2206.00949v1 [math.CT] 2 Jun 2022

arxXiv

A SYMMETRIC APPROACH TO HIGHER COVERINGS
IN CATEGORICAL GALOIS THEORY

FARA RENAUD AND TIM VAN DER LINDEN

ABsTRACT. In the context of a tower of (strongly Birkhoff) Galois structures
in the sense of categorical Galois theory, we show that the concept of a higher
covering admits a characterisation which is at the same time absolute (with
respect to the base level in the tower), rather than inductively defined relative
to extensions of a lower order; and symmetric, rather than depending on a
perspective in terms of arrows pointing in a certain chosen direction. This
result applies to the Galois theory of quandles, for instance, where it helps us
characterising the higher coverings in purely algebraic terms.
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1. INTRODUCTION

The aim of this article is two-fold: first of all, we wish to expound a symmetric
approach to the concept of a higher covering from categorical Galois theory [21], [16]
13, 8]. Our approach, however, depends on the development of a setting which is
sufficiently strong, while remaining general enough to be applicable to our concrete
examples. Developing this setting is the second main purpose of this text.

It is well known that, despite its inductive definition, the notion of a higher
extension is entirely symmetric: as shown in [I5], there is no dependence on the
choice of direction. For higher coverings, however, which in their inductive definition
are viewed as arrows between arrows with a specific direction, the symmetry is much
more difficult to explain. There is the combinatorial proof of [12] [13] which is valid
in semi-abelian [25] categories, but which is hard to extend to weaker settings,
essentially because it depends on an ad-hoc commutator theory which does not
generalise as such to the field of application we have in mind. Indeed, our original
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motivation is to describe higher coverings of quandles and racks—a setting which is
very far from being semi-abelian, since the categories involved are neither pointed
nor Mal’tsev.

Instead, we here present a new conceptual proof of the symmetry of higher
coverings, based on an idea in [32], which is not only simpler, but also valid in
a much wider context—including the categories of racks and quandles, where it
helps us characterising the coverings in algebraic terms [3I]. In that setting, it
is noticeable that unlike coverings, higher normal and trivial coverings are not
symmetrical, and these facts are clearly reflected in certain steps of the general
proof not being valid for those classes of extensions—the key difference being that
coverings are reflected by pullbacks along extensions, whereas normal coverings and
trivial coverings are not.

This first goal of the article forms the subject of Section BH7l The theory in this
latter part of the article is developed in the context of a so-called tower of strongly
Birkhoff Galois structures. Our second goal is precisely to properly describe the
construction of such a tower in a context which is sufficiently general to include
not only all classical examples worked out in a semi-abelian or an exact Mal’tsev
context, but also our leading examples of racks and quandles. This endeavour—the
development of a basic higher Galois theory, valid in non-Mal’tsev contexts—takes
place in the first half of the present article, in Section 2H4l

We give a brief overview of the main results in the text. Section [2] recalls well-
known concepts such as categories of higher arrows and extensions, as well as (towers
of) Galois structures from the literature. In Section Bl we establish key stability
properties, which are usually considered in a Mal'tsev context, in a setting which
is sufficiently general for our purposes. This involves properties of pullbacks and
pushouts, effective descent, etc. In Section Hl we work towards our first concrete
aim, namely a collection of results allowing us to show that under certain convenient
conditions, a Galois structure which satisfies the strong Birkhoff condition induces
an entire tower of Galois structures. This involves: a higher-dimensional version
of the well-known equivalence between the Birkhoff condition and closedness under
quotients of the class of coverings (Proposition F3)); a result on stability under
quotients along double extensions of the class of coverings (Proposition ET); and
a construction of the reflector from extensions to coverings (Proposition 10); to-
gether with an explanation why all this is applicable both in the classical Mal’tsev
context and in the examples of racks and quandles.

We change gears in Section [l where we start the development of a theory of
symmetric coverings, which allows a non-inductive treatment of the concept of a
covering. The basic idea is very simple and based on the concept of a discrete
fibration, which is what we call an n-fold extension which, considered as an n-
cube, is a limit diagram—the easiest example being a pullback square of regular
epimorphisms. Recall (details are given in the text) that, in a Galois structure
= (%,2,L1n,¢ &) involving an adjunction L — I, an extension ¢ as in the
diagram

IL(T)<LT ——> A
IL(t)\L \Lt \Lc
IL(E) % E ? B

is a covering if and only if there is an extension e such that the pullback of ¢
along e is a trivial covering t, which means that the reflection square on the left is
a pullback. Equivalently, ¢ is a pullback of some extension x in the given reflective
subcategory 2 of the ground category #. In what follows, such an x is called a
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primitive covering. In other words, c is a covering when a span of discrete fibrations
T «— t — cexists in %, where x is a primitive covering—an extension whose domain
and codomain are objects in the full subcategory 2~ of #. This idea applies at
arbitrary levels of a given tower of Galois structures; it suffices to replace the
pullback squares with higher-order discrete fibrations as defined above. Our main
result here is Theorem [[.T3] which says that in the context of an appropriate tower
of Galois structures, this approach does indeed characterise the inductively defined
coverings of Galois theory—an n-fold extension « is a higher-dimensional covering
if and only if there exists a span of discrete fibrations g < 7 — « of order n + 1
where (3 is an n-cubical extension in the base category 2 —thus showing that the
concept of a higher covering is symmetric: it does not depend on the way the n-cube
is considered as an arrow between (n — 1)-cubes.

Section[Blintroduces and studies discrete fibrations of order three, which are used
in Section [l in the symmetric characterisation of double coverings (Theorem [6.4)).
In Section [ this is extended to arbitrary degrees, which eventually leads to the
above-mentioned Theorem

2. PRELIMINARIES

2.1. Higher morphisms. In order to study higher extensions and higher categor-
ical Galois theory, we need an appropriate description of higher morphisms (or
higher arrows) in a category %'. We refer to [15] for a detailed presentation.

Higher morphisms are traditionally defined inductively as arrows between arrows
(between arrows...). Given a category ¢/, the arrow category is Arr(%'), whose
objects are arrows (morphisms) in #. A morphism a: f4 — fp in such a category
of morphisms is given by a pair of morphisms in %', the top and bottom com-
ponents of o which we denote a = («;, ;) and which give rise to a commutative
diagram (2.1)).

o

A, —— B,
fA\L lfB (2.1)
A, ——> B,

For n > 2, an n-arrow or n-fold arrow in % is then an object of the category
Arr™(#), which is defined inductively as Arr(Arr™ =1 (#%)). We are also interested in
an n-fold arrow’s underlying commutative diagram in the base category %, which
we call an n-cubical diagram in %'.

Given an n-cubical diagram «, its initial object a/, is the initial object of the
given diagram, when it is viewed as a subcategory of #". Dually, the terminal
object a is the terminal object of that category. Given a morphism of n-arrows
¢: a — (3, the initial component of ¢ is, in the underlying (n+1)-cubical diagram
of ¢, the morphism with domain «, and codomain §,. In general, what we call
the #'-components of ¢ is the collection, within the underlying (n + 1)-cubical
diagram, of the 2" arrows between the n-cubical diagrams of o and f.

We consider all the categories of higher arrows above a given category %y sim-
ultaneously. The sequence (Arr"(%p))nen is called the tower of higher arrows
above %, and each category Arr" (%)) a level in this tower. Our aim is to study
contexts in which a Galois theory at the base level %, induces Galois theories in
higher dimensions Arr™ (%)), at each level of a similar tower of higher morphisms
called extensions [16], [13].

2.2. Extensions and higher extensions. Categorical Galois theory is defined
relatively to a chosen class of morphisms called extensions (which are in some
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sense parallel to the fibrations in homotopy theory). Given a class of extensions
at the base level %, there is a convenient induced class of extensions at each
level Arr"(%5). In this article we write &) for the chosen class of extensions in %
and always choose it to be the class of regular epimorphisms. (Note that the index
is 1 rather than 0, because it consists of arrows rather than objects.) By induction
we define a class of extensions &,41 at each level Arr" (%p).

Given a category ¢ with a chosen class of morphisms &, we consider a commut-
ative square as in (2.2), together with the pullback A, x5 B of o, and fp.

A" .p

Py %

fa B (2.2)

1
14l TBL

The outer commutative square in this diagram (which, remember, can also be
viewed as a morphism «: fq — fp in Arr(%)) is called an &—double exten-
sion [2I] when all morphisms in the diagram are in the class &—including the
square’s so-called comparison map p.

Ezxample 2.3. If & is the class of regular epimorphisms in a regular category, then
an &—double extension is a regular pushout in the sense of [4]. These play a key
role in the characterisation of exact Mal’tsev categories amongst regular categories:
see Proposition 5.4 in [6].

Back to the tower of higher arrows above %;. Let us assume by induction that
n-fold extensions are defined and form a class &, of morphisms in Arr" ! (%).
A morphism in Arr" (%)) is called an (n + 1)-fold extension if its underlying
diagram in Arr"~!(%) is an &,-double extension. The resulting class of (n 4 1)-fold
extensions is denoted &, 1.

We then define the tower of extensions over the base category % to be
the sequence of categories (%, )nen, Where 6, = Ext" (%)) is the full subcategory
of Arr" (%) determined by the class of n-fold extensions &,,. A category %, in this
sequence is called the n-th level of the tower of extensions. The elements of the
class &,11 can cither be viewed as the objects of Ext"*! (%) or as the extensions
in Ext"(%p). Depending on the value of n, we can even view them as the double
extensions in Ext" ™! (%), etc.

As for higher arrows, we are also interested in an n-fold extension’s underlying
commutative diagram in the base category %), which we call an n-cubical ex-
tension in 4. In Section Bl we also need the more general concept of n-cubical
extension in % which is the underlying commutative diagram in %, of an (n+ k)-
fold extension where k > 0.

In general, given a category %/, we write Arr(B) for the slice category over a given
object 8 of % (often denoted (# | B) or %/ in the literature). For a chosen class
of morphisms &, we also write Ext(B) for the full subcategory of Arr(B) whose
objects are in &.

Ezample 2.4. Given a pair of 2-fold extensions v and « (i.e., &1-double extensions,
objects in %2), a morphism (o, 3): v — « between these is given by a 2-cubical
diagram in % (on the left in Figure [I) or equivalently a 3-cubical diagram in %
(on the right), where fp is the pullback of « and §. It is a 3-fold extension if o, 8
and the comparison map 7 = (7, 7,) are also 2-fold extensions. That is to say, a
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o=(0.,0.) [
fe fa ; C; ﬁAT
T c
\ / / ~J|, i ZfA
Ip cC.—%a |
v=(rrs71) a=(a;,a.) \L a,
Y D2 | B
fo
D / B e
> b,
Io 3Gy~ /® 8.

FIGURE 1. A 3-fold extension

3-fold extension is the same thing as an &3-double extension. The initial object of
(0,B) is C; and the terminal object is B,. The initial component of (0,8): v — «
is ;. The 6y-components of (0, 8): v — « are o, 0, B; and 3,.

2.5. Categorical Galois theory. From now on, we assume that our base level %y
is a Barr exact category [2], and (as before) & is the class of regular epimorphisms
in %o (the (1-fold) extensions).

Given an arbitrary category % with chosen class of extensions &, we define an &-
reflective subcategory 2 of % to be a full (replete) subcategory with inclusion
functor I: &~ — % which admits a left adjoint L: # — 2  with unit 5, counit e,
and such that for each object Y in %/, the component ny : Y — I L(Y") of the unit
is in &. We omit the functor I if confusion is unlikely.

Throughout, we let %y be an &;-reflective subcategory of %, with inclusion
functor Iy: By — %o and left adjoint Fy: 6y — %y whose unit is n° and whose
counit is €.

In general, an &-reflector L: % — 2 (or equivalently the entire adjunction, or
the reflective subcategory 27) is said to satisfy the &-Birkhoff condition when
given an extension f: A — B in %, the L-reflection square at f, i.e., the morph-
ism (na,ns): f — IL(f) in Ext(#'), or more precisely its underlying 2-cubical
diagram in %

A—T1L(A)

fl ll L(f) (2.3)

B —1L(B)
nB
is a pushout square in %'. Finally, such an adjunction L - I (or equivalently the
reflector L, or the reflective subcategory ) is said to be strongly &-Birkhoff if
for each extension f: A — B in %, the reflection square at f (as in Diagram [2.3)
is an &—double extension.

We investigate examples of towers (%),)nen Where such an adjunction Fy — I
at the base level %, induces a similar adjunction F, — I, at each level %,. We
will for instance show that, given such a tower of adjunctions, if F,, - I,, satisfies
the strong &, 1-Birkhoff condition, then F, .1 — I,y satisfies the &), o-Birkhoff
condition. In certain concrete examples—see Section dl—we will then be able to
show that Fj, 11 = I,4+1 is in fact strongly &, o-Birkhoff.

At the base level 4y (which is Barr exact by assumption), it is known [23] that %,
satisfies the &1-Birkhoff condition if and only if % is closed under quotients along
extensions in %y. A similar result holds in higher dimensions—see Proposition 4.3
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It was shown in [16, Proposition 2.6] that in a suitably general context where
L 41 is strongly &-Birkhoff we obtain a so-called admissible Galois structure: in
essence, we have all we need to do Galois theory.

Convention 2.6. For our purposes, a Galois structure (see [20])
F = (97 %" L’ I, 777 6’ g)?

is the data of the inclusion I of an &-reflective subcategory £ in a category %/,
with left adjoint L: & — 27, unit 7, counit € and a class & of extensions chosen
amongst the morphisms of #. The class & is subject to the following conditions:

(1) & contains all isomorphisms, and & is closed under composition;

(2) the image of an extension by the reflector L yields an extension;

(3) pullbacks along extensions exist, and a pullback of an extension is an ex-
tension.

In the present article, & will always be a class of regular epimorphisms. Finally,
taking pullbacks along extensions should be a “well behaved algebraic operation”,
i.e., we require our extensions to be of effective &-descent in % (see |27 26] and
Section [B.5] below).

We study examples of towers (6, )nen that carry an admissible Galois structure
(in the sense of [19]) at each level. By the above it suffices that “all adjunctions
are strongly Birkhoff”, which is a more convenient condition to work with in this
inductive context.

In general, given an admissible (or strongly Birkhoff) Galois structure I' as in
Convention 2.0 a trivial I'-covering is an extension ¢t: 7' — E whose L-reflection
square (on the left below) is a pullback.

L(T) < T ——

L
L(t)J/ \Lt \Lc
L(E)<—E——>B

Equivalently [23], the extension ¢ is a pullback of some primitive I'-covering z,
which is an extension that lies in the given full reflective subcategory 2 of the
ground category %'.

A T-covering (sometimes called central extension) is an extension ¢: A — B
for which there is another extension e: £ — B such that the pullback ¢ of ¢ along e
is a trivial covering. We then say that c is split by e. In other words, c is a
I’-covering when a span of discrete fibrations x < ¢t — ¢ exists in %', where z is
a primitive I-covering. (See, for instance, Figure 1 in [29].) We define Cov(%) to
be the full subcategory of Ext(#') determined by the coverings. Finally, a normal
I'-covering f is such that the projections of its kernel pair are trivial coverings,
i.e., f is split by itself.

Note that, as a consequence of admissibility, these classes of extensions are all
closed under pullbacks along extensions—see for instance [23]. In fact, admissibility
essentially amounts to the condition that the inclusion

of the category TCov(#) of trivial coverings into the category of extensions admits
a left adjoint (Triv).

The class of coverings measures a “sphere of influence” of 2" in % and plays
an important role in diverse areas of mathematics (for different examples of such
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an adjunction). Loosely speaking, the Fundamental Theorem of categorical Galois
theory classifies coverings via actions of a suitable Galois groupoid in %'.

2.7. A tower of Galois structures. We can now explain how a Galois structure
1—‘0 = (%O; %Oa FOa IOa 7703 603 @@1)5

at the base level 4y may induce a Galois structure I';, at each level of the tower
(€n)nen. The idea is that the inclusion Ip: %y — %o induces a concept of T'y-
covering. This, in turn, induces the inclusion Iy : Cov(%p) — €1 = Ext(6)) of the
category of coverings Cov(%p) in the category of extensions %;. This inclusion
functor I; does not share all the properties of Iy. In particular, 4} is no longer
Barr exact or even regular [I] in general: see the comment preceding Definition 3.4
in [16] and [30, Remark 2.0.1]. In this sense, the class of regular epimorphisms
is not appropriate for applying Galois theory in higher dimensions; instead, we
use (higher) extensions. Indeed, pullbacks along higher extensions are computed
component-wise, thanks to which many of the convenient properties which hold in
the Barr exact %y can be used to derive similar results in the higher-dimensional
context—see Section [3

The strong &1-Birkhoff condition on Fy - Iy then implies for instance that
Cov(%)) is closed under quotients along double extensions in %) (Subsection 7).
It is often [24] the case that Cov(%)) is in turn &s-reflective in €) (Subsection F9).
By the equivalence between “closedness under quotients” and the Birkhoff property
(Subsection [ET]), the reflection Fy — Iy is &-Birkhoff. For it to be strongly Birk-
hoff, we currently have no general result. However, in concrete examples such as
those presented in Subsection [£13] this derives easily from the permutability of
the centralisation relation, which is the universal relation to be divided out of an
extension for it to become a covering.

When the adjunction F; — Ij is indeed strongly &-Birkhoff, then we have a
Galois structure

Fl = (Cglv'@lvFl;Ilvnl?el’gQ)

and the corresponding concept of a I'y-covering. We can then iterate the above
process for the inclusion Iy : Cov(%1) — %2 = Ext(%1) and find a Galois structure I's.
By proceeding inductively, we obtain a Galois structure I';, for each n. Again, there
is no guarantee that this works in general, but it works in many examples, and as
we shall see in Section [4] below, intermediate results exist that simplify the process
showing this.

Convention 2.8. Throughout this article, the categories in the adjunction at the
base level of a tower of Galois structures are denoted (6p, %), with class of exten-
sions &1. An arbitrary fixed level is written (¢, .%), with class of extensions & it
is (6n, Bn), with class of extensions &, 1, for some n. A generic reflective subcat-
egory, eventually part of a Galois structure I' as in [Z8 is denoted 2" < #/.

3. CALCULUS AND PROPERTIES OF HIGHER EXTENSIONS

Working in categories of higher morphisms is not easy. Thanks to the concept
of a higher extension, we can reduce a problem or computation in %, to a couple of
problems and computations in %,,_1, using the projections on the top and bottom
components. Ideally, such a problem or computation boils all the way down to a
problem or computation in the base category %;. For instance:

Examples 3.1. (1) The initial object of %), is the n-cube, all of whose vertices
are the initial object of %p, and all of whose edges are identities.
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C. xp A T A
;o |4 /

TC, /A
L

C oxp A —— 25 A a
ﬁv
o, C. B

¢, —— B,

FIGURE 2. The component-wise pullback of a pair of double arrows

(2) Given a parallel pair of morphisms «, 8: f4a =3 fp in %, if the coequaliser
of the top component exists in %,,_1, and if the pushout of this coequaliser
along fp exists, then this pushout describes the coequaliser of o and
in 6,.

(3) Monomorphisms in %,, are morphisms for which the top component is a
monomorphism in %,_;. By induction, monomorphisms in %,, are morph-
isms such that their initial component (see Subsection [2.]) is a monomorph-
ism in 4.

Observe that Proposition 3.5 and Lemma 3.8 from [I6] easily generalise to our
context (as remarked in [I5]: see Example 1.11, Proposition 1.6 and Remark 1.7
there). Note that the following result holds when %} is merely regular:

Lemma 3.2. Forn > 1, let 6, be a level in the tower induced by 6.

(1) If a morphism o = (a-, @) in 6, is such that a- is an n-fold extension and
a, an isomorphism, then « is an (n + 1)-fold extension.

(2) The (n + 1)-fold extensions are closed under composition.

(3) Pullbacks of arbitrary morphisms along (n+ 1)-fold extensions (exist in 6,
and) are computed component-wise. Moreover, any pullback of an (n+ 1)-
fold extension is an (n + 1)-fold extension. O

Given a pair of morphisms o = (a;,a,): fa — fp and 8 = (6:,8,): fe — [B
in %,, their component-wise pullback, if it exists, is given by the commutative
diagram depicted in Figure 2l whose front and back faces are pullbacks in %,_1.
Provided that « is an (n + 1)-fold extension, Lemma above says that the
component-wise pullback exists (it is given by the pullback in the arrow cat-
egory Arr" (%)), moreover f is an n-fold extension, and the pullback of « and
in %, is given by f together with the projections (74,74, ) and (7w¢. , 7o), where
the latter is actually an (n + 1)-fold extension. In particular, the kernel pair of an
(n + 1)-fold extension o = (o, ) exists in %, and is given by the kernel pairs
(in €,-1) of a; and «, in each component (together with the induced morphism
between those—see Diagram Bl below). Moreover, the legs of such kernel pairs are
themselves (n + 1)-fold extensions—see also Proposition B.17

Note that when éj is a Barr exact Mal’tsev category [7], double extensions are
the same as pushout squares of extensions, and, as a rule, higher extensions are
easier to identify—especially when split epimorphisms are involved. Unlike that
stronger context, in our present setting it is not necessarily the case that a split
epimorphism of n-fold extensions is an (n + 1)-fold extension. The lack of such
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Qr

Ay B Ch1
N — W /
fa / fc

/ ol o
we

FiGURE 3. Weak right cancellation

arguments is a challenge in this more general context where 43 need not be a
Mal’tsev category.

As we may conclude from [I5 Proposition 3.3] and the fact that our categories are
not Mal’tsev, the axiom (E4) of “right cancellation” considered there (see also [16]
Lemma 3.8]) cannot hold here. We have the following weaker version:

Lemma 3.3. If the composite o a: fa — fo is an (n + 1)-fold extension, and
a: fa — fB is a commutative square of n-fold extensions in €,_1, then 5 is an
(n + 1)-fold extension.

Proof. Since B; o a; and B, o a, are n-fold extensions, by induction f is a square of
n-fold extensions in %,_1. Consider the commutative diagram in Figure [ where P;
is the pullback of o, and fg, P» is the pullback of 5, and f¢, and Ps is the pullback
of a, and the projection p;. Note that since Ps is also a pullback of 5, o, and f¢,
the comparison map (recall Diagram 22]) of the composite square is ¢3 o ¢p;—which
is an n-fold extension. By induction, ¢3 is thus also an n-fold extension, and so is
the composite g2 o ¢3 = ¢2 o m. We conclude that the comparison map ¢o of 3 is
an n-fold extension as well. Il

In particular, we deduce that pullbacks along extensions reflect extensions:

Lemma 3.4. Given a morphism « = (o, «,) in 6y, if its pullback along an (n+1)-
fold extension 8 yields a (n + 1)-fold extension o, then « is itself a (n + 1)-fold
extension. (|

3.5. Beyond Barr exactness: effective descent along double extensions.
We are now going to explain that extensions have similar convenient exactness
properties to regular epimorphisms in Barr exact categories.

Given a Galois structure I' as in Convention [Z.6] T'-coverings, which are the key
concept of study, are defined as those extensions ¢: A — B for which there is another
extension e: E — B such that the pullback t of ¢ along e is a trivial I'-covering.
In most references [3, [I7, 22], e is further required to be of effective descent or
effective &-descent (see [27,126] ). Such extensions are sometimes also called monadic
extensions [20, [14]. In the contexts of interest for this work, we shall always have
that all our extensions are of effective &-descent, which is why we may use our
simplified definition of a I'-covering. The idea is to ask that “pulling back along e
is an algebraic operation”, which plays a key role in the proof of the Fundamental
Theorem of categorical Galois theory—see for instance [20, Corollary 5.4].

Given an (n + 1)-fold extension e: F — B in %,, if we write Arr" ™! (X) for the
category of (n + 1)-fold morphisms with codomain X, then there is an induced pair



10 FARA RENAUD AND TIM VAN DER LINDEN

of adjoint functors:

ex: A" (E) > A" TH(B)
left adjoint to

e*: An"t(B) - An"tH(E),
where ey (k: X —> E) = eok, and e*(h: X — B) is given by the pullback of h
along e. This adjunction also restricts to the categories of (n + 1)-fold extensions
above FE and B: the similarly defined adjunction

el ExC"TUE) - Ext™TY(B) 4 e*|: Ext"TY(B) — Ext" ().

We say that e is of effective descent if e, is monadic, and e is of effective &,-
descent if ey| is monadic (see [28], 26]).

Remark 3.6. The only requirement on a category %, for the descent theory de-
veloped in [27] to hold, is the existence of pullbacks. This requirement can be
weakened to the existence of pullbacks “whenever needed”. As we are working with
higher extensions only, we can indeed compute pullbacks whenever needed (for the
developments of [27] which we use), even though we haven’t proved the existence
of arbitrary pullbacks in the category %,.

In this section we show (recall) that higher extensions are of effective descent or
effective &),-descent in %,,. From [I5] Lemma 3.2] and the above, we have what can
be understood as local &,—Barr exactness:

Proposition 3.7. Assuming that 6y is Barr exact, and given a commutative square
of n-fold extensions o = (0+,0,), together with the horizontal kernel pairs in €,—1
and the factorisation f between them as in

Eq( e LN / JJ
qO—T)? > by E ( g E
afo.) T2 o
f fe I Jl o (3.1)
d e E. 2 |—s B
Eq(al)chLﬁ B, sz/ /
f
Ela_%‘Bl ?

the morphism o is an (n + 1)-fold extension if and only if any (hence both) of
the two left-hand (commutative) squares (i.e., (d.,d.) or (¢c;,c,)) is an (n+ 1)-fold
extension. If so, then
- 0 is the coequaliser, in €,, of the parallel pair (d.,d,), (c;,c.): f 3 fE,
which is in turn the kernel pair of o in €,;
- the equivalence relation Eq(o) in €, is stably effective in the sense of |27];
- in particular, (n + 1)-fold extensions are the coequalisers of their kernel
pairs (computed point-wise in 6p), i.e., (n + 1)-fold extensions are regular
epimorphisms in 6,;
- all of these constructions (e.g., kernel pairs, coequalisers, etc.) are point-
wise in 6o the exact fork in Diagram [31] consists of 2™ exact forks in 6.

Proof. The first part is a direct consequence of [I5, Lemma 3.2], whose proof re-
mains valid when using our weaker version of right cancellation, Lemma B.3] above.
Since the component-wise coequaliser o of (d.,d,), (¢.,c,): f 3 fg is in particular
a pushout square [4, Lemma 1.2], it coincides with the coequaliser in %,. Then
((dr,d,), (¢r,¢.)) is the kernel pair of o since pullbacks along (n + 1)-fold extensions
are computed component-wise. Observe moreover that the parallel pair (d-,d,),
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(¢, ¢,) consists point-wise in a collection of 2™ equivalence relations in €, linked by
the (n + 1)-fold extension (f, fg). Moreover, the 2" morphisms which determine o
are the coequalisers in %, of these 2™ equivalence relations. Hence this kernel pair
((d+,d)), (¢, ¢,)) is stably effective, because everything is computed point-wise, and
all these point-wise equivalence relations are stably effective in the base category %y,
which is Barr exact. (I

In Proposition [3.7] we are given the whole of Diagram 3.l By working pointwise
in %y, it is possible to recover the right-hand side of the diagram from the left-hand
side (provided the horizontal pair of morphisms counsists of (n + 1)-fold extensions).

Corollary 3.8. Given an equivalence relation Eq(o) in 6, such that its projec-
tions are (n + 1)-fold extensions and it is point-wise a collection of equivalence
relations in 6o, then its coequaliser exists in €, it is an (n+ 1)-fold extension and
it is computed point-wise via the coequalisers of each point-wise equivalence relation

m (60- Il

Remark 3.9. Since (n + 1)-fold extensions are regular epimorphisms in %, (by
Proposition B.7), an (n + 1)-fold extension which is a monomorphism in %, is an
isomorphism. Moreover, by Proposition B7 and [4, Lemma 1.2], an (n + 1)-fold
extension is a pushout square of n-fold extensions in %,,_;. Hence since pushouts
preserve isomorphisms, looking at ¢ in Diagram Bl we see that if o, is an iso-
morphism, then so is o, .

Using the previous observation, we obtain:

Lemma 3.10. If a composite of two (n + 1)-fold extensions 8 o « yields a pullback
square in €n—1, then both a and 5 are pullback squares in €,_1.

Proof. Remember that if the composite of two squares o « is a pullback square,
then « has to be a pullback—without any other assumptions on %,_1, a or 5. In
the diagram in Figure Bl all morphisms are n-fold extensions, since both « and
are assumed to be (n + 1)-fold extensions. Moreover, the square go o ¢35 = @2 0 T3 is
a pullback square of regular epimorphisms in %,,—; and thus it is also a pushout [6].
Finally, both ¢3 and ¢ 0¢3 are isomorphisms, hence ¢; is an isomorphism; and since
pushouts preserve isomorphisms, also ¢ is an isomorphism—see Remark 39 [

Lemma 3.11. Under the hypotheses and notation of Proposition [375, we see that
the right-hand square o is a pullback square of n-fold extensions if and only if any
(hence both) of the two left-hand (commutative) squares ((d.,d,) or (c.,c.)) is a
pullback square of n-fold extensions.

Proof. Using Proposition B.7] in any case, we may assume that both projections
(d,d,) and (c;,c,) as well as o are (n + 1)-fold extensions. Then looking at the
cube on the right-hand side of Diagram [B.I] if the right-hand face of the cube is
a pullback square, then the composite of the “back and right” faces is a pullback,
and thus the composite of the “left and front” faces is a pullback, and thus also
the left-hand face is a pullback. Conversely, if the left-hand face is a pullback, the
“back and right” composite is a pullback, and by Lemma [3.10, also the right-hand
face is a pullback. (I

Bearing in mind Remark B.6] as in [16, Remark 4.7] we easily obtain:
Proposition 3.12. Any (n+1)-fold extension is of (global) effective descent in 6,.

Proof. Note that the result holds for n = 1. By induction, assume that it holds for
all n < m for some fixed m > 2. Let o: fg — fp be an (m+ 1)-fold extension. The
monadicity of oy in each component o, and oy, easily yields the monadicity of oy
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itself. For instance, we may use the characterisation in terms of discrete ﬁbmtz’onsﬂ
of equivalence relations from Theorem 3.7 in [26].

Consider a discrete fibration of equivalence relations fr: R, — R, above the
kernel pair Eq(o): Eq(o;) — Eq(o,) of ¢ = (0,,0,) as in the commutative dia-
gram of plain arrows below—see also Diagram B.Il This means that the squares
of first and second projections are pullbacks. Then observe that fr is computed
component-wise and consists in a comparison map between a pair of discrete fibra-
tions of equivalence relations R, and R,, above the pair of kernel pairs Eq(c) and
Eq(o,) with comparison map Eq(o): Eq(o;) — Eq(c,). By induction, it is com-
puted point-wise, and consists in a comparison (n + 2)-fold extension between a
collection of 2"*1 discrete fibrations above the kernel pairs of the point-wise collec-
tion of 2"*! morphisms defining o. The projections of the equivalence relation fz
are also (n + 1)-fold extensions, as pullbacks of the projections of Eq(c)—which
are themselves (n + 1)-fold extensions by Proposition 371 Hence we may build the
square on the right below, first by taking the coequaliser v = (v;,7,) of fr using
Corollary B8 The factorisation (3, 3,) is then obtained by the universal property
of .

)

fr fC**>fD

ﬁl ﬁl (BB
2

Eq(o) == fe—> fB

By Proposition B and Corollary B8] fr is the kernel pair of 7, which is an (n +
1)-fold extension. Furthermore, the square on the right is a pullback square by
Lemma BIIl Finally, v is pullback-stable as a coequaliser, since everything is
computed point-wise: its kernel pair fr is stably effective by Proposition B [

What exactly we need in our context is not global effective descent but effective
&,-decent. This derives from Proposition B.12] because of Lemma B4l as explained
in [27), Section 2.7].

Corollary 3.13. Any (n+ 1)-fold extension is of effective &,11-descent in 6,. O

4. SOME PROPERTIES OF STRONGLY BIRKHOFF (GALOIS THEORIES

In this section we collect some intermediate results which, as explained in Sub-
section 271 are meant to simplify the process of showing that, in certain specific
situations, there is a tower of strongly Birkhoff Galois structures above a given
strongly Birkhoff Galois structure.

4.1. The Birkhoff condition in higher dimensions. First we work towards
Proposition 4.3 which is a higher-dimensional version of the equivalence between
the Birkhoff condition (as in Subsection [Z3]) and closedness under quotients of the
class of coverings.

Lemma 4.2. For somen > 1, we consider in 6, a commutative diagram of (n+1)-
fold extensions

A=

é (4.1)

o<
©

BH

IThese are not to be confused with the discrete fibrations between extensions which form the
subject of Section
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A,
l \
B,

FIGURE 4. Induced pushout of initial objects

B,

We require of zg: B — B that all of its €o-components—see Subsection [Z1—are
identity morphisms, with the eventual exception of the initial component denoted
SB: B,\ — B,\ .

This square (&) is a pushout z'n n if and only if the induced square in Figure[])
between the initial objects of A, A, B and B is a pushout in €. In other words,
the comparison 8 from the pushout P:=DB, +a, A, to B, is an isomorphism.

Note that, in the statement above, if similarly all of the %p-components of z4
are identity morphisms in %p, but for the initial component, then the square (&I
is an (n + 2)-fold extension by Lemma

Proof of Lemma[{-2 If B in Figure @lis an isomorphism, then testing for the uni-
versal property of Diagram [4.1], we consider the following commutative diagram of
plain arrows.

The morphism ¢ consists of the %p-components of b in all components but the
initial one. There it is the morphism induced by the pushout B, from Figure @
This is of course only possible because all the 6p-components of zp, but the initial
one, are identity morphisms. To test the remaining commutativity conditions that
make this collection of 2™ morphisms in % into a morphism in %, it suffices to
pre-compose the underlying (n + 1)-cubical diagram of ¢ with the epimorphism sp.
To show that ¢ o ¢ = a, it suffices to pre-compose in €, with the epimorphism z4.
Conversely, if DlagramIZ:EI is a pushout, then we want to show that 8 in Figure [
is an isomorphism. We consider the n-cubical diagram P, obtained from B by
pre-composing all its morphisms of domain B, with 8. The initial object of P is
then P. By [I5] Propos1t10n 1.16], P is still an n-fold extension. Similarly, we have
induced morphlsms 2%: B — P and ¢': A — P defining a commutative square
@ ozy = zlz 0 ¢ in 6. Hence the universal property of the pushout (@I)) induces
a morphism B — P whose initial component is an inverse for 3. O

In order to state the next result, we assume that we are given a partially defined
tower of Galois structures as in Subsection 271 For some fixed n > 1, for each
k < n we have a Galois structure I'y, which is strongly &%1-Birkhoff, where %
is the category of k-fold extensions over %y and % is the category Cov(é;—_1) of
T'y_1-coverings. Note that by [I8, Corollary 5.2], at each level Fj, - Ij, for any
object A in %}, all of the 6y-components of the unit morphism 7% : A — I Fj.(A)
are identity morphisms—with the possible exception of the initial component. The
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FIGURE 5. Reflection square and induced pushout

7TA1

EXAoAlﬁAlJLBI

TE fa B

E———> A)———> By

FIGURE 6. Coverings reflected by pullbacks along extensions

following result is a generalisation of Proposition 3.1 in [23] which covers the base
case n = 0.

Proposition 4.3. Suppose that Bn+1 is reflective in C,+1 with reflector Fpyq.
The adjunction Fy,11 - 141 is Enro-Birkhoff if and only if Bni1 is closed under
quotients along (n + 2)-fold extensions in €p41.

Proof. (=) is a direct consequence of the fact that isomorphisms are stable under
pushouts. For the proof of (<), we use that the pushout P of f and 7% in the
diagram in Figure [ exists and is constructed as in the second part of the proof
of Lemma All arrows in the diagram are (n + 1)-fold extensions. Hence, in
particular, P is the quotient of F},(A) along the (n + 1)-fold extension f, so that it
is a covering by our assumption. The universal property of F,,(B) now provides an
inverse for 3. ([

Now we prove that the second condition in the statement of Proposition
always holds, so that the adjunction is automatically Birkhoff: see Corollary
below.

4.4. Closedness under quotients along double extensions. Let I' be a Galois
structure as in Convention[Z.6and let 2" satisfy the strong &-Birkhoff condition. As
before, we have the inclusion I; : Cov(#') — Ext(#/), and we know that the pullback,
computed in &, of a covering along an extension yields a covering. Coverings are
thus preserved by pullbacks along extensions.

Likewise, coverings are also reflected by pullbacks along extensions. Indeed, given
a pullback square of extensions as on the left in Figure[6l if f4 is a covering, then
by assumption there is p such that the projection wg of the pullback on the right in
Figure[@lis a trivial covering, and this shows that fp is split by the composite ¢gop.

This result implies that Cov(#) is closed under quotients along &—double exten-
sions in Ext(%/):

Lemma 4.5. If 2 is strongly &-Birkhoff in %, then given extensionst and s such
that fo = sot is a trivial covering, the extensions t and s are trivial coverings as
well.
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A, i B : A,
o / AN /
@1, o2
N
F(AT) XF(B)B F(B) ><1:'(14L)A/4L
nA; nB NA,
P(A) ——— F(B) ————> F(4))

FI1GURE 7. Composing unit squares

Proof. This is an immediate consequence of Lemma [B.10] applied to the diagram
in Figure [ where, by the strong &-Birkhoff condition, both squares are double
extensions. (I

Pullback-stability of extensions implies:

Lemma 4.6. If 2 is strongly &-Birkhoff in %, then given extensionst and s such
that fa = sot is a covering, the extensions t and s are coverings as well. ([

The fact that in this context, coverings are reflected by pullbacks along exten-
sions, now gives us:

Proposition 4.7. If 2 is strongly &-Birkhoff in &, then coverings are stable
under quotients along double extensions. (I

Corollary 4.8. Under the hypotheses of Proposition[{.3, the Galois structure I'y 11
18 &y 1o-Birkhoff. O

4.9. Towers of Galois structures in algebra. In order for the above to yield a
tower of strongly Birkhoff Galois structures in concrete examples, two ingredients
are still missing: first of all, the reflectiveness of coverings at each step, and secondly,
a condition that ensures that reflection squares are extensions rather than just
pushouts. Here we consider a class of examples where those two conditions are
met.

In [14], T. Everaert develops a theory of towers of Galois structures in a more
restrictive context where all categories involved share the Mal’tsev property. In
that context, any base Galois structure which is Birkhoff automatically gives rise
to an appropriate tower. In the article, an explicit construction for each reflector F,,
is given, which relies on the fact that in that context, coverings are always split by
themselves—in other words, they coincide with normal coverings. In the present,
more general context, the construction of a reflection at each level requires a sys-
tematic method for obtaining splittings for coverings.

Assuming for instance that 2, is a subvariety of a variety of algebras %, let
us write the free/forgetful adjunction to Set as F, - U. Then every covering
¢: A — B is split by the canonical &1-projective presentation €% : Fy, U(B) — B of
its codomain B, which provides the needed “systematic splitting”. Here, the Galois
structure Ty is always &1-Birkhoff: reflection squares are pushouts. (Note that
this universal-algebraic situation is precisely where originally the term “Birkhoff”
came from.) The strong Birkhoff condition, which says that the reflection squares
are extensions, then (by Proposition 5.4 in [6]) amounts to the condition that the
kernel pair of each unit morphism 74 permutes (in the sense of composition of
relations) with any congruence on the object A.
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EQ(WE xp A e ; - A
T T Na .-
/ . / i o
. . Cy
o)
. ;
f e
Triv(f) Triv(rg) Fi(f)
4
Eq(p) E p B

FIGURE 8. Construction of the reflector Fj

The idea of the following construction (which is a variation on the one in [14] [9])
generalises to arbitrary levels in the process of building a tower of Galois structures.
Note that we are not claiming that the result is new—see for instance [24]; rather,
we wish to sketch a concrete construction of an adjoint. In fact, we shall only give
a detailed description of this construction at the base level; assuming that we have
I',, and are constructing the reflector Fi, .1, the argument is essentially the same,
mainly because for each object A of €, all the %y-components of 1} are identities,
except for the initial one.

Proposition 4.10. Adding that 6y is a category with enough projectives to the
hypotheses of Proposition [{.3 (and also considering the case n = 0), we find that
the category Bn+1 = Cov(%,) is reflective in €1 = Ext(6,).

Proof. As usual, it suffices that we build the unit of the adjunction, and show its
universal property. A reflector is then uniquely determined. As explained in [9],
coverings are pullback-stable, and thus by Proposition 5.8 in [I8], we may work
locally above each object B and build a left adjoint to the inclusion of the category
Cov(B) of coverings above B into the category Ext(B) of extensions above B.

We give the details for n = 0. We fix B together with a projective presentation
p: E — B of B. We consider an extension f: A — B and the induced pullback

Eq(ma) X FE xp %A

where we take the kernel pairs of 74 and p and construct the factorisation f . Note
that on higher levels, projective presentations can be obtained from those at the
base level, while the constructions in the diagram above are the same, thanks to
the properties of higher extensions discussed in Section [Bl

The strongly Birkhoff Galois structure I'g yields a trivialisation functor which we
apply to the double equivalence relation on the left, which yields a pair of arrows
(m1,m2) as in Figure B As usual, the adjunction unit 7 is only non-trivial in its
initial component. We may then take the coequaliser r of 771 and o, which yields the
dotted factorisation of f in the diagram above. On higher levels, the construction of
this coequaliser r is still possible thanks to the shape of the unit morphisms involved.
All the thus obtained morphisms will indeed be higher extensions. Lemma [3.3] tells
us that the front right commutative square Fy(f) or = p o Triv(ng) is a double
extension. By closedness of coverings under quotients along double extensions,
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FIGURE 9. Checking the universal property of Fi(f)

Fi(f) is a covering. Moreover, the top square on the right is a pushout since the 7
are epimorphisms. On higher levels we here use Lemma (We may further
notice here that if instead of being a projective presentation, the morphism p is a
weakly universal normal covering, then all of the squares in the factorisation are
pullbacks.)

We define n}: f — Fi(f) to be the couple (n},1p) and prove that it satisfies
the universal property of a unit. As mentioned above, we only need to check this
in Ext(B). We consider another factorisation cot = f as in Figure [ where ¢ is a
covering. By definition, there is an extension ¢: @ — B such that the pullback ¢/
of ¢ along ¢ is a trivial covering. Since p is projective, there is a factorisation s such
that p = g o s. Then, the pullback ¢” of ¢ along p is also the pullback of the trivial
covering ¢’ along s. Hence ¢’ is a trivial covering. We have the diagram in Figure[d
where h = 1 x gt is induced by the universal property of the pullback F x gT and
k' is induced by the universal property of the trivialisation 7. All these morphisms
are regular epimorphisms and all the displayed diagrams commute. Hence, since
we showed that the top square is a pushout, we get a factorisation z: Cy — T as
required. Uniqueness comes from the universal property of the pushout and the fact
that all plain arrows in the diagram are regular epimorphisms. On higher levels,
essentially the same argument is valid. O

Remark 4.11. One may wonder if the construction of F} using the coequaliser r
above should not yield the trivialisation functor, considering that Triv preserves
coequalisers, as any left adjoint. Indeed, the long rectangle at the back in Figure 8]
is a coequaliser in Ext(%’), whose image by the trivialisation is thus a coequaliser
in TCov(%). However, coequalisers in TCov(%) are different from coequalisers
in Ext(%¢). Indeed, a quotient of a trivial extension in Ext(%) is not a trivial
extension in general, but it is a covering, whence this natural construction of Fj
using the quotient, along a universal splitting, of the trivialisation.

Assuming again that 4 is a subvariety of a variety of algebras %, the reflec-
tion is strongly Birkhoff if and only if the kernel pair of each unit morphism 74
permutes with every congruence on the object A. (As mentioned before, this is
a consequence of Proposition 5.4 in [6].) If so, then by the preceding results, I'g-
coverings are reflective amongst (one-fold) extensions, and this reflection is auto-
matically &»-Birkhoff. As for the base level, the only remaining condition to be
checked in order to obtain a strongly &5-Birkhoff Galois structure I'; is that a sim-
ilar permutability condition holds for the unit morphisms at this new level. In
the spirit of Lemma 2, thanks to the shape of these unit morphisms, we only
care about the initial component of their kernel pair (a congruence in %p). If this
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permutability condition holds in I'y, then we automatically obtain the &3-Birkhoff
Galois structure I's. Checking the appropriate permutability condition, we may see
that I's is strongly &3-Birkhoff. We may then proceed by induction on n, checking
the permutability condition at each new level T',,.

4.12. Mal’tsev varieties. In the context of a Mal'tsev variety %, at each level of
the tower the permutability condition comes for free. Here the process we describe
is well studied in the literature: first in the context of semi-abelian categories, then
in Mal’tsev categories [16], [13], [14].

4.13. Racks and quandles. Our motivating example is the connected components
adjunction in the variety of quandles (or, more generally, racks). The idea is that
the coverings of [10] may be obtained from a Galois theoretic perspective as in [I1].
Our aim here is to develop the corresponding higher-dimensional Galois theory.
A detailed study of the first two stages of this process (the corresponding T'g and I'y)
may be found in [29] B0]. The remaining levels of the tower will be discussed in [31].
The reason why the permutability condition holds in this context is that each so-
called centralisation relation (which is the kernel pair of the initial component of
a unit morphism at some level) can be viewed as an orbit congruence—see [5]. In
order to prove this result at higher levels, it is convenient to know that the concept
of a covering, and thus also these centralisation relations, satisfy a fundamental
symmetry property. Describing this symmetry property, and showing that coverings
satisfy it in a suitably general context, is the purpose of the remainder of this article.

5. DISCRETE FIBRATIONS OF DOUBLE EXTENSIONS

We now start our development of a theory of symmetric coverings, which allows a
non-inductive treatment of the concept of a covering. The basic idea is very simple
and based on the concept of a discrete fibration, which is what we call an n-fold
extension which, considered as an n-cube, is a limit diagram—the easiest example
being a pullback square of regular epimorphisms. Recall that, in a Galois structure
=(%,%2,L,1n,¢e &), an extension c¢ as in the diagram

Xﬁ_TTA

Y%ETB

is a ['-covering if and only if there is an extension e such that the pullback of ¢
along e is a trivial I'-covering t, which means that ¢ is a pullback of a primitive
I-covering = (which is an extension in the given full reflective subcategory 2" of
the ground category #). In other words, ¢ is a covering when a span of discrete
fibrations x «— t — ¢ exists in %, where x lies in 2". This idea applies at arbitrary
levels of a given tower of Galois structures; it suffices to replace the pullback squares
with higher-order discrete fibrations as defined above. Our main result here is
Theorem [[.13] which says that in the context of an appropriate tower of Galois
structures, this approach does indeed characterise the inductively defined coverings
of Galois theory—thus showing that the concept of a higher covering is symmetric:
it does not depend on the way the n-cube is considered as an arrow between (n—1)-
cubes.

In order to achieve Theorem [.13] we first consider an n-cubical extension as
a double extension in %,_s. Then we prove, in this section and in Section [G]
that for such an n-fold extension, the property of being a I',,_;-covering admits a
symmetrical interpretation in terms of discrete fibrations of order three in %, _s.



A SYMMETRIC APPROACH TO HIGHER COVERINGS 19

In Section [7 this is then used to obtain a symmetrical interpretation with respect
to %0.

From now on, we assume that a tower of strongly Birkhoff Galois structures is
given whose base level is Ty with categories (6p, %) as before. For some fixed
n > 0, we place ourselves at the level I' = T, with (¢, %) = (6., %,). An
extension in ¥ is an element of the class & = &,.1. A double extension is
simply a &-double extension. A 3-cubical extension in € is the underlying diagram
in € = %, of an (n + 3)-fold extension—see Subsection A (trivial/normal)
covering is a (trivial/normal) I'-covering. A (trivial/normal) double covering is a
(trivial /normal) T';,1-covering, etc.

Definition 5.1. A 3-cubical extension in % is a discrete fibration when it is a
limit cube: any cone of wavy arrows

T

|

on it induces a unique dashed comparison arrow.

Ezxample 5.2. Any 3-cubical extension, obtained as a pullback of two double exten-
sions in ¥, is a discrete fibration. To see this, let us consider such a cube and a
cone on it (the wavy arrows).

The universal property of the top square induces a dashed arrow that makes the
top part of the diagram commute. The rest commutes as well, because the bottom
square is also a pullback.

We may consider a discrete fibration as an arrow between double extensions in
three non-equivalent ways. By making such a choice, the cube acquires a domain «
and a codomain 3. The entire structure is then called a discrete fibration from «
to 3.

Example 5.3. The above example has the following alternate interpretation: any
3-cubical extension (in ¥) that happens to be an arrow between double extensions
which are pullback squares is a discrete fibration. Actually, here the domain and
codomain may themselves be seen as discrete fibrations (of a lower order): this is
the viewpoint of Example [1l

Alternatively, we may choose one of the three ways a three-cube may be seen
as a square of two-cubes—see the diagram in the statement of Proposition (.4
below. This viewpoint allows us to sharpen Example into the following general
characterisation.

Note that in what follows, we use the symbol “=" to indicate that we are con-
sidering the same diagram twice, depicted at two different levels of the tower of
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Galois structures. In Proposition [5.4] for instance, the vertices in the diagram on
the left are 1-cubical extensions in ¥—objects in 4,41, at the (n + 1)-st level of
the tower induced by (65, Bo)—s0 may be seen as arrows in ¢, as in the diagram
on the right.

Proposition 5.4. A three-cubical extension is a discrete fibration if and only if,
when viewed as a square of double extensions—the outer quadrangle in the diagram
on the left

.%.
—the induced dashed comparison to the dotted pullback is not just a double exten-
ston, but a pullback square.

Proof. 1t is easily seen that the universal properties those cubes satisfy coincide. [J
Since a composite of two pullback squares is again a pullback, this gives us:

Corollary 5.5. Discrete fibrations compose, in whichever way they are considered
as arrows between double extensions. (I

Example 5.6. Combining Corollary 5.5 with Example[5.2] we see that the horizontal
composite of the cubes of extensions in the diagram

A A A
R
W W W

is a discrete fibration.

6. DOUBLE COVERINGS

Definition 6.1. A double extension 7 in ¢ is called a symmetrically trivial
double covering (with respect to I') when a discrete fibration 7 — f exists
whose codomain 3 lies in # (it is a primitive I'-covering).

Lemma 6.2. Any symmetrically trivial double covering is a trivial double covering,
in whichever way the square is considered as an arrow between arrows.

Proof. Let 7 — [ be a discrete fibration whose codomain § lies in 4, the square
on the left below.

I I —_—T s

L 4;/ | |

= = = \VH\V

— | L |
S R4 5
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When we view it as a cube (second diagram), we may use Proposition [5.4] to de-
compose it using pullbacks as on the right. We find trivial I'-coverings s and ¢,
respective pullbacks of a and b which lie in Z. Since the top back square with the
dashed arrows is a pullback, the top square 7 in the middle diagrams is a trivial
double covering, when viewed as an arrow from left to right, because it is a pullback
of a double extension between I'-coverings, the middle arrow in the diagram on the
right.

We could, of course, have taken pullbacks of d and ¢ instead, which would have
shown that 7 is a trivial double covering, when viewed as an arrow from back to
front. O

Definition 6.3. A double extension « in % is called a symmetric double cov-
ering (with respect to I') when a discrete fibration 7 — « exists whose domain
T is a symmetrically trivial double covering.

Theorem 6.4. A double extension is a double covering if and only if it is a sym-
metric double covering.

Proof. Let a be a double extension which is a double covering, when viewed as an
arrow «: d — c. Then there is a double extension considered as an arrow v: e — ¢
such that v*(a): f — e is a trivial double covering.

-
N
If

Y
<
1<
o
Y

This implies that there exist I'-coverings y and z such that the back square in the
above cube (the square v*(«), now viewed as the vertical arrow v*(«)) may be
decomposed as a vertical composite:

R D >.
L. I
| |
| |
. - A > (6.1)
v N
................. >.

By the definition of a trivial double covering, we do indeed have I'-coverings z’
and 7/, domain and codomain of a double extension A: z’ — 3’ which pulls back

to v*(a).

I
-
%

7 ()
e,
Fadiid ,



22 FARA RENAUD AND TIM VAN DER LINDEN

In order to obtain the needed I'-coverings y and z, we may now take pullbacks as
in the diagram

and notice that the dashed comparison square between this cube and the induced
dotted pullback is again a pullback.

We come back to the vertical decomposition of y*(«) in ([G.IJ). Since y and z are
I’-coverings, there exists a double extension d which is such that when pulling back
horizontally along it, we find trivial I"-coverings s and ¢.

To find such a §, we first consider an extension that splits y: the extension y pulls
back along it to a trivial I'-covering s. We then take horizontal pullbacks in order
to obtain the following cube.

We then consider an extension along which to pull back the I'-covering 2z so that
we find a trivial I'-covering ¢.

This yields the bottom cube in ([6.2]), whose bottom square is 6. The other squares
are obtained by taking further pullbacks. The resulting composite double extension
in the back is called 7.

From its construction, it is clear that the composed three-cubical extension
from 7 to « is a discrete fibration. Now we only need to prove that 7 is a symmet-
rically trivial double covering. This follows from the fact that s and ¢ are trivial
T'-coverings: if we reflect them into %, then the induced comparison cubes will be
pullbacks.

For the converse, we take discrete fibrations  «— 7 — « where 3 lies in 4.
Lemma then tells us that 7 is a trivial double covering, whichever way we view
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it as an arrow. We now pull back as in the diagram

where in the diagram on the right, the top square is 7 and the bottom square is a.
Notice that the middle horizontal square is a double covering as a quotient of the
double covering 7. It follows that «, viewed as an arrow from the left to the right, is
a double covering as well. We could, however, use essentially the same argument to
show that « is a double covering, when viewed as an arrow from back to front. [

Remark 6.5. Notice that the very end of this argument is not valid for normal
double coverings, since these are not closed under quotients—see also Remark 111

Corollary 6.6. The concept of a double covering is symmetric: it does not depend
on the way the square is considered as an arrow between arrows. ([

7. HIGHER COVERINGS

There is also a symmetric interpretation of the concept of a higher covering,
where the above definitions and results may essentially be copied (and used in a
proof by induction). The idea is to view a covering as an n-dimensional object
rather than as an arrow between (n — 1)-dimensional objects. This improves upon
a similar result in [32], valid for abelianisation in semi-abelian categories. Recall
the introduction to Section Bl where we explain what happens for (one-dimensional)
T'g-coverings:

Ezxample 7.1. A discrete fibration of order 2 is the same thing as a pullback square
of 1-fold extensions in %y. By definition then, an extension « is a covering if and
only if there is a span of discrete fibrations § «— 7 — a where [ is a primitive
T'g-covering: an extension in Z.

We fix a level n > 2 and view the n-fold extensions in the given tower of Galois
structures above I'y as the objects of study. Discrete fibrations are specific morph-
isms of such:

Definition 7.2. An (n + 1)-cubical extension « in % is a discrete fibration (of
order n + 1) when it is a limit cube—more precisely, the cone out of the initial
object a, is a limit of the diagram without «, .

We may consider a discrete fibration of order n + 1 as an arrow between two
n-cubical extensions in n + 1 non-equivalent ways. By making such a choice, the
cube acquires a domain « and a codomain 3. The entire structure is then called a
discrete fibration from o to S.

Ezample 7.3. Any (n + 1)-cubical extension, obtained as a pullback in %,_1 of
two n-fold extensions, is a discrete fibration of order n + 1: this is an instance of
Example

Example 7.4. Example is now mimicked by the fact—which is a reformulation
of Example [[3—that any (n + 1)-cubical extension between discrete fibrations of
order n is a discrete fibration of order n + 1.
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Alternatively, we may choose one of the n + 1 ways an (n + 1)-cube may be seen
as a commutative square whose edges are n-cubes. We then obtain the following
general version of Proposition [5.4]

Proposition 7.5. An (n + 1)-cubical extension is a discrete fibration if and only
if, when viewed as a square of n-cubical extensions—the outer quadrangle in the
diagram

—the induced dashed comparison to the dotted pullback is not just an n-cubical
extension, but a discrete fibration of order n.

Proof. Tt is clear that the outer cube on the right is a limit (n + 1)-cube if and only
if the dashed comparison square, viewed as an n-cube, is a limit. We may use this
as the induction step in a proof by induction of which Proposition [(.4] forms the
base step. (I

We obtain the following generalisation of Corollary .5 and Example

Corollary 7.6. Any composite of two discrete fibrations of order n+ 1, considered
as arrows between n-cubical extensions, is again a discrete fibration. (I

Proposition 7.7. Viewed as (n + 1)-fold extensions (in any direction), discrete
fibrations are pullback-stable: any pullback of a discrete fibration along an (n + 1)-
fold extension is again a discrete fibration. O

Theorem [6.4] can be strengthened as follows. Recall that the theorem character-
ises a I',,_1-covering c as an n-fold extension for which there exists a span of discrete
fibrations b < t — ¢ of order n + 1 where b is a primitive I',_;-covering: it is an
n-fold extension of which the domain b, and codomain b, are in %,,_1. We now
add to this, that any (n + 1)-fold extension «: ¢ — ¢’ between such I';,_1-coverings
induces a morphism of spans as in Diagram (7)) below, which happens to be a
span 8 «— 7 — « of discrete fibrations of order n + 1.

Note that « is an extension in 9,41, so that it is automatically a I',,-covering.
Hence, Theorem already yields a span of discrete fibrations 8 «— 7 — «; how-
ever, here 8 is merely again in %B,,1. (We could actually take identity discrete
fibrations.) In Lemma [T.8 the obtained span is of a different nature: it yields an
(n + 1)-fold extension 8 between two primitive I';,_1-coverings b and b'.

Lemma 7.8. If ¢ and ¢ are T';,_1-coverings (objects of %,) and a: ¢ — ¢ is an
(n + 1)-fold extension between those, then
- an (n + 1)-fold extension between trivial T'y,_1-coverings 7: t — t', and
- an (n+1)-fold extension B: b — b between primitive T',,_1-coverings b and
b, which are n-fold extensions whose domains (b: and b.) and codomains

(b, and b’ ) are objects of HBy_1
exist, together with (horizontal) discrete fibrations

b<—t——c

1

V<—t ——¢
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of order n + 1 between them.

Proof. All of the constructions in the first part of the proof of Theorem [6.4] may
be extended to ((n + 1)-cubic) extensions between coverings by taking appropriate
pullbacks when needed. ([l

Remark 7.9. Shifting the point of view in Lemma[7.8 from « being a morphism to «
being an object, say of dimension n, the statement becomes: Considering an object
« which is a primitive I';,_;-covering, a span of discrete fibrations f «— 7 — a of
order n + 1 exists where [ is an extension between two I';,,_s-coverings. We thus
manage to connect, via a span of discrete fibrations, any primitive covering to an
extension between primitive coverings of a lower order. Knowing that any covering
is connected, via a span of discrete fibrations, to a primitive covering, by induction
we can connect any n-fold covering, via a zigzag of discrete fibrations—see the proof
of Theorem [T.I3to an n-cubical diagram in the base category %,. We are now
going to use these ideas to characterise coverings in the absolute, symmetrical way
we are pursuing.

Definition 7.10. An n-cubical extension 7 in %p is called an (n-fold) symmet-
rically trivial covering when a discrete fibration 7 — 3 exists whose codomain
[ is an n-fold extension in %.

Lemma 7.11. An n-fold symmetrically trivial covering is a trivial I',,_1-covering,
in whichever way this n-cube is considered as an arrow between (n — 1)-cubical
extensions.

Proof. This adds an element of induction to the proof of Lemma Replace
any pullback in the diagram there with a discrete fibration of the appropriate or-
der, while s and t are I';,_o-coverings. This forms the induction step of a proof
by downwards induction on n, where the base step is Lemma [6.2] applied to the
reflection of €,,_2 to AB,,_o. [l

Definition 7.12. An n-cubical extension « is called an (n-fold) symmetric cov-
ering when a discrete fibration 7 — « exists whose domain 7 is a symmetrically
trivial covering.

Theorem 7.13. For each n = 2, an n-fold extension « is a I'y_1-covering if and
only if it is a symmetric covering. More precisely, o is a I'y,_1-covering exactly
when there exists a span of discrete fibrations B «— T — « of order n+ 1 where 3 is
an n-cubical extension in By. Hence, the concept of a higher covering is symmetric:
it does not depend on the way the n-cube is considered as an arrow between (n—1)-
cubes.

Proof. Let a be a I',_j-covering. As in Remark [[.9 we apply Lemma [T.§] re-
peatedly, in order to obtain a span of discrete fibrations f < 7 — a where [ is an
n-cubical extension in %,. We first obtain a span (3, < 7, — «, = a where 3, is
a primitive I';,_1-covering (Theorem [6.4]). Next, Lemma [T.8] gives us a span

ﬂnfl <~ 7;171 — On_-1 = /Bn
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where (,_1 is an n-fold extension between two primitive I',,_o-coverings. We pull
back

Tn—1
Tn—1 Tn
Bn—l Up—1 = Bn ap =«

and compose to find the span 8,—1 < 7,—1 — «a: note that here we use Proposi-
tion [[7l We repeat this process until we find 8 = 1, an n-cubical extension in %,
together with an n-cubical extension 7 = 71 and appropriate discrete fibrations
B —T—>a.

The converse is an obvious variation on the second part of the proof of The-
orem [6.4] with Lemma replaced by Lemma [Z.11] O
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