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1 Introduction

In the original article [2], we showed that given an extriangulated category (C,E, s), its
idempotent completion C̃ is also an extriangulated category (C̃,F, r). An important technical
result is [2, Proposition 3.10], which states that the correspondence r is well-defined. The
proof of the proposition given in the original article was incorrect. We will give a correct
proof of this statement in this corrigendum. The statement of the proposition is as follows.

Proposition 3.10 Let δ be an extension in F((C, p), (A, q)) realised under s by the following
sequences,

A
a−→ B

b−→ C, (1)

A
x−→ Y

y−→ C . (2)

Then given idempotents r : B → B and w : Y → Y such that

aq = ra, pb = br and xq = wx, py = yw (3)

the sequences

(A, q)
aq−→ (B, r)

pb−→ (C, p), (4)

(A, q)
xq−→ (Y , w)

py−→ (C, p). (5)

are equivalent. That is to say, r is well-defined.

To prove the equivalence of the sequences (4) and (5) in C̃, the strategy used in [2] was to
prove that the morphism w f r : (B, r) → (Y , w) is an isomorphism, where f : B → Y is an
isomorphism in C which gives the equivalence of the sequences (1) and (2) in C. We claimed
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this could be done by first showing that w f r = w f , using the fact that w f raq = w f aq and
hence (w f r − w f )aq = 0, then employing the fact that py is a weak cokernel of aq in C̃

to further deduce that w f r = w f . However, it is not clear if w f is a morphism in C̃, so we
cannot take advantage of the fact that py is a weak cokernel of aq in C̃ in this way.

2 Corrigendum

Recall for an extriangulated category (C,E, s), we defined the biadditive functor F : C̃op ×
C̃ → Ab on the idempotent completion as follows. Given a pair of objects (X , p) and (Y , q)

in C̃, we define F on objects by setting,

F((X , p), (Y , q)) := p∗q∗E(X , Y ) = {p∗q∗δ | δ ∈ E(X , Y )} ⊆ E(X , Y ).

This is just the image of E(X , Y ) under the group homomorphism E(p, q). For mor-
phisms f : (A, a) → (A′, a′) and g : (C, c) → (C ′, c′) ∈ C̃, we then defined
F( f , g) := E( f , g)|F((C,c),(A,a)), the restriction of the group homomorphism E( f , g) to
F((C, c), (A, a)). Before we can give the proof of Proposition 3.10, we first need to collect
some lemmas which will be needed.

Lemma 2.1 [1, Lemma 4.1] Let C be an additive category with biadditive functor E : Cop ×
C → Ab. Let X• = A X C

x1 x2 and Y• = A Y C
y1 y2 be a pair of

complexes in C. Suppose that the following sequences of functors are exact,

C(C,−) C(X ,−) C(A,−)
C(x2,−) C(x1,−)

C(−, A) C(−, X) C(−,C)
C(−,x1) C(−,x2)

and likewise for Y•. Then for any commutative diagram f• = (1A, f , 1C ) : X• → Y•

A X C

A Y C

x1

f

x2

y1 y2

the following statements are equivalent.

1. f• is a homotopy equivalence.
2. f• is an equivalence of the sequences X• and Y•, i.e. f is an isomorphism and the squares

in the above diagram commute.
3. f : X → Y is an isomorphism.

Lemma 2.2 [1, Proposition 2.21] Let δ ∈ E(C, A) be an extension, and let X• = A
x1−→

X
x2−→ C and Y• = A

y1−→ Y
y2−→ C be a pair of complexes in C. Suppose that the following

sequences of functors are exact,

C(C,−) C(X ,−) C(A,−) E(C,−)
C(x2,−) C(x1,−) δ#

C(−, A) C(−, X) C(−,C) E(−, A)
C(−,x1) C(−,x2) δ#

and likewise for Y•. Let f• = (1A, f , 1C ) : X• → Y• be a commutative diagram:
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A X C

A Y C

x1

f

x2

y1 y2

If there exists a commutative diagram g• = (1A, g, 1C ) : Y• → X•:

A Y C

A X C

y1

g

y2

x1 x2

Then f• is a homotopic equivalence.

We also need to strengthen [2, Lemma 3.9] as follows.

Lemma 2.3 Let δ = p∗q∗ε be an extension in F((Z , p), (X , q)) such that

s(p∗q∗ε) = [X x−→ Y
y−→ Z ].

Then the following sequences of functors are exact;

C̃((Z , p),−) C̃((Y , r),−) C̃((X , q),−) F((Z , p),−)
C̃(py,−) C̃(xq,−) δ#−

C̃(−, (X , q)) C̃(−, (Y , r)) C̃(−, (Z , p)) F(−, (X , q))
C̃(−,xq) C̃(−,py) δ−

#

where r : Y → Y is an idempotent morphism such that r x = xq and yr = py, obtained by
an application of [2, Lemma 3.5].

Proof We will only show the exactness of the first sequence. The proof of the exactness of
the second sequence is dual. Exactness at C̃((Y , r),−) is as in [2, Lemma 3.9]. So what is
left is to prove exactness at C̃((X , q),−). Since (C,E, r) is an extriangulated category, the
following sequence

C(Z ,−) C(Y ,−) C(X ,−) E(Z ,−)
C(y,−) C(x,−) δ#− (6)

is exact.
Let (A, e) be an arbitrary object in C̃. Take any morphism f : (Y , r) → (A, e) ∈

C̃((Y , r), (A, e)). Then

(δ#(A,e) ◦ C̃(xq, (A, e)))( f ) = ( f xq)∗δ = ( f (xq))∗δ = ( f (r x))∗δ = (( f r)x)∗δ) = 0

by the exactness of (6). We conclude that im(C̃(xq, (A, e)) ⊆ ker(δ#(A,e)).

Now take any morphism g : (X , q) → (A, e) ∈ C̃((X , q), (A, e)). Recall that this means
g is amorphism g : X → A inC such that gq = eg = g. Suppose δ#(A,e)(g) = g∗δ = 0. Since
g is also a morphism in C and δ is an E-extension, we have by the exactness of (6) that there
exists h : Y → A such that g = hx . Now consider themorphism h′ = ehr : (Y , r) → (A, e).
We have that

h′xq = (ehr)xq = eh(r x)q = eh(xq)q = e(hx)q = e(g)q = g.

We conclude that ker(δ#(A,e)) ⊆ im(C̃(xq, (A, e)). Therefore we have exactness at

C̃((X , q),−) as required. �	
We are now able to give a proof of Proposition 3.10.
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2.1 Proof of Proposition 3.10

Proof Since the sequences A
a−→ B

b−→ C, and A
x−→ Y

y−→ C both realise δ, they are
by definition equivalent in C. That is to say we have the following commutative diagram,

A B C

A Y C

a b

f

x y

(7)

where the morphism f : B → Y is an isomorphism. Now consider the following diagram.

(A, q) (B, r) (C, p)

(A, q) (Y , w) (C, p)

aq pb

w f r
xq py

(8)

From the relations in (3) and those arising from the commutative diagram (7), we can observe
the following:

w f (ra)q = w f (aq)q = w f (aq) = w( f a)q = w(x)q = (wx)q = (xq)q = xq, (9)

p(yw) f r = p(py) f r = (py) f r = p(y f )r = p(b)r = p(br) = p(pb) = pb. (10)

That is to say, diagram (8) is a commutative diagram. Now consider the following diagram.

(A, q) (Y , w) (C, p)

(A, q) (B, r) (C, p)

xq py

r f −1w

aq pb

(11)

From the relations in (3) and those arising from the commutative diagram (7), we can observe
the following:

r f −1(wx)q = r f −1(xq)q = r( f −1x)q = r(a)q = (ra)q = (aq)q = aq, (12)

p(br) f −1w = p(pb) f −1w = p(b f −1)w = p(y)w = p(yw) = p(py) = py. (13)

That is to say, diagram (11) is a commutative diagram. By [2, Lemma 3.9] both (4) and (5)
are complexes, that is to say pb◦aq = 0 and py ◦ xq = 0. We apply Lemma 2.2 to conclude
that w f r• = (1(A,q), w f r , 1(C,p)) is a homotopy equivalence, and hence by Lemma 2.1, the
morphism w f r is an isomorphism. We conclude that (8) is an equivalence, that is to say r is
well-defined. �	
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