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A pullback diagram in the coarse category
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Abstract

This paper studies the asymptotic product of two metric spaces. It is well defined if one

of the spaces is visual or if both spaces are geodesic. In this case the asymptotic product is

the pullback of a limit diagram in the coarse category. Using this product construction we

can define a homotopy theory on coarse metric spaces in a natural way. We prove that all

finite colimits exist in the coarse category.
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0 Introduction

The area of coarse geometry studies metric spaces as geometric objects from an asymptotic
viewpoint. Key results in this area include Gromov’s result on groups of polynomial growth
[Gro81] and Yu’s result on the Novikov conjecture [Yu98].

The coarse category1 is not equipped with a faithful functor to the category of sets and is
therefore not concrete. Nonetheless finite coproducts exist in the coarse category [Wei16], [Har20].
They can be characterized as coarse covers in which every two elements are coarsely disjoint.
Most boundaries on coarse spaces preserve finite coproducts [Wei16], [Har19b], [Roe03], [Har19a].

∗Department of Mathematics Institute for Algebra and Geometry, Karlsruhe Institute of Technology, Germany
1The coarse category consists of metric spaces as objects and coarse maps modulo close as morphisms. We use

the convention that metrics only take finite values.
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0 INTRODUCTION Elisa Hartmann

Conversely products do not exist in the coarse category. In fact the coarse category does
not even have a final object. The coarse product of two coarse spaces X,Y is the product of
sets X × Y equipped with the pullback coarse structure from X,Y and the projection maps.
This way one can define a natural coarse structure on the product, but the projections are not
coarse maps. Thus although the coarse product is well defined up to coarse equivalence it is not
a product in the strict category sense.

Now we introduce a pullback diagram in the coarse category, the limit of which is called
the asymptotic product. The coarse version of the point, R≥0 the non-negative real numbers,
is unfortunately not a final object in the coarse category. Nonetheless we look at a pullback
diagram of metric spaces

Y

d(·,y0)

��

X
d(·,x0)

// R≥0.

Here x0 ∈ X, y0 ∈ Y are fixed points. The pullback of this diagram is called X ∗ Y . It exists if
the spaces X,Y are nice enough as studied in Theorem 14. Indeed we only need both X,Y to
be geodesic or if X is not geodesic Y to be visual.

If X,Y are hyperbolic proper geodesic metric spaces then X ∗Y is hyperbolic geodesic proper
by [FS03], therefore its Gromov boundary ∂(X ∗ Y ) is defined. The paper [FS03] shows there is
a homeomorphism

∂(X ∗ Y ) = ∂(X) × ∂(Y ).

Therefore the asymptotic product is indeed a product on the Gromov boundary. Thus the
terminology product is justified.

Equipped with the asymptotic product we can define a coarse version of homotopy. Our
coarse version of an interval is denoted by I, any visual metric space might be a candidate for
such a space, we chose I = R≥0 × R≥0, the first quadrant in R

2. Then a coarse homotopy is
defined to be a coarse map

H : X ∗ I → Y.

Here ∗ refers to the asymptotic product and X,Y are metric spaces. There are other notions of
homotopy on metric spaces which were studied in the coarse setting. The Lipschitz homotopy is
due to Gromov [Gro93]. It was shown by Roe that controlled operator K-theory is a Lipschitz
homotopy invariant [Roe96]. Moreover Lipschitz homotopy has been used by Yu in the proof of
the coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert
space [Yu00]. Other notions of coarse homotopy appeared in [Mit01,Wul20,MNS20,BE20,Saw05].
In particular the homotopy theories introduced in [MNS20] will be shown to be equivalent to our
homotopy theory if the parameter function in [MNS20] is chosen appropriately. This homotopy
theory in turn is equivalent to the homotopy theory introduced in [BE20] if the two parameter
functions in [BE20] are chosen appropriately.

The class of flasque metric spaces erases many coarse cohomology and homology theories.
Theorem 28 shows that a flasque metric space X is coarsely homotopy equivalent to the product
X × Z≥0.

The last section will be about colimits in the coarse category. The coproduct of two metric
spaces is known to exist and appears in many isomorphic forms. We show the coequalizer of two
coarse maps with common domain and codomain exists. This result provides a proof that finite
colimits exist in the coarse category.
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1 METRIC SPACES Elisa Hartmann

1 Metric Spaces

Definition 1. Let (X, d) be a metric space. Then the coarse structure associated to d on X
consists of those subsets E ⊆ X2 for which

sup
(x,y)∈E

d(x, y) < ∞.

We call an element of the coarse structure an entourage. In what follows we assume the metric
d to be finite for every (x, y) ∈ X2.

Definition 2. A map f : X → Y between metric spaces is called coarse if

• E ⊆ X2 being an entourage implies that f×2(E) is an entourage (coarsely uniform);

• and if A ⊆ Y is bounded then f−1(A) is bounded (coarsely proper).

Two maps f, g : X → Y between metric spaces are called close if

f × g(∆X)

is an entourage in Y . Here ∆X denotes the diagonal in X2.

Notation 3. If S ⊆ X ×X,A ⊆ X are subsets we define

S[A] := {x ∈ X | ∃y ∈ A : (x, y) ∈ E}.

If S, T ⊆ X ×X then

S ◦ T := {(x, z) ∈ X ×X | ∃y ∈ X : (x, y) ∈ S, (y, z) ∈ T }

If R ≥ 0 we define
∆R := {(x, y) ∈ X ×X | d(x, y) ≤ R}.

Notation 4. A map f : X → Y between metric spaces is called

• coarsely surjective if there is an entourage E ⊆ Y 2 such that

E[im f ] = Y ;

• coarsely injective if for every entourage F ⊆ Y 2 the set (f×2)−1(F ) is an entourage in X .

Remark 5. We study metric spaces up to coarse equivalence. A coarse map f : X → Y between
metric spaces is a coarse equivalence if

• There is a coarse map g : Y → X such that f ◦ g is close to idY and g ◦ f is close to idX .

• or equivalently if f is both coarsely injective and coarsely surjective.

The coarse category consists of coarse (metric) spaces as objects and coarse maps modulo close
as morphisms. Coarse equivalences are the isomorphisms in this category.

The following notion is based on the notion of ω-excisive [HRY93].

Definition 6. If X is a metric space and A,B ⊆ X are subsets then (A,B) are called a coarsely
excisive pair if A ∪B = X and for each R > 0 there is some S > 0 such that

∆R[A] ∩ ∆R[B] ⊆ ∆S [A ∩B].

If X,Y are two metric spaces then unless otherwise stated we define the metric on X × Y to
be

d((x1, y1), (x2, y2)) = max(d(x1, x2), d(y1, y2))

for every (x1, y1), (x2, y2) ∈ X × Y .
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2 COARSE RAYS AND QUASIGEODESIC RAYS Elisa Hartmann

2 Coarse rays and quasigeodesic rays

In [KP08] every metric space that is coarsely equivalent to Z≥0 is called a coarse ray. We keep
with that notation: If X is a metric space a sequence (xi)i ⊆ X is called a coarse ray in X if
there is a coarsely injective coarse map ρ : Z≥0 → X such that xi = ρ(i) for every i.

Recall [Roe03, Definition 6.16]:

Definition 7. Let X be a metric space and C ≥ 0, D > 0 be constants. A (D,C)-quasigeodesic
ray in X is a map ρ : Z≥0 → X such that

D−1|n−m| − C ≤ d(ρ(n), ρ(m)) ≤ D|n−m| + C

for every n,m ∈ Z≥0.

Definition 8. A geodesic metric space X is called large-scale visual if there exist x0 ∈ X ,
C ≥ 0, D > 0 such that for every y ∈ X there exists a (D,C)-quasigeodesic ray ρ starting at x0

with y ∈ ρ(Z≥0).
If x0 ∈ X then X is called visual from x0 if it is geodesic and every geodesic segment starting

at x0 can be extended to a geodesic ray starting at x0. The space X is called visual if it is visual
from x0 for some point x0 ∈ X .

Remark 9. Recall [CdlH16, Definition 3.A.8.a)]: A map ϕ : X → Y between metric spaces is
called large-scale Lipschitz if there exist constants D > 0, C ≥ 0 such that

d(ϕ(x), ϕ(x′)) ≤ Dd(x, x′) + C

for every x, x′ ∈ X . Note that a coarse map between geodesic metric spaces is already large-scale
Lipschitz and every coarse equivalence between geodesic metric spaces is a quasi-isometry.

Lemma 10. On geodesic metric spaces the property large-scale visual is coarse.

Proof. Let α : X → Y be a coarse equivalence between geodesic metric spaces with X large-scale
visual. We prove Y is visual. Suppose C′ ≥ 0, D′ > 0 are constants and x0 ∈ X is a point
such that every point x ∈ X is on a (D′, C′)-quasigeodesic ray joining x0 to x. Suppose α is
K-coarsely surjective and a (D′′, C′′)-quasi-isometric embedding.

Let y ∈ Y be a point. Then there exists x ∈ X with d(α(x), y) < K. And there exists a
(D′, C′)-quasigeodesic ray ρ in X starting at x0 with x = ρ(n) for some n ∈ N. Then α ◦ ρ is a
(D′′D′, D′′C′ + C′′)-quasigeodesic ray starting at α(x0) with α(x) = α ◦ ρ(n). Define

ρ′ : Z≥0 → Y

i 7→











α ◦ ρ(i) i < n

y i = n

α ◦ ρ(i) i > n.

Now

d(ρ′(i), ρ′(j)) ≤ d(α ◦ ρ(i), α ◦ ρ(j))

≤ D′′d(ρ(i), ρ(j)) + C′′ +K

≤ D′D′′|i− j| + C′ + C′′ +K

4



3 ASYMPTOTIC PRODUCT Elisa Hartmann

and in the other direction

d(ρ′(i), ρ′(j)) ≥ d(α ◦ ρ(i), α ◦ (j)) −K

≥ D′′−1d(ρ(i), ρ(j)) − C′′ −K

≥ D′−1D′′−1d(ρ(i), ρ(j)) − C′ − C′′ −K.

Thus we have shown ρ′ is a (D′′D′, C′ + C′′ + K)-quasigeodesic ray starting at α(x0) with
y ∈ ρ′(Z≥0).

3 Asymptotic product

Lemma 11. If X is a metric space, fix a point x0 ∈ X, then

d(x0, ·) : X → R≥0

x 7→ d(x0, x)

is a coarse map.

Proof. We show d(x0, ·) is coarsely uniform: Let R ≥ 0 be a number. If d(x, y) ≤ R then

|d(x0, x) − d(x0, y)| =

{

d(x0, x) − d(x0, y) d(x0, x) ≥ d(x0, y)

d(x0, y) − d(x0, x) d(x0, y) > d(x0, x)

≤ d(x, y)

≤ R

Now we show d(x0, ·) is coarsely proper. If B ⊆ R≥0 is a bounded set then there is some R ≥ 0
with B ⊆ B(0, R). Then

(d(x0, ·))
−1(B) ⊆ d(x0, ·)

−1(B(0, R))

= B(x0, R)

is bounded.

Definition 12. (asymptotic product) Let X,Y be metric spaces. Fix points x0 ∈ X, y0 ∈ Y
and a constant R ≥ 0. The asymptotic product2 with respect to x0, y0, R is defined to be

(X,x0) ∗R (Y, y0) = {(x, y) ∈ X × Y : |d(x0, x) − d(y0, y)| ≤ R}

with the subspace coarse structure from X × Y .

Proposition 13. Let X,Y be metric spaces, let x0, x
′
0 ∈ X, y0, y

′
0 ∈ Y be points and let R,R′ ≥ 0

be numbers. If

1. both X,Y are geodesic or

2. Y is visual from y0, y
′
0

then (X,x0) ∗R (Y, y0) and (X,x′
0) ∗R′ (Y, y′

0) are coarsely equivalent.

2We guess this notion first appeared in [Dra00, chapter 3]
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3 ASYMPTOTIC PRODUCT Elisa Hartmann

In case X,Y have such nice properties we write short X ∗ Y for (X,x0) ∗R (Y, y0). This
definition is well defined up to coarse equivalence.

Proof. Define
R′′ = d(x0, x

′
0) + d(y0, y

′
0) +R

If (x, y) ∈ (X,x′
0) ∗R (Y, y′

0) then

|d(x0, x) − d(y0, y)| ≤ |d(x0, x) − d(x′
0, x)| + |d(x′

0, x) − d(y′
0, y)| + |d(y′

0, y) − d(y0, y)|

≤ d(x0, x
′
0) +R+ d(y, y′

0)

= R′′

This implies (X,x′
0) ∗R (Y, y′

0) ⊆ (X,x0) ∗R′′ (Y, y0). In the same way we can show there is
some R′′′ such that (X,x0) ∗R′′ (Y, y0) ⊆ (X,x′

0) ∗R′′′ (Y, y0)/ Thus we have shown that X ∗ Y
is independent of the choice of points if X ∗ Y is independent of the choice of constant. We are
going to show now the second assertion.

Now we can assume R′ is larger than R. We show that the inclusion

i : (X,x0) ∗R (Y, y0) → (X,x0) ∗R′ (Y, y0)

is a coarse equivalence. It is a coarsely injective coarse map obviously.
Suppose both X,Y are geodesic. We show i is coarsely surjective. If (x, y) ∈ (X,x0)∗R′ (Y, y0)

is not in the image of i then
R < |d(x0, x) − d(y0, y)| ≤ R′.

Assume without loss of generality that d(x0, x) > d(y0, y). Choose x′ ∈ x0x with d(x′, x0) =
d(y, y0). Here x0x denotes the geodesic segment joining x0 to x. Then

d(x, x′) = d(x, x0) − d(x′, x0)

= d(x, x0) − d(y, y0)

≤ R′.

Since (x′, y) ∈ (X,x0) ∗0 (Y, y0) and d((x, y), (x′, y)) ≤ R′ the map i is R′-coarsely surjective.
In case Y is visual we can proceed similarly. If (x, y) ∈ (X,x0) ∗R′ (Y, y0) is not in the image

of i there is some point y′ on the geodesic ray extending y0y such that d(x0, x) = d(y0, y
′). Then

d(y, y′) ≤ R′ as before. Thus i is R′-coarsely surjective.

We denote by pX : X ∗ Y → X the projection to the first factor and by pY : X ∗ Y → Y the
projection to the second factor. Note that both pX , pY are coarse maps.

Theorem 14. Let X,Y be metric spaces with both X,Y geodesic or Y visual. Then

X ∗ Y

pX

��

pY
// Y

d(·,y0)

��

X
d(·,x0)

// R+

is a limit diagram in the coarse category. Note that we only need the diagram to commute up to
closeness.

6



3 ASYMPTOTIC PRODUCT Elisa Hartmann

Proof. Let f : Z → X and g : Z → Y be two coarse maps from a metric space Z such that there
is some R ≥ 0 such that

|d(f(z), x0) − d(g(z), y0)| ≤ R.

Suppose both X,Y are geodesic. For every z ∈ Z if d(f(z), x0) ≥ d(g(z), y0) there is f̄(z) ∈ Y
with

1. d(f̄(z), x0) = d(g(z), y0)

2. d(f̄(z), f(z)) ≤ R

or if d(f(z), x0) < d(g(z), y0) there is ḡ(z) ∈ Y with

1. d(f(z), x0) = d(ḡ(z), y0)

2. d(ḡ(z), g(z)) ≤ R.

Define

f̄ : Z → X

z 7→

{

f(z) d(f(z), x0) < d(g(z), y0)

f̄(z) d(f(z), x0) ≥ d(g(z), y0).

Then f̄ is close to f . Define ḡ : Z → Y in a similar way. Then ḡ is close to g. If X is not geodesic
but Y is visual we can define ḡ : Z → Y in a similar way and choose f̄ = f . Then define

〈f, g〉 : Z → X ∗ Y

z 7→ (f̄(z), ḡ(z)).

This map is a coarse map: We show 〈f, g〉 is coarsely uniform: If E ⊆ Z2 is an entourage then
f×2(E) ⊆ X2, g×2(E) ⊆ Y 2 are entourages. Since ḡ is close to g and f̄ is close to f the sets
ḡ×2(E), ḡ×2(E) are entourages. Then 〈f, g〉×2(E) ⊆ f̄×2(E) × ḡ×2(E) is an entourage. We show
〈f, g〉 is coarsely proper: If B ⊆ X ∗ Y is bounded then pX(B), pY (B) are bounded. Then

〈f, g〉−1(B) ⊆ f̄−1 ◦ pX(B) ∪ ḡ−1 ◦ pY (B)

is bounded since f, g and thus f̄ , ḡ are coarsely proper. Also pX ◦ 〈f, g〉 ∼ f and pY ◦ 〈f, g〉 ∼ g.
Suppose there is another coarse map h : Z → (X,x0) ∗0 (Y, y0) with the property that

pX ◦ h ∼ f and pY ◦ h ∼ g. Then

〈f, g〉 ∼ 〈pX ◦ h, pY ◦ h〉

= h

are close.

Remark 15. For every metric space X we have X = (X,x0) ∗0 (R≥0, 0). Thus R≥0 plays the role
of a point.

Lemma 16. If X,Y are proper geodesic metric spaces then X ∗ Y is a proper metric space.

Proof. We show that X × Y is a proper metric space. If B ⊆ X × Y is bounded then the
projections BX of B to X and BY of B to Y are bounded. Since X,Y are proper the sets
BX , BY are relatively compact. Then

B ⊆ BX ×BY

is relatively compact. Thus X × Y is proper. Since X ∗ Y ⊆ X × Y is a closed subspace the
result follows.

7



3 ASYMPTOTIC PRODUCT Elisa Hartmann

Since there is no metric space which is final in the coarse category we can repair this by
defining a subcategory of the slice category over R≥0. We chose exactly one morphism for each
object X , namely d(·, x0) : X → R≥0. For X = R≥0 and x0 = 0 this is the identity. Thus the
object R≥0 will play the role of the final object.

Definition 17. A coarse map α : X → Y between metric spaces is called weighted if d(x0, ·)
and d(y0, ·) ◦ α are close for some x0 ∈ X, y0 ∈ Y and hence for all choices of basepoint. The
weighted coarse category consists of metric spaces as objects and weighted coarse maps modulo
close as morphism.

This definition makes sense since the composition of two weighted coarse maps is weighted
coarse. Not every coarse equivalence is weighted though. Thus the weighted coarse category
may not have the same isomorphism classes as the coarse category.

Lemma 18. In the weighted coarse category the asymptotic product, if well defined, is a product
in the category theoretic sense. The space R≥0 is a final object in the weighted coarse category.

Proof. We first prove the second statement. If X is a metric space then d(x0, ·) : X → R≥0 is
weighted coarse. If α : X → R≥0 is another weighted coarse map then α = α ◦ d(0, ·) is close to
d(x0, ·).

Now we prove the first statement. Suppose X ∗ Y is the pullback of d(x0, ·), d(y0, ·) in the
coarse category. Then in particular the projections pX , pY are weighted coarse. Namely if
(x, y) ∈ (X,x0) ∗R (Y, y0) then

|d(·, (x0, y0))(x, y) − d(·, x0) ◦ pX(x, y)| = | max(d(x, x0), d(y, y0)) − d(x, x0)|

≤ R.

Thus pX is weighted. The proof for pY is similar. If Z is another metric space with weighted
coarse maps α : Z → X, β : Z → Y then

d(x0, ·) ◦ α ∼ d(z0, ·) ∼ d(y0, ·) ◦ β

Thus the conditions of Theorem 14 are satisfied. This implies that there exists a unique coarse
map h : Z → X ∗Y such that pX ◦h is close to α and pY ◦h is close to β. The map h is weighted
since

d((x0, y0), ·) ◦ h ∼ d(x0, ·) ◦ pX ◦ h ∼ d(x0, ·) ◦ α ∼ d(z0, ·).

Corollary 19. If there are weighted coarse equivalences α : X → X ′, β : Y → Y ′ between
geodesic metric spaces then the asymptotic product X ∗ Y is coarsely equivalent to X ′ ∗ Y ′.

If α : X → X ′ is a weighted coarse equivalence between metric spaces and β : Y → Y ′ is a
weighted coarse equivalence between visual metric spaces then there exists a coarse equivalence
X ∗ Y → X ′ ∗ Y ′.

Proof. If a map is weighted coarse and a coarse equivalence at the same time then it is an
isomorphism in the weighted coarse category: Namely if α′ is the coarse inverse to α then α′ is
weighted since

|d(α′(x′), x0) − d(x′, x′
0)| ≤ |d(α′(x′), x0) − d(α ◦ α′(x′), x′

0)| + |d(α ◦ α′(x′), x′
0) − d(x′, x′

0)|

is bounded. Conversely if a weighted coarse map is an isomorphism then it is in particular a
coarse equivalence.

By Lemma 18 the asymptotic product is a product in the weighted coarse category. Since
products are well defined up to isomorphism the result follows.

8



4 COARSE HOMOTOPY Elisa Hartmann

There are properties on metric spaces which are invariant under coarse equivalence. In
particular Property A [Wil09] and Property C [vMM84] have been widely studied.

Lemma 20. Let X,Y be metric spaces.

• If X,Y have finite asymptotic dimension so does X ∗ Y .

• If X,Y have Property A so does X ∗ Y .

• If X,Y have Property C so does X ∗ Y .

Proof. Suppose X,Y have finite asymptotic dimension. Then asdim(X × Y ) < ∞ by [Gra06,
Proposition 3.33]. By [Gra06, Corollary 3.23] the subspace X∗Y has finite asymptotic dimension.

Suppose X,Y have Property A. By [Law19, Theorem I.46] the product X × Y has Property
A. By [Law19, Proposition I.34] the space X ∗ Y has Property A.

Suppose X,Y have Property C. By [Law19, Theorem I.47] the space X × Y has Property C.
By [Law19, Proposition I.29] the asymptotic product X ∗ Y has property C.

4 Coarse homotopy

We equip I := R≥0 × R≥0 with the Manhattan metric. Namely

d((s0, t0), (s1, t1)) = |s0 − s1| + |t0 − t1|

for every (s0, t0), (s1, t1) ∈ I.

Lemma 21. The space I is visual from (0, 0).

Proof. If (x0, y0), (x1, y1) ∈ I are two points they can be connected by

γ : [0, 1] → I

t 7→ (x0 + t(x1 − x0), y0 + t(y1 − y0))

If t, s ∈ [0, 1] then

d(γ(t), γ(s)) = |(x1 − x0)(t− s)| + |(y1 − y0)(t− s)|

= (|x1 − x0| + |y1 − y0|)|t− s|.

Thus γ is a geodesic. This proves that I is geodesic.
If γ : [a, b] → I is any geodesic we prove: γ(t)1 is an increasing or decreasing function and

γ(t)2 is an increasing or decreasing function. Assume the opposite, there are a ≤ t1 < t2 < t3 ≤ b
with γ(t1)1 = γ(t3)1 < γ(t2)1. We have

v|t3 − t1| = d(γ(t1), γ(t3)) = |γ(t1)2 − γ(t3)2|

and

v|t2 − t1/3| = d(γ(t2), γ(t1/3)) = |γ(t2)1 − γ(t1/3)1| + |γ(t2)2 − γ(t1/3)2| > |γ(t2)2 − γ(t1/3)2|

Then

v|t3 − t1| = |γ(t1)2 − γ(t3)2|

≤ |γ(t1)2 − γ(t2)2| + |γ(t2)2 − γ(t3)2|

< v|t2 − t1| + v|t2 − t3|

= v|t1 − t3|

9



4 COARSE HOMOTOPY Elisa Hartmann

is a contradiction.
Now suppose γ : [a, b] → I is a geodesic joining (0, 0) to (x, y) with speed v. Define

γ̃ : [a,∞) → I

t 7→

{

γ(t) t ∈ [a, b]

(x+ v(t− b), y) t ∈ [b,∞).

Clearly γ̃ is a composition of two geodesics. Since 0 is minimal in both factors of I the function
γ is increasing in both factors. The same holds for the second geodesic. Since they increase with
the same speed they glue at (x, y) to a geodesic ray through (x, y) starting at (0, 0).

Definition 22. Let X,Y be metric spaces.

• A coarse homotopy is a coarse map h : X ∗ I → Y .

• Define ι0 : X → X ∗ I to be the map x 7→ (x, (d(x, x0), 0) and ι1 : X → X ∗ I to be the
map x 7→ (x, (0, d(x, x0)). Two coarse maps α, β : X → Y are coarsely homotopic if there
is a coarse homotopy h : X ∗ I → Y with h ◦ ι0 close to α and h ◦ ι1 close to β.

• A coarse map α : X → Y is called a coarse homotopy equivalence if there is a coarse map
β : Y → X such that α ◦ β is coarsely homotopic to idY and β ◦ α is coarsely homotopic
to idX .

• Two coarse spacesX,Y are called coarsely homotopy equivalent if there is a coarse homotopy
equivalence α : X → Y .

Lemma 23. This definition of coarse homotopy on coarse maps does not depend on the choice
of R ≥ 0 in (X,x0) ∗R (I, (0, 0)) neither does it depend on the choice of basepoint x0 ∈ X.

Proof. If R ≥ 0 then there exists a coarse equivalence ψ : (X,x0) ∗R (I, (0, 0)) → (X,x0) ∗0

(I, (0, 0)) which leaves the subspace (X,x0) ∗0 (I, (0, 0)) ⊆ (X,x0) ∗R (I, (0, 0)) invariant. Thus
a coarse homotopy h : (X,x0) ∗0 (I, (0, 0)) → Y joining h ◦ ι0 to h ◦ ι1 gives rise to a coarse
homotopy h ◦ ψ : (X,x0) ∗R (I, (0, 0)) → Y joining h ◦ ψ ◦ ι0 = h ◦ ι0 to h ◦ ψ ◦ ι1 = h ◦ ι1.

Composition with the inclusion ι : (X,x0) ∗0 (I, (0, 0)) → (X,x0) ∗R (I, (0, 0)) transforms
a coarse homotopy h : (X,x0) ∗R (I, (0, 0)) → Y joining h ◦ ι0 to h ◦ ι1 to a coarse homotopy
h ◦ ι : X ∗0 I → Y joining h ◦ ι ◦ ι0 = h ◦ ι0 to h ◦ ι ◦ ι1 = h ◦ ι1.

If x1 is another basepoint then there exists R ≥ 0 such that (X,x0) ∗R (I, (0, 0)) contains
both (X,x0) ∗0 (I, (0, 0)) and (X,x1) ∗0 (I, (0, 0)). Then the maps ι0 : x 7→ (x, (d(x, x0), 0)) and
ι′0 : x 7→ (x, (d(x, x1), 0)) are close to each other and the maps ι1 : x 7→ (x, (0, d(x, x0))) and
ι′1 : x 7→ (x, (0, d(x, x1))) are close to each other. If h : (X,x1) ∗0 (I, (0, 0)) → Y is a coarse
homotopy joining h ◦ ι′0 to h ◦ ι′1 then h ◦ ψ : (X,x0) ∗R (I, (0, 0)) → Y is a coarse homotopy
joining h ◦ ψ ◦ ι0 ∼ h ◦ ι′0 to h ◦ ψ ◦ ι1 ∼ h ◦ ι′1.

To prove that two coarse homotopies can be composed we need an auxilary lemma:

Lemma 24. Let X,Y be metric spaces. If A,B ⊆ X are a coarsely excisive pair and α1 :
A → Y, α2 : B → Y are coarse maps with α1|A∩B = α2|A∩B then they glue to a coarse map
β : A ∪B → Y .

Proof. We define a map

β : A ∪B → Y

x 7→

{

α1(x) x ∈ A

α2(x) x ∈ B.

10
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It remains to show that β is coarse. Let R ≥ 0 be a number. Then there exists S ≥ 0 with

∆R[A] ∩ ∆R[B] ⊆ ∆S [A ∩B].

If (x, y) ∈ ∆R∩(A×B) then x ∈ A∩∆R[B]. Then x ∈ A∩∆S(A∩B). Thus there exists u ∈ A∩B
with (x, u) ∈ ∆S∩(A×(A∩B)). The triangle inequality tells us that (u, y) ∈ ∆R+S∩((A∩B)×B).
Thus (x, y) ∈ (∆S ∩ (A× (A ∩B))) ◦ (∆R+S ∩ ((A ∩B) ×B)). In a similar way we show

∆R ∩ (B ×A) ⊆ (∆S ∩ (B × (A ∩B))) ◦ (∆R+S ∩ ((A ∩B) ×A))

Now we can show

β×2(∆R) = β×2(∆R ∩ (A×A)) ∪ β×2(∆R ∩ (A×B)) ∪ β×2(∆R ∩ (B ×A))

∪ β×2(∆R ∩ (B ×B))

⊆ β×2(∆R ∩ (A×A)) ∪ (β×2(∆S ∩ (A× (A ∩B))) ◦ β×2(∆R+S ∩ ((A ∩B) ×B)))

∪ (β×2(∆S ∩ (B × (A ∩B))) ◦ β×2(∆R+S ∩ ((A ∩B) ×A))) ∪ β×2(∆R ∩ (B ×B))

= α×2
1 (∆R ∩ (A×A)) ∪ (α×2

1 (∆S ∩ (A× (A ∩B))) ◦ α×2
2 (∆R+S ∩ ((A ∩B) ×B)))

∪ (α×2
2 (∆S ∩ (B × (A ∩B))) ◦ α×2

1 (∆R+S ∩ ((A ∩B) ×A))) ∪ α×2
2 (∆R ∩ (B ×B))

is an entourage. Thus we have shown that β is coarsely uniform. If B ⊆ Y is a bounded set then
β−1(B) = α−1

1 (B) ∪ α−1
2 (B) is bounded. Thus β is coarsely proper. This way we have shown

that β is a coarse map.

Lemma 25. Let X,Y be metric spaces. Coarsely homotopic on maps X → Y is an equivalence
relation.

Proof. That coarsely homotopic is reflexive and symmetric is obvious. We prove transitive. Let
h1 : X ∗ I → Y be a coarse homotopy between α and β and let h2 : X ∗ I → Y be a coarse
homotopy between β and γ. We define

I1 := {(s, t) ∈ I : s ≥ t} and I2 := {(s, t) ∈ I : t ≥ s}.

Moreover we define maps

ϕ1 : I1 → I

(s, t) 7→
s+ t

s
(s− t, t)

ϕ2 : I2 → I

(s, t) 7→
s+ t

t
(s, t− s)

that are easily seen to be coarse. We define a map

h : X ∗ I → Y

(x, (s, t)) 7→

{

h1(x, ϕ1(s, t)) s ≥ t

h2(x, ϕ2(s, t)) t ≥ s
.

The composition with ϕ1, ϕ2 makes sense since

d(ϕ1(s, t), (0, 0)) =
s+ t

s
(|s− t| + |t|)

= s+ t

= d((s, t), (0, 0)).

11
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A similar calculation shows ϕ2 does not change the distance to (0, 0). The pair X ∗ I1, X ∗ I2 is
coarsely excisive since

∆R[X ∗ I1] ∩ ∆R[X ∗ I2] = {(x, (s, t)) ∈ X ∗ I : s+R ≥ t, t+R ≥ s, s+ t = d(x, x0)}

= {(x, (s, t)) ∈ X ∗ I : |
d(x, x0)

2
− t| ≤ R/2, |

d(x, x0)

2
− s| ≤ R/2,

s+ t = d(x, x0)}

⊆ ∆R/2[{(x, (s, t)) ∈ X ∗ I : s = t =
d(x, x0)

2
}

= ∆R/2[(X ∗ I1) ∩ (X ∗ I2)]

for every R ≥ 0. If (x, (d(x, x0)/2, d(x, x0)/2)) ∈ (X ∗ I1) ∩ (X ∗ I2) then

h1(x, ϕ1(d(x, x0)/2, d(x, x0)/2)) = h1(x, (0, d(x, x0)))

= β(x)

= h2(x, (d(x, x0), 0))

= h2(x, ϕ2(d(x, x0)/2, d(x, x0)/2)).

Thus Lemma 24 shows that h is a coarse map. We have

h(x, (d(x, x0), 0)) = h1(x, ϕ1(d(x0, x), 0))

= h1(x, (d(x, x0), 0))

= α(x)

and

h(x, (0, d(x, x0))) = h2(x, ϕ2(0, d(x, x0)))

= h2(x, (0, d(x, x0)))

= γ(x).

Thus h is a coarse homotopy connecting α and γ.

If two coarse maps α, β : X → Y between metric spaces are close then they are obviously
coarsely homotopic. Just take the constant homotopy. Note that in practice it is easier to show
that two maps are close than to construct a coarse homotopy between them.

There are other notions of coarse homotopy which are closely related to the one we just
introduced.

We recall the coarse homotopy theory studied in [MNS20]:
If p : X → R≥0 is a coarse map then

IpX := {(x, t) ∈ X × R≥0 | t ≤ p(x) + 1}

is a cone over X . There are inclusions

i0 : X → IpX

x 7→ (x, 0)

i1 : X → IpX

x 7→ (x, p(x) + 1).

Then two coarse maps α, β : X → Y are said to be coarsely homotopic if there exists a coarse
map h : IpX → Y with α = h ◦ i0 and β = h ◦ i1.

In some cases, for example if X is a path-metric space, the coarse homotopy relation on
coarse maps X → Y is independent of the choice of coarse map p. Suppose in what follows that
p = d(x0, ·).

12
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Proposition 26. Two coarse maps α, β : X → Y between metric spaces are coarsely homotopic
in our sense exactly when they are coarsely homotopic according to [MNS20].

Proof. We provide maps

Φ : X ∗ I → IpX

(x, (s, d(x0, x) − s)) 7→ (x, s)

Ψ : IpX → X ∗ I

(x, s) 7→

{

(x, (s, d(x0, x) − s)) s ≤ d(x, x0)

(x, (d(x0, x), 0)) otherwise

We first show Ψ is the coarse inverse to Φ by showing these maps are coarsely uniform and their
composition is close to the identity. Let R ≥ 0 be a number. Then

Φ×2(∆R) = Φ×2{((x, (s, d(x, x0) − s)), (y, (t, d(y, y0)))) ∈ X ∗ I | d(x, y) ≤ R, d(s, t) ≤ R/2}

= {((x, s), (y, t)) ∈ Ip : d(x, y) ≤ R, d(s, t) ≤ R/2}

⊆ ∆R

and

Ψ×2(∆R) = Ψ×2{((x, s), (y, t)) ∈ IpX | d((x, s), (y, t)) ≤ R}

= Ψ×2{((x, s), (y, t)) ∈ IpX | d(x, y) ≤ R, d(s, t) ≤ R}

⊆ {((x, (s, d(x, x0) − s)), (y, (t, d(y, y0) − t))) ∈ X ∗ I | d(x, y) ≤ R, d(s, t) ≤ R}

⊆ ∆2R.

Thus, Φ,Ψ are coarsely uniform. We have Ψ ◦ Φ = idX∗I and

Φ ◦ Ψ(x, s) =

{

(x, s) s ≤ d(x, x0)

(x, d(x, x0)) otherwise

is close to the identity on IpX . Thus Φ,Ψ are coarse inverses. If

ι0 : X → X ∗ I

x 7→ (x, (0, d(x0, x)))

ι1 : X → X ∗ I

x 7→ (x, (d(x0, x), 0))

are the inclusions then

Φ ◦ ι0(x) = Φ(x, (0, d(x, x0))) = (x, 0) = i0(x)

and
Φ ◦ ι1(x) = Φ(x, (d(x, x0), 0)) = (x, d(x, x0))

is close to i1. Likewise

Ψ ◦ i0(x) = Ψ(x, 0) = (x, (0, d(x, x0))) = ι0(x)

and
Ψ ◦ i1(x) = Ψ(x, d(x0, x) + 1) = (x, (d(x, x0), 0)) = ι1(x).

If h : IpX → Y is a coarse homotopy joining α to β then h ◦ Φ : X ∗ I → Y is a coarse homotopy
joining

h ◦ Φ ◦ ι0 = h ◦ i0 = α

13
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to h ◦ Φ ◦ ι1 which is close to h ◦ i1 = β. By definition the map α is coarsely homotopic to β via
h ◦ Φ ◦ ι1.

If g : X ∗ I → Y is a coarse homotopy joining γ to δ then h ◦ Ψ : IpX → Y is a coarse
homotopy joining

h ◦ Ψ ◦ i0 = h ◦ ι0 = γ

to
h ◦ Ψ ◦ i1 = h ◦ ι1 = δ.

5 Acyclic Spaces

There is a class of metric spaces on which most coarse cohomology theories vanish. Let us
translate [Wil13, Definition 3.6] into coarse structure notation:

Definition 27. A metric space X is called flasque if there is a coarse map φ : X → X such that

• φ is close to the identity on X ;

• for every bounded set B ⊆ X there is some NB ∈ N such that

φ◦n(X) ∩B = ∅

for every n > NB.

• For every entourage E the set
⋃

n(φ◦n)×2(E) is an entourage.

Theorem 28. If X is a flasque metric space then there is a coarse homotopy equivalence

Φ : X × Z≥0 → X

(x, i) 7→ φ◦i(x).

Here φ◦0 denotes the identity on X.

Proof. First we prove that Φ is a coarse map. Let R ≥ 0 be a number. If d((x, i), (y, j)) ≤ R
then in particular d(x, y) ≤ R. Then

Φ×2(∆R) ⊆
⋃

n

(φ◦n)×2(∆R)

is an entourage. Thus Φ is coarsely uniform. If B ⊆ X is a bounded set then there exists some
N ∈ N with im(φ◦n) ∩B = ∅ for every n > N . Then

Φ−1(B) ⊆ φ−◦0(B) ∪ · · · ∪ φ−◦N (B)

is bounded. Thus Φ is coarsely proper.
We show that the coarse homotopy inverse to Φ is

i0 : X → X × Z≥0

x 7→ (x, 0).

14
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We obtain Φ ◦ i0 = idX . It remains to show that i0 ◦ Φ and idX×Z≥0
are coarsely homotopic.

Define a map

h : (X × Z≥0) ∗ I → X × Z≥0

((x, i), (s,max(d(x, x0), i) − s)) 7→ (φ◦⌊ŝi⌋(x), ⌊(1 − ŝ)i⌋).

Here ŝ := s
max(d(x,x0),i) denotes the normalized parameter. We observe that h|(X×Z≥0)∗(0×Z≥0) =

idX×Z≥0
and h|(X×Z≥0)∗(Z≥0×0) = i0 ◦ Φ. Now we just need to show that h is a coarse map.

First we show the map h is coarsely uniform: Let R ≥ 0 be a number. If p1 : X × Z≥0 → X
denotes the projection to the first factor and p2 : X × Z≥0 → Z≥0 denotes the projection
to the second factor then h×2(∆R) is an entourage if p×2

1 ◦ h×2(∆R) and p×2
2 ◦ h×2(∆R) are

entourages. If d(((x, i), (s,max(d(x, x0), i) − s)), ((y, j), (t,max(d(y, x0), j) − t))) ≤ R then in
particular d(x, y) ≤ R, |i− j| ≤ R and |s− t| ≤ R. Now

p×2
1 ◦ h×2(∆R) ⊆

⋃

n

(φ◦n)×2(∆R)

is an entourage.

d((p2 ◦ h((x, i), (s, s′)), p2 ◦ h((y, j), (t, t′))) = |⌊(1 − ŝ)i⌋ − ⌊(1 − t̂)j⌋|

≤ |(1 − ŝ)i− (1 − t̂)j| + 2

≤ |i − j| + |ŝi− t̂j| + 2

≤ |i − j| + |ŝi− t̂i| + |t̂i− t̂j| + 2

≤ R +R+R+ 2

Thus p×2
2 ◦ h×2(∆R) is an entourage.

Now we show that h is coarsely proper: Let B ⊆ X × Z≥0 be a bounded subset. We write

B =
⋃

i

Bi × i

which is a finite union. Then for every i there is some Ni such that

φ◦n(X) ∩Bi = ∅

for every n > Ni. The set h−1(B) is bounded if p1 ◦ pX×Z≥0
◦ h−1(B) and p2 ◦ pX×Z≥0

◦ h−1(B)
are bounded. Now

p1 ◦ pX×Z≥0
◦ h−1(B) ⊆

⋃

i

(φ◦−0(Bi) ∪ · · · ∪ φ◦−Ni (Bi))

is bounded in X . If j ∈ p2 ◦pX×Z≥0 ◦h−1(B) then ⌊tj⌋ ≤ Ni for at least one i and some t ∈ [0, 1].
Thus

j ≤ max
i
Ni

is bounded in Z≥0.

Example 29. Note that Z≥0 is flasque by

φ : Z≥0 → Z≥0

n 7→ n+ 1.

Thus there is a coarse homotopy equivalence Z≥0
2 → Z≥0. Now for every n the space Z≥0

n is
flasque. As a result Z≥0

n is coarsely homotopy equivalent to Z≥0 for every n.
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6 Finite colimits

Definition 30. Let (A, dA), (B, dB) be two nonempty metric spaces. The coarse disjoint union
A ∨B of A,B is defined to be

A ⊔B/a0 ∼ b0

where a0 ∈ A, b0 ∈ B are two fixed points and

d : (A ∨B) × (A ∨B) → R

(x, y) 7→



















dA(x, y) x, y ∈ A

dA(x, a0) + dB(b0, y) x ∈ A, y ∈ B

dB(x, b0) + dA(a0, y) x ∈ B, y ∈ A

dB(x, y) x, y ∈ B

.

In [Wei16] a similar Definition has been made. They ar equivalent since they share the same
universal property:

Lemma 31. If A,B are metric spaces then A ∨B is a metric space. It is a coproduct of A,B.

Proof. First we prove that A ∨ B is a metric space. If x, y ∈ A ∨ B are two points with
d(x, y) = 0 and both x, y ∈ A or both x, y ∈ B then x = y is clear. If x ∈ A and y ∈ B then
0 = d(x, y) = d(x, a0) + d(b0, y) implies d(x, a0) = 0 and d(b0, y) = 0 thus x = a0 = b0 = y.
Symmetry of d is clear. We prove the triangle inequality. If x, y ∈ A and z ∈ B then

d(x, y) + d(y, z) = d(x, y) + d(y, a0) + d(b0, z)

≥ d(x, a0) + d(b0, z)

= d(x, z).

Now we prove A∨B with the natural inclusions i : A → A∨B and j : B → A∨B is a coproduct.
Suppose C is a metric space and α : A → C, β : B → C are coarse maps. Then define

γ : A ∨B → C

x 7→

{

α(x) x ∈ A

β(x) x 6∈ A.

Then γ ◦ i = α and γ ◦ j is close to β. It remains to show that γ is a coarse map. If R ≥ 0 then
there exist α(R), β(R) ≥ 0 with α×2(∆R) ⊆ ∆α(R) and β×2(∆R) ⊆ ∆β(R). If x, y ∈ A ∨B with
d(x, y) ≤ R then there are 4 cases. If both x, y ∈ A then d(γ(x), γ(y)) = d(α(x), α(y)) ≤ α(R).
If both x, y 6∈ A then d(γ(x), γ(y)) = d(β(x), β(y)) ≤ β(R). If x ∈ Ay 6∈ A then

d(γ(x), γ(y)) = d(α(x), β(y))

≤ d(α(x), α(a0)) + d(α(a0), β(b0)) + d(β(b0), β(y))

≤ α(R) + d(α(a0), β(b0)) + β(R).

The case x 6∈ A, y ∈ A is similar. Thus γ is coarse.
If δ : A ∨B → C is another coarse map which fits in the pushout diagram then δ|A = δ ◦ i ∼

α = γ|A and δ|B = δ ◦ j ∼ β ∼ γ|B. Thus δ ∼ γ is unique.
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Two subsets U, V ⊆ X form a coarse disjoint union of X if for every R ≥ 0 the sets ∆R[U c] ∩
∆R[V c], U ∩ V are bounded.

Lemma 32. If U, V is a coarse disjoint union of a metric space X then X,U ∨ V are coarsely
equivalent.

Proof. We define a map

ϕ : X → U ∨ V

x 7→

{

[x] x ∈ U ∪ V

[u0] x ∈ (U ∪ V )c.

It remains to show that ϕ is a coarse equivalence. First we show ϕ is coarsely uniform. If R ≥ 0
and dX(x, y) ≤ R we distinguish three cases. If (x, y) ∈ U2 then dU∨V ([x], [y]) = dU (x, y) ≤ R.
If x ∈ U, y ∈ V then since ∆R[U ] ∩ ∆R[V ] is bounded there exists SR ≥ 0 with dU (x, u0) ≤
SR, dV (y, v0) ≤ SR. Then

dU∨V ([x], [y]) = dU (x, u0) + dV (v0, y) ≤ 2SR.

If x ∈ (U∪V )c, y ∈ U then since (U∪V )c is bounded there exists some S ≥ 0 with dX(x, u0) ≤ S.
Then

dU∨V (ϕ(x), ϕ(y)) = dX(u0, y) ≤ dX(u0, x) + dX(x, y) ≤ S +R.

The other cases are similar. Thus ϕ is coarsely uniform.
Now we show that ϕ is coarsely injective. If R ≥ 0 and d(ϕ(x), ϕ(y)) ≤ R we again distinguish

three cases. If x, y ∈ U then dX(x, y) = dU∨V ([x], [y]) ≤ R. If x ∈ U, y ∈ V then d([x], [y]) =
d(x, u0) + d(v0, y). Then

d(x, y) ≤ d(x, u0) + d(u0, v0) + d(v0, y) ≤ R+ d(u0, v0).

If x ∈ (U ∪V )c, y ∈ U then since (U ∪V )c is bounded, there exists some S ≥ 0 with d(x, u0) ≤ S.
Then

d(x, y) ≤ d(x, u0) + d(u0, y) ≤ S +R.

The other cases are similar.
Since ϕ is surjective we have proven that is a coarse equivalence.

In the following definition we use there is a more general concept of coarse structure. It has
to satisfy a certain set of axioms [Roe03]. The coarse structure of a metric space is an example
for this. We have that the intersection of coarse structures is again a coarse structure so we can
give a collection of subsets of X ×X and talk about the coarse structure they generate.

Definition 33. Let α, β : X → Y be two coarse maps between metric spaces. Then the space
Y (α, β) is defined to be Y as a set equiped with the coarse structure generated by (∆R)R and

∆(α, β) = {(α(x), β(x)) | x ∈ X}.

The asymptotic coequalizer of α, β is q := idY : Y → Y (α, β).

Proposition 34. If α, β : X → Y are two coarse maps between metric spaces then Y (α, β) is a
coequalizer of α, β in the category of metric spaces and coarse maps modulo close.
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Proof. We first remark that Y (α, β) is a metric space since its coarse structure is countably
generated [Roe03].

Now we prove that q is a coarse map. Since every entourage in Y is an entourage in Y (α, β)
the map q is coarsely uniform. If z ∈ Y then

∆(α, β)[z] = {y ∈ Y | ∃x ∈ X,α(x) = y, β(x) = z}

= {α(x) | x ∈ β−1(z)}

= α ◦ β−1(z)

is bounded. Similarly we obtain

∆(α, β)−1[z] = ∆(β, α)[z]

= β ◦ α−1(z)

is bounded. By an inductive argument every bounded set in Y (α, β) is already bounded in Y .
Thus q is coarsely proper. Now (q ◦ α× q ◦ β)(∆X) = ∆(α, β) is an entourage in Y (α, β). Thus
q ◦ α, q ◦ β are close.

Now we prove the universal property. If r : Y → Z is a coarse map with r ◦ α close to r ◦ β
then {(r ◦ α(x), r ◦ β(x) | x ∈ X} is an entourge. Define

r′ : Y (α, β) → Z

y 7→ r(y).

If R ≥ 0 then r′×2(∆R) is an entourage since r = r′. Moreover

r′×2(∆(α, β)) = {(r ◦ α(x), r ◦ β(x) | x ∈ X}

is an entourage. Thus r′ is coarsely uniform. Since every bounded set in Y is bounded in Y (α, β)
the map r′ is coarsely proper. Thus r′ is coarse with r = r′ ◦ q. If r′′ : Y (α, β) → Z is another
coarse map with r ∼ r′′ ◦ q then r′′ ∼ r′.

Theorem 35. The category of metric spaces and coarse maps modulo close has all finite colimits.

Proof. By Lemma 31 the category has all finite coproducts. By Proposition 34 the category has
all coequalizers. The claim is then a general result in category theory.
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