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MINIMAL MODELS OF SOME DIFFERENTIAL GRADED MODULES

BERRİN ŞENTÜRK∗, ÖZGÜN ÜNLÜ

Abstract. Minimal models of chain complexes associated with free torus actions on spaces
have been extensively studied in the literature. In this paper, we discuss these constructions
using the language of operads. The main goal of this paper is to define a new Koszul operad
that has projections onto several of the operads used in these minimal model constructions.

1. Introduction

Let k be an algebraically closed field of characteristic 2 and G an elementary abelian 2-
group of rank r. Considering the chain complexes associated with free G-spaces, one obtains an
algebraic conjecture stronger than the Halperin-Carlsson rank conjecture about 2-torus actions
(G-actions). For any chain complex C of k-modules, we denote the homology of C by H(C).

Conjecture 1. If C is a finite chain complex of free kG-modules with H(C) 6= 0, then dimkH(C)
is at least 2r.

Considering the polynomial ring S := k[x1, . . . , xr], an equivalent algebraic conjecture is
given by Proposition II.1 and II.2 in [5]. We say (M,∂) is a differential graded S-module (dg-
S-module) if M is an S-module, and ∂ is an S-linear endomorphism of M that has degree −1
and satisfies ∂2 = 0. Moreover, we say a dg-S-module is free if its underlying graded S-module
is free.

Conjecture 2. [6, Conjecture II.8] Let S = k[x1, . . . , xr] be the polynomial algebra in r variables
of degree −1 with coefficients in an algebraically closed field of characteristic 2. If (M,∂) is a

free, finitely generated dg-S-module with 0 < dimk H(M) <∞, then rankSM ≥ 2r.

In the literature, bounds for the dimension of H(C) in Conjecture 1 and for the rank of
M in Conjecture 2 are obtained by studying minimal models of C and M . In [7], Carlsson
showed the existence of minimal models of certain free differential graded S-modules. Here
we give an explicit construction of these minimal models using operad theory. Again using
operads we construct minimal models of chain complexes of Borel constructions of spaces with
a free G-action. These minimal models are equivalent to minimal Hirsch-Brown models given
by Allday-Puppe [1].

Note that Conjecture 1 holds if we further assume that the Euler characteristic of C is
non-zero. More precisely,

χ(C) = |G|χ(k ⊗kG C) = χ(H(C)) =
∑

i≥0

(−1)i dimk Hi(C) 6= 0.
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∗Corresponding author.

1

http://arxiv.org/abs/1805.10175v4
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Hence the dimension of total homology dimk H(C) ≥ |G| = 2r. Due to the equivalence of
conjectures one could ask if a similar result holds for Conjecture 2. We prove the conjecture in
the following case:

Theorem 1. Conjecture 2 holds if every integer n, m have the same parity whenever Hn(M) 6= 0
and Hm(M) 6= 0. In fact, χ(H(M)) :=

∑
i≥0

(−1)i dimk Hi(M) 6= 0 implies Conjecture 2.

When the characteristic of the field is odd, a result analogous to Theorem 1 is proved by
Walker [15], [16].

Puppe [14] asserted that, given a certain multiplicative structure on the minimal Hirsch-
Brown model for the equivariant cohomology of a space with a free torus action, these bounds
can be tightened to verify the Halperin-Carlsson rank conjecture. The main goal of this paper
is to put a multiplicative structure on minimal Hirsch-Brown models of G-spaces. Note that
the group algebra kG is an exterior algebra since k is a characteristic 2 field. First we consider
the group algebra kG and the polynomial algebra S = k[x1, . . . , xr] as algebraic operads where
all non-trivial operations are unary operations. Then to put multiplicative structures on our
minimal models we define a new Koszul operad.

Theorem 2. Let k be an algebraically closed field of characteristic 2 and G an elementary abelian

2-group of rank r. Then there exists an algebraic operad P in the category of differential graded

modules over k such that P has the following properties:

(i) The unary operations of P with the composition of P considered as multiplication is

isomorphic to the group algebra kG;
(ii) P has an associative binary operation µ;
(iii) P is a Koszul operad;

(iv) The Koszul dual operad of P has projections onto the associative operad As and the poly-

nomial algebra S = k[x1, . . . , xr] where we consider S as an operad whose all nontrivial

operations are unary;

(v) For every G-space X the singular cochain complex C•(X; k) has a P-algebra structure

whose restriction to the unary operations of P gives the natural kG-module structure on

C•(X; k) and the action of µ is the same as the dual of the Alexander-Withney diagonal

map.

Let P be the operad in Theorem 2 and ι : P → ΩP be the universal twisting mor-
phism. Given a space X that admits a free G-action, we will consider the bar construction
BιH(C

•(X; k)) as the minimal Hirsch-Brown model of X; see Section 4B.
Throughout this paper, k is an algebraically closed field of characteristic 2 and all (co)operads

are non-symmetric (co)operads in the category of dg-modules over k. In Section 2, we recall
Puppe’s method to find lower bounds on total homology dimension of complexes with a free
G-action and give an outline of our method. In Section 3, we recall definitions, notation, and
well-known results about algebraic (co)operads. In Section 4, we discuss constructions of min-
imal models and prove Theorem 1. In Section 5, we prove the our main result Theorem 2 and
its applications.

2. The outline of an application of Theorem 2

Assume that r is a positive integer andm is a nonnegative integer. Let S denote the polyno-

mial algebra k[x1, . . . , xr] with deg(xi) = −1 and Λm denote the exterior algebra Λ(z
(m)
1 , . . . , z

(m)
r )

with deg(z
(m)
i ) = −m for all i in {1, . . . , r}. Note that according to our degree conventions Puppe
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[14] defines the Koszul complex Kr(m) corresponding to the regular sequence (xm+1
1 , . . . , xm+1

r )
in S as the differential graded algebra Kr(m) =

(
S⊗̃Λm, ∂

)
, where the differential ∂ determined

by ∂(xi ⊗ 1) = 0 and ∂(1 ⊗ z
(m)
i ) = xm+1

i . Then Puppe considers dg-S-module morphisms
γ : Kr(m)→ Kr(0) which lift the projection

ǫ : H(Kr(m)) ∼= S/(xm+1
1 , . . . , xm+1

r ) −→ S/(x1, . . . , xr) ∼= H(Kr(0)).

Puppe denotes the rank of γ by rank(γ) which is the rank of the localization of F ⊗ γ where
F is the field of fraction of S. In [14, Lemma 2.1.a], Puppe shows that if γ also preserves
the multiplicative structure, then rank(γ) = 2r. In [14, Lemma 2.1.b], Puppe asserts that
rank(γ) ≥ 2r without the assumption about the multiplicative structure.

Let G be an elementary abelian 2-group of rank r generated by g1, g2, . . . , gr. Puppe defined
a minimal Hirsch-Brown model M = S⊗̃H•(X; k) associated to a free action of G on X, where
X is a finite dimensional CW -complex. Then in [14, Proposition 4.1], Puppe showed that there
exists a map α : Kr(m) → M that induces a surjective map on the zeroth homology of these
complexes for large enoughm. Moreover, in [14, Proposition 4.2], Puppe showed that there exists
a map β : M → Kr(0) that induces a surjective map on the zeroth homology. Now notice that
the rank of γ = β ◦ α is less than or equal to the total homology dimension

∑∞
i=0 dimk Hi(X; k)

of X. Hence Puppe used this idea to put lower bounds on the total cohomology dimension of
complexes with a free G-action.

We will use an idea similar to Puppe’s idea discussed above. In our setting Koszul complexes
are dual of the ones considered by Puppe. Now we give the definitions in our setting. Assume
G acts on the product of r equidimensional spheres S

m × . . . × S
m such that gi acts on the

ith sphere with the antipodal action. Then we will denote the minimal Hirsch-Brown model
BιH(C

•(X; k)) associated to this action by K̃r(m) and call it a Koszul complex for our operad
in Theorem 2. We use this terminology because when the above bar construction is done using
the suboperad of P generated by its unary operations, we obtain the usual dual Koszul complex
S∗⊗̃Λm which we still denote by Kr(m) by abuse of notation. Hence from now on,

Kr(m) =
(
S∗⊗̃Λm, ∂

)
,

where the differential ∂ determined by ∂(xi ⊗ 1) = 0 and

∂(xni ⊗ z
(m)
i ) =

{
0 if n < m+ 1

xn−m−1
i if n ≥ m+ 1.

For the rest of the paper im will denote the natural inclusion of S0× . . .×S0 in S
m× . . .×Sm

where each S
0 is sent to the south and north poles of the corresponding S

m. This continuous
function induces coalgebra morphisms i∗m : K̃r(m)→ K̃r(0) and i

∗
m : Kr(m)→ Kr(0). Hence, in

[14, Lemma 2.1.a] and [14, Lemma 2.1.b], Puppe gave lower bounds on the rank of certain maps
between Koszul complexes Kr(m) and Kr(0) which induces the same map as im does between
the homology of these complexes. Puppe in [14, Corollary 5.2] asserted that if the minimal
Hirsch-Brown model of a finite dimensional space X with a free G-action carries differential
graded algebra structure, then

∑∞
i=0 dimk H

i(X; k) ≥ 2r. Note that the multiplicative structure
is not considered in [14, Proposition 4.1] and [14, Proposition 4.2]. However, in the proof of [14,
Corollary 5.2] one needs extensions of [14, Proposition 4.1 and 4.2] to differential graded algebras.
More precisely, the morphism α must be constructed in a way compatible with the multiplicative
structure. However, the almost random selections of images of α in the homological proofs given
in the literature for these results do not take the multiplicative structure into consideration. For
example, some selections of α fail for the associated minimal model of the free Z/2Z × Z/2Z
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action on RP 3 induced by quotienting out the center of the free action of Q8 on Sp(1) ∼= S
3 by

the left multiplication. Here we partially fill the gap by the following Proposition.

Proposition 1. Let G be an elementary abelian 2-group and act freely on a finite-dimensional

simplicial set X. Assume P is the operad in Theorem 2. Let M̃ denote the minimal Hirsch-

Brown model of X; in other words M̃ = Bι(H(C•(X; k))). Then there exists a positive integer

m and P¡-coalgebra morphisms α, β such that the composition

K̃r(m)
α
→ M̃

β
→ K̃r(0),

sends Kr(m) to Kr(0) and which induces the same map from H(Kr(m)) to H(Kr(0)) as i
∗
m does.

However, using the above proposition we cannot confirm the main result of Puppe using
[14, Lemma 2.1.a] as our multiplicative structure does not have all the properties Puppe used
in the proof of [14, Lemma 2.1.a]. On the other hand [14, Lemma 2.1.b] is proved by only using
the differential graded S-module structure on these Koszul complexes. Hence to improve the
results about bounds for the total dimension of the cohomology of a space that admits a free
G-action, it is enough to consider maps between K̃r(m) and K̃r(0) and prove analogs of [14,
Lemma 2.1.b]. The following proposition is similar to [14, Lemma 2.1.b] but proved using our

setting where we fix an isomorphism K̃r(m) ∼= P¡ ◦ Λm with the composition ◦ defined as in
[11, Section 5.9.1].

Proposition 2. Let P denote the operad in Theorem 2, m be a positive integer and γ : Kr(m)→
Kr(0) be a S∗-coalgebra morphism which induces the same map from H(Kr(m)) to H(Kr(0)) as

i∗m does. Assume γ extends to a P¡-coalgebra morphism γ̃ : K̃r(m) −→ K̃r(0) whose restriction

to P¡ ◦ 1 is induced by the identity on P¡. Then the linear map F ⊗S γ
∗ has rank at least 2r

where F denotes the field of fractions of the ring S.

As discussed above Proposition 2 can be used to give lower bounds for the total homology
of the finite dimensional complexes with a free G-action.

3. Definitions and Notation

We will take most of definitions and notation from [11] and [9].

3A. Free (co)operads. A dg-N-module M is a sequence of differential graded k-modules

M = (M(0),M(1),M(2), . . . ).

A free operad over the dg-N-module M is an operad T (M) together with a dg-N-module
morphism i : M → T (M) such that if P is an operad and f : M → P is an dg-N-module

morphism then there exists a unique operad morphism f̃ : T (M)→P with f = f̃ ◦ i.
There exists a free operad T (M) over every dg-N-module M , see [11, Section 5.9.6]. Let

n(v) denote the number of leaves of a vertex v in a tree and τ(M) be the tensor product of
M(n(v))’s as v ranges over the vertices of a tree τ . As a dg-N-module, T (M) is the direct sum
of τ(M)’s where τ ranges over all planar trees. The operad composition of T (M) is given by
grafting trees. Hence, as an operad T (M) is generated by BT (M), that is,

{
b

∣∣∣b ∈ B0
} ⋃{

b

∣∣∣ b ∈ B1
} ⋃{

b

∣∣∣b ∈ B2
} ⋃

. . .

where Bj is a basis for M(j) as a k-vector space. The dg-N-module T (M) is always equipped
with an extra grading, called the weight-grading. If M itself has no such extra grading, then
the trees in T (M) with exactly n-vertices are said to have weight-grading n. If M already has
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weight-grading, then the sum of weight-grades of elements in M used to label the vertices of a
tree in T (M) is the weight-grade of that tree. Hence we have a decomposition of T (M) indexed
by the weight-grading

T (M) =
⊕

n≥0

T (M)(n) ,

where each T (M)(n) is a dg-N-module.
Dually, we let T c(M) denote the cofree cooperad over M . T c(M) is isomorphic to T (M)

as a weight-graded k-vector space, while as a cooperad T c(M) is cogenerated by the generators
of T (M) mentioned above.

Let sM denote the dg-N-module M whose degree is shifted by 1, i.e., sMi(n) = Mi−1(n)
for n ∈ N and i ∈ Z. More generally, for any integer m, smM denotes the dg-N-module M
whose degree is shifted by m.

3B. Quadratic (co)operads. A pair (M,R) is called an operadic quadratic data pair if M is

a dg-N-module and R is a sub-dg-N-module of T (M)(2). The quadratic operad associated to
the quadratic data pair (M,R) is

P(M,R) := T (M)/(R),

where (R) is the operatic ideal generated by R ⊆ T (M)(2). In other words, P(M,R) is the
largest quotient operad P of T (M) for which the composite

R֌ T (M)(2) ֌ T (M) ։ P

is zero.
Dually, the quadratic cooperad C (M,R) associated to the quadratic data pair (M,R) is the

largest subcooperad of T c(M) for which the composite

C ֌ T
c(M) ։ T

c(M)(2) ։ T
c(M)(2)/R

is zero, see [11, Section 7.1] and [3, Section 6.3.1].
The Koszul dual cooperad of a quadratic operad P = P(M,R) is

P
¡ := C (sM, s2R),

where s2R is the image of R under the natural map T (M)(2) → T (sM)(2). Similarly, the Koszul

dual operad of a quadratic cooperad C = C (M,R) is

C
¡ := P(s−1M,s−2R),

where s−2R is the image of R under the map T (M)(2) → T (s−1M)(2) induced by the natural
degree 1 dg-N-module morphism M to sM , see [11, Section 7.4.7].

3C. The (co)bar construction. For an operad P, let P be the cokernel of the unit map
I → P. If P = I ⊕P as dg-N-modules, the bar construction BP of P is the dg-cooperad
T c( sP) with differential d1 + d2, where d1 and d2 are as in [11, Section 6.5.1].

Similarly, for a cooperad C , let C denote the kernel of the counit map C → I. If C = I⊕C

as dg-N-modules, the cobar construction ΩC of C is the dg-operad T ( s−1 C ) with differential
d1 + d2, where d1 and d2 are as in [11, Section 6.5.2].

Let (M,R) be an operatic quadratic data pair. The quadratic operad P = P(M,R) is
Koszul if the natural dg-cooperad morphism P¡ → BP is a quasi-isomorphism of dg-cooperads,
see [11, Theorem 7.4.2]. When P is Koszul, we define the operad P∞ := ΩP¡.
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3D. (Co)algebras over (co)operads. Let P be an operad. A P-algebra is a differen-
tial graded k-module A together with an operad morphism P → EndA, where EndA(n) =
Hom(A⊗n, A). Dually, for a cooperad C , a C -coalgebra is a differential graded k-module C
together with an operad morphism C ∗ → coEndC , where C ∗ is the dual of C and coEndC(n) =
Hom(C,C⊗n). For differential graded k-module C, we define an operad morphism

ψC : coEndC → EndC∗

which sends α : C → C⊗n to the composition (C∗)⊗n
iC→ (C⊗n)∗

α∗

→ C∗ where iC is defined by

iC(f1 ⊗ · · · ⊗ fn)(v1 ⊗ · · · ⊗ vn) = f1(v1) . . . fn(vn)

for every f1, . . . , fn ∈ C
∗ and v1, . . . , vn in C. Given a dg-C -coalgebra C, we get dg-C ∗-algebra

structure on C∗ by the composition C → coEndC
ψC→ EndC∗ .

A cooperad C is called coaugmented if its counit map has a right inverse. Let C be a
coalgebra over coaugmented cooperad C . For x ∈ C, we define x1, x2, . . . by

∆C(x) = (x1, x2, . . .) ∈
∏

n≥1

(
C (n)⊗C⊗n

)
,

where ∆C denotes the structure map of the coalgebra C. We filter the coalgebra C by FrC :=
{x ∈ C |xi = 0 for any i > r} for r ≥ 1. If C =

⋃
r≥1 FrC, then C is conilpotent, see [11,

Section 5.8.4].
Let C be a dg-cooperad, P a dg-operad, and ϕ : C → P a twisting morphism as in [11,

Section 11.1.1]. The bar construction Bϕ is a functor from the category of dg-P-algebras to the
category of conilpotent dg-C -coalgebras, defined on a dg-P-algebra A by

BϕA := (C ◦ϕ P) ◦P A,

where ◦ϕ denotes the right-twisted composite product and ◦P denotes the relative composite
product over P, see [11, Sections 6.4.7 and 11.2.1 ].

Dually, the cobar construction Ωϕ is a functor from the category of conilpotent dg-C -
coalgebras to the category of dg-P-algebras, defined on a conilpotent dg-C -algebra C by

ΩϕC := (P ◦ϕ C ) ◦C C,

where ◦ϕ denotes the left-twisted composite product and ◦C denotes the relative composite
product over C , see [11, Sections 6.4.7 and 11.2.1].

Let W , V be two P∞-algebras. Then an ∞-morphism f :W → V is a dg-N-module mor-
phism P¡ → EndWV , where EndWV (n) = Hom(W⊗n, V ). Moreover, f is an∞-quasi-isomorphism

if f sends the counit in P¡ to a quasi-isomorphism in EndWV (1).

3E. Homotopy operadic algebras. Let (W,dW ) and (V, dV ) be chain complexes that are
dg-k-modules. Assume i and p are chain maps and h is chain homotopy as in the diagram

(V, dV )h
(( p

//
(W,dW )

i
oo

.

W is a homotopy retract of V if IdV −i ◦ p = dV ◦ h + h ◦ dV and i is a quasi-isomorphism.
Moreover, W is a deformation retract of V if we also have IdW = p ◦ i.

Theorem 3. [11, Theorem 10.3.1] Let P be a Koszul operad and (W,dW ) a homotopy retract

of (V, dV ). Any P∞-algebra structure on V can be transferred to a P∞-algebra structure on W
such that i extends to an ∞-quasi-isomorphism.
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This theorem, known as the Homotopy Transfer Theorem, is a generalization of [10, The-
orem 1] and will be used in Sections 4 and 5 to construct minimal Hirsch-Brown models and
minimal models discussed by Carlsson. In these constructions, we also use the following property
of the bar construction:

Theorem 4. [11, Proposition 11.2.3] Let ϕ : C →P be an operadic twisting morphism and A,
A′ dg-P-algebras. If f : A → A′ is a quasi-isomorphism, then f induces a quasi-isomorphism

between the dg-C -coalgebras BϕA and BϕA
′.

The bar and cobar constructions form adjoint functor pair.

Proposition 3. [11, Corollary 11.3.5] Let P be a Koszul operad with canonical twisting mor-

phism κ : P¡ →P. For every dg-P-algebra A, the counit of the adjunction

ǫκ : ΩκBκA→ A

is a quasi-isomorphism of dg-P-algebras. Dually, for every conilpotent dg-P¡-coalgebra C, the

unit of the adjunction

νκ : C → BκΩκC

is a quasi-isomorphism of dg-P¡-coalgebras.

The relation between ∞-quasi-isomorphisms and quasi-isomorphisms is given by the fol-
lowing:

Theorem 5. [11, Theorem 11.4.9] Let P be a Koszul operad and A, A′ dg-P∞-algebras. There

exists an ∞-quasi-isomorphism of dg P∞-algebras A → A′ if and only if there exists a zigzag

of quasi-isomorphisms of dg-P∞-algebras A← • → • ← • → • . . .→ A′.

Such a zigzag of quasi-isomorphism will be written A! A′.

3F. The Poincaré-Birkhoff-Witt basis. We already defined Koszul duality for an operad
by using bar construction. The non-derived Koszul duality was introduced by Priddy [13] for
algebras and generalized by Hoffbeck [9] for operads by considering the existence of a certain
basis, called Poincaré-Birkhoff-Witt (PBW) basis. Hoffbeck’s criterion asserts that an operad is
Koszul if it admits a PBW basis.

In order to define a PBW basis for an operad P, we consider the path sequence of the tree
monomials of P as in [3, Definition 3.4.1.2]. Then we order the path sequences corresponding
to the trees by the graded path lexicographic order [3, Definition 3.4.1.7]. Briefly, given two
path sequences p and p′ of the same arity, we have p ≺ p′ if and only if either

(i) the longer sequence is bigger,
or

(ii) if they have the same length, then we compare the first (leftmost) letters where they
differ.

For instance, suppose that we have tree monomials a , b , c equipped with a monomial

order a ≺ b ≺ c. Let us consider the following tree monomials:

b

a

, b

a a

and b

c

, c

b

.
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The path sequences correspond to the tree monomials have the order (ba, b) ≺ (ba, ba) and
(bc, bc, b) ≺ (cb, cb, c). In other words, (b; a, 1) ≺ (b; a, a) and (b; c, c, 1) ≺ (c; b, b, 1). For more
details, see [3, Chapter 2.3, 3.4].

For the next notion, we refer the reader to [9]. For every tree τ , let B
T (M)
τ be a monomial

basis of τ(M) such that each element is a tensor product of elements in BM . A PBW basis of
a non-symmetric quadratic operad P is a set BP ⊂ T (M) of representatives of a base of the

module P, containing 1 and BM and for all tree τ a subset BP
τ ⊂ B

T (M)
τ satisfying the following

conditions:

• For α ∈ BP
σ and β ∈ BP

τ , either the partial composition product α ◦i β is in BP
σ◦iτ or the

elements of the basis γ ∈ BP which appear in the unique decomposition α◦i β = Σγ cγγ,
satisfy γ ≻ α ◦i β in T (M).
• Suppose that α|τe denotes the restriction of a treewise tensor α to a subtree τe generated
by an edge e; in other words α|τe is the smallest piece of tree that includes the edge e
and so it has 2 vertices. A treewise tensor α is in BP

τ if and only if for every internal
edge e of τ , the restricted treewise tensor α|τe lie in BP

τe

Moreover, by the second condition, a treewise tensor is in the basis if and only if every subtensor
generated by an edge is in the basis. Hence, it is enough to set the quadratic part of the basis
to determine the basis completely. Then we have the following result:

Theorem 6. [9, Theorem 6.6] A non-symmetric operad endowed with a non-symmetric PBW
basis is Koszul.

We use this fact in the proof of Koszulness of the operad in Theorem 2.

4. Minimal Models

In this section, r denotes a positive integer. Here we discuss Hirsch-Brown Models in view
of the Homotopy Transfer Theorem.

4A. Unary quadratic (co)operads. Let (M,R) be the quadratic data pair

M = (0 , kv1 ⊕ kv2 ⊕ · · · ⊕ kvr , 0 , 0 , . . . )

and

R = { vi ⊗ vi | 1 ≤ i ≤ r } ∪ { vi ⊗ vj + vj ⊗ vi | 1 ≤ i < j ≤ r }.

We define a quadratic operad W and a quadratic cooperad S as follows:

W := P(M,R) and S := C (sM, s2R).

Then considering the identifications

ti =
vi

and x∗i =
svi

for i in {1, 2, . . . r}, the operad W is isomorphic to (0,Λ, 0, 0, . . . ) where Λ is the exterior algebra
Λ(t1, t2, . . . , tr) and the cooperad S is isomorphic to (0, S∗, 0, 0, . . . ) where S is the polynomial
algebra k[x1, . . . , xr].
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4B. Minimal Hirsch-Brown models. First note that we consider cochain complexes as chain
complexes after multiplying the grading by −1. In other words, there exists a categorical iso-
morphism between the category of chain complexes and the category of cochain complexes by
identifying a chain complex (C, ∂) and a cochain complex (D, ζ) if C−i = Di and ∂−i = ζ i.
From now on we only work with chain complexes. The cohomology of a simplicial set X will be
denoted by H•(X; k) which corresponds to

⊕∞
m=0H

m(X; k) under the isomorphism mentioned
above. Hence, H•(X; k) is trivial in all positive degrees.

Let G be an elementary abelian 2-group of rank r with generator set {g1, . . . , gr}. Then
we can identify the group algebra kG with the exterior algebra Λ by identifying 1 + gi with
ti. Moreover, the group cohomology H•(BG; k) is isomorphic to the polynomial algebra S as
graded k-algebras. Assume that G acts freely on a simplicial set X. The goal of this section is to
use the techniques discussed in the previous section to give a construction of the minimal Hirsch-
Brown model of X which is equivalent to the one constructed in [1]. In other words, we define
a differential graded S-module denoted by H•(BG; k)⊗̃H•(X; k) so that H•(BG; k)⊗̃H•(X; k)
is isomorphic to H•(BG; k)⊗H•(X; k) as a left S-module, and there exists a zig zag of quasi-
isomorphisms between H•(BG; k)⊗̃H•(X; k) and a differential graded S-module which is chain
homotopy equivalent to the cochain complex of the Borel construction EG×G X.

The chain complex C = C(X; k) is a dg-W -algebra by the morphism from kG ⊗ C to C
which sends g⊗σ to gσ for any g ∈ G, σ ∈ C. Moreover, we have S = W ¡ and W∞ = ΩS . Let j
denote the inclusion of dg-W -algebras into dg-ΩS -algebras. SinceH(C) is a deformation retract
of j(C) as dg-k-modules, by Theorem 3 there exists a ΩS -algebra structure on H(C) such that
H(C) and j(C) are ∞-quasi-isomorphic as ΩS -algebras. We know that W is also a Koszul
operad. Then by Theorem 5, there exists a zigzag of quasi-isomorphisms of dg-ΩS -algebras
H(C) ! j(C).

Note that S is a connected cooperad, so it is conilpotent. Let ι : S → ΩS be the uni-
versal twisting morphism. By Theorem 4, there is a zigzag of quasi-isomorphisms BιH(C) !
(Bι ◦j)(C) as S -coalgebras. As graded N-modules, we have the following isomorphism:

BιH(C) = (S ◦ι ΩS ) ◦ΩS H(C) ∼= S∗⊗H(C).

This isomorphism induces a differential on S∗⊗H(C). We denote the new differential graded
N-module by S∗⊗̃H(C).

We consider the S ∗-algebra (BιH(C))∗ as a version of the minimal Hirsch-Brown model
because

(BιH(C))∗ ∼= (S∗⊗̃H(C))∗

∼= S⊗̃(H(C))∗

∼= H•(BG; k)⊗̃H•(X; k).

Let κ : S → W be the canonical twisting morphism. Note that C(EG; k) is kG-chain
homotopy equivalent to S∗⊗̃kG := S ◦κ W , where both are considered as differential graded
right kG-modules. Also we have (Bι ◦j) = Bκ. Hence

((Bι ◦j)(C))∗ ∼= (S∗⊗̃kG⊗kG C)∗

≃ (C(EG; k) ⊗kG C)∗

≃ C(EG×G X; k)∗

= C•(EG×G X; k)
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where the last equality is due to our conventions about cochain complexes and the second
homotopy equivalence follows from the homotopy equivalence C(EG×GX; k) ≃ C(EG; k)⊗kGC
proved in [1, proof of Theorem 1.2.8] and [8, VI.12].

We can also consider the chain complex C = C(X; k) as a dg-W ∗-coalgebra by the mor-
phism from C to kG ⊗ C which send σ to

∑
g∈G g

∗ ⊗ g−1σ. Hence C∗ is a dg-W -algebra as

discussed in Section 3D. Hence the S -coalgebra BιH(C∗) is another version of the minimal
Hirsch-Brown model. In fact this second version is what we use in Section 5.

4C. The Minimal model of Carlsson. Let N be a differential graded S-module, so it is
a dg-S ∗-algebra. We view N as a dg-S -coalgebra. The goal of this section is to construct
Carlsson’s minimal model [7] for N . We construct a dg-S -coalgebra that is quasi-isomorphic
to N and has zero differential when tensored with k over S .

We have F = F2(N) in the filtration from Section 3D, so the coalgebra N is conilpotent.
As a dg-k-module H(N) is a deformation retract of N . We obtain the following deformation
retract of dg-k-modules by applying the functor Ωκ, where κ : S → S ¡ is the canonical twisting
morphism

(ΩκN)Ωκ(h)
(( Ωκ(p)

//
(ΩκH(N))

Ωκ(i)
oo

.

By Theorem 3, ΩκN
Ωκ(i)
←−−− ΩκH(N) extends to an ∞-quasi-isomorphism of dg-ΩS -

algebras. Furthermore, we have another deformation retract

(ΩκH(N))(h′)
(( p′

//
(H(ΩκH(N)))

i′
oo

and so ΩκH(N)
i′
←− H(ΩκH(N)) extends to an ∞-quasi-isomorphism of dg-ΩS -algebras by

Theorem 3. Combining these two ∞-quasi-isomorphisms, we have an ∞-quasi-isomorphism
of dg-ΩS -algebras ΩκN ← H(ΩκH(N)). Thus by Theorem 5, there is a zigzag of quasi-
isomorphisms as dg-ΩS -algebras

ΩκN ! H(ΩκH(N)).

Then by Theorem 4, we have a zigzag of quasi-isomorphisms of dg-S -coalgebras

BκΩκN ! BκH(ΩκH(N)).

There is a quasi-isomorphism of dg-S -coalgebras N → BκΩκN by Proposition 3. Therefore,
we obtain a zigzag of quasi-isomorphisms of dg-S -coalgebras

N ! BκH(ΩκH(N)).

Note that k⊗SBκH(ΩκH(N)) has zero differential. Hence we call the dg-S -coalgebra BκH(ΩκH(N))
the Carlsson minimal model of N .

4D. A special case of Carlsson’s conjecture. The following is equivalent to Theorem 1:

Theorem 7. Let k be an algebraically closed field of characteristic 2 and S the polynomial

algebra in r variables of degree −1 with coefficients in k. Assume (M,∂) is a free dg-S-module

and 0 < dimk H(M) < ∞. Further assume that χ(H(M)) :=
∑
i≥0

(−1)i dimk Hi(M) is non-zero.

Then 2r ≤ rankSM .



MINIMAL MODELS OF SOME DIFFERENTIAL GRADED MODULES 11

Proof. We can consider M as a dg-S -coalgebra. As in Section 4C, we have a zigzag of quasi-
isomorphism of dg-S -coalgebras

M ! BκH(ΩκH(M)),

where each middle term in this zigzag is free.
If f : K → L is a quasi-isomorphism of bounded-below complexes of free modules, then

the mapping cone of f is a bounded-below acyclic complex of free modules. Therefore, the
mapping cone is contractible and f is split, so f is a homotopy equivalence [4, Proposition 0.3,
Proposition 0.7]. This implies the following zigzag of quasi-isomorphism:

k ⊗S M ! k ⊗S BκH(ΩκH(M)) ∼= H(ΩκH(M)).

Also notice that
χ(H(ΩκH(M))) = χ(ΩκH(M)) = 2rχ(H(M)) 6= 0,

Thus,

2r ≤ dimk(H(ΩκH(M))) = dimk(H(k ⊗S M)) ≤ dimk(k ⊗S M) = rankS(M).

�

5. Multiplicative Structures on Minimal Hirsch-Brown Models

In this section, we will prove that the operad W̃ defined in Section 5B is an operad that
satisfies the properties listed in Theorem 2.

5A. The operad W̃ in the case r = 1. Consider the associative operad that is generated by
a binary operation µ0, that satisfies the associativity relation (µ0;µ0, 1) = (µ0; 1, µ0). In terms
of trees, we have

µ0 = µ0 with the relation

µ0

µ0
=

µ0

µ0
.

Similarly, for an exterior algebra of a single variable, we have an unary operation t;

t =
t

with the relation
t

t
= 0.

In the case r = 1, we define a quadratic operad W̃ by setting generating operations as

t = t , µ0 = µ0 and µ1 = µ1

The relations of W̃ are as follows :

R1:
t

t
= 0, R2 :

µ1

t
= 0 ,

R3 :

µ0

µ0
=

µ0

µ0
, R4 :

µ1

µ1
=

µ1

µ1
,
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R5:
t

µ0
=

µ0

t
+

µ0

t
+

µ1

t
,

R6 :

µ0

µ1
=

µ1

µ0
, R7:

t

µ1
=

µ1

t
,

R8 :

µ1

µ0
=

µ0

µ1
+

µ0

µ1
+

µ1

µ1
.

Please see Lemma 1 in Section 5D to understand where these relations come from.
Now consider the graded path lex order on all quadratics; firstly there is only one 1-ary

quadratic operation and it is represented by
t

t
. Secondly, we sort all 2-ary operations:

µ0

t
≺

µ1

t
≺

t

µ0
≺

t

µ1
≺

µ0

t
.

Correspondingly, path sequences of the planar rooted trees are

(µ0, µ0t) ≺ (µ1, µ1t) ≺ (tµ0, tµ0) ≺ (tµ1, tµ1) ≺ (µ0t, µ0).

Then we sort all 3-ary operations:

µ0

µ0
≺

µ0

µ1
≺

µ1

µ0
≺

µ1

µ1
≺

µ0

µ0
≺

µ0

µ1
≺

µ1

µ0
≺

µ1

µ1
.

Correspondingly, path sequences of the planar rooted trees are

(µ0, µ
2
0, µ

2
0) ≺ (µ0, µ0µ1, µ0µ1) ≺ (µ1, µ1µ0, µ1µ0) ≺ (µ1, µ1

2, µ1
2)

≺ (µ20, µ
2
0, µ0) ≺ (µ0µ1, µ0µ1, µ0) ≺ (µ1µ0, µ1µ0, µ1) ≺ (µ1

2, µ1
2, µ1) .

Hence, the quadratic part of a non-symmetric PBW basis is given by

µ0

t
,

µ1

t
,

t

µ0
,

µ0

µ0
,

µ0

µ1
,

µ1

µ0
,

µ1

µ1
.

Correspondingly, path sequences of the quadratic part of the basis is given by

(µ0, µ0t) ≺ (µ1, µ1t) ≺ (tµ0, tµ0) ≺ (µ0, µ
2
0, µ

2
0) ≺ (µ0, µ0µ1, µ0µ1)

≺ (µ1, µ1µ0, µ1µ0) ≺ (µ1, µ1
2, µ1

2).

The other way around those trees correspond to the elements;

(µ0; 1, t) ≺ (µ1; 1, t) ≺ (t;µ0) ≺ (µ0; 1, µ0) ≺ (µ0; 1, µ1) ≺ (µ1; 1, µ0) ≺ (µ1; 1, µ1).
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5B. The operad W̃ in general. For a positive integer r, let (M,R) be the quadratic data
pair consists of

M = (0,
r⊕

i=1

kvi,
⊕

L⊆T

kµL, . . . )

and

R = {R1
i , R

2
i,j , R

3
K,L, R

4
i,K | i, j ∈ T and K,L ⊆ T} ∪ {R5

i,K | i ∈ K ⊆ T}

∪ {R6
i,j,K | j ∈ K ⊆ T and i /∈ K}

where T = {1, . . . , r} and for i, j ∈ T and K,L ⊆ T with

R1
i :

ti

ti = 0 ,

R2
i,j:

tj

ti =
ti

tj
,

R3
K,L :

µL

µK =





µK

µL if L = ∅ or K ∩ L 6= ∅

µ0

µK∪L +

µK

µL +

µK∪L

µL if L 6= ∅ and K ∩ L = ∅,

R4
i,K :

ti

µK
=





µK

ti if i ∈ K

µK

ti +

µK

ti +

µ0K∪{i}

ti if i /∈ K ,

R5
i,K :

µK

ti = 0 if i ∈ K ,

R6
i,j,K :

µK

ti =

µ{K\{j}}∪{i}

tj
if i /∈ K, j ∈ K.

We define a quadratic operad and a quadratic cooperad as follows:

W̃ := P(M,R) and S̃ := C (sM, s2R).

5C. The PBW basis of W̃ . In order to define a PBW basis for the operad W̃ , we consider
the graded path lexicographic order given in Section 3F. It is straight forward to check that the
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quadratic part of the basis of W̃ is given by the following set of trees:




µK

tj

∣∣∣∣∣∣

j ∈ T
and

K ⊆ T





⋃


 tj

µK

∣∣∣∣∣∣

j /∈ K
and

K ⊆ T





⋃




µK

µL

∣∣∣∣∣∣
K,L ⊆ T




.

Note that every composition of the above operations can be rewritten by a unique basis element.

5D. Multiplicative structure on minimal Hirsch-Brown models. Let G, X, and C be
as in Section 4B. Let ∆ : C → C ⊗ C denote the Alexander-Whitney diagonal map. For g in
G, let g : C → C denote the multiplication by g from the left. The map ∆ is coassociative as in
[12] and by naturality we have

∆ ◦ g = (g ⊗ g) ◦∆

for any g in G. Hence for g in G, if t = 1 + g then we have

∆ ◦ t = ∆ ◦ (1 + g) = (∆ ◦ 1) + (∆ ◦ g) = (1⊗ 1) ◦∆+ (g ⊗ g) ◦∆

= ((1⊗ 1) + (g ⊗ g)) ◦∆ = ((t⊗ 1) + (1⊗ t) + (t⊗ t)) ◦∆.
(1)

Hence, we have a operad morphism defined as follows

W̃ −→ coEndC

ti → 1 + gi

µI →

(
∏

i∈I

(1 + gi) , 1

)
◦∆

(2)

for i in T and I ⊆ T . By abuse of notation, we will denote the image of ti and µI under this
operad morphism by ti and µI . Hence ti and µI will be considered as operations in coEndC .

In the following lemma, we assume r = 1, and hence T = {1}. In this case instead of
g1, t1, µ∅, µT we write g, t, µ0, µ1 respectively.

Lemma 1. Assume that r = 1. Then the operations t, µ0 and µ1 in coEndC satisfy the relations

R1, . . . , R8 in Section 5A.

Proof. We need to prove the following equations:

R1 : (t; t) = 0,
R2 : (µ1; t, 1) = 0,
R3 : (µ0;µ0, 1) = (µ0; 1, µ0),
R4 : (µ1;µ1, 1) = (µ1; 1, µ1),
R5 : (t;µ0) = (µ0; t, 1) + (µ0; 1, t)) + (µ1; 1, t),
R6 : (µ0;µ1, 1) = (µ1; 1, µ0),
R7 : (t;µ1) = (µ1; 1, t),
R8 : (µ1;µ0, 1) = (µ0;µ1, 1) + (µ0; 1, µ1) + (µ1; 1, µ1).

First notice we have µ1 = ((1 + g), 1) ◦∆ = (µ0; t, 1) in coEndC . We will call this equation R0.
The first equation (t; t) = 0 holds since t = 1 + g, g2 = 1 and (1 + g)2 = 1 + 2g + g2 = 0 in

a characteristic 2 field. The second equation (µ1; t, 1) = ((µ0; t, 1); t, 1) = (µ0; t
2, 1) = 0 follows

from R0 and R1. By associativity of the operation µ0, we have the equation R3. The equation
R5 is given by the Equation 1.
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The equation R4 follows fromR0, R5, R1 andR3. More precisely, one can obtain (µ1;µ1, 1) =
(µ0; (t;µ1), 1) = (µ0; (t; (µ0; t, 1)), 1) by R0. Then

(µ1;µ1, 1) = (µ0; (µ0; t
2, 1), 1) + (µ0; (µ0; t, t), 1)) + (µ0; (µ0; t

2, t), 1) by R5,

= (µ0; (µ0; t, t), 1)) by R1,

= ((µ0;µ0, 1); t, t, 1),

= ((µ0; 1, µ0); t, t, 1) by R3,

= (µ0; t, (µ0; t, 1)) = (µ1; 1, µ1).

The equation R6 can be seen as

(µ0;µ1, 1) = (µ0; (µ0; t, 1), 1) = ((µ0;µ0, 1); t, 1, 1) by R0;

= ((µ0; 1, µ0); t, 1, 1) by R3,

= (µ0; t, (µ0; 1, 1)),

= ((µ0; t, 1); 1, µ0) = (µ1; 1, µ0).

The equation R7 follows from R0, R5 and R1:

(t;µ1) = (t; (µ0; t, 1)) = (µ0; t
2, 1) + (µ0; t, t) + (µ0; t

2, t) = (µ0; t, t) = (µ1; 1, t).

The last equation R8 follows from R0, R5, R7, R3 and R4. More precisely,

(µ1;µ0, 1) = ((µ0; t, 1);µ0, 1) by R0,

= (µ0; (t;µ0), 1),

= (µ0; (µ0; t, 1), 1) + (µ0; (µ0; 1, t), 1) + (µ0; (µ1; 1, t), 1) by R5,

= (µ0; (µ0; t, 1), 1) + ((µ0;µ0, 1); 1, t, 1) + (µ0; (t; (µ0; t, 1)), 1) by R7,

= (µ0; (µ0; t, 1), 1) + ((µ0; 1, µ0); 1, t, 1) + (µ0; (t; (µ0; t, 1)), 1) by R3,

= (µ0;µ1, 1) + (µ0; 1, µ1) + (µ1;µ1, 1) by R0,

= (µ0;µ1, 1) + (µ0; 1, µ1) + (µ1; 1, µ1) by R4.

�

Lemma 2. The operations t1, t2, . . . , tr and µL for L ⊆ T = {1, . . . , r} in coEndC satisfy the

equations R1
i , R

2
i,j , R

3
K,L, R

4
i,K , R

5
i,K and R6

i,j,K listed in Section 5B.

Proof. In the operad coEndC , we have µL =
(
µ0;
∏

i∈L

ti, 1
)
. Hence Lemma 1 can be repeatedly

applied for ti at a time to prove this lemma. �

Note that by Equation 2, we can consider C as a dg-W̃ -coalgebra and hence C∗ as a dg-
W̃ -algebra. We will call the S̃ -coalgebra BιH(C∗) the minimal Hirsch-Brown model as at the

end of Section 4B. Now, note that the inclusion As ֌ W̃ , induces As¡ ֌ S̃ , and so it induces
S̃ ∗

։ (As¡)∗ = As. We also have surjective morphism W̃ ֌ As obtained by sending ti to 0 for

i in T and µL to 0 for ∅ 6= L ⊆ T . This induces S̃ ։ As¡, and so it induces As = (As¡)∗ ֌ S̃ ∗.
Notice that the composition

As ֌ S̃
∗
։ As

is the identity morphism on As. So this means we have a multiplicative structure on duals of
these minimal Hirsh-Brown models. Unfortunately, this multiplicative structure does not have
all the properties of the multiplicative structure used by Puppe, therefore we cannot repeat the
proof of [14, Lemma 2.1.a] to obtain an equivalent result. We hope that results stronger than
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[14, Lemma 2.1.b] can be proved to tighten the bounds mentioned in Section 1. The reason for
this hope is because we also know that the composition

S
∗
֌ S̃

∗
։ S

∗

is the identity morphism on S ∗, where the first morphism is induced by sending µL to 0 for
L ⊆ T and the second morphism comes from the inclusion As ֌ W̃ . Hence we have an S-module
structure, which is enough to prove [14, Lemma 2.1.b].

Proof of Theorem 2. Take P = W̃ where W̃ is the operad constructed in Section 5B. Hence P

is a Kozul operad by Theorem 6 and Section 5C. Notice that the Koszul dual operad of P is
S̃ ∗. Hence the other properties of P are proved in Section 5D. �

Proof of Proposition 1. Let X be a finite-dimensional free G-simplicial set. Notice that the
group G acts freely on products of r many equidimensional spheres where gi acts on the ith
sphere by the antipodal action. Hence G acts freely on S

0 × . . . × S
0 and S

m × . . .× S
m, where

m = dim(X) + 1. Let x0 be a point in X. First, we can define an equivariant map from
S
0 × . . . × S

0 to X by sending the south poles s := (−1, . . . ,−1) to x0 and extending the map
equivariantly. Second, we can construct a map from X to S

m× . . .× S
m by sending x0 to im(s)

then extending the map by using equivariant obstruction theory; see [2, Chapter II]. Since the
associated minimal models of products of equidimensional spheres are Koszul complexes, we
obtain the result of the proposition by naturality of our constructions. �

Proof of Proposition 2. Let P denote the operad in Theorem 2, m be a positive integer and
γ : Kr(m) → Kr(0) be a S∗-coalgebra morphism which induces the same map from H(Kr(m))

to H(Kr(0)) as i∗m does. Assume γ extends to a P¡-coalgebra morphism γ̃ : K̃r(m) −→ K̃r(0)
whose restriction to P¡ ◦1 is induced by the identity on P¡. Set T = {1, . . . , r}. For U ⊆ T and

n ∈ {0,m}, let z
(n)
U denote

∏

i∈U

z
(n)
i and xU denote

∏

i∈U

xmi . Since γ induces the same map from

H(Kr(m)) to H(Kr(0)) as i∗m does, γ∗ sends [1 ⊗ z
(0)
T ] to [xT ⊗ z

(m)
T ]. Since γ extends to P¡-

coalgebra map whose restriction to P¡ ◦ 1 is induced by the identity on P¡, we can say that γ∗

sends xU⊗z
(0)
T−U to xT⊗z

(m)
T−U+e where e contains only terms in the form f⊗zL such that T−U is

a proper subset of L and L is a subset of T . Hence F⊗γ∗ sends z∅, z{1}, . . . , z{r}, z{1,2}, . . . , z{1,r}
to linearly independent vectors in F ⊗S (Kr(m))∗. Then the linear map F ⊗S γ

∗ has rank at
least 2r, where F denotes the field of fractions of the ring S. �
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