (τ) = −Γβ

1

∑n

i=2(−1)i(f−
i − f+

i )(τ).

(ii) ∂n+1Γ
β
n(τ) = Γβ

n−1

∑n−1
i=1 (−1)i(f−

i − f+
i )(τ).

(iii) For any 1 < t < n,

∂n+1Γ
β
t (τ) = Γβ

t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)− Γβ
t

n
∑

i=t+1

(−1)i(f−
i − f+

i )(τ).

Proof. Let τ ∈ Kn be a singular n-cube and β ∈ {+,−}. Then, for t ∈ [n],

∂n+1Γ
β
t (τ) =

n+1
∑

i=1

(−1)i(f−
i − f+

i )(Γ
β
t (τ)).

By Definition 2.2(iii), fα
t Γ

β
t (τ) = fα

t+1Γ
β
t (τ) and fα

i Γ
β
t =

{

Γβ
t−1f

α
i if i < t;

Γβ
t f

α
i−1 if i > t + 1.
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Now Theorem 3.1(i), i.e. when t = 1, and Theorem 3.1(ii), i.e. when t = n, follow
immediately. For 1 < t < n, the following computation implies Theorem 3.1(iii),

∂n+1Γ
β
t (τ) = Γβ

t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ) + Γβ
t

n+1
∑

i=t+2

(−1)i(f−
i−1 − f+

i−1)(τ)

= Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)− Γβ
t

n
∑

i=t+1

(−1)i(f−
i − f+

i )(τ).

�

Let K be a cubical set with connections and let C(K) be its non-degenerate chain
complex. For n ≥ 0, let Conn+1(K) be the R-submodule of Cn+1(K) that is generated by

the cosets of Γβ
i (τ) where τ ∈ Kn, i ∈ [n], and β ∈ {+,−}.

The following is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let θ ∈ Conn+1(K) then ∂n+1(θ) ∈ Conn(K). In particular, Con(K) =
(Con•, ∂•) is a chain subcomplex of the chain complex C(K).

We call Con(K) the connection chain complex of K.

Clearly, Conn+1(K) is generated by the cosets of Γβ
i (τ) where τ is a non-degenerate

singular n-cubes. In particular, Con1(K) = (0).

Corollary 3.3. Let τ ∈ Cn(K) be a singular n-cube. Then, for β ∈ {+,−} and t ∈ [n],
the following equations are true.

(i)

∂n+1Γ
β
1 (τ) + Γβ

1∂n(τ) = Γβ
1 (f

+
i − f−

i )(τ).

(ii) For 2 ≤ t ≤ n,

∂n+1Γ
β
t (τ) + Γβ

t ∂n(τ) = Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ) + Γβ
t

t
∑

i=1

(−1)i(f−
i − f+

i )(τ).

(iii) For t ∈ [n],

∂n+1

t
∑

j=1

(−1)jΓβ
j (τ) +

t
∑

j=1

(−1)jΓβ
j ∂n(τ) = (−1)tΓβ

t

t
∑

j=1

(−1)i(f−
j − f+

j )(τ).

(iv) For t = n ≥ 2,

∂n+1

n
∑

j=1

(−1)jΓβ
j (τ) +

n−1
∑

j=1

(−1)jΓβ
j ∂n(τ) = 0.

Proof. Corollary 3.3(i) follows by adding the term Γβ
t ∂n(τ) to both sides of Theorem 3.1(iii).

Corollary 3.3(i) is a special case of Corollary 3.3(ii) without the first sum on the right hand
side. Using alternating summation, Corollary 3.3(iii) follows from Corollary 3.3(ii). Finally,
Corollary 3.3(iv) is the case t = n of Corollary 3.3(iii). �
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Corollary 3.4. Let θ = Γβ
t (τ) where τ ∈ Kn−1, t ∈ [n−1] and β ∈ {+,−}. The following

equations are true.

(i)

∂n+1Γ
β
t (θ) + Γβ

t ∂n(θ) = (−1)t+1βθ + 2Γβ
t Γ

β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ).

(ii)

∂n+1

t
∑

j=1

(−1)jΓβ
j (θ) +

t
∑

j=1

(−1)jΓβ
j ∂n(θ) = −βθ + (−1)tΓβ

t Γ
β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ).

Proof. We know from Corollary 3.3(ii) that

∂n+1Γ
β
t (θ) + Γβ

t ∂n(θ) = Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(θ) + Γβ
t

t
∑

i=1

(−1)i(f−
i − f+

i )(θ).

By Definition 2.2(iii), the coset Γβ
t [(−1)t(f−

t −f+
t )(θ)] = (−1)t+1βθ and (f−

i −f+
i )(Γ

β
t (τ)) =

Γβ
t−1((f

−
i − f+

i )(τ). Thus

∂n+1Γ
β
t (θ) + Γβ

t ∂n(θ) = (−1)t+1βθ + (Γβ
t−1 + Γβ

t )Γ
β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)

= (−1)t+1βθ + 2Γβ
t Γ

β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ),

since Γβ
t−1Γ

β
t−1 = Γβ

t Γ
β
t−1. This concludes the proof of Corollary 3.4(i). Now Corollary 3.4(ii)

follows directly from Corollary 3.3(iii), namely,

∂n+1

t
∑

j=1

(−1)jΓβ
j (θ) +

t
∑

j=1

(−1)jΓβ
j ∂n(θ) = (−1)tΓβ

t

t
∑

j=1

(−1)i(f−
j − f+

j )(Γ
β
t (τ))

= −βθ + (−1)tΓβ
t Γ

β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ).

�

Lemma 3.5. Let θ = Γβ
t (τ), for some τ ∈ Kn−1, t ∈ [n− 1] and β ∈ {+,−}. Then

∂n+1[(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j ](θ) + [(−1)t+1Γβ

t − 2
t−1
∑

j=1

(−1)jΓα
j ]∂n(θ) = βθ.

Proof. Follows directly from Corollary 3.4. By multiplying the equation from Corol-
lary 3.4(i) by (−1)t and subtracting from that twice the equation from Corollary 3.4(ii),
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we get

∂n+1[(−1)tΓβ
t − 2

t
∑

j=1

(−1)jΓβ
j ](θ) + [(−1)tΓβ

k − 2

t
∑

j=1

(−1)jΓα
j ]∂n(θ) = βθ.

Hence

∂n+1[(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j ](θ) + [(−1)t+1Γβ

t − 2

t−1
∑

j=1

(−1)jΓα
j ]∂n(θ) = βθ.

�

Remark 3.6. Notice that it is possible for a singular n-cube θ which is a connection to
be written using different connection maps, say θ = Γα

t (σ) = Γβ
s (τ) for some t, s ∈ [n],

α, β ∈ {+,−}, and σ, τ ∈ Kn−1.
If s = t or s = t + 1, however, then either β = α (and hence σ = τ) or θ is degenerate.

Thus if θ is a non-degenerate singular n-cube that is a connection, then θ can be written
uniquely as θ = Γα

t (σ) where t is the smallest such index. The following lemma follows.

Lemma 3.7. Let θ be a non-degenerate connection n-cube, and suppose that θ = Γα
t (σ) =

Γβ
s (τ) where t ≤ s. Then either

(i) s = t or s = t+ 1, and hence σ = τ and α = β, or

(ii) s > t+1, and in this case θ = Γα
t (Γ

β
s−1(δ)) = Γβ

s (Γ
α
t (δ)) where δ = fα

t (τ) = fα
t+1(τ) =

fβ
s (σ) = fβ

s−1(σ).

For the rest of this section, whenever we write a non-degenerate connection n-cube θ as
θ = Γβ

t (τ) we assume t is the smallest index for which such a representation exists.

Let θ = Γβ
t (τ) be a non-degenerate connection. Define

φn(θ) = β
[

(−1)t+1Γβ
t (θ)− 2

t−1
∑

j=1

(−1)jΓβ
j (θ)

]

.

The map φn extends linearly to a map φn : Conn(K) −→ Conn+1(K) such that

φn(

s
∑

j=1

rijΓ
βj

ij
(σj)) =

s
∑

j=1

rijφn(Γ
βj

ij
(σj)).

Theorem 3.8. For any θ ∈ Conn(K),

∂n+1φn(θ) + φn−1∂n(θ) = θ.

Proof. Recall that Conn(K) is freely generated by the cosets of θ = Γβ
t (τ) where τ is non-

degenerate and β = +,−. Using Lemma 3.5, to conclude the proof we just need to show
that

φn−1∂n(θ) = β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓα
j

]

∂n(θ).
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Recall that

∂n(θ) = Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)− Γβ
t

n−1
∑

i=k+1

(−1)i(f−
i − f+

i )(τ).

Now

φn−1∂n(θ) = φn−1Γ
β
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)− φn−1Γ
β
t

n−1
∑

i=t+1

(−1)i(f−
i − f+

i )(τ)

= β
[

(−1)tΓβ
t−1 − 2

t−2
∑

j=1

(−1)jΓβ
j

]

Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)

−β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j

]

Γβ
t

n−1
∑

i=t+1

(−1)i(f−
i − f+

i )(τ)

= β
[

(−1)t+1Γβ
t−1 − 2

t−1
∑

j=1

(−1)jΓβ
j

]

g]Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)

−β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j

]

Γβ
t

n−1
∑

i=t+1

(−1)i(f−
i − f+

i )(τ)

= β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j

]

Γβ
t−1

t−1
∑

i=1

(−1)i(f−
i − f+

i )(τ)

−β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j

]

Γβ
t

n−1
∑

i=t+1

(−1)i(f−
i − f+

i )(τ)

= β
[

(−1)t+1Γβ
t − 2

t−1
∑

j=1

(−1)jΓβ
j

]

∂n(θ).

�

Corollary 3.9. The map φ is a chain homotopy between the identity and zero chain maps.
In particular, we have Hn(Con(K)) = 0 for all n.

Corollary 3.10. The short exact sequence of chain complexes

0 −→ Conn(K) →֒ Cn+1(K) ։ Cn+1(K)/Conn(K) −→ 0

induces a long exact sequence of homology groups, and since Hn(Con(K)) is trivial, we
have Hn(C(K)) ∼= Hn(C(K)/Con(K)).

It is well-known that, over a suitable category, the category of chain complexes and the
category of crossed complexes are equivalent [9]. It would be interesting to see whether
the results in this paper can be properly stated and extended to the context of crossed
complexes.
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Appendix: Homology of Cubical Sets and Homology of Their Geometric

Realization

Recall that In is the geometric n-dimensional cube [0, 1]n. Let (fα
i )

∗ : In−1 → In be the
map sending (x1, . . . , xn−1) ∈ In−1 to (x1, . . . , xi−1, y, xi, . . . , xn−1) where y = 0 if α = −
and y = 1 if α = +. Let further (εi)

∗ : In → In−1 be the map sending (x1, . . . , xn) to
(x1, . . . , xi−1, xi+1, . . . , xn). The geometric realization |K| of a cubical set is the quotient
space of the disjoint union

∐

In×Kn by the equivalence relation ∼, which is generated by
the following elementary equivalences: For (x1, . . . , xn) ∈ In and σ ∈ Kn−1 we set

((x1, . . . , xn), εi(σ)) ∼ ((εi)
∗((x1, . . . , xn)), σ)(1)

and, for (x1, . . . , xn−1) ∈ In−1 and σ ∈ Kn, we set

((x1, . . . , xn−1), f
α
i (σ)) ∼ ((fα

i )
∗((x1, . . . , xn−1)), σ).(2)

Then |K| can be given the structure of a CW-complex whose (open) n-cells are the

images e
(n)
σ of the cells I̊n × {σ} in |K| for σ ∈ Knd

n . Here Knd
n denotes the set of non-

degenerate n-cubes in K, see [10, Remark 11.1.14]. Let S(K) be the cellular chain complex

of |K|. By the definition of S(K) the cells e
(n)
σ for σ ∈ Knd

n form a basis of its nth chain
group Sn(K). It is well known (see [13, Corollary 3.9.11]) that identifying σ ∈ Knd

n with

e
(n)
σ yields the following isomorphism of chain complexes.

Lemma 3.11 (Corollary 3.9.11 [13]). C(K) ∼= S(K).

If the cubical set K is a cubical set with connections then there is an associated geometric
realization |K|′ which is the quotient of the disjoint union

∐

In ×Kn by the equivalence
relation ∼′, which is generated by (1), (2) and the relation

((Γα
i )

∗((x1, . . . , xn)), σ) ∼′ ((x1, . . . , xn),Γ
α
i (σ))(3)

for σ ∈ Kn−1 and (x1, . . . , xn) ∈ In. Here (Γα
i )

∗ : In → In−1 is defined by

(Γα
i )

∗((x1, . . . , xn)) =

{

(x1, . . . , xi−1,max(xi, xi+1), xi+2, . . . , xn) if α = −
(x1, . . . , xi−1,min(xi, xi+1), xi+2, . . . , xn) if α = +

.

In particular, ∼′ is coarser than ∼ and hence |K|′ can be seen as a quotient of |K| by the
additional identifications implied by (3). Let Kndc

n be the set of n-cubes in K that are
neither degenerate nor connections.

In order to understand the relation between |K| and |K|′ we need to understand the
face structure of cubes in Kndc

n . For that we consider for any cube σ ∈ Kn the set of all of
its faces τ ; i.e. all cubes τ such that τ = fα1

i1
(· · · (fαr

ir
(σ)) · · · ) for a choice of i1, . . . , ir and

α1, . . . , αr. For σ ∈ K we denote by Fσ the set of its faces. We order the cubes from K by
saying that τ is smaller than σ if τ is a face of σ. With this notation we are in position to
formulate the following structural result on the role of non-degenerate and non-connection
cubes in the face structure.



HOMOLOGY OF CUBICAL SETS WITH CONNECTIONS 11

Lemma 3.12. For any τ ∈ Kn there is a unique face ρ of τ that is maximal with the
property that it is neither degenerate nor a connection. Moreover, if τ = εi(σ) or τ = Γα

i (σ)
then ρ is a subface of σ and τ = gk · · · g1(ρ) for suitably chosen connection and degeneracy
maps g1, . . . , gk for some k ≥ 0.

Proof. We prove the assertion by induction on the dimension n.
If n = 0 then τ is non-degenerate and non-connection. Hence τ itself is the maximal

face we are looking for.
Let n > 0. If τ is neither degenerate nor a connection then again τ itself is the unique

maximal face.
Let τ be degenerate, say τ = εi(σ) for some i ∈ [n] and some (n − 1)-cube σ. Then,

by (iii) of Definition 2.1, fα
j (τ) = σ if i = j, and fα

j (τ) = εi−1(f
α
j (σ)) if j < i and

= εi(f
α
j−1(σ)) if j > i. By induction, we know that there is an unique maximal non-

degenerate and non-connection face ρ of σ. We claim that ρ is the unique maximal non-
degenerate and non-connection face of τ . By induction we know that each εr(f

β
s (σ)) has a

unique maximal non-degenerate, non-connection face which is a subface of fβ
s (σ) and hence

of σ. In particular, they must be subfaces of ρ. If follows by induction that σ = gk · · · g1ρ for
a sequence of degeneracy and connection maps g1, . . . , gk and k ≥ 0. Then τ = εigk · · · g1ρ.

Finally, consider the case that τ is a connection. Say τ = Γα
i (σ) for some i ∈ [n] and some

(n− 1)-cube σ. Notice that, by (iii) of Definition 2.2, every (n− 1)-face of τ other than σ

is either Γβ
j (f

α
t (σ)) or εj(f

α
t (σ)) for some j ∈, t ∈ [n], and α ∈ {+,−}. By induction σ and

any Γβ
j (f

α
t (σ)) have an unique maximal non-degenerate, non-connection face. Again by

induction the latter are subfaces of σ. In particular, they must be subfaces of the unique
maximal non-degenerate, non-connection face ρ of σ. From the induction hypothesis it
follows σ = gk · · · g1ρ for a sequence of degeneracy and connection maps g1, . . . , gk and
k ≥ 0. Then τ = Γα

i gk · · · g1ρ. �

Note that along the same lines one can show that for any cube there is a unique maximal
non-degenerate face.

The relations among the degeneracy and connection maps allow the following strength-
ening of Lemma 3.12.

Lemma 3.13. For any τ ∈ Kn there is a unique face ρ of τ that is maximal with the
property that it is neither degenerate nor a connection. Moreover, if τ is non-degenerate
then τ = gk · · · g1(ρ) for suitably chosen connection maps g1, . . . , gk and some k ≥ 0.

Proof. From Lemma 3.12 it follows that there is a unique maximal face ρ of τ that is
neither degenerate nor a connection. It also follows from that lemma that τ = gk · · · g1ρ,
for degeneracy and connection maps g1, . . . , gk. If all gi are connection maps we are done.
Assume there is an i such that gi is a degeneracy map. We claim that then τ is degenerate.
We prove the claim by downward induction on the maximal i such that gi is a degeneracy
map. If i = k then τ is degenerate, contradicting the assumptions. If i < k then by
Definition 2.2(iii) there is a connection or degeneracy map g′i and s degeneracy map g′i+1

such that
τ = gk · · · gi+2g

′
i+1g

′
igi−1 · · · g1ρ.
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By induction this implies that τ is degenerate. �

Now we apply the results on the face structure in order to understand the attachment
of cells in |K| and |K|′. We assume without stating the proofs the following fact:

• Let (x, σ), (y, σ) ∈ Idimσ × {σ}. Then (x, σ), (y, σ) are identified through the
equivalence relation generated by (1),(2) (resp. (1), (2) and (3)) on

∐

τ∈K Idim τ ×
{τ} if and only if they are identified by the equivalence relation generated by (1),(2)
(resp. (1), (2) and (3)). on

∐

τ∈Fσ
Idim τ × {τ}.

This fact allows us to consider the identifications by the equivalence relations we consider
as local identifications among points in the cells corresponding to the faces of a given cell.

Lemma 3.14. Let τ ∈ Kn be such that τ = gk · · · g1ρ for some cube ρ and connection
maps g1, . . . , gk. Let ∼τ be the restriction of the equivalence relation generated by (1), (2),
(3) to Mτ =

∐

σ∈Fτ
Idimσ × {σ} and define ∼ρ analogously. Then there is a retraction

pτ : Mτ/ ∼τ→ Mρ/ ∼ρ.

Proof. We construct the retraction by induction on k. For k = 0 the identity is the desired
retraction.

Let k ≥ 1 and assume that for τ ′ = gk−1 · · · g1ρ there is such a retraction pτ ′ : Mτ ′/ ∼τ ′→
Mρ/ ∼ρ. Then τ = gkτ

′. The equivalence relation on Idim τ×{τ} induced by the connection

map gk = Γβ
i has equivalence classes being sets with fixed maximum or minimum of the ith

and (i+ 1)st coordinate depending on β being + or −. Each equivalence class has exactly

two points that via the face maps fβ
i and fβ

i+1 are identified with points in Idim τ ′ × {τ ′},
indeed both points are identified with the same point. The map that sends each equivalence
class to the image of this point in Mτ ′/ ∼τ ′ provides a retraction from Mτ/ ∼τ to Mτ ′/ ∼τ ′ .
Composing this retraction with the retraction from pτ ′ provides the asserted retraction.
This concludes the induction step. �

We now introduce the concept of pushing cells for a general CW-complex which we will
then match with the process of passing from |K| to |K|′ in our case. Let X be a CW-

complex where, for n ≥ 0, Xn = (e
(n)
σ )σ∈Jn is the set of open n-cells in X for some indexing

set Jn. For each σ ∈ Jn let gσ : ∂e(n) → X(n−1) be the attaching map. For some fixed
N ≥ 0, let J̄N ⊆ JN be a subset of the index set of the cells in dimension N such that, for
each σ ∈ J̄N ,

• there is a τ ∈ Jℓ for some ℓ < N such that Imgσ ⊆ e
(ℓ)
τ , and

• for this τ there is a retraction pσ : e
(N)
σ → e

(ℓ)
τ .

Now let Xpush be the CW-complex with Xpush
n = (ẽ

(n)
σ )σ∈J ′

n
the open n-cells in Xpush

where J ′
n = Jn for n 6= N and J ′

N = JN \ J̄N and attaching maps g′τ (x) = gτ (x) if

gτ (x) 6∈ e
(N)
σ for some σ ∈ J̄N and g′σ(x) = pτ (gσ(x)) otherwise. In this situation we say

that Xpush arises from X by pushing the cells e
(N)
σ for σ ∈ J̄N .

Next we show that |K| and |K|′ are examples of CW-complexes that arise from each
other by pushing cells.
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Lemma 3.15. The geometric realization |K|′ is a CW-complex that arises from the CW-
complex of the geometric realization |K| by pushing the cells corresponding to connections
successively by dimension in increasing order. In particular, |K|′ can be given the structure
of a CW-complex with n-cells indexed by the Kndc

n .

Proof. Since the first connection cells (that are not already degenerate) arise in dimension
2, we can assume the following situation. For some n ≥ 2 we have constructed a complex
X such that

(a) X arises from |K| by pushing all cells that correspond to connections of dimensions
< n where n ≥ 2.

(b) |K|/ ∼n
∼= X where ∼n is the equivalence relation which has singleton equivalence

classes outside the closure of the cells of dimension < n and equals (3) when applied
to the union of the closures of all other cells.

Now let σ ∈ Kn be a connection that is non-degenerate. Then by Lemma 3.12 there is
a unique maximal face τ ∈ Kℓ of σ which is non-degenerate and non-connection. Since
all proper connection faces of σ have been pushed the attaching map gσ of the N -cell
IN corresponding to σ has as its image the ℓ-cell corresponding to τ . Furthermore, by
Lemma 3.13 the conditions of Lemma 3.14 are satisfied and there is a retraction pσ from
then closure of the N -cell corresponding to σ to the closure of the ℓ-cell corresponding to
σ. Moreover, by Lemma 3.14 the map σ identifies the exactly those elements which lie in
the same equivalence class of ∼n.

Hence the conditions for a pushing to the cells corresponding to non-degenerate connec-
tions σ are satisfied. It follows that (a) and (b) are satisfied for ∼n. �

Finally, we need to understand the impact of pushing cells on the cellular chain complex
of a CW-complex.

Lemma 3.16. Let X be a CW-complex with cells Xn = (e
(n)
σ )σ∈Jn, n ≥ 0. Assume

that there is a dimension N such that Xpush arises from X by pushing the cells e
(N)
σ for

σ ∈ J̄N ⊆ JN . Let

∂e(n)σ =
∑

σ′∈Jn−1

dσ,σ′ e
(n−1)
σ′

be the differential of the cellular chain complex associated to X. Then for σ ∈ Jn \ JN ,

σ′ ∈ Jn−1 \JN the coefficient dpushσ,σ′ in the differential of the cellular chain complex of Xpush

we have dpushσ,σ′ = dσ,σ′.

Proof. The coefficient dσ,σ′ is given as the degree of the composition

Sn−1 ∼= ∂e(n)
gσ
−→ X(n−1) → X(n−1)/(X(n−1) \ e

(n−1)
σ′ ) ∼= Sn−1.

The composition depends on the attaching maps gσ of the cells corresponding to σ only.
Now consider the same sequence in Xpush, which in particular implies σ, σ′ 6= τ . Let g′σ be

the corresponding attaching maps. If gσ(x) 6∈ e
(N)
τ for some τ ∈ J̄N then gσ(x) = g′σ(x). If

gσ(x) ∈ e
(N)
τ for some τ ∈ J̄N then g′σ(x) = pσ(gσ(x)) for a retraction pσ. But in the latter
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case gσ(x) and g′σ(x) lie in the complement of any (n− 1) cell different from e
(N)
τ . In that

situation the composition is again determined by gσ. It follows that dσ,σ′ = dpushσ,σ′ . �

By definition Cn(K)/Conn(K) has a basis indexed by Kndc
n . The differential of the

complex Cn(K)/Conn(K) are arises from the differential in C(K) in the following way. Let
∂α is the differential of α ∈ Kndc

n in Cn(K) then we set all coefficients of element from
Knd

n−1 \K
ndc
n−1 to 0. Now the following theorem is an immediate consequence of Lemma 3.16

and Lemma 3.15.

Theorem 3.17. The cellular chain complex S ′(K) of |K|′ is isomorphic to the quotient
complex C(K)/Con(K). In particular,

Hi(|K|′) ∼= Hi(S
′(K)) ∼= Hi(C(K)/Con(K)).

Proof. The assertion follows immediately from Lemma 3.15 and Lemma 3.16. �

The theorem together with Corollary 3.10 implies the following.

Corollary 3.18. Let K be a cubical set with connections. Then

Hi(|K|′) ∼= Hi(S
′(K)) ∼= Hi(C(K)/Con(K)) ∼= Hi(C(K)) ∼= Hi(|K|).

This fact provides another motivation for the study of connections.
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