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Abstract

It has been proven by Schupp and Bergman that the inner automorphisms of groups can be characterized
purely categorically as those group automorphisms that can be coherently extended along any outgoing
homomorphism. One is thus motivated to define a notion of (categorical) inner automorphism in an arbitrary
category, as an automorphism that can be coherently extended along any outgoing morphism, and the
theory of such automorphisms forms part of the theory of covariant isotropy. In this paper, we prove that
the categorical inner automorphisms in any category GroupJ of presheaves of groups can be characterized
in terms of conjugation-theoretic inner automorphisms of the component groups, together with a natural
automorphism of the identity functor on the index category J . In fact, we deduce such a characterization
from a much more general result characterizing the categorical inner automorphisms in any category TmodJ

of presheaves of T-models for a suitable first-order theory T.
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1. Introduction

An automorphism α : G
∼
−→ G of a group G is said to be inner if there is some element s ∈ G with respect

to which α is defined by conjugation, in the sense that α(g) = sgs−1 for any g ∈ G. In [1, Theorem 1],
George Bergman proved that these inner automorphisms can be characterized purely categorically, without
reference to group elements or conjugation, as the automorphisms that can be coherently extended along any
morphisms out of their domains.1 More precisely, he showed that an automorphism α : G

∼
−→ G is inner if

and only if one can define a group automorphism αf : H
∼
−→ H of the codomain of any group homomorphism

f : G→ H out of G in such a way that αidG = α and the resulting family of automorphisms (αf )f is coherent.
The latter condition means that if f : G → H and f ′ : H → K are any composable group homomorphisms
out of G, then the following square must commute:

H H

K K

αf

f ′ f ′

αf′◦f

Such a family of automorphisms (αf )f is just a natural automorphism of the projection functor G/Group →
Group, which sends a morphism f : G→ H to its codomain H . We refer to such a family of automorphisms
as an extended inner automorphism of G. Bergman’s result can therefore be restated as saying that a group
automorphism α : G

∼
−→ G is inner iff there is an extended inner automorphism (αf )f ∈ Z(G) with αidG = α.

These extended inner automorphisms form a group Z(G), which we call the covariant isotropy group of G.

Email address: parkerj@brandonu.ca (Jason Parker)
1Earlier versions of this result were also proven by Pettet [8] and Schupp [9].

Preprint submitted to Journal of Pure and Applied Algebra July 30, 2021

http://arxiv.org/abs/2107.13989v1


We can now generalize these ideas from the category Group to an arbitrary category. For any category
C, one can define its covariant isotropy group (functor) ZC : C → Group, which sends any object C ∈
obC to the group of natural automorphisms of the projection functor C/C → C. More concretely, if we
define Dom(C) := {f ∈ mor(C) : dom(f) = C}, then an element π ∈ ZC(C) is a Dom(C)-indexed family of
automorphisms

π =
(

πf : cod(f)
∼
−→ cod(f)

)

f∈Dom(C)

with the property that if f : C → C′ and f ′ : C′ → C′′ are any composable morphisms out of C, then
πf ′◦f ◦ f ′ = f ′ ◦ πf as in the commutative square above. Intuitively, an element π ∈ ZC(C) provides an

automorphism πidC : C
∼
−→ C that can be coherently or functorially extended along any morphism out of

C. The covariant isotropy group of a category C can therefore be regarded as encoding a notion of inner
automorphism or conjugation for C, abstracting from the initial case of C = Group. Motivated by the
considerations above, we may then refer to the elements of ZC(C) as the extended inner automorphisms of
C ∈ ob(C), while a (categorical) inner automorphism of C is an automorphism f : C

∼
−→ C for which there

is some extended inner automorphism π ∈ ZC(C) with πidC = f , i.e. a (categorical) inner automorphism is
an automorphism that can be coherently extended along any outgoing morphism.2

In [3] and [4], the present author and his collaborators studied the covariant isotropy group of the category
Tmod of models of any finitary quasi-equational theory T in the sense of [5].3 We showed therein that the
covariant isotropy group of a modelM of a finitary quasi-equational theory T can be logically or syntactically
described in terms of the sort-indexed families in

∏

CM 〈xC〉 that are substitutionally invertible and commute
generically with the operations of T, where M 〈xC〉 is the T-model obtained from M by freely adjoining a
new element xC of sort C. Using this logical or syntactic characterization of the covariant isotropy group of
Tmod, we then provided explicit characterizations of the (extended) inner automorphisms in many prominent
categories of mathematical interest, including the categories of (abelian) groups, (commutative) monoids,
(commutative) rings with unit, lattices, racks and quandles (see also [6]), and strict monoidal categories.

In [4, 5.2] the authors also proved an explicit characterization of the covariant isotropy group of any
presheaf category SetJ on a small category J , and showed that it is the constant functor SetJ → Group

with value Aut(IdJ ), the group of natural automorphisms of the identity functor on J . It is trivial to see
that Set is the category of models of a finitary quasi-equational theory, namely the single-sorted theory with
no operations and no axioms. It is the primary purpose of the present paper to extend the characterization
of covariant isotropy for presheaf categories SetJ to categories of the form TmodJ for arbitrary quasi-
equational theories T.4 In other words, we will explicitly characterize the (extended) inner automorphisms
in such functor categories TmodJ , and it will turn out that the (extended) inner automorphisms of a functor
F : J → Tmod can be described in terms of the automorphism group Aut(IdJ ) and the (extended) inner
automorphisms of the component T-models F (i) ∈ Tmod (for i ∈ obJ ). From this general characterization,
we will then extract an explicit characterization of the (extended) inner automorphisms in any category
GroupJ of presheaves of groups. In particular, we will show that the (categorical) inner automorphisms of
any functor F : J → Group can be characterized in terms of the automorphism group Aut(IdJ ) and the
conjugation-theoretic inner automorphisms of the component groups F (i) ∈ Group.

We now provide a brief overview of the paper. In Section 2 we first review some background material
from [5] on quasi-equational theories and their models, and we conclude by recalling the characterization of
covariant isotropy for the categories of models of such theories that was proven in [4]. We then proceed in
Section 3 to show that if T is a quasi-equational theory and J a small category, then the functor category
TmodJ can be axiomatized as the category of models of a quasi-equational theory TJ , and we then prove an
explicit logical characterization of the covariant isotropy group of TJmod ∼= TmodJ . In Section 4 we deduce
from these results a categorical characterization of the covariant isotropy group of TmodJ , and hence of the
(extended) inner automorphisms of functors J → Tmod. In the final Section 5, we deduce some important

2The general theory of categorical isotropy was introduced in [2].
3Quasi-equational theories are an equivalent formulation of multi-sorted essentially algebraic theories.
4In fact, we will need to eventually impose some modest conditions on T; see Definitions 3.43 and 3.44.
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special cases of our main results, and conclude by providing an explicit characterization of the (extended)
inner automorphisms in any category GroupJ of presheaves of groups.

The content in this paper (especially from Section 3 onward) is largely based on the final chapter of the
author’s recent PhD thesis [7]; in the interest of brevity, we have therefore chosen to refer the reader to this
source for many of the (technical) proofs.

2. Covariant isotropy of locally finitely presentable categories

In this section, we review the techniques developed in [4, 7] for computing the covariant isotropy group
of the category of models of any finitary quasi-equational theory, equivalently the covariant isotropy group
of any locally finitely presentable category. The initial material in this section borrows heavily from [5].

Definition 2.1. A (first-order) signature Σ is a pair of sets Σ = (ΣSort,ΣFun) such that ΣSort is the set of
sorts and ΣFun is the set of function/operation symbols. Each element f ∈ ΣFun comes equipped with a pair
((A1, . . . , An), A), where n ≥ 0 is a natural number and A,Ai are sorts for all 1 ≤ i ≤ n, which we write as
f : A1 × . . .×An → A. In case n = 0, we write f : A.

Definition 2.2. Let Σ be a signature. For every sort A ∈ ΣSort, we assume that we have a countable
set VA of variables of sort A. We now define the set Term(Σ) of terms of Σ recursively as follows, while
simultaneously defining the sort and the set FV(t) of free variables of a term t ∈ Term(Σ):

• If A ∈ ΣSort and x ∈ VA, then x ∈ Term(Σ) is of sort A with FV(x) := {x}.

• If f : A1 × . . .× An → A is a function symbol of Σ and ti ∈ Term(Σ) with ti : Ai for each 1 ≤ i ≤ n,
then f(t1, . . . , tn) ∈ Term(Σ) is of sort A, and FV (f(t1, . . . , tn)) :=

⋃

1≤i≤n FV(ti). In particular, if c
is a constant symbol of sort A, then c is a term of sort A with FV(c) = ∅.

If t ∈ Term(Σ) and FV(t) = ∅, then we call t a closed term. If t ∈ Term(Σ), then we write t(~x) to mean that
FV(t) ⊆ ~x.

Definition 2.3. Let Σ be a signature. We define the class Horn(Σ) of Horn formulas over Σ recursively as
follows, while simultaneously defining the set FV(ϕ) of free variables of a formula ϕ ∈ Horn(Σ):

• If t1, t2 ∈ Term(Σ) are terms of the same sort, then t1 = t2 ∈ Horn(Σ), and FV(t1 = t2) := FV(t1) ∪
FV(t2).

• ⊤ ∈ Horn(Σ) (the empty conjunction), and FV(⊤) := ∅.

• If ϕ1, ϕ2 ∈ Horn(Σ), then ϕ1 ∧ ϕ2 ∈ Horn(Σ), and FV (ϕ1 ∧ ϕ2) := FV(ϕ1) ∪ FV(ϕ2).

If ϕ ∈ Horn(Σ) and FV(ϕ) = ∅, then we will refer to ϕ as a (Horn) sentence. If ϕ ∈ Horn(Σ), then we will
write ϕ(~x) to mean that FV(ϕ) ⊆ ~x.

Definition 2.4. Let Σ be a signature. A Horn sequent over Σ is an expression of the form ϕ ⊢~x ψ, where
ϕ, ψ ∈ Horn(Σ) and FV(ϕ),FV(ψ) ⊆ ~x with ~x finite. A quasi-equational theory T is a set of Horn sequents
over a signature Σ.

One can now set up a deduction system of partial Horn logic for quasi-equational theories, wherein certain
Horn sequents are designated as logical axioms, and there are logical inference rules allowing one to deduce
certain Horn sequents from other Horn sequents. We refer the reader to [5] for a list of all the specific logical
axioms and inference rules of partial Horn logic. The main distinguishing feature of this deduction system
is that equality of terms is not assumed to be reflexive, i.e. if t(~x) is a term over a given signature, then
⊤ ⊢~x t(~x) = t(~x) is not a logical axiom of partial Horn logic, unless t is a variable. In other words, if we
abbreviate the equation t = t by t ↓ (read: t is defined), then unless t is a variable, the sequent ⊤ ⊢~x t ↓ is
not a logical axiom of partial Horn logic.
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If T is a quasi-equational theory over a signature Σ and ϕ ⊢~x ψ is a Horn sequent over Σ, then we say
that the sequent ϕ ⊢~x ψ is provable in T if there is a finite sequence of Horn sequents whose last member is
ϕ ⊢~x ψ, and each member of the sequence is either a logical axiom of partial Horn logic, an axiom of T, or
is obtained from previous elements of the sequence by an inference rule of partial Horn logic. We also say
that T proves the sequent ϕ ⊢~x ψ, or that this sequent is a theorem of T. If T proves a Horn sequent of the
form ⊤ ⊢~x ϕ, then we usually write this as T ⊢~x ϕ.

We now review the set-theoretic semantics of partial Horn logic. We recall that if A and B are any sets,
then a partial function f : A ⇁ B is a total function f : dom(f) → B with dom(f) ⊆ A.

Definition 2.5. Let Σ be a signature. A (set-based) partial Σ-structure M is given by a set MA for each
A ∈ ΣSort and a partial function fM :MA1

× . . .×MAn
⇁MA for each function symbol f : A1× . . .×An → A

of ΣFun.

Definition 2.6. Let Σ be a signature, and letM and N be partial Σ-structures. A Σ-morphism h : M → N
is a ΣSort-indexed sequence of total functions h = (hA :MA → NA)A∈ΣSort

such that for any function symbol
f : A1 × . . . × An → A in ΣFun and any (mi)i ∈

∏

1≤i≤nMAi
, if (mi)i ∈ dom

(

fM
)

, then (hAi
(mi))i ∈

dom
(

fN
)

and hA
(

fM (m1, . . . ,mn)
)

= fN (hA1
(m1), . . . , hAn

(mn)) ∈ NA.

It is easy to verify that the (componentwise) composition of Σ-morphisms is a Σ-morphism, and that the
sequence of identity functions (idA : MA → MA)A is a Σ-morphism idM : M → M that is an identity for
composition. So we can form the category PΣStr of partial Σ-structures and Σ-morphisms.

Before we can define the notion of a (set-based) model of a quasi-equational theory, we must first define
the interpretations of terms and Horn formulas in partial structures.

Definition 2.7. Let Σ be a signature. Let t(x1, . . . , xk) : A be an element of Term(Σ) with free vari-
ables among xi : Ai for 1 ≤ i ≤ k. Let M be a partial Σ-structure. We define the partial function
t(x1, . . . , xk)

M :
∏

1≤i≤kMAi
⇁MA by induction on the structure of t:

• If t ≡ xi : Ai for some 1 ≤ i ≤ k, then we set tM := πi :
∏

1≤i≤kMAi
→ MAi

, the (total) projection

onto the ith factor.

• If t ≡ f(t1, . . . , tm) : B for some function symbol f : B1 × . . . × Bm → B of Σ with tj(x1, . . . , xk) ∈
Term(Σ) and tj : Bj for each 1 ≤ j ≤ m, we first set

dom
(

tM
)

:=







~a ∈
⋂

1≤j≤m

dom
(

tMj
)

:
(

tMj (~a)
)

j
∈ dom

(

fM
)







,

and for any ~a ∈ dom
(

tM
)

we set tM (~a) := fM
(

tM1 (~a), . . . , tMm (~a)
)

∈ MB, which defines tM =
f(t1, . . . , tm)M :

∏

1≤i≤kMAi
⇁MB.

Definition 2.8. Let Σ be a signature, and let ϕ(x1, . . . , xk) be a Horn formula over Σ with free variables
among xi : Ai for 1 ≤ i ≤ k. Let M be a partial Σ-structure. We define ϕ(x1, . . . , xk)

M ⊆
∏

1≤i≤kMAi
by

induction on the structure of ϕ:

• If ϕ ≡ t1 = t2 for some terms t1, t2 of the same sort, then

ϕM = (t1 = t2)
M :=

{

~a ∈ dom
(

tM1
)

∩ dom
(

tM2
)

: tM1 (~a) = tM2 (~a)
}

.

• If ϕ ≡ ⊤, then ⊤M :=
∏

1≤i≤kMAi
.

• If ϕ ≡ ϕ1 ∧ ϕ2 for some ϕ1, ϕ2 ∈ Horn(Σ), then (ϕ1 ∧ ϕ2)
M

:= ϕM1 ∩ ϕM2 ⊆
∏

1≤i≤kMAi
.

Definition 2.9. Let Σ be a signature, let M be a partial Σ-structure, and let ϕ(~x), ψ(~x) be Horn formulas
over Σ. Then M models or satisfies the Horn sequent ϕ ⊢~x ψ if ϕ(~x)M ⊆ ψ(~x)M .

Let T be a quasi-equational theory over a signature Σ, and let M be a partial Σ-structure. Then M is a
model of T if M satisfies every axiom of T.
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For a quasi-equational theory T over a signature Σ, we now let Tmod be the full subcategory of PΣStr on
the models of T.

In order to sketch the details of the Initial Model Theorem for quasi-equational theories (see [5, Theorem
22]), we first require the following definitions.

Definition 2.10. Let Σ be a signature and M a partial Σ-structure. For every sort A, let ∼A be an
equivalence relation on MA. Then the ΣSort-indexed family of equivalence relations (∼A)A is a partial

congruence on M if for every function symbol f : A1 × . . . × An → A in ΣFun and all ~a,~b ∈
∏

1≤i≤nMAi
,

if ai ∼Ai
bi for all 1 ≤ i ≤ n, then ~a ∈ dom

(

fM
)

iff ~b ∈ dom
(

fM
)

and ~a,~b ∈ dom
(

fM
)

=⇒ fM (~a) ∼A

fM
(

~b
)

.

We now have the following definition:

Definition 2.11. Let Σ be a signature andM a partial Σ-structure. Let ∼ = (∼A)A be a partial congruence
on M . We define the partial quotient Σ-structure M/∼ as follows:

• For every sort A ∈ Σ, we set (M/∼)A := MA/∼A, the set of equivalence classes of MA modulo the
equivalence relation ∼A.

• For any function symbol f : A1 × . . .×An → A we set

dom
(

fM/∼
)

:=







([ai])i ∈
∏

1≤i≤n

MAi
/∼Ai

: (ai)i ∈ dom
(

fM
)







.

Then for any ([ai])i ∈ dom
(

fM/∼
)

, we set fM/∼ ([a1], . . . , [an]) :=
[

fM (a1, . . . , an)
]

.

Because ∼ is a partial congruence on M , it easily follows that M/∼ is a well-defined partial Σ-structure.

We now sketch the details of the Initial Model Theorem from [5] that we will need for our purposes. First,
given a quasi-equational theory T over a signature Σ, we define a specific partial Σ-structure MT.

Definition 2.12. Let Σ be a signature. First, let Termc(Σ) := {t ∈ Term(Σ) : FV(t) = ∅} be the set of
closed terms of Term(Σ). For any A ∈ ΣSort, let

Termc(Σ)A := {t ∈ Termc(Σ) : t is of sort A}

be the set of closed Σ-terms of sort A.
Now let T be a quasi-equational theory over Σ. We define a partial Σ-structure MT as follows:

• For any sort A ∈ Σ, we set MT

A := {t ∈ Termc(Σ)A : T ⊢ t ↓}.

• For any function symbol f : A1 × . . .×An → A of Σ, we set

dom
(

fM
T
)

:=







~t ∈
∏

1≤i≤n

MT

Ai
: T ⊢ f

(

~t
)

↓







,

and if ~t ∈ dom
(

fM
T

)

, we set fM
T (~t
)

:= f
(

~t
)

∈MT

A.

Now we define a partial congruence ∼T on MT. For any sort A ∈ Σ, we set

∼T

A : =
{

(t1, t2) ∈MT

A ×MT

A : T ⊢ t1 = t2
}

.

Using the rules of partial Horn logic, it is then straightforward to verify that ∼T is in fact a partial congruence
on MT. We now make the following definition:

5



Definition 2.13. Let T be a quasi-equational theory over a signature Σ, and let MT be the partial Σ-
structure and ∼T the partial congruence on MT just defined. Applying Definition 2.11, we then define the
following partial Σ-structure: Free(T) :=MT/∼T.

The following theorem is then proven in [5, Theorem 22]:

Theorem 2.14. Let T be a quasi-equational theory over a signature Σ. Then the partial Σ-structure Free(T)
is an initial model of T, i.e. an initial object of the category Tmod.

Remark 2.15. For concreteness, we give the explicit description of Free(T) for a quasi-equational theory T

over a signature Σ.

• For any sort A ∈ Σ, we have

Free(T)A :=MT

A/∼
T

A = {[t] : t ∈ Termc(Σ)A and T ⊢ t ↓} ,

where [t] is the ∼T

A-congruence class of t ∈MT

A (so for any s, t ∈MT

A, we have [s] = [t] iff T ⊢ s = t).

• If f : A1 × . . .×An → A is a function symbol of Σ, then

dom
(

fFree(T)
)

=







([ti])i ∈
∏

1≤i≤n

Free(T)Ai
: T ⊢ f(t1, . . . , tn) ↓







,

and for any ([ti])i ∈ dom
(

fFree(T)
)

, we have fFree(T) ([t1], . . . , [tn]) = [f(t1, . . . , tn)].

To review the main results of [7, Section 2.2] and [4], characterizing the covariant isotropy group of Tmod

for a quasi-equational theory T in logical terms, we first recall the following notions.
If M ∈ Tmod for a quasi-equational theory T over a signature Σ, then Σ(M) is the diagram signature of

M , which extends Σ by adding a new constant symbol ca : C for any sort C ∈ ΣSort and a ∈MC . The quasi-
equational theory T(M) over the signature Σ(M) then extends T by adding axioms expressing that each new
constant ca is defined, and that the function symbols of T interact with these constants appropriately (for
explicit details, see [7, Definition 2.2.3]). If n ≥ 1 and Ai ∈ ΣSort for each 1 ≤ i ≤ n, then Σ(M, x1, . . . , xn) is
the signature that extends Σ(M) by adding new pairwise distinct constant symbols xi : Ai for all 1 ≤ i ≤ n.
The quasi-equational theory T(M, x1, . . . , xn) over the signature Σ(M, x1, . . . , xn) then extends T(M) by
adding axioms expressing that xi is defined for each 1 ≤ i ≤ n. Finally, if C ∈ ΣSort, then M 〈xC〉 is defined
to be the (Σ-reduct of) the initial model of T(M, xC), which therefore has the following explicit description
(cf. Remark 2.15):

• For any B ∈ ΣSort,

M 〈xC〉B = {[t] : t ∈ Termc(Σ(M, xC))B ∧ T(M, xC) ⊢ t ↓} .

• If f : A1 × . . .×An → A is a function symbol of Σ, then

dom
(

fM〈xC〉
)

=







([ti])i ∈
∏

1≤i≤n

M 〈xC〉Ai
: T(M, xC) ⊢ f(t1, . . . , tn) ↓







,

and for any ([ti])i ∈ dom
(

fM〈xC〉
)

we have fM〈xC〉 ([t1], . . . , [tn]) = [f(t1, . . . , tn)].

We now recall [7, Definition 2.2.47] and [4, Definition 6]. The notion of syntactic substitution used in the
following definition is the standard/expected one; see [7, Remark 2.2.21] for an explicit definition.

Definition 2.16. Let T be a quasi-equational theory over a signature Σ, and let M ∈ Tmod and ([sC ])C ∈
∏

C∈ΣSort
M 〈xC〉C .

6



• If f : A1 × . . . × An → A is a function symbol of Σ, then ([sC ])C commutes generically with f if the
Horn sequent

f(x1, . . . , xn) ↓ ⊢ sA[f(x1, . . . , xn)/xA] = f (sA1
[x1/xA1

], . . . , sAn
[xn/xAn

])

is provable in T (M, x1, . . . , xn).

• We say that ([sC ])C is (substitutionally) invertible if for every B ∈ ΣSort there is some
[

s−1
B

]

∈M 〈xB〉B
with

[

sB
[

s−1
B /xB

]]

= [xB ] =
[

s−1
B [sB/xB]

]

∈M 〈xB〉B ,

i.e. with T(M, xB) ⊢ sB
[

s−1
B /xB

]

= xB = s−1
B [sB/xB].

• We say that ([sC ])C reflects definedness if for every function symbol f : A1 × . . .×An → A in Σ, the
sequent

f (sA1
[x1/xA1

], . . . , sAn
[xn/xAn

]) ↓ ⊢ f(x1, . . . xn) ↓

is provable in T (M, x1, . . . , xn).

As in [7, Definition 2.2.36], we then have a functor GT : Tmod → Group, with GT(M) for M ∈ Tmod

being the group of all elements ([sC ])C ∈
∏

C∈ΣM 〈xC〉C that are substitutionally invertible and commute
generically with and reflect definedness of every function symbol of Σ. The unit of this group is the element
([xC ])C , the inverse of any element is obtained via the substitutional invertibility of each of its components
(as in Definition 2.16), and if ([sC ])C , ([tC ])C ∈ GT(M), then their product is obtained via substitution as
([sC ])C · ([tC ])C := ([sC [tC/xC ]])C . For more details, see [7, Propositions 2.2.35, 2.2.38]. From [7, Theorems
2.2.41, 2.2.53] and [4, Theorem 7] we then conclude that if T is a quasi-equational theory, then

ZTmod
∼= GT : Tmod → Group.

(In what follows, we will generally write ZT in place of ZTmod.) In other words, the covariant isotropy group
of M ∈ Tmod, i.e. its group of extended inner automorphisms, is isomorphic to the group of all elements
of ([sC ])C ∈

∏

C∈ΣM 〈xC〉C that are substitutionally invertible and commute generically with and reflect
definedness of all operations of T (naturally in M).

3. Logical characterization

For the remainder of this section, we fix a quasi-equational theory T over a signature Σ, as well as a small
index category J . At a certain point (see Proposition 3.45) we will need to impose two modest assumptions
on T, but for the time being we can assume that T is arbitrary. We first show that the functor category
TmodJ can be axiomatized as the category of models of a quasi-equational theory TJ , and then we explicitly
characterize GTJ : TJmod → Group, which will yield an explicit characterization of the covariant isotropy
group ZTmodJ : TmodJ → Group in Section 4.

We first define the signature ΣJ for the desired quasi-equational theory TJ . Since J is small, we know
that its classes obJ and morJ of objects and morphisms are both sets.

Definition 3.1. We define the signature ΣJ as follows:

• If i ∈ obJ and A ∈ ΣSort, let A
i /∈ ΣSort be a new sort. Then we set

ΣJ
Sort :=

{

Ai : i ∈ obJ , A ∈ ΣSort

}

.

• For any morphism f : i → j in J and A ∈ ΣSort, let α
A
f : Ai → Aj be a new unary function symbol

/∈ ΣFun. For any i ∈ obJ and function symbol g : A1× . . .×An → A in ΣFun, let g
i : Ai1× . . .×A

i
n → Ai

be a new function symbol /∈ ΣFun. Then we set

ΣJ
Fun :=

{

αAf : f ∈ morJ , A ∈ ΣSort

}

⋃

{

gi : g ∈ ΣFun, i ∈ obJ
}

.
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Given a partial ΣJ -structure, we now show how to derive component Σ-structures from it, indexed by the
objects of J .

Definition 3.2. Let M be a partial ΣJ -structure and let i ∈ obJ . We define a partial Σ-structure M i as
follows: for any A ∈ ΣSort, we set M i

A :=MAi , and for any function symbol g : A1 × . . .×An → A of Σ, we

set gM
i

:=
(

gi
)M

:MAi
1

× . . .×MAi
n
=M i

A1
× . . .×M i

An
⇁M i

A =MAi .

From a morphism of ΣJ -structures we can also obtain morphisms of the component Σ-structures:

Definition 3.3. Let h : M → N be a ΣJ -morphism and let i ∈ obJ . Then we have a Σ-morphism
hi :M i → N i given by hiA := hAi :M i

A =MAi → NAi = N i
A for every A ∈ ΣSort.

For any i ∈ obJ , we now define an ‘inclusion’ signature morphism ρi : Σ → ΣJ . Recall from [5, Section
5] that a signature morphism ρ : Σ1 → Σ2 from a signature Σ1 to a signature Σ2 assigns to each sort A
of Σ1 a sort ρ(A) of Σ2 and to each function symbol g : A1 × . . . × An → A of Σ1 a function symbol
ρ(g) : ρ(A1)× . . .× ρ(An) → ρ(A) of Σ2.

Definition 3.4. For any i ∈ obJ , we define a signature morphism ρi : Σ → ΣJ as follows: for any
A ∈ ΣSort, we set ρi(A) := Ai ∈ ΣJ

Sort, and for any function symbol g : A1 × . . . × An → A in ΣFun, we set
ρi(g) := gi : Ai1 × . . .×Ain → Ai.

We can now define the quasi-equational theory TJ that will axiomatize TmodJ .

Definition 3.5. We define TJ to be the quasi-equational theory over the signature ΣJ whose axioms are
the following sequents:

1. For any f : i→ j in morJ and A ∈ ΣSort, the axiom ⊤ ⊢x:A
i

αAf (x) ↓.

2. For any i ∈ obJ and A ∈ ΣSort, the axiom ⊤ ⊢x:A
i

αAidi(x) = x.

3. For any f : i→ j and g : j → k in morJ and A ∈ ΣSort, the axiom ⊤ ⊢x:A
i

αAg

(

αAf (x)
)

= αAg◦f (x).

4. For any f : i→ j in morJ and g : A1 × . . .×An → A in ΣFun, the axiom

gi(x1, . . . , xn) ↓ ⊢x1:A
i
1
,...,xn:A

i
n αAf

(

gi(x1, . . . , xn)
)

= gj
(

αA1

f (x1), . . . , α
An

f (xn)
)

.

5. For any i ∈ obJ and any axiom ϕ ⊢~x ψ of T, the axiom ρi(ϕ) ⊢ρ
i(~x) ρi(ψ).

Remark 3.6. Recall from [5, Section 5] that if T1 and T2 are quasi-equational theories over respective
signatures Σ1 and Σ2, then a signature morphism ρ : Σ1 → Σ2 is a theory morphism from T1 to T2 if the
ρ-translation ρ(ϕ) ⊢ρ(~x) ρ(ψ) of any axiom ϕ ⊢~x ψ of T1 is provable in T2, which then entails that ρ preserves
provability of sequents (see [7, Lemma 2.2.16]). A first easy property of TJ is now that for any i ∈ obJ , the
signature morphism ρi : Σ → ΣJ of Definition 3.4 is also a theory morphism T → TJ , because TJ includes
the axioms in Definition 3.5.5.

To begin studying the models of TJ , we first make the following easy observation:

Lemma 3.7. If M is a partial ΣJ -structure with M |= TJ , then for any i ∈ obJ , the partial Σ-structure
M i of Definition 3.2 is a model of T.

Proof. Since ρi : T → TJ is a theory morphism by Remark 3.6, it follows by [5, Proposition 28] that U i(M)
is a model of T, where U i : TJmod → Tmod is the forgetful functor induced by the signature morphism ρi.
However, it is trivial to observe that U i(M) =M i, so that M i is indeed a model of T.

We now have:
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Proposition 3.8. There is an isomorphism of categories TJmod ∼= TmodJ .

Proof. We sketch the bijection between the objects of TJmod and TmodJ and refer the reader to [7, Propo-
sition 5.1.8] for the remaining straightforward details. Given M ∈ TJmod, we must define a corresponding
functor FM : J → Tmod. For any i ∈ obJ , we let FM (i) be the T-model M i of Lemma 3.7. For any
morphism f : i → j of J , we define the Σ-morphism FM (f) : M i → M j as follows: for any A ∈ ΣSort, we

define FM (f)A :M i
A =MAi →MAj →M j

A as FM (f)A :=
(

αAf

)M

. Because of Axiom 3.5.1, it follows that

each function FM (f)A =
(

αAf

)M

is total (as needed). The functoriality of FM follows from Axioms 3.5.2

and 3.5.3, and the fact that FM (f) :M i →M j is a Σ-morphism follows from Axiom 3.5.4. This proves that
FM : J → Tmod is a well-defined functor. Conversely, starting from a functor F : J → Tmod, we define a
model MF ∈ TJmod as follows: for any A ∈ ΣSort and i ∈ obJ , we set MF

Ai := F (i)A, for any morphism

f : i → j in J , we set
(

αAf

)MF

:= F (f)A, and for any function symbol g : A1 × . . . × An → A of Σ, we

set
(

gi
)MF

:= gF (i). The functoriality of F guarantees that MF satisfies Axioms 3.5.1, 3.5.2, and 3.5.3,
the fact that each F (f) is a Σ-morphism guarantees that MF satisfies Axiom 3.5.4, and the fact that each
F (i) is a T-model guarantees that MF satisfies Axiom 3.5.5. So MF is indeed a TJ -model, and it is now
straightforward to observe that the assignments M 7→ FM and F 7→MF are mutually inverse.

Before we can start to characterize the covariant isotropy group of TJ , we first require the following purely
group-theoretic fact, whose proof is a routine verification.

Lemma 3.9. Let F : J → Group be a functor, and consider the product group
∏

i∈obJ F (i). Then

(

∏

i∈obJ

F (i)

)F

:=

{

(gi)i ∈
∏

i∈obJ

F (i) : F (f)(gj) = gk ∀f : j → k ∈ morJ

}

is a subgroup of
∏

i∈obJ F (i). Furthermore, this assignment is the object part of a functor
(
∏

i∈obJ (−)(i)
)(−)

= lim : GroupJ → Group.

We can now begin to characterize the covariant isotropy groups of models of TJ . If M ∈ TJmod, then by
the proof of Proposition 3.8, there is a corresponding functor FM : J → Tmod. If GT : Tmod → Group is
the functor naturally isomorphic to the covariant isotropy group ZT : Tmod → Group by Section 2, then we
obtain the composite functor GT ◦ FM : J → Group with

(

GT ◦ FM
)

(i) = GT

(

FM (i)
)

= GT

(

M i
)

for every i ∈ obJ . By Lemma 3.9, it then follows that
(
∏

iGT

(

M i
))GT◦F

M

is a subgroup of
∏

iGT

(

M i
)

,

and hence in particular is a group. Let us denote this subgroup with the cleaner notation
(
∏

iGT

(

M i
))J

.
Next, we will need to define a certain group Aut(IdJ )M , where Aut(IdJ ) is the group of natural automor-

phisms of the identity functor IdJ : J → J . Its definition is somewhat subtle and unintuitive, so we ask the
reader to bear with us until after we have defined it, at which point we will try to give some explanation for
the technicalities in its definition.

For any i ∈ obJ and B ∈ ΣSort, we say that the diagram theory T
(

M i
)

of the T-model M i is trivial for

the sort B if T
(

M i
)

⊢y,y
′

y = y′ for distinct variables y, y′ : B. Otherwise, we say that T
(

M i
)

is non-trivial

for the sort B. To say that T
(

M i
)

is trivial for the sort B is equivalent to saying (by [7, Lemma 3.1.2]) that
for any T-model N for which there is a Σ-morphism M i → N , the carrier set NB has at most one element.
For any B ∈ ΣSort, we let JM

B be the full subcategory of J on those objects i ∈ obJ for which T
(

M i
)

is

non-trivial for the sort B. We then let Aut
(

IdJM
B

)

be the group of natural automorphisms of the identity

functor IdJM
B

: JM
B → JM

B .
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We will need to consider a certain subgroup of
∏

B∈ΣSort
Aut

(

IdJM
B

)

, which we will call Aut(IdJ )M . To

define this subgroup, we first require the following definition:

Definition 3.10. Let M ∈ TJmod, let g : A1 × . . .× An → A be a function symbol of Σ with n ≥ 1, and
let i ∈ obJ . Then for any 1 ≤ m ≤ n, we say that gM

i

is degenerate in position m if

T
(

M i
)

⊢y1,...,yn,zm g(y1, . . . , yn) = g(y1, . . . , yn)[zm/ym],

where y1, . . . , yn, zm are pairwise distinct variables of the appropriate sorts. Otherwise, if T
(

M i
)

does not

prove the above equation, we say that gM
i

is non-degenerate in position m.

Thus, to say that gM
i

is degenerate in position 1 ≤ m ≤ n is equivalent to saying (again by [7, Lemma 3.1.2])
that for any T-model N for which there is a Σ-morphismM i → N and any elements a1 ∈ NA1

, . . . , am, bm ∈
NAm

, . . . , an ∈ NAn
, we have gN(a1, . . . , am, . . . , an) = gN(a1, . . . , bm, . . . , an) (i.e. the value of gN does not

change when the mth coordinate of an input n-tuple changes). We can now define:

Definition 3.11. Let M ∈ TJmod. We denote an element of
∏

B∈ΣSort
Aut

(

IdJM
B

)

by ψ = (ψB)B∈Σ, so

that each ψB is a natural automorphism of IdJM
B
, with components ψB(i) : i

∼
−→ i for each i ∈ obJM

B .
We define

Aut(IdJ )M ⊆
∏

B∈ΣSort

Aut
(

IdJM
B

)

to consist of exactly those elements ψ ∈
∏

B∈ΣSort
Aut

(

IdJM
B

)

with the following property: if

g : A1 × . . . × An → A is any function symbol of Σ with n ≥ 1, then for any i ∈ obJ and 1 ≤ m ≤ n for
which gM

i

is non-degenerate in position m, we have ψAm
(i) = ψA(i) : i

∼
−→ i.

This property is well-defined, in the sense that if gM
i

is non-degenerate in position m, then it easily
follows that T

(

M i
)

must be non-trivial for the sorts A and Am, so that i must be an object of both JM
A

and JM
Am

, and hence ψA(i) and ψAm
(i) are both well-defined morphisms of J . It is then trivial to verify

that Aut(IdJ )M is indeed a subgroup of
∏

B∈ΣSort
Aut

(

IdJM
B

)

, and hence is a group.

Our ultimate goal in this section is now to show for any quasi-equational theory T (satisfying two mild
conditions, see Proposition 3.45), any small index category J , and any M ∈ TJmod that

GTJ (M) ∼=

(

∏

i∈J

GT

(

M i
)

)J

× Aut(IdJ )M ,

naturally in M . Specifically, we will construct a group isomorphism

βM :

(

∏

i∈J

GT

(

M i
)

)J

× Aut(IdJ )M
∼
−→ GTJ (M)

for each M ∈ TJmod.
As promised, let us now attempt to give some explanation of the technicalities involved in the definition

of Aut(IdJ )M . First, let us discuss why for each sort B ∈ ΣSort we needed to consider the full subcategory
JM
B of J on those objects i ∈ obJ for which T

(

M i
)

is non-trivial for the sort B, rather than just the
whole category J . Essentially, the reason is that if we considered J rather than JM

B , then the group
homomorphism βM that we will define in Proposition 3.19 will not be injective in general. Indeed, we show
in detail on [7, Page 151] that if T is the single-sorted algebraic theory of commutative unital rings, J is any
one-object category for which Aut(IdJ ) is non-trivial, and F : J → Tmod = CRing is the constant functor
on the zero ring with corresponding TJ -model M , then βM will not be injective if we consider J rather
than JM

X (where X is the unique sort of T).

10



This will hopefully help to convince the reader that we need to define Aut(IdJ )M to be a subgroup of
∏

B∈ΣSort
Aut

(

IdJM
B

)

rather than
∏

B∈ΣSort
Aut (IdJ ). Now let us try to motivate why we cannot just define

Aut(IdJ )M to be the full group
∏

B∈ΣSort
Aut

(

IdJM
B

)

(when T is multi-sorted). A first vague intuition is that

if ψ = (ψB)B∈Σ ∈
∏

B∈ΣSort
Aut

(

IdJM
B

)

, then we need the distinct ψB’s to ‘interact’ properly, if there are

(non-degenerate) function symbols in ΣFun that ‘connect’ distinct sorts. Indeed, we show in detail on [7, Page
152] that if J is the one-object category corresponding to the group Z2 and T is the quasi-equational theory
with two sorts X and Y and one function symbol f : X → Y and the single axiom asserting that f is always
defined, then there is a model M of TJ for which the group homomorphism βM defined in Proposition 3.19
will not land in GTJ (M), if we do not define Aut(IdJ )M as we do in Definition 3.11.

Now, towards constructing the group homomorphisms βM in Proposition 3.19, we require the following
technical definitions and lemmas.

Definition 3.12. Let M ∈ TJmod, i ∈ obJ , and C ∈ ΣSort. We define a signature morphism

ρCMi : Σ
(

M i, xC
)

→ ΣJ (M, xCi)

as follows (where xC /∈ Σ
(

M i
)

and xCi /∈ ΣJ (M) are new constants of sorts C and Ci, respectively):

• On Σ ⊆ Σ
(

M i, xC
)

, we stipulate that ρCMi agrees with ρi : Σ → ΣJ (see Definition 3.4).

• If s ∈M i
A =MAi for some A ∈ ΣSort, then we set ρCMi

(

cM
i

A,s

)

:= cMAi,s ∈ ΣJ (M, xCi).

• We set ρCMi(xC) := xCi ∈ ΣJ (M, xCi).

We now have the following lemma, whose easy proof may be found in [7, Lemma 5.1.13]:

Lemma 3.13. For any M ∈ TJmod, i ∈ obJ , and C ∈ ΣSort, the signature morphism ρCMi is a theory
morphism ρCMi : T

(

M i, xC
)

→ TJ (M, xCi).

The proof of the next lemma is immediate from the definitions:

Lemma 3.14. Let M ∈ TJmod, i ∈ obJ , and C ∈ ΣSort. For any u, v ∈ Termc
(

Σ
(

M i, xC
))

with v : C, we

have ρCMi (u [v/xC ]) ≡ ρCMi(u)
[

ρCMi(v)/xCi

]

.

We will require the following signature morphisms indexed by the elements of morJ :

Definition 3.15. Let M ∈ TJmod, f : i→ j ∈ morJ , and C ∈ ΣSort. We define a signature morphism

σCf : ΣJ (M, xCj ) → ΣJ (M, xCi)

as follows: on ΣJ (M) we define σCf to be the inclusion into ΣJ (M, xCi), and we set σCf (xCj ) := αCf (xCi) :

Cj .

Since TJ (M, xCi) ⊢ αCf (xCi) ↓, we then easily obtain:

Lemma 3.16. For any M ∈ TJmod, f : i → j ∈ morJ , and C ∈ ΣSort, the signature morphism σCf is a

theory morphism σCf : TJ (M, xCj ) → TJ (M, xCi).

If f : i → j is a morphism in J , let us write fM := FM (f) : M i → M j (see the proof of Proposition 3.8).
Then we have

fM = FM (f) =
(

(

αAf
)M

:M i
A →M j

A

)

A∈Σ
.

Recall that for any C ∈ ΣSort, the Σ-morphism fM : M i → M j induces a canonical signature morphism
ρCfM : Σ

(

M i, xC
)

→ Σ
(

M j , xC
)

by [7, Definition 2.2.17] which is also a theory morphism T
(

M i, xC
)

→

T
(

M j , xC
)

by [7, Lemma 2.2.18].
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Definition 3.17. For any M ∈ TJmod, any morphism f : i → j in J , and any C ∈ ΣSort, we define a
signature morphism τCf : Σ

(

M i, xC
)

→ ΣJ (M, xCi) as the composite

Σ
(

M i, xC
)
ρC
fM

−−−→ Σ(M j , xC)
ρC
Mj

−−−→ ΣJ (M, xCj )
σC
f

−−→ ΣJ (M, xCi).

Explicitly, τCf is defined as follows:

• When restricted to Σ ⊆ Σ
(

M i, xC
)

, τCf agrees with ρj : Σ → ΣJ .

• For any s ∈M i
A =MAi (for any A ∈ ΣSort), we have τCf

(

cM
i

A,s

)

≡ cM
Aj ,(αA

f )
M

(s)
.

• We have τCf (xC) ≡ αCf (xCi).

We will then need the following technical lemma about the signature morphism τCf , whose proof may be
found in [7, Lemma 5.1.19]:

Lemma 3.18. Let M ∈ TJmod, let f : i→ j be any morphism in J , and let C ∈ ΣSort. Then for any term
u ∈ Termc

(

Σ
(

M i, xC
))

with T
(

M i, xC
)

⊢ u ↓ and u : A, we have TJ (M, xCi) ⊢ τCf (u) = αAf
(

ρCMi(u)
)

.

We can now prove:

Proposition 3.19. For any M ∈ TJmod, there is a group homomorphism

βM :

(

∏

i∈J

GT

(

M i
)

)J

× Aut(IdJ )M → GTJ (M).

Proof. Let γ = (γi)i ∈
(
∏

iGT

(

M i
))J

and ψ = (ψB)B∈Σ ∈ Aut(IdJ )M . We must define βM (γ, ψ) ∈

GTJ (M), with GTJ (M) being the group of all ΣJ
Sort-indexed sequences ([tCi ])i,C ∈

∏

i∈J ,C∈ΣM 〈xCi〉Ci

that are invertible, commute generically with all function symbols of ΣJ , and reflect definedness. Each
tCi ∈ Termc

(

ΣJ (M, xCi)
)

is a closed term of sort Ci with TJ (M, xCi) ⊢ tCi ↓.

So let i ∈ obJ and C ∈ ΣSort, and let us define βM (γ, ψ)Ci ∈ M 〈xCi〉Ci . Since γi ∈ GT

(

M i
)

, we know

that γCi =
[

siC
]

∈ M i 〈xC〉C . So siC ∈ Termc
(

Σ
(

M i, xC
))

C
is a closed term of sort C with T

(

M i, xC
)

⊢

siC ↓. Then ρCMi

(

siC
)

∈ Termc
(

ΣJ (M, xCi)
)

Ci and TJ (M, xCi) ⊢ ρCMi

(

siC
)

↓, since ρCMi : T
(

M i, xC
)

→

TJ (M, xCi) is a theory morphism by Lemma 3.13.
Suppose first that T

(

M i
)

is non-trivial for the sort C. Then i ∈ obJM
C and ψC(i) : i

∼
−→ i is an isomor-

phism in J . So then αCψC(i) : Ci → Ci is a function symbol of ΣJ and TJ (M, xCi) ⊢ αCψC(i)(xCi) ↓,

and it then follows by [7, Lemma 2.2.24] that TJ (M, xCi) ⊢ ρCMi

(

siC
)

[

αCψC(i)(xCi)/xCi

]

↓. So then
[

ρCMi

(

siC
)

[

αCψC(i)(xCi)/xCi

]]

∈M 〈xCi〉Ci , and we therefore set

βM (γ, ψ)Ci :=
[

ρCMi

(

siC
)

[

αCψC(i)(xCi)/xCi

]]

∈M 〈xCi〉Ci .

If T
(

M i
)

is trivial for the sort C, then we simply set βM (γ, ψ)Ci := [xCi ] ∈ M 〈xCi〉Ci . It is then shown
in the proof of [7, Proposition 5.1.20] that βM is well-defined. We now prove in a series of claims that
βM (γ, ψ) ∈ GTJ (M).

Claim 3.20. βM (γ, ψ) is invertible.

Proof. Let i ∈ obJ and C ∈ ΣSort. The result is trivial to verify if T
(

M i
)

is trivial for the sort C, so assume

otherwise. Since γi ∈ GT

(

M i
)

, there is some
[

(

siC
)−1
]

∈M i 〈xC〉C with

[

siC

[

(

siC
)−1

/xC

]]

= [xC ] =
[

(

siC
)−1 [

siC/xC
]

]

∈M i 〈xC〉C ,
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i.e.
T
(

M i, xC
)

⊢ siC

[

(

siC
)−1

/xC

]

= xC =
(

siC
)−1 [

siC/xC
]

.

Now consider ρCMi

(

(

siC
)−1
)

∈ Termc
(

ΣJ (M, xCi)
)

Ci : since T
(

M i, xC
)

⊢
(

siC
)−1

↓, it follows from Lemma

3.13 that TJ (M, xCi) ⊢ ρCMi

(

(

siC
)−1
)

↓. Then because αCψC(i)−1 : Ci → Ci is provably total in TJ , we

obtain TJ (M, xCi) ⊢ αCψC(i)−1

(

ρCMi

(

(

siC
)−1
))

↓, so that

[

αCψC(i)−1

(

ρCMi

(

(

siC
)−1
))]

∈M 〈xCi〉Ci .

So we set
βM (γ, ψ)−1

Ci :=
[

αCψC(i)−1

(

ρCMi

(

(

siC
)−1
))]

,

and it is now straightforward to show (as in the proof of [7, Proposition 5.1.20]) that this is a substitutional
inverse of βM (γ, ψ)Ci , which proves that βM (γ, ψ) is invertible.

Claim 3.21. βM (γ, ψ) commutes generically with all function symbols of ΣJ .

Proof. First let i ∈ obJ and let g : A1 × . . . × An → A be a function symbol of Σ. We must show that
βM (γ, ψ) commutes generically with the function symbol gi : Ai1 × . . .× Ain → Ai of ΣJ . Assume without
loss of generality that T

(

M i
)

is non-trivial for each of the sorts A1, . . . , An, A; if this is not the case, then
the argument required is a simpler version of the one we are about to give.

We must show that the sequent

gi
(

xAi
1

, . . . , xAi
n

)

↓ ⊢
{

ρAMi

(

siA
)

[

αAψA(i)(xAi)/xAi

]} [

gi
(

xAi
1

, . . . , xAi
n

)

/xAi

]

= gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA1
(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψAn(i)

(

xAi
n

)

/xAi
n

])

is provable in the theory TJ
(

M, xAi
1

, . . . , xAi
n

)

(technically, we need to ensure that the indeterminates on

the right side of the equation are pairwise distinct (see Definition 2.16), but we will ignore this subtlety here
and elsewhere in the proof to increase readability). Since γi ∈ GT

(

M i
)

, we know that the sequent

g (xA1
, . . . , xAn

) ↓ ⊢ siA [g (xA1
, . . . , xAn

) /xA] = g
(

siA1
, . . . , siAn

)

(∗)

is provable in the theory T
(

M i, xA1
, . . . , xAn

)

. As in Definition 3.12 and Lemma 3.13, we can define a

signature morphism ρ
~A
Mi : Σ

(

M i, xA1
, . . . , xAn

)

→ ΣJ
(

M, xAi
1

, . . . , xAi
n

)

that will be a theory morphism

ρ
~A
Mi : T

(

M i, xA1
, . . . , xAn

)

→ T
J
(

M, xAi
1

, . . . , xAi
n

)

;

on Σ
(

M i
)

, we define ρ
~A
Mi as in Definition 3.12, and for any 1 ≤ j ≤ n we set ρ

~A
Mi(xAj

) := xAi
j
(here

~A = A1, . . . , An). Then it is obvious that for any 1 ≤ j ≤ n, the signature morphism ρ
~A
Mi agrees with the

signature morphism ρ
Aj

Mi : Σ
(

M i, xAj

)

→ ΣJ
(

M, xAi
j

)

when restricted to Σ
(

M i, xAj

)

, which implies that

ρ
~A
Mi

(

siAj

)

≡ ρ
Aj

Mi

(

siAj

)

for all 1 ≤ j ≤ n. Also (by Lemma 3.14), we have

ρAMi

(

siA
)

[

gi
(

xAi
1

, . . . , xAi
n

)

/xAi

]

≡ ρ
~A
Mi

(

siA [g(xA1
, . . . , xAn

)/xA]
)

.

Now, since ρ
~A
Mi : T

(

M i, xA1
, . . . , xAn

)

→ TJ
(

M, xAi
1

, . . . , xAi
n

)

is a theory morphism, it follows that

the ρ
~A
Mi -translation of the aforementioned sequent (∗) provable in T

(

M i, xA1
, . . . , xAn

)

will be provable

in TJ
(

M, xAi
1

, . . . , xAi
n

)

. In other words, the following sequent is provable in TJ
(

M, xAi
1

, . . . , xAi
n

)

:

gi
(

xAi
1

, . . . , xAi
n

)

↓ ⊢ ρAMi

(

siA
)

[

gi
(

xAi
1

, . . . , xAi
n

)

/xAi

]

= gi
(

ρA1

Mi

(

siA1

)

, . . . , ρAn

Mi

(

siAn

)

)

.
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Now, let us reason in the theory TJ
(

M, xAi
1

, . . . , xAi
n

)

∪
{

⊤ ⊢ gi
(

xAi
1

, . . . , xAi
n

)

↓
}

(referred to as the

‘expanded theory’ for the rest of this argument), one of whose theorems is therefore the preceding equation.

By substituting αA1

ψA(i)

(

xAi
1

)

for xAi
1

, . . ., αAn

ψA(i)

(

xAi
n

)

for xAi
n
, the following equation is then provable in

the expanded theory:

ρAMi

(

siA
)

[

gi
(

αA1

ψA(i)

(

xAi
1

)

, . . . , αAn

ψA(i)

(

xAi
n

)

)

/xAi

]

= gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψA(i)

(

xAi
n

)

/xAi
n

])

.

Since the expanded theory (because of Axiom 3.5.4) proves the equation

gi
(

αA1

ψA(i)

(

xAi
1

)

, . . . , αAn

ψA(i)

(

xAi
n

)

)

= αAψA(i)

(

gi
(

xAi
1

, . . . , xAi
n

))

,

it follows that the expanded theory proves the equation

ρAMi

(

siA
)

[

αAψA(i)

(

gi
(

xAi
1

, . . . , xAi
n

))

/xAi

]

= gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψA(i)

(

xAi
n

)

/xAi
n

])

,

i.e. the expanded theory proves the equation

(

ρAMi

(

siA
)

[

αAψA(i) (xAi) /xAi

]) [

gi
(

xAi
1

, . . . , xAi
n

)

/xAi

]

= gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψA(i)

(

xAi
n

)

/xAi
n

])

.

So to complete the argument, it remains to show (by the deduction theorem in [5, Theorem 10]) that the
expanded theory proves the equation

gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA1
(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψAn (i)

(

xAi
n

)

/xAi
n

])

= gi
(

ρA1

Mi

(

siA1

)

[

αA1

ψA(i)

(

xAi
1

)

/xAi
1

]

, . . . , ρAn

Mi

(

siAn

)

[

αAn

ψA(i)

(

xAi
n

)

/xAi
n

])

(the difference in the two terms being the ψ-subscripts). It suffices to show that for any position 1 ≤ m ≤ n,

we can ‘swap’ ρAm

Mi

(

siAm

)

[

αAm

ψAm (i)

(

xAi
m

)

]

for ρAm

Mi

(

siAm

)

[

αAm

ψA(i)

(

xAi
m

)

]

within position m in gi (modulo the

expanded theory). If gM
i

is degenerate in positionm, then this easily follows by the definition of ‘degenerate’
(see Definition 3.10): specifically, if T

(

M i
)

proves the equation in Definition 3.10 for g, then it follows from
Lemma 3.13 that TJ (M) will prove the corresponding equation for gi.

Otherwise, if gM
i

is non-degenerate in position m, then since ψ ∈ Aut(IdJ )M , it follows that ψAm
(i) =

ψA(i) : i
∼
−→ i, which again easily yields the desired result. This completes the proof that βM (γ, ψ) commutes

generically with the function symbol gi of ΣJ .

Now let B ∈ ΣSort and let f : i → j be an arbitrary morphism in J . We must show that βM (γ, ψ)
commutes generically with the function symbol αBf : Bi → Bj of ΣJ . Suppose first that both T

(

M i
)

and

T
(

M j
)

are non-trivial for the sort B. Then we must show that the equation

{

ρBMj

(

sjB

) [

αBψB(j) (xBj ) /xBj

]}

[

αBf (xBi) /xBj

]

= αBf

(

ρBMi

(

siB
)

[

αBψB(i) (xBi) /xBi

])

is provable in TJ (M, xBi) (since αBf is provably total in TJ ). Since γ ∈
(
∏

iGT

(

M i
))J

, we know that

GT

(

FM (f)
)

(γi) = γj , i.e.

GT

(

FM (f)
)

(

([

siC
])

C∈Σ

)

=
([

sjC

])

C∈Σ
.
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Recalling our earlier convention that fM := FM (f) :M i →M j , this equality means that

([

ρCfM

(

siC
)

])

C∈Σ
=
([

sjC

])

C∈Σ
∈ GT

(

M j
)

(see [7, Definition 2.2.36]). In particular, for our fixed sort B we have
[

ρBfM

(

siB
)

]

=
[

sjB

]

∈M j 〈xB〉B, which

means that T
(

M j, xB
)

⊢ ρBfM

(

siB
)

= sjB. Since ρBMj : T
(

M j , xB
)

→ TJ (M, xBj ) is a theory morphism by
Lemma 3.13, we then have

T
J (M, xBj ) ⊢ ρBMj

(

ρBfM

(

siB
)

)

= ρBMj

(

sjB

)

.

And since σBf : TJ (M, xBj ) → T
J (M, xBi) is a theory morphism by Lemma 3.16, we obtain

T
J (M, xBi) ⊢ σBf

(

ρBMj

(

ρBfM

(

siB
)

))

= σBf

(

ρBMj

(

sjB

))

,

i.e. (see Definition 3.17)

T
J (M, xBi) ⊢ τBf

(

siB
)

= σBf

(

ρBMj

(

sjB

))

.

Also, since σBf : ΣJ (M, xBj ) → ΣJ (M, xBi) is the identity except for the fact that σBf (xBj ) := αBf (xBi), it
easily follows that

σBf

(

ρBMj

(

sjB

))

≡ ρBMj

(

sjB

)

[

αBf (xBi)/xBj

]

.

So we have
T
J (M, xBi) ⊢ τBf

(

siB
)

= ρBMj

(

sjB

)

[

αBf (xBi)/xBj

]

.

Finally, since T
(

M i, xB
)

⊢ siB ↓, it follows from Lemma 3.18 that

T
J (M, xBi) ⊢ τBf

(

siB
)

= αBf
(

ρBMi

(

siB
))

.

Combining this equation with the previous one, we then have

T
J (M, xBi) ⊢ ρBMj

(

sjB

)

[

αBf (xBi)/xBj

]

= αBf
(

ρBMi

(

siB
))

.

Substituting αBψB(i)(xBi) for xBi and applying [7, Lemma 2.2.24], TJ (M, xBi) then proves the equation

ρBMj

(

sjB

) [

αBf

(

αBψB(i)(xBi )
)

/xBj

]

= αBf

(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

.

So to complete the argument, it remains to prove that TJ (M, xBi) proves the equation

ρBMj

(

sjB

) [

αBf

(

αBψB(i)(xBi)
)

/xBj

]

=
{

ρBMj

(

sjB

) [

αBψB(j)(xBj )/xBj

]}

[αBf (xBi)/xBj ].

But the following sequence of equations is provable in TJ (M, xBi), as desired:

{

ρBMj

(

sjB

) [

αBψB(j) (xBj ) /xBj

]}

[

αBf (xBi) /xBj

]

≡ ρBMj

(

sjB

) [

αBψB(j)

(

αBf (xBi)
)

/xBj

]

= ρBMj

(

sjB

) [

αBψB(j)◦f (xBi) /xBj

]

= ρBMj

(

sjB

) [

αBf◦ψB(i) (xBi) /xBj

]

= ρBMj

(

sjB

) [

αBf

(

αBψB(i) (xBi)
)

/xBj

]

;
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the second equality follows by Axiom 3.5.3, the third by naturality of ψB ∈ Aut
(

IdJM
B

)

, and the last by

Axiom 3.5.3 again.
Now suppose that T

(

M i
)

is trivial for the sort B, which implies that T
(

M i, xB
)

is also trivial for the sort
B. Given the morphism f : i→ j, we have the induced Σ-morphism fM :M i →M j, which in turn induces
the theory morphism ρBfM : T

(

M i, xB
)

→ T
(

M j , xB
)

, the existence of which implies that T
(

M j, xB
)

is also

trivial for the sort B. But by Lemma 3.13, it then easily follows that TJ (M, xBj ) is trivial for the sort Bj ,
and hence will prove all equations between terms of this sort, which clearly yields the desired result. And if
T
(

M j
)

is trivial for the sort B, then T
(

M j, xB
)

is trivial for the sort B, which then also yields the desired
result, as just explained. This completes the proof that βM (γ, ψ) commutes generically with αBf , which in

turn completes the proof that βM (γ, ψ) commutes generically with all function symbols of ΣJ .

Claim 3.22. βM (γ, ψ) reflects definedness.

Proof. This can be proven analogously to the previous claim; we refer the reader to [7, Claim 5.1.23] for the
details.

With the preceding claims, we have now proved that

βM :

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ )M → GTJ (M)

is a well-defined function. To complete the proof of Proposition 3.19, it remains to show that βM preserves
the group multiplication, which is not too difficult; we refer the reader to the proof of [7, Proposition 5.1.20]
for this verification.

Our next step is to show that the group homomorphism βM is bijective. To motivate our proof of this, let

us assume for simplicity that T has just one sort X , so that Aut(IdJ )M = Aut
(

IdJM
X

)

for any M ∈ TJmod.

Assume also for simplicity that M ∈ TJmod is such that each M i ∈ Tmod for i ∈ obJ is non-trivial for the

unique sort X , so that Aut
(

IdJM
X

)

= Aut(IdJ ) and the group homomorphism

βM :

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ ) → GTJ (M)

is defined as in the proof of Proposition 3.19 by

([si]i∈obJ , ψ) 7→
([

ρMi (si)
[

αψ(i)(xi)/xi
]])

i∈obJ
,

where we have suppressed the subscripts and superscripts for the unique sort X of T. To show that this
assignment is bijective, we will essentially reason as follows. First, we show in Lemma 3.25 that any closed
term u ∈ Termc

(

ΣJ (M, xi)
)

for i ∈ obJ has a ‘normal form’ u′ in which all function symbols of ΣJ of
the form αf for f ∈ morJ are ‘pushed inside as far as possible’, and we call any term in this normal
form an α-restricted term. In Definition 3.27 we then show that we can take any α-restricted term u ∈
Termc

(

ΣJ (M, xi)
)

, replace any subterm in it of the form αf (xi) by a new constant symbol xf : X , and

thereby obtain an induced term θ(u) of the signature Σ
(

M i
)

augmented by these new constants xf indexed
by morJ . We then show in Proposition 3.28 that this process preserves the provability of equations in
T
J (M, xi). In Definition 3.30 we also show that we can erase the various morphism subscripts from these

new constants xf to obtain from θ(u) a term θ∗(u) over the more familiar signature Σ
(

M i, x
)

, and we show
in Lemma 3.32 that the mapping θ∗ preserves the provability of a certain kind of sequent in TJ (M, xi), and
in Lemma 3.33 that it preserves the provability of equations. After some further technical lemmas regarding
θ and θ∗, we finally prove in Proposition 3.41 that βM is injective. The idea behind this proof is roughly
as follows: if ([si]i∈obJ , ψ) is an element of the domain of βM for which

[

ρMi (si)
[

αψ(i)(xi)/xi
]]

= [xi] holds
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in M 〈xi〉i, i.e. for which TJ (M, xi) ⊢ ρMi (si)
[

αψ(i)(xi)/xi
]

= xi for each i ∈ obJ , then we can essentially

show using the aforementioned results that the equation si
[

xψ(i)/x
]

= xidi is provable in the theory T
(

M i
)

augmented by the new constants xf for f ∈ morJ , which then (by Lemma 3.29) forces ψ(i) = idi and thereby
entails T

(

M i, x
)

⊢ si = x, as desired.
To prove in Proposition 3.45 that βM is surjective, we need to impose two conditions on T in Definitions

3.43 and 3.44. Given an arbitrary element ([si])i∈obJ ∈ GTJ (M), we can assume without loss of generality
that each si is in α-restricted normal form. We then apply θ∗ to each si to obtain [θ∗(si)] ∈M i 〈x〉 for each

i ∈ obJ , and we show using the aforementioned results that ([θ∗(si)])i∈obJ ∈
(
∏

iGT

(

M i
))J

. To construct

an appropriate natural automorphism ψ : IdJ
∼
−→ IdJ , we use the two aforementioned assumptions on T.

The assumption of Definition 3.43 guarantees that each si can be assumed to have exactly one occurrence
of xi, and hence exactly one subterm of the form αf (xi) for an endomorphism f : i→ i, which we choose to
be ψ(i). We then show that ψ, so defined, is a natural automorphism of IdJ . Using the second assumption
on T in Definition 3.44, we then show that if T is not single-sorted, then the various natural automorphisms
ψB : IdJM

B

∼
−→ IdJM

B
for B ∈ ΣSort are compatible with each other in the sense of Definition 3.11, so that

(ψB)B∈Σ ∈ Aut(IdJ )M . Let us now embark on providing the details.
For any category C and object C ∈ obC, we let Dom(C) be the class of all morphisms in C with domain

C (which is certainly a set if C is small).

Definition 3.23. If M ∈ TJmod and u ∈ Termc
(

ΣJ (M, xAi)
)

for some A ∈ ΣSort and i ∈ obJ , then we
say that u is α-restricted if the only subterms of u of the form αCf (v) are those with C = A and v ≡ xAi and
dom(f) = i.

In other words, the term u ∈ Termc
(

ΣJ (M, xAi)
)

is α-restricted if all ‘α-subterms’ of u have the form
αAf (xAi) for some f ∈ Dom(i).

Essentially, an α-restricted term is a term in which all of the α-function symbols have been ‘pushed inside
as far as possible’. In order to prove that every (provably defined) term has an α-restricted equivalent, we
require the following lemma, whose proof may be found in [7, Lemma 5.1.26]:

Lemma 3.24. Let M ∈ TJmod and let u ∈ Termc
(

ΣJ (M, xAi)
)

be α-restricted, where A ∈ ΣSort and
i ∈ obJ . If u : Cj for some j ∈ obJ and C ∈ ΣSort, then for any morphism f : j → cod(f) in J ,
there is an α-restricted term uf ∈ Termc

(

ΣJ (M, xAi)
)

with uf : Ccod(f) and TJ (M, xAi) proves the sequent
u ↓ ⊢ αCf (u) = uf .

With the help of Lemma 3.24 we can now show that any term has an α-restricted equivalent; the proof may
be found in [7, Lemma 5.1.27]:

Lemma 3.25. If M ∈ TJmod and u ∈ Termc
(

ΣJ (M, xAi)
)

for some A ∈ ΣSort and i ∈ obJ , then there

is an α-restricted term u′ ∈ Termc
(

ΣJ (M, xAi)
)

of the same sort such that TJ (M, xAi) proves the sequent
u ↓ ⊢ u = u′.

It is trivial to verify (from the proof of Lemma 3.25) that if u ∈ Termc
(

ΣJ (M, xAi)
)

is already α-restricted,

then u ≡ u′. We now discuss the augmentation of the various signatures Σ
(

Mk
)

(for M ∈ TJmod and
k ∈ obJ ) by new constants indexed by morJ :

Definition 3.26. Let M ∈ T
Jmod.

• For any k ∈ obJ , let Cod(k) := {f ∈ morJ : cod(f) = k}. For any k ∈ obJ and B ∈ ΣSort, let

Σ
(

Mk, xB
Cod(k)

)

be the signature obtained from Σ
(

Mk
)

by adding pairwise distinct new constant

symbols xBf : B for every f ∈ Cod(k).

• For any k ∈ obJ and B ∈ ΣSort, let T
(

Mk, xB
Cod(k)

)

be the quasi-equational theory over the signature

Σ
(

Mk, xB
Cod(k)

)

obtained from T
(

Mk
)

by adding the axioms ⊤ ⊢ xBf ↓ for every f ∈ Cod(k).
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Definition 3.27. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ , and let Termc
(

ΣJ (M, xAi)
)∗

be the subset

of Termc
(

ΣJ (M, xAi)
)

consisting of the α-restricted terms. We define a map

θ : Termc
(

ΣJ (M, xAi)
)∗

→
⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
Cod(k)

))

with the property that if u : Ck for k ∈ obJ and C ∈ ΣSort, then θ(u) ∈ Termc
(

Σ
(

Mk, xA
Cod(k)

))

with

θ(u) : C. We define θ by induction on the structure of u ∈ Termc
(

ΣJ (M, xAi)
)∗
:

• For any f : i → k in J , we set θ(xAi ) := xAidi : A and θ
(

αAf (xAi)
)

:= xAf : A (note that αAf (xAi) : Ak

and xAf ∈ Termc
(

Σ
(

Mk, xA
Cod(k)

))

).

• For any k ∈ obJ , C ∈ ΣSort, and s ∈MCk =Mk
C , we set θ

(

cMCk,s

)

:= cM
k

C,s .

• For any k ∈ obJ , any function symbol g : C1×. . .×Cn → C in Σ, and any u1, . . . , un ∈ Termc
(

ΣJ (M, xAi)
)∗

with uℓ : C
k
ℓ for all 1 ≤ ℓ ≤ n, we set θ

(

gk(u1, . . . , un)
)

:= g (θ(u1), . . . , θ(un)).

The idea behind the map θ is that it takes an α-restricted term t and replaces all of the subterms in t of
the form αAf (xAi) by constant symbols xAf . The next crucial result now states that θ preserves provability of
equations; its proof may be found in [7, Proposition 5.1.29].

Proposition 3.28. Let M ∈ TJmod and let s, t ∈ Termc
(

ΣJ (M, xAi)
)∗

for some i ∈ obJ and A ∈ ΣSort,

with s, t : Cj for some C ∈ ΣSort and j ∈ obJ . If TJ (M, xAi
) ⊢ s = t, then T

(

M j , xA
Cod(j)

)

⊢ θ(s) = θ(t).

We will also need the following technical lemma, whose proof may be found in [7, Lemma 5.1.31].

Lemma 3.29. Let M ∈ TJmod and k ∈ obJ and B ∈ ΣSort, and suppose that u ∈ Termc
(

Σ
(

Mk, xB
Cod(k)

))

is of sort B and T

(

Mk, xB
Cod(k)

)

⊢ u = xBidk . If T
(

Mk
)

is non-trivial for the sort B, then u contains at least

one occurrence of xBidk .

We will also need the following map θ∗, which essentially takes an α-restricted term t, applies θ to it, and
then erases all of the morphism subscripts from the indeterminates of the form xAf in θ(t):

Definition 3.30. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ . We define a map

θ∗ : Termc
(

ΣJ (M, xAi)
)∗

→
⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
))

with the property that if u : Ck for k ∈ obJ and C ∈ ΣSort, then θ
∗(u) ∈ Termc

(

Σ
(

Mk, xA
))

with θ∗(u) : C.
To define θ∗, we first define for each k ∈ obJ a signature morphism

λk : Σ
(

Mk, xA
Cod(k)

)

→ Σ
(

Mk, xA
)

as follows: λk is the identity on Σ
(

Mk
)

, and λk

(

xAf

)

:= xA for any f ∈ Cod(k). By a slight abuse of

notation, we also denote the induced function on closed terms as

λk : Termc
(

Σ
(

Mk, xA
Cod(k)

))

→ Termc
(

Σ
(

Mk, xA
))

.

Finally, we set

λ :=
⋃

k∈obJ

λk :
⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
Cod(k)

))

→
⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
))

,
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and we then define θ∗ to be the composite

Termc
(

ΣJ (M, xAi)
)∗ θ

−→
⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
Cod(k)

))

λ
−→

⋃

k∈obJ

Termc
(

Σ
(

Mk, xA
))

,

and it is easy to see that θ∗ indeed has the stated property.

Before showing that θ∗ preserves the provability of a certain restricted kind of sequent, we require the
following technical concepts.

Definition 3.31. Let M ∈ TJmod.

• If u ∈ Termc
(

ΣJ (M, xAi)
)∗

for some A ∈ ΣSort and i ∈ obJ , then we say that u is i-local if for any
subterm v of u, there is some sort C ∈ ΣSort such that v : Ci. In particular, if u is i-local, then u : Bi

for some sort B, and every α-subterm of u has the form αAf (xAi) for some endomorphism f : i→ i.

• Let f : j → i have codomain i. If u ∈ Termc
(

ΣJ (M, xAi)
)∗

is i-local, we define

u[f ] ∈ Termc
(

ΣJ (M, xAj )
)∗

(note the change from xAi to xAj ) to be the term of the same sort defined as follows:

– If u ≡ xAi : Ai, then we set u[f ] := αAf (xAj ) : Ai.

– If u ≡ αAg (xAi) : Ai for some g : i→ i (since u is i-local), then we set u[f ] := αAg◦f (xAj ) : Ai.

– If u ≡ cMBi,s : B
i for some B ∈ ΣSort and s ∈MBi , then we set u[f ] := u : Bi.

– If u ≡ gi(u1, . . . , un) : B
i for some function symbol g : B1 × . . .×Bn → B in Σ and i-local terms

u1, . . . , un ∈ Termc
(

ΣJ (M, xAi)
)∗

with uℓ : B
i
ℓ for each 1 ≤ ℓ ≤ n, then we set

u[f ] := gi (u1[f ], . . . , un[f ]) : B
i.

In general, u[f ] will not be the same term as uf from Lemma 3.24.

• If u ∈ Term
(

ΣJ (M, xAi)
)∗

is i-local with u : Bi for some B ∈ ΣSort, then we say that u commutes
generically with an endomorphism f : i→ i if TJ (M, xAi) ⊢ αBf (u) = u[f ].

For future reference, we note the following obvious result: if u ∈ Termc
(

ΣJ (M, xAi)
)

is α-restricted and
i-local and f : i→ i is an endomorphism, then

T
J (M, xAi) ⊢ u ↓ =⇒ T

J (M, xAi) ⊢ u[f ] = u
[

αAf (xAi)/xAi

]

.

We can now prove that θ∗ preserves provability of a certain restricted kind of sequent; the proof may be
found in [7, Lemma 5.1.34].

Lemma 3.32. Let M ∈ TJmod. Let u, s, t ∈ Termc
(

ΣJ (M, xAi)
)∗

for some A ∈ ΣSort and i ∈ obJ ,
with u : Ci and s, t : Di for some C,D ∈ ΣSort. Suppose that u ≡ hi(u1, . . . , um) for some function
symbol h : C1 × . . . × Cm → C of Σ and i-local terms u1, . . . , um ∈ Termc

(

ΣJ (M, xAi)
)∗

with uℓ : C
i
ℓ and

TJ (M, xAi) ⊢ uℓ ↓ for each 1 ≤ ℓ ≤ m, and assume that uℓ commutes generically with each endomorphism
f : i → i in J . If TJ (M, xAi) proves the sequent u ↓ ⊢ s = t, then T

(

M i, xA
)

proves the sequent
θ∗(u) ↓ ⊢ θ∗(s) = θ∗(t).

We also have that θ∗ preserves the provability of equations ; the simple proof may be found in [7, Lemma
5.1.35].

Lemma 3.33. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ . For any s, t ∈ Termc
(

ΣJ (M, xAi)
)∗

with

s, t : Ck for some k ∈ obJ and C ∈ ΣSort, if T
J (M, xAi) proves the sequent ⊤ ⊢ s = t, then T

(

Mk, xA
)

proves the sequent ⊤ ⊢ θ∗(s) = θ∗(t).
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The proofs of the following three lemmas may be found in [7, Lemmas 5.1.36, 5.1.37, 5.1.38].

Lemma 3.34. Let M ∈ TJmod, let u ∈ Termc
(

ΣJ (M, xAi)
)∗

be i-local for some i ∈ obJ and A ∈ ΣSort,

and let f ∈ Cod(i). Then θ∗(u) ≡ θ∗(u[f ]) ∈ Termc
(

Σ
(

M i, xA
))

.

The following lemma says that θ∗ interacts properly with substitution, provided that the term being substi-
tuted commutes generically with certain morphisms of J :

Lemma 3.35. Let M ∈ TJmod, let u, v ∈ Termc
(

ΣJ (M, xAi)
)∗

for some A ∈ ΣSort and i ∈ obJ with
v : Ai, and suppose that T

J (M, xAi) ⊢ u, v ↓. Suppose also that u, v are i-local, and that v commutes
generically with every endomorphism f : i→ i in J . Then

T
(

M i, xA
)

⊢ θ∗ (u[v/xAi ]′) = θ∗(u)[θ∗(v)/xA],

where u[v/xAi ]′ is the α-restricted variant of u[v/xAi] from Lemma 3.25.

We will need the following technical lemma to prove that each group homomorphism βM is surjective:

Lemma 3.36. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ , and let u ∈ Termc
(

ΣJ (M, xAi)
)∗

be an
α-restricted, i-local term of sort Bi for some B ∈ ΣSort with TJ (M, xAi) ⊢ u ↓. Let f : i → ℓ be an
arbitrary morphism of J with domain i. Then αBf (u) has an α-restricted variant αBf (u)

′ by Lemma 3.25,

and αBf (u)
′ : Bℓ, so that θ∗

(

αBf (u)
′
)

∈ Termc
(

Σ
(

M ℓ, xA
))

. And θ∗(u) ∈ Termc
(

Σ
(

M i, xA
))

, so that

ρAfM (θ∗(u)) ∈ Termc
(

Σ
(

M ℓ, xA
))

, where ρAfM : T
(

M i, xA
)

→ T
(

M ℓ, xA
)

is the theory morphism induced by

the Σ-morphism fM := FM (f) :M i →M ℓ. Then T
(

M ℓ, xA
)

⊢ θ∗
(

αBf (u)
′
)

= ρAfM (θ∗(u)).

We will also require the following technical results regarding the map θ, whose proofs involve straightforward
inductions on terms:

Lemma 3.37. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ , and let v ∈ Termc
(

ΣJ (M, xAi)
)∗

be of sort
Bk for some B ∈ ΣSort and k ∈ obJ . Fix an endomorphism f : k → k in J . By Lemma 3.24, there is a

term vf ∈ Termc
(

ΣJ (M, xAi)
)∗

with vf : Bk. Then θ(v), θ
(

vf
)

∈ Termc
(

Σ
(

Mk, xA
Cod(k)

))

, and for any

g ∈ Cod(k), xAg occurs in θ(v) iff xAf◦g occurs in θ
(

vf
)

.

Lemma 3.38. Let M ∈ TJmod, let u ∈ Termc
(

ΣJ (M, xBk)
)

for some B ∈ ΣSort and k ∈ obJ , and
suppose that u is α-restricted and k-local. Then it is easy to see that every indeterminate in θ(u) ∈

Term
(

Σ
(

Mk, xB
Cod(k)

))

has the form xBf for some endomorphism f : k → k.

Suppose that the indeterminates occurring in θ(u) are xBf1 , . . . , x
B
fn
, with f1, . . . , fn : k → k. Then for

any v ∈ Termc
(

ΣJ (M, xAi)
)∗

for some A ∈ ΣSort and i ∈ obJ with v : Bk, we know that u[v/xBk ] ∈

Termc
(

ΣJ (M, xAi)
)

has an α-restricted variant u[v/xBk ]′ ∈ Termc
(

ΣJ (M, xAi)
)∗

by Lemma 3.25. We
then have

θ (u[v/xBk ]′) ≡ θ(u)
[

θ
(

vf1
)

/xBf1 , . . . , θ
(

vfn
)

/xBfn
]

∈ Termc
(

Σ
(

Mk, xA
Cod(k)

))

(recall from Lemma 3.24 that, for each 1 ≤ i ≤ n, vfi ∈ Termc
(

ΣJ (M, xAi)
)∗

is a term of sort Bcod(fi) =
Bk).

Finally, we require the following notion of ‘α-free variant’:

Definition 3.39. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ . For any u ∈ Termc
(

ΣJ (M, xAi)
)∗

that is
i-local, we define a term

u−α ∈ Termc
(

ΣJ (M, xAi)
)∗

of the same sort, which we call the α-free variant of u:

• If u ≡ xAi : Ai, then u−α := u : Ai.
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• If u ≡ αAf (xAi) : Ai for some endomorphism f : i→ i (since u is i-local), then u−α := xAi : Ai.

• If u ≡ cMBi,s : B
i for some B ∈ ΣSort and s ∈MBi , then u−α := u : Bi.

• If u ≡ gi(u1, . . . , un) : Bi for some function symbol g : B1 × . . . × Bn → B of Σ and i-local terms
ui ∈ Termc

(

ΣJ (M, xAi)
)∗

of sort Bij for each 1 ≤ j ≤ n, then u−α := gi
(

u−α1 , . . . , u−αn
)

: Bi.

Essentially, the α-free variant u−α is obtained from u by ‘erasing’ all of the α-function symbols in u (and
since u is i-local, it is possible to do this and obtain a well-defined term of the same sort). We then have the
following technical lemma, whose proof is a straightforward induction on terms:

Lemma 3.40. Let M ∈ TJmod and A ∈ ΣSort and i ∈ obJ . For any α-restricted and i-local u ∈
Termc

(

ΣJ (M, xAi)
)∗

we have ρAMi(θ∗(u)) ≡ u−α, where ρAMi : Σ
(

M i, xA
)

→ ΣJ (M, xAi) is the signature
morphism from Definition 3.12.

We can now finally prove that the group homomorphism βM :
(
∏

iGT

(

M i
))J

× Aut(IdJ )M → GTJ (M) is
injective:

Proposition 3.41. For any M ∈ TJmod, the group homomorphism

βM :

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ )M → GTJ (M)

is injective.

Proof. Let γ = (γi)i ∈
(
∏

iGT

(

M i
))J

with γi =
([

siC
])

C∈Σ
for each i ∈ obJ , let ψ ∈ Aut(IdJ )M , and

suppose that βM (γ, ψ) = ([xA])A∈ΣJ , the unit element of the group GTJ (M). We must show that each γi is
the unit of the group GT

(

M i
)

, i.e. we must show that γi = ([xC ])C for all i ∈ obJ , and we must also show

that ψ is the unit element of Aut(IdJ )M . So fix i ∈ obJ and B ∈ ΣSort, and suppose first that T
(

M i
)

is
non-trivial for the sort B. The hypothesis implies in particular that βM (γ, ψ)Bi = [xBi ], i.e. that

[

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

]]

= [xBi ] ∈M 〈xBi〉Bi ,

which means that
T
J (M, xBi) ⊢ ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

]

= xBi .

We first show that ψB(i) = idi. Note that ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

]

∈ Term
(

ΣJ (M, xBi)
)

is α-restricted

(because ρBMi

(

siB
)

does not contain any α-function symbols). Then by Proposition 3.28, we obtain

T

(

M i, xB
Cod(i)

)

⊢ θ
(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

= θ(xBi).

Now, it is trivial to see that the only indeterminate that occurs in θ
(

ρBMi

(

siB
))

∈ Term
(

Σ
(

M i, xB
Cod(i)

))

is

xBidi . Then since ρBMi

(

siB
)

∈ Term
(

ΣJ (M, xBi)
)

is also α-restricted and clearly i-local, and since

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

]

is α-restricted, it follows by Lemma 3.38 that

θ
(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

≡ θ
(

ρBMi

(

siB
))

[

θ
(

αBψB(i)(xBi)idi
)

/xBidi

]

,

and hence
θ
(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

≡ θ
(

ρBMi

(

siB
))

[

xBψB(i)/x
B
idi

]

,

because
θ
(

αBψB(i)(xBi)idi
)

≡ θ
(

αBidi◦ψB(i)(xBi)
)

≡ θ
(

αBψB(i)(xBi)
)

≡ xBψB(i).
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Also, it is easy to see that θ
(

ρBMi

(

siB
))

≡ siB
[

xBidi/xB
]

, and so we obtain

θ
(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

≡ siB

[

xBψB(i)/xB

]

.

Since θ(xBi) ≡ xBidi , from the fact that

T

(

M i, xB
Cod(i)

)

⊢ θ
(

ρBMi

(

siB
)

[

αBψB(i)(xBi)/xBi

])

= θ(xBi )

we finally deduce that

T

(

M i, xB
Cod(i)

)

⊢ siB

[

xBψB(i)/xB

]

= xBidi .

Since T
(

M i
)

is non-trivial for the sort B, it then follows from Lemma 3.29 that xBidi occurs in s
i
B

[

xBψB(i)/xB

]

,

and moreover it follows by [7, Lemma 2.2.56] that xB occurs in siB, so that xBψB(i) occurs in s
i
B

[

xBψB(i)/xB

]

.

But this forces xBψB(i) ≡ xBidi , because x
B
ψB(i) is the only indeterminate occurring in siB

[

xBψB(i)/xB

]

, and hence

we deduce ψB(i) = idi, as desired. So we may now infer that

T

(

M i, xB
Cod(i)

)

⊢ siB
[

xBidi/xBi

]

= xBidi .

Since λi : T
(

M i, xB
Cod(i)

)

→ T
(

M i, xB
)

is a theory morphism by the proof of Lemma 3.32, we then obtain

T
(

M i, xB
)

⊢ λi
(

siB
[

xBidi/xBi

])

= λi
(

xBidi

)

.

Since λi is the identity except on the indeterminates of Σ
(

M i, xB
Cod(i)

)

, it then follows that T
(

M i, xB
)

⊢

siB = xB. This shows that if T
(

M i
)

is non-trivial for the sort B, then γBi =
[

siB
]

= [xB ] and ψB(i) = idi, so
that ψB is the identity natural automorphism of IdJM

B
and hence ψ is the unit element of Aut(IdJ )M .

It remains to show that if T
(

M i
)

is trivial for the sort B, then γBi =
[

siB
]

= [xB] in this case as well.

But if T
(

M i
)

is trivial for the sort B, then T
(

M i, xB
)

is trivial for the sort B as well, which implies that
T(M i, xB) ⊢ siB = xB, because s

i
B, xB : B. This completes the proof that each γi is the unit element of

GT

(

M i
)

, which completes the proof that βM is injective.

Since we will need to impose two assumptions on T in order to prove that each βM is surjective, let us now
record what we have proven so far:

Proposition 3.42. Let T be an arbitrary quasi-equational theory and J a small index category. Then

for any M ∈ Tmod, there is an injective group homomorphism βM :
(
∏

iGT

(

M i
))J

× Aut(IdJ )M →
GTJ (M).

To prove that each βM is surjective, we will need to assume that T satisfies the conditions in the following
two definitions:

Definition 3.43. Let T be a quasi-equational theory over a signature Σ. We say that T has single-
indeterminate isotropy if for any M ∈ Tmod and ([sC ])C∈Σ ∈ GT(M) and C ∈ ΣSort, we can assume
without loss of generality that sC contains exactly one occurrence of xC .

In other words, T has single-indeterminate isotropy if every component of every element of isotropy of every
T-model can be assumed to have exactly one occurrence of the indeterminate. This is not an overly restrictive
condition, because (apart from the theories of racks and quandles, see [6]) every example theory considered
in [3, Section 4], [7, Chapter 3], and [4] has single-indeterminate isotropy (in particular, the theory of groups
does).
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Definition 3.44. Let T be a quasi-equational theory over a signature Σ. If g : A1×. . .×An → A is a function
symbol of Σ, then we say that g is totally defined in T if T proves the sequent ⊤ ⊢y1,...,yn g(y1, . . . , yn) ↓,
where y1, . . . , yn are pairwise distinct variables with yi : Ai for each 1 ≤ i ≤ n.

We then say that T has single-sorted non-total operations if for any function symbol g : A1× . . .×An → A
of Σ that is not totally defined in T, we have Ai = A for each 1 ≤ i ≤ n.

Again, this is not an overly restrictive condition, because every example theory considered in the previous
sources has single-sorted non-total operations (and in particular the theory of groups). In Remark 3.53
below, we will indicate how the failure of T to satisfy the conditions in Definitions 3.43 and 3.44 can result
in the failure of the surjectivity of βM . We can now prove:

Proposition 3.45. Let T be a quasi-equational theory with single-indeterminate isotropy and single-sorted
non-total operations, and let J be a small index category. For any M ∈ TJmod, the group homomorphism

βM :
(
∏

iGT

(

M i
))J

× Aut(IdJ )M → GTJ (M) is surjective.

Proof. Let ([sCi ])i∈obJ ,C∈Σ ∈ GTJ (M). So for any i ∈ obJ and C ∈ ΣSort, we know that
sCi ∈ Termc

(

ΣJ (M, xCi)
)

is a closed term of sort Ci with TJ (M, xCi) ⊢ sCi ↓. Moreover, the ΣJ
Sort-indexed

sequence ([sCi ])i,C is invertible, commutes generically with all function symbols of ΣJ , and reflects defined-
ness. By Lemma 3.25, we may assume without loss of generality that for each i ∈ obJ and C ∈ ΣSort, the
term sCi ∈ Termc

(

ΣJ (M, xCi)
)

Ci is α-restricted, i.e. sCi ∈ Termc
(

ΣJ (M, xCi)
)∗
. Then for every C ∈ ΣSort

and i ∈ obJ , it follows by Lemma 3.33 that θ∗ (sCi) ∈ Termc
(

Σ
(

M i, xC
))

C
and T

(

M i, xC
)

⊢ θ∗ (sCi) ↓, so

that [θ∗ (sCi)] ∈M i 〈xC〉C . We now define γ ∈
(
∏

iGT

(

M i
))J

. For any i ∈ obJ , we define

γi ∈ GT

(

M i
)

⊆
∏

C∈Σ

M i 〈xC〉C

as follows: for any C ∈ ΣSort, we set

γCi := [θ∗ (sCi)] ∈M i 〈xC〉C .

Our goal is now to show that γ ∈
(
∏

iGT

(

M i
))J

, which we achieve via the following series of claims.

Claim 3.46. For any i ∈ obJ , γi is invertible.

Proof. Let B ∈ ΣSort. We must show that there is some
[

tiB
]

∈M i 〈xB〉B with

T
(

M i, xB
)

⊢ θ∗ (sBi)
[

tiB/xB
]

= xB = tiB [θ∗ (sBi) /xB] .

Since ([sCj ])j,C ∈ GTJ (M), there is some
[

s−1
Bi

]

∈M 〈xBi〉Bi with

T
J (M, xBi) ⊢ sBi

[

s−1
Bi /xBi

]

= xBi = s−1
Bi [sBi/xBi ].

Since s−1
Bi ∈ Termc

(

ΣJ (M, xBi)
)

Bi and TJ (M, xBi) ⊢ s−1
Bi ↓, we may assume without loss of generality that

s−1
Bi is α-restricted by Lemma 3.25. So θ∗

(

s−1
Bi

)

∈ Termc
(

Σ
(

M i, xB
))

has the property that T
(

M i, xB
)

⊢

θ∗
(

s−1
Bi

)

↓ by Lemma 3.33. Hence, we have
[

θ∗
(

s−1
Bi

)]

∈M i 〈xB〉B, so we set

[

tiB
]

:=
[

θ∗
(

s−1
Bi

)]

.

Since ([sCj ])j,C ∈ GTJ (M), it follows that ([sCj ])j,C commutes generically with the function symbol αBf :

Bi → Bi for any endomorphism f : i → i in J . In other words, for any endomorphism f : i → i ∈ J we
have

T
J (M, xBi) ⊢ αBf (sBi) = sBi

[

αBf (xBi)/xBi

]

= sBi [f ],
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the latter equality being provable by the remark after Definition 3.31 (since sBi is i-local, because it is
α-restricted and of sort Bi and only contains the indeterminate xBi). In the same way, we also have

T
J (M, xBi) ⊢ αBf

(

s−1
Bi

)

= s−1
Bi

[

αBf (xBi)/xBi

]

= s−1
Bi [f ]

for any endomorphism f : i → i in J . Since s−1
Bi is i-local, this means that s−1

Bi also commutes generically
with every endomorphism f : i→ i. Then by Lemma 3.35 we obtain

T
(

M i, xB
)

⊢ θ∗
(

sBi

[

s−1
Bi /xBi

]′
)

= θ∗ (sBi)
[

θ∗
(

s−1
Bi

)

/xB
]

, (∗)

where sBi

[

s−1
Bi /xBi

]′
is the α-restricted variant of sBi

[

s−1
Bi /xBi

]

with

T
J (M, xBi) ⊢ sBi

[

s−1
Bi /xBi

]

= sBi

[

s−1
Bi /xBi

]′

by Lemma 3.25. From this latter equation and the defining property of s−1
Bi we obtain

T
J (M, xBi) ⊢ sBi

[

s−1
Bi /xBi

]′
= xBi .

By Lemma 3.33 we then obtain

T
(

M i, xB
)

⊢ θ∗
(

sBi

[

s−1
Bi /xBi

]′
)

= θ∗(xBi) ≡ xB .

Combining this with (∗), we finally have T
(

M i, xB
)

⊢ θ∗ (sBi)
[

θ∗(s−1
Bi )/xB

]

= xB, as desired. The converse
equality is proven analogously, which completes the proof that γi is invertible.

Claim 3.47. For any i ∈ obJ , γi commutes generically with all function symbols of Σ.

Proof. Let g : B1 × . . .×Bn → B be a function symbol of Σ. We must show that the sequent

g(xB1
, . . . , xBn

) ↓ ⊢ θ∗ (sBi) [g(xB1
, . . . , xBn

)/xB] = g
(

θ∗
(

sBi
1

)

, . . . , θ∗
(

sBi
n

)

)

is provable in the theory T
(

M i, xB1
, . . . , xBn

)

(as in the proof of Proposition 3.19, we technically need to en-
sure that the indeterminates on the right side of the above equation are pairwise distinct (see Definition 2.16),
but we will ignore this subtlety here and elsewhere in the proof to increase readability). Since ([sCj ])j,C ∈
GTJ (M), we know that ([sCj ])j,C commutes generically with the function symbol gi : Bi1 × . . . Bin → Bi of
ΣJ , which means that the sequent

gi
(

xBi
1

, . . . , xBi
n

)

↓ ⊢ sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]

= gi
(

sBi
1

, . . . , sBi
n

)

is provable in the theory TJ
(

M, xBi
1

, . . . , xBi
n

)

. Since the terms sBi
1

, . . . , sBi
n
are all α-restricted, it easily

follows that the terms gi
(

xBi
1

, . . . , xBi
n

)

and gi
(

sBi
1

, . . . , sBi
n

)

are α-restricted. By a simple extension of

Lemma 3.25, there is an α-restricted variant sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]′

of sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]

such that the sequent

gi
(

xBi
1

, . . . , xBi
n

)

↓ ⊢ sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]

= sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]′

is provable in TJ
(

M, xBi
1

, . . . , xBi
n

)

. For each 1 ≤ m ≤ n, the indeterminate xBi
m

is clearly i-local, we have

TJ
(

M, xBi
1

, . . . , xBi
n

)

⊢ xBi
m
↓, and for each endomorphism f : i→ i in J we have

T
J
(

M, xBi
1

, . . . , xBi
n

)

⊢ αBm

f

(

xBi
m

)

= xBi
m
[f ],
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which means that xBi
m

commutes generically with f . Then by a simple extension of Lemma 3.32 and the
assumption that

gi
(

xBi
1

, . . . , xBi
n

)

↓ ⊢ sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]

= gi
(

sBi
1

, . . . , sBi
n

)

is provable in the theory TJ
(

M, xBi
1

, . . . , xBi
n

)

, we obtain that

g(xB1
, . . . , xBn

) ↓ ⊢ θ∗
(

sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]′
)

= g
(

θ∗
(

sBi
1

)

, . . . , θ∗
(

sBi
n

)

)

is provable in the theory T
(

M i, xB1
, . . . , xBn

)

. Now, we will be done if we can show that T
(

M i, xB1
, . . . , xBn

)

proves the sequent

g(xB1
, . . . , xBn

) ↓ ⊢ θ∗
(

sBi

[

gi
(

xBi
1

, . . . , xBi
n

)

/xBi

]′
)

= θ∗ (sBi) [g (xB1
, . . . , xBn

) /xB] .

Since θ∗
(

gi
(

xBi
1

, . . . , xBi
n

))

≡ g(xB1
, . . . , xBn

), it suffices by a simple extension of Lemma 3.35 to show that

gi
(

xBi
1

, . . . , xBi
n

)

commutes generically with every endomorphism f : i→ i in J , i.e. it suffices to show that

the sequent

gi
(

xBi
1

, . . . , xBi
n

)

↓ ⊢ αBf

(

gi
(

xBi
1

, . . . , xBi
n

))

= gi
(

xBi
1

, . . . , xBi
n

)

[f ],

i.e. the sequent

gi
(

xBi
1

, . . . , xBi
n

)

↓ ⊢ αBf

(

gi
(

xBi
1

, . . . , xBi
n

))

= gi
(

αB1

f

(

xBi
1

)

, . . . , αBf
(

xBi
n

)

)

is provable in the theory TJ
(

M, xBi
1

, . . . , xBi
n

)

for each endomorphism f : i → i in J , which is true by

Axiom 3.5.4. This completes the proof that γi commutes generically with all function symbols of Σ.

Claim 3.48. For any i ∈ obJ , γi reflects definedness.

Proof. Let the function symbol g ∈ Σ be as above (with n ≥ 1). We must show that the sequent

g
(

θ∗
(

sBi
1

)

, . . . , θ∗
(

sBi
n

)

)

↓ ⊢ g(xB1
, . . . , xBn

) ↓

is provable in the theory T
(

M i, xB1
, . . . , xBn

)

. Since ([sCj ])j,C ∈ GTJ (M), we know that ([sCj ])j,C reflects
definedness, which implies that the sequent

gi
(

sBi
1

, . . . , sBi
n

)

↓ ⊢ gi
(

xBi
1

, . . . , xBi
n

)

↓

is provable in the theory TJ
(

M, xBi
1

, . . . , xBi
n

)

. As remarked above, the terms in the latter sequent are both

α-restricted. For each 1 ≤ m ≤ n, the term sBi
m

is i-local and satisfies TJ
(

M, xBi
1

, . . . , xBi
n

)

⊢ sBi
m

↓. The

term sBi
m

also commutes generically with every endomorphism f : i→ i in J , because ([sCj ])j,C ∈ GTJ (M)

and thus commutes generically with the function symbol αBm

f : Bim → Bim. So by a simple extension of

Lemma 3.32, it follows that T
(

M i, xB1
, . . . , xBn

)

proves the sequent

θ∗
(

gi
(

sBi
1

, . . . , sBi
n

))

↓ ⊢ θ∗
(

gi
(

xBi
1

, . . . , xBi
n

))

↓ .

But this is the desired sequent by definition of θ∗.
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So γ ∈
∏

iGT

(

M i
)

by the previous three claims, and now we must show that γ ∈
(
∏

iGT

(

M i
))J

. To

show this, let f : i→ k be an arbitrary morphism of J . We must show that GT

(

fM
)

(γi) = γk (recall that
fM := FM (f) : M i → Mk). Unravelling the definitions, this means that we must show for any B ∈ ΣSort

that
[

ρBfM (θ∗ (sBi))
]

= [θ∗ (sBk)]

holds in Mk 〈xB〉B , i.e. that
T
(

Mk, xB
)

⊢ ρBfM (θ∗ (sBi)) = θ∗ (sBk) ,

where ρBfM : T
(

M i, xB
)

→ T
(

Mk, xB
)

is the theory morphism induced by the Σ-morphism fM :M i → Mk

by [7, Definition 2.2.17].
Since ([sCj ])j,C ∈ GTJ (M), we know that ([sCj ])j,C commutes generically with the function symbol

αBf : Bi → Bk of ΣJ , which means that

T
J (M, xBi) ⊢ sBk

[

αBf (xBi)/xBk

]

= αBf (sBi)

(since TJ (M, xBi) ⊢ αBf (xBi) ↓). By Lemma 3.25, there are α-restricted variants sBk

[

αBf (xBi)/xBk

]′

, αBf (sBi)′ ∈

Termc
(

ΣJ (M, xBi)
)

of these terms. So we have

T
J (M, xBi) ⊢ sBk

[

αBf (xBi)/xBk

]′
= αBf (sBi)

′
.

Then by Lemma 3.33 we obtain

T
(

Mk, xB
)

⊢ θ∗
(

sBk

[

αBf (xBi)/xBk

]′
)

= θ∗
(

αBf (sBi)
′)
,

since both of the arguments of θ∗ are of sort Bk. By Lemma 3.34, since sBk is k-local and f ∈ Cod(k), we
have θ∗ (sBk) ≡ θ∗ (sBk [f ]). We also have (by the observation following Definition 3.31)

T
J (M, xBi) ⊢ sBk [f ] = sBk

[

αBf (xBi)/xBk

]

,

and hence
T
J (M, xBi) ⊢ sBk [f ] = sBk

[

αBf (xBi)/xBk

]′
.

Then by Lemma 3.33 we deduce

T
(

Mk, xB
)

⊢ θ∗ (sBk) ≡ θ∗ (sBk [f ]) = θ∗
(

sBk

[

αBf (xBi)/xBk

]′
)

= θ∗
(

αBf (sBi)
′)
.

So to obtain our desired result, it suffices to show that

T
(

Mk, xB
)

⊢ θ∗
(

αBf (sBi)
′)

= ρBfM (θ∗ (sBi)) ;

but this is true by Lemma 3.36, given that sBi is α-restricted and i-local and TJ (M, xBi) ⊢ sBi ↓. This

completes the proof that γ ∈
(
∏

iGT

(

M i
))J

.
To complete the proof that βM is surjective, we must now produce an element ψ ∈ Aut(IdJ )M and then

show that βM (γ, ψ) = ([sCj ])j,C . So for every sort B ∈ Σ, we must construct a natural automorphism
ψB : IdJM

B
→ IdJM

B
. Let i be any object of JM

B . Then by definition of JM
B , it follows that the theory T

(

M i
)

is non-trivial for the sort B. We now wish to define an endomorphism ψB(i) : i→ i (which will turn out to
be an isomorphism).

We have shown that γi := ([θ∗ (sCi)])C∈Σ ∈ GT

(

M i
)

. Then because T has single-indeterminate isotropy,

we can assume without loss of generality that θ∗ (sBi) ∈ Termc
(

Σ
(

M i, xB
))

B
has exactly one occurrence of

the indeterminate xB . From this, it then follows that sBi ∈ Termc
(

ΣJ (M, xBi)
)

Bi has exactly one occurrence
of the indeterminate xBi (because distinct occurrences of xBi in sBi correspond to distinct occurrences of xB
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in θ∗ (sBi)). More precisely, because θ∗ (sBi) has exactly one occurrence of xB, it follows that ρ
B
Mi (θ∗ (sBi))

has exactly one occurrence of xBi . But by Lemma 3.40 we know that ρBMi (θ∗ (sBi)) ≡ s−αBi , and so the α-free

variant s−αBi of sBi has exactly one occurrence of xBi , which implies that sBi has exactly one occurrence of
xBi .

Now consider θ (sBi) ∈ Termc
(

Σ
(

M i, xB
Cod(i)

))

. Since sBi has exactly one occurrence of xBi , it follows

that θ (sBi) has exactly one indeterminate from Σ
(

M i, xB
Cod(i)

)

, and moreover the subscript of this inde-

terminate will be an endomorphism of i. We thus define ψB(i) : i → i to be this endomorphism. In other
words, we define ψB(i) : i→ i so that xBψB(i) is the unique indeterminate occurring in θ (sBi). We now prove:

Claim 3.49. ψB(i) : i→ i is an isomorphism.

Proof. From the proof that γi := ([θ∗ (sCi)])C∈Σ ∈ GT

(

M i
)

, it follows that γ−1
i =

([

θ∗
(

s−1
Ci

)])

C∈Σ
∈

GT

(

M i
)

. Then, as for sBi , it follows that s−1
Bi has exactly one occurrence of the indeterminate xBi , and so

we define ψB(i)
−1 : i → i from θ

(

s−1
Bi

)

in the same way that we defined ψB(i) from θ (sBi). We now need
to verify that ψB(i) and ψB(i)

−1 are in fact mutually inverse endomorphisms of i. First, we know that

T
J (M, xBi) ⊢ sBi

[

s−1
Bi /xBi

]

= xBi = s−1
Bi [sBi/xBi ].

By Lemma 3.25, there is an α-restricted variant sBi

[

s−1
Bi /xBi

]′
of sBi

[

s−1
Bi /xBi

]

, so we obtain TJ (M, xBi) ⊢

sBi

[

s−1
Bi /xBi

]′
= xBi . Then by Proposition 3.28 we have

T

(

M i, xB
Cod(i)

)

⊢ θ
(

sBi

[

s−1
Bi /xBi

]′
)

= θ(xBi) ≡ xBidi .

Since the unique indeterminate that θ (sBi) ∈ Termc
(

Σ
(

M i, xB
Cod(i)

))

contains is xBψB(i), it follows by Lemma

3.38 that
θ
(

sBi

[

s−1
Bi /xBi

]′
)

≡ θ (sBi)
[

θ
(

(

s−1
Bi

)ψB(i)
)

/xBψB(i)

]

.

So then the unique indeterminate that occurs in θ
(

sBi

[

s−1
Bi /xBi

]′
)

will be the unique indeterminate that

occurs in θ
(

(

s−1
Bi

)ψB(i)
)

. But since the unique indeterminate that occurs in θ
(

s−1
Bi

)

is xBψB(i)−1 , it follows by

Lemma 3.37 that the unique indeterminate that occurs in θ
(

(

s−1
Bi

)ψB(i)
)

is xBψB(i)◦ψB(i)−1 . In summary, the

unique indeterminate that occurs in θ
(

sBi

[

s−1
Bi /xBi

]′
)

is xBψB(i)◦ψB(i)−1 .

Now, since T
(

M i
)

is non-trivial for the sort B and

T

(

M i, xB
Cod(i)

)

⊢ θ
(

sBi

[

s−1
Bi /xBi

]′
)

= xBidi ,

it follows by Lemma 3.29 that xBidi occurs in θ
(

sBi

[

s−1
Bi /xBi

]′
)

. But then we must have xBψB(i)◦ψB(i)−1 ≡ xBidi ,

which forces ψB(i) ◦ ψB(i)−1 = idi. The proof that ψB(i)
−1 ◦ ψB(i) = idi is analogous, which completes

the proof that ψB(i) : i→ i is an isomorphism.

Next, we prove:

Claim 3.50. ψB is a natural automorphism of IdJM
B
.

Proof. Let i, k ∈ obJM
B , which means that the theories T

(

M i
)

and T
(

Mk
)

are both non-trivial for the sort
B, and let h : i → k be an arbitrary morphism of J . We must show that h ◦ ψB(i) = ψB(k) ◦ h : i → k.
We know that αBh : Bi → Bk is a function symbol of ΣJ , so because ([sCj ])j,C ∈ GTJ (M), it follows that
([sCj ])j,C commutes generically with this function symbol, which means that

T
J (M, xBi) ⊢ αBh (sBi) = sBk

[

αBh (xBi)/xBk

]

.
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By Lemma 3.25, the righthand term in the above equation has an α-restricted variant sBk

[

αBh (xBi)/xBk

]′
,

and by Lemma 3.24, since sBi : Bi is α-restricted and TJ (M, xBi) ⊢ sBi ↓, we know that shBi : Bk is an
α-restricted term with TJ (M, xBi) ⊢ αBh (sBi) = shBi . Altogether, we then have

T
J (M, xBi) ⊢ shBi = sBk

[

αBh (xBi)/xBk

]′
,

with both terms α-restricted. By Proposition 3.28, we then obtain

T

(

Mk, xB
Cod(k)

)

⊢ θ
(

shBi

)

= θ
(

sBk

[

αBh (xBi)/xBk

]′
)

.

Since the unique indeterminate that occurs in θ (sBi) is xBψB(i), it follows by Lemma 3.37 that the unique

indeterminate that occurs in θ
(

shBi

)

is xBh◦ψB(i). Also, we know by Lemma 3.38 that

θ
(

sBk

[

αBh (xBi)/xBk

]′
)

≡ θ (sBk)
[

θ
(

αBh (xBi)ψB(k)
)

/xBψB(k)

]

,

since xBψB(k) is the unique indeterminate that occurs in θ (sBk). But (by the proof of Lemma 3.24) we have

θ
(

αBh (xBi)ψB(k)
)

≡ θ
(

αBψB(k)◦h(xBi)
)

≡ xBψB(k)◦h,

which means that the unique indeterminate that occurs in θ
(

sBk

[

αBh (xBi)/xBk

]′
)

is xBψB(k)◦h. Now, suppose

towards a contradiction that h ◦ ψB(i) 6= ψB(k) ◦ h. Then we would have xBh◦ψB(i) 6≡ xBψB(k)◦h, since distinct

morphisms with codomain k correspond to distinct indeterminates in Σ
(

Mk, xB
Cod(k)

)

. By the preceding

discussion, it would then follow that in the equation

T

(

Mk, xB
Cod(k)

)

⊢ θ
(

shBi

)

= θ
(

sBk

[

αBh (xBi)/xBk

]′
)

,

i.e.
T

(

Mk, xB
Cod(k)

)

⊢ θ
(

shBi

)

= θ (sBk)
[

xBψB(k)◦h/x
B
ψB(k)

]

,

the two terms have no indeterminates in common. From the previous line, we can infer

T

(

Mk, xBh◦ψB(i), x
B
ψB(k)◦h

)

⊢ θ
(

shBi

)

= θ (sBk)
[

xBψB(k)◦h/x
B
ψB(k)

]

by [7, Lemma 5.1.30]. Now let y, y′ be distinct variables of sort B. Then by [5, Theorem 10], we may
conclude

T
(

Mk
)

⊢y,y
′

θ
(

shBi

)

[

y/xBh◦ψB(i)

]

= θ (sBk)
[

y′/xBψB(k)

]

, (∗)

since the indeterminates xBh◦ψB(i), x
B
ψB(k)◦h : B are distinct. Now, in the proof of the claim that ψB(k) is an

isomorphism we showed that

θ
(

sBk

[

s−1
Bk/xBk

]′
)

≡ θ (sBk)
[

θ
(

(

s−1
Bk

)ψB(k)
)

/xBψB(k)

]

.

Hence, by substituting θ
(

(

s−1
Bk

)ψB(k)
)

for y′ in (∗), we obtain

T
(

Mk, xBidk
)

⊢y θ
(

shBi

)

[

y/xBh◦ψB(i)

]

= θ (sBk)
[

θ
(

(

s−1
Bk

)ψB(k)
)

/xBψB(k)

]

≡ θ
(

sBk

[

s−1
Bk/xBk

]′
)

.

But we also know (from the same proof) that

T
(

Mk, xBidk
)

⊢ θ
(

sBk

[

s−1
Bk/xBk

]′
)

= xBidk ,
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so we finally obtain

T
(

Mk, xBidk
)

⊢y θ
(

shBi

)

[

y/xBh◦ψB(i)

]

= xBidk .

Since xBidk does not appear in θ
(

shBi

)

[

y/xBh◦ψB(i)

]

, it then follows from [5, Theorem 10] that if y′ : B is a

variable distinct from y, then

T
(

Mk
)

⊢y,y
′

θ
(

shBi

)

[

y/xBh◦ψB(i)

]

= y′,

and y′ does not appear in θ
(

shBi

)

[

y/xBh◦ψB(i)

]

. But then if y′′ : B is a variable distinct from both y and y′,

we also obtain
T
(

Mk
)

⊢y,y
′′

θ
(

shBi

)

[

y/xBh◦ψB(i)

]

= y′′.

Finally, we deduce that T
(

Mk
)

⊢y
′,y′′ y′ = y′′, which contradicts the assumption that T

(

Mk
)

is non-trivial
for the sort B. So we must have h ◦ ψB(i) = ψB(k) ◦ h, as desired. This completes the argument that ψB is
a natural automorphism of IdJM

B
.

To complete the proof that ψ ∈ Aut(IdJ )M , we must also verify:

Claim 3.51. If g : B1 × . . . × Bn → B is a function symbol of Σ with n ≥ 1, then for any i ∈ obJ and
1 ≤ m ≤ n such that gM

i

is non-degenerate in position m we have ψBm
(i) = ψB(i) : i→ i.

Proof. For simplicity, we will let g : A × B → C be a binary function symbol of Σ with A 6= B, and let
i ∈ obJ . Suppose that gM

i

is non-degenerate in position 1 (the argument for position 2 being analogous),
which means that

T
(

M i
)

0
y1,y

′

1
,y2 g(y1, y2) = g(y′1, y2)

for pairwise distinct variables y1, y
′
1 : A, y2 : B. Then (as remarked in the definition of Aut(IdJ )M ) this

implies that T
(

M i
)

is non-trivial for the sort C, so that i ∈ obJM
C and hence ψA(i), ψC(i) : i → i are

defined. We must now show that ψA(i) = ψC(i) : i→ i. If g is not totally defined in T, then the assumption
that T has single-sorted non-total operations implies that A = B = C, which obviously entails the desired
result. So suppose that g is totally defined in T. If the sorts A and C are identical, then the desired result
trivially follows, so suppose that A 6= C. Suppose towards a contradiction that ψA(i) 6= ψC(i) : i→ i. Since
([sCj ])j,C ∈ GTJ (M), it follows that ([sCj ])j,C commutes generically with the function symbol gi : Ai×Bi →
Ci of ΣJ . Since g is totally defined in T, this entails that

T
J (M, xAi , xBi) ⊢ gi(sAi , sBi) = sCi

[

gi(xAi , xBi)/xCi

]

.

Let sCi

[

gi(xAi , xBi)/xCi

]′
be the α-restricted variant of sCi

[

gi(xAi , xBi)/xCi

]

obtained from (a simple ex-
tension of) Lemma 3.25. Then by (simple extensions of) Lemma 3.25 and Proposition 3.28 and the definition
of θ we have

T

(

M i, xA
Cod(i), x

B
Cod(i)

)

⊢ g (θ(sAi), θ (sBi)) = θ
(

sCi [gi(xAi , xBi)/xCi ]′
)

.

By a simple extension of Lemma 3.38, we have

θ
(

sCi

[

gi(xAi , xBi)/xCi

]′
)

≡ θ (sCi)
[

θ
(

gi(xAi , xBi)ψC(i)
)

/xCψC(i)

]

.

We also have (by a simple extension of Lemma 3.24)

θ
(

gi(xAi , xBi)ψC(i)
)

≡ θ
(

gi
(

x
ψC(i)
Ai , x

ψC(i)
Bi

))

≡ θ
(

gi
(

αAψC(i)(xAi), αBψC(i)(xBi)
))

≡ g
(

θ
(

αAψC(i)(xAi), θ(αBψC(i)(xBi)
))

≡ g
(

xAψC(i), x
B
ψC(i)

)

.
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From this, we obtain

θ
(

sCi

[

gi(xAi , xBi)/xCi

]′
)

≡ θ (sCi)
[

g
(

xAψC(i), x
B
ψC(i)

)

/xCψC(i)

]

.

Finally, we have

T

(

M i, xA
Cod(i), x

B
Cod(i)

)

⊢ g (θ(sAi), θ (sBi)) = θ (sCi)
[

g
(

xAψC(i), x
B
ψC(i)

)

/xCψC(i)

]

.

Now, we know that xAψA(i) is the unique indeterminate occurring in θ(sAi), and that xCψC(i) is the unique

indeterminate occurring in θ (sCi). Because of our assumption that ψA(i) 6= ψC(i), it follows that x
A
ψA(i) 6≡

xAψC(i) ∈ Σ
(

M i, xA
Cod(i)

)

. For the remainder of the argument, we will assume that T
(

M i
)

is non-trivial for

the sort B as well, so that i ∈ obJM
B and ψB(i) : i→ i is defined, and we will also assume that ψB(i) = ψC(i)

(so that xBψB(i) ≡ xBψC(i)). Without these assumptions, the required argument is a simpler version of the one
we are about to give.

So, in the above equation, we can substitute θ
(

(

s−1
Ai

)ψA(i)
)

for xAψA(i) in the lefthand term, and θ
(

(

s−1
Bi

)ψB(i)
)

for xBψB(i) ≡ xBψC(i) in both terms, and we obtain

T

(

M i, xA
Cod(i), x

B
Cod(i)

)

⊢ g
(

θ(sAi)
[

θ
(

(

s−1
Ai

)ψA(i)
)

/xAψA(i)

]

, θ (sBi)
[

θ
(

(

s−1
Bi

)ψB(i)
)

/xBψB(i)

])

= θ (sCi)
[

g
(

xAψC(i), θ
(

(

s−1
Bi

)ψB(i)
))

/xCψC(i)

]

(note that A 6= B implies xAψA(i) 6≡ xBψB(i)). Earlier in the proof of the proposition, we saw that

T

(

M i, xA
Cod(i)

)

⊢ θ(sAi)
[

θ
(

(

s−1
Ai

)ψA(i)
)

/xAψA(i)

]

= xAidi

and
T

(

M i, xB
Cod(i)

)

⊢ θ (sBi)
[

θ
(

(

s−1
Bi

)ψB(i)
)

/xBψB(i)

]

= xBidi ,

so we obtain

T

(

M i, xA
Cod(i), x

B
Cod(i)

)

⊢ g
(

xAidi , x
B
idi

)

= θ (sCi)
[

g
(

xAψC(i), θ
(

(

s−1
Bi

)ψB(i)
))

/xCψC(i)

]

.

We can also repeat the above argument to show that

T

(

M i, xA
Cod(i), x

B
Cod(i), x

A
idi

′
)

⊢ g
(

xAidi
′
, xBidi

)

= θ (sCi)
[

g
(

xAψC(i), θ
(

(

s−1
Bi

)ψB(i)
))

/xCψC(i)

]

,

where xAidi
′
/∈ Σ

(

M i, xA
Cod(i), x

B
Cod(i)

)

is a new constant of sort A. So then we obtain

T

(

M i, xA
Cod(i), x

B
Cod(i), x

A
idi

′
)

⊢ g
(

xAidi , x
B
idi

)

= g
(

xAidi
′
, xBidi

)

.

By (a slight variation of) [7, Lemma 5.1.30], it then follows that

T

(

M i, xAidi , x
B
idi
, xAidi

′
)

⊢ g
(

xAidi , x
B
idi

)

= g
(

xAidi
′
, xBidi

)

.

By [5, Theorem 10] again, it follows that if y, y′ : A are distinct variables and z : B is a variable, then

T
(

M i
)

⊢y,y
′,z g(y, z) = g(y′, z), which contradicts the assumption that gM

i

is non-degenerate in position 1.
This contradiction implies that we must have ψA(i) = ψC(i) : i→ i, as desired.

Hence, we may finally conclude that ψ ∈ Aut(IdJ )M , and therefore (γ, ψ) ∈
(
∏

iGT

(

M i
))J

×Aut(IdJ )M .
It now remains to show that βM (γ, ψ) = ([sCj ])j,C ∈ GTJ (M), which is not too difficult; we refer the reader
to the end of the proof of [7, Proposition 5.1.47] for the verification.
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One can now straightforwardly show as in [7, Definition 5.1.55] that the assignment

M 7→

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ )M = lim
(

GT ◦ FM
)

× Aut(IdJ )M ∈ Group

(see Lemma 3.9) is functorial, i.e. that there is a canonical functor G∗
TJ : TJmod → Group with this action

on objects. We therefore obtain the following theorem, whose proof may be found in [7, Theorem 5.1.56]:

Theorem 3.52. Let T be a quasi-equational theory with single-indeterminate isotropy and single-sorted non-
total operations, and let J be a small index category. Then the family (βM )M∈TJmod of group isomorphisms

is natural in M , i.e. we have a natural isomorphism β : G∗
TJ

∼
−→ GTJ : TJmod → Group.

Remark 3.53. We used the assumption that T has single-indeterminate isotropy in order to show in
Proposition 3.45 that the injective group homomorphism

βM :

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ )M → GTJ (M)

is also surjective for each small category J and M ∈ Tmod. In [7, Remark 5.1.58] we provide an example
of a theory T without single-indeterminate isotropy, for which there is a small category J and a model M
of TJ for which βM is not surjective. So Proposition 3.45 does not hold in general for theories without
single-indeterminate isotropy.

We also used the assumption that T has single-sorted non-total operations in order to show that βM
is surjective for each small category J and M ∈ Tmod. Specifically, given ([sCj ])j,C ∈ GTJ (M) for M ∈

TJmod, we produced (γ, ψ) ∈
(
∏

iGT

(

M i
))J

× Aut(IdJ )M with βM (γ, ψ) = ([sCj ])j,C , and we used the
assumption that T has single-sorted non-total operations to show that ψ ∈ Aut(IdJ )M ; more specifically, we
used this assumption to show that if g : A1× . . .×An → A is a function symbol of Σ with n ≥ 1 and i ∈ obJ
and gM

i

is non-degenerate in position 1 ≤ m ≤ n, then ψAm
(i) = ψA(i) : i

∼
−→ i. In [7, Remark 5.1.59] we

show that there is a theory T without single-sorted non-total operations for which there is a small category
J and a model M of TJ such that βM is not surjective. So Proposition 3.45 does not hold in general for
theories that have multi-sorted operations that are not totally defined.

4. Categorical characterization

In this section, we will deduce a categorical characterization of the covariant isotropy group ZTmodJ of
TmodJ from the logical characterization of GTJ given in the previous section. Unless otherwise stated, T is
an arbitrary quasi-equational theory and J is an arbitrary small index category.

Recall that if F : J → Tmod, then Dom(F ) is the class of morphisms in TmodJ with domain F .

Definition 4.1. Let F : J → Tmod, and let π = (πµ : cod(µ) → cod(µ))µ∈Dom(F ) be a Dom(F )-indexed

family of endomorphisms in TmodJ . For each i ∈ obJ , let

φi =
(

φig : cod(g)
∼
−→ cod(g)

)

g∈Dom(F (i))
∈ ZT(F (i)).

Finally, let ψ = (ψB)B∈Σ ∈ Aut(IdJ )M
F

(where MF ∈ TJmod is the model of TJ corresponding to the
functor F as in Proposition 3.8).

We say that π is determined by ψ ∈ Aut(IdJ )M
F

and the family
(

φi
)

i∈J
∈
∏

i∈J ZT(F (i)) if the following

holds for any morphism µ : F → G in TmodJ , any B ∈ ΣSort, and any k ∈ obJ :

• If k /∈ JMF

B , i.e. if T (F (k)) is trivial for the sort B, then πµ(k)B = id : G(k)B → G(k)B .
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• If k ∈ JMF

B , i.e. if T (F (k)) is non-trivial for the sort B, then

πµ(k)B = G(ψB(k)) ◦ φ
k
µ(k) : G(k)B → G(k)B

(where µ(k) : F (k) → G(k) is a Σ-morphism).

Note that in the corresponding [7, Definition 5.2.7], the last equation of Definition 4.1 instead has the form

πµ(k)B =
(

φkµ(k)◦F (ψB(k))

)

B
◦G(ψB(k))B , but this is equivalent to our equation because

φkµ(k)◦F (ψB(k)) ◦G(ψB(k)) = φkG(ψB(k))◦µ(k) ◦G(ψB(k)) = G(ψB(k)) ◦ φ
k
µ(k)

by naturality of µ : F → G and the fact that φk ∈ ZT(F (k)).

Definition 4.2. Let F : J → Tmod. For each i ∈ obJ , let

φi =
(

φig : cod(g)
∼
−→ cod(g)

)

g∈Dom(F (i))
∈ ZT(F (i)).

We say that the family
(

φi
)

i∈J
∈
∏

i∈J ZT(F (i)) is compatible if for every morphism f : i → j in J and

every g ∈ Dom(F (j)) we have
φjg = φig◦F (f) : cod(g)

∼
−→ cod(g).

In other words, we say that
(

φi
)

i∈J
is compatible if

(

φi
)

i∈J
∈ lim(ZT ◦ F ) ∈ Group.

We now have the following categorical characterization of the covariant isotropy group of TmodJ , where we
write ZTJ in place of ZTmodJ ; the proof may be found in [7, Corollary 5.2.9].

Corollary 4.3. Let T be a quasi-equational theory with single-indeterminate isotropy and single-sorted non-
total operations, and let J be a small index category. Let F : J → Tmod, and let

π = (πµ : cod(µ) → cod(µ))µ∈Dom(F )

be a Dom(F )-indexed family of endomorphisms in TmodJ . Then π ∈ ZTJ (F ) iff there is a (uniquely deter-
mined) compatible family

(

φi
)

i∈J
∈
∏

i∈J ZT(F (i)) and a (uniquely determined) element ψ = (ψB)B∈Σ ∈

Aut(IdJ )M
F

such that π is determined by ψ and
(

φi
)

i∈J
.

Before we give some specific applications of the general results that we have proven so far, we will first
extract an important consequence of Theorem 3.52 that does not rely on the assumptions that T has single-
indeterminate isotropy and single-sorted non-total operations, but which only applies to index categories J
satisfying a certain condition. Namely, we have the following consequence of (the proof of) Theorem 3.52,
whose relatively straightforward proof can be found in [7, Corollary 5.2.10]:

Corollary 4.4. Let T be an arbitrary quasi-equational theory and J a small index category. IfM ∈ TJmod

and JM
B has only trivial endomorphisms for each B ∈ ΣSort, then

βM :

(

∏

i

GT

(

M i
)

)J

× Aut(IdJ )M → GTJ (M)

is a group isomorphism and in fact GTJ (M) ∼=
(
∏

iGT

(

M i
))J

= lim
(

GT ◦ FM
)

.

We also deduce the following categorical version of the previous corollary:

Corollary 4.5. Let T be an arbitrary quasi-equational theory and J a small index category with only trivial
endomorphisms. Let F : J → Tmod, and let π = (πµ : cod(µ) → cod(µ))µ∈Dom(F ) be a Dom(F )-indexed

family of endomorphisms in TmodJ . Then π ∈ ZTJ (F ) iff there is a (uniquely determined) compatible
family

(

φi
)

i∈J
∈
∏

i∈J ZT(F (i)) such that π is determined by
(

φi
)

i∈J
, in the sense that

πµ(k) = φkµ(k) : G(k) → G(k)

for every morphism µ : F → G in TmodJ and every k ∈ obJ .
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5. Applications

In this final section, we provide some specific applications of the general results proven in the preceding
sections; in particular, we will provide an explicit characterization of the covariant isotropy group of GroupJ

for any small category J .
First, for an arbitrary quasi-equational theory T, we deduce from Corollary 4.4 characterizations of the

covariant isotropy group of TJ for certain common index categories J with only trivial endomorphisms:

Corollary 5.1. Let T be an arbitrary quasi-equational theory.

• Let J be any small discrete category. Then for anyM ∈ TJmod, i.e. any family
(

M i
)

i∈J
of T-models,

we have ZTJ (M) ∼=
∏

i∈J ZT

(

M i
)

.

• Let J be the category with two objects i, j and two parallel morphisms f, g : i ⇒ j. Then for any
M ∈ TJmod, i.e. any parallel pair fM , gM :M i

⇒ M j in Tmod, we have

ZTJ (M) ∼= Eq
(

ZT

(

fM
)

,ZT

(

gM
))

=
{

γi ∈ ZT

(

M i
)

: ZT

(

fM
) (

γi
)

= ZT

(

gM
) (

γi
)}

,

the equalizer of the group homomorphisms ZT

(

fM
)

,ZT

(

gM
)

: ZT

(

M i
)

⇒ ZT

(

M j
)

.

• Let J be the category with three objects i, j, k and two morphisms f : i → k and g : j → k. Then for
any M ∈ TJmod, i.e. any cospan fM :M i →Mk, gM :M j →Mk in Tmod, we have

ZTJ (M) ∼= ZT

(

M i
)

×ZT(Mk)ZT

(

M j
)

=
{(

γi, γj
)

∈ ZT

(

M i
)

×ZT

(

M j
)

: ZT

(

fM
) (

γi
)

= ZT

(

gM
) (

γj
)}

,

the pullback of the group homomorphisms ZT

(

fM
)

:M i →Mk,ZT

(

gM
)

:M j →Mk.

We now provide applications of our general results for quasi-equational theories T with single-indeterminate
isotropy and single-sorted non-total operations, for which we can consider arbitrary small index categories.
In fact, for simplicity we will restrict ourselves to single-sorted quasi-equational theories T (which automat-
ically have single-sorted non-total operations) with the property that T(M) is non-trivial (for the unique
sort of T) for every M ∈ Tmod. A very large number of single-sorted quasi-equational theories T satisfy
this latter property (including the theory of groups); indeed, if M ∈ Tmod, then T(M) will be non-trivial as
long as the T-model M 〈x〉 obtained by freely adjoining an indeterminate element x to M has at least two
elements, which is very often the case. One salient example of a single-sorted theory that does not satisfy
this property is the theory of unital rings, because the zero ring has no outgoing ring homomorphism to
any non-zero unital ring and hence has trivial diagram theory. But this situation seems quite uncommon in
practice (and of course, we can always restrict attention to functors F : J → Tmod for which each F (i) has
non-trivial diagram theory).

So let T be a single-sorted quasi-equational theory with single-indeterminate isotropy such that every
M ∈ Tmod has non-trivial diagram theory, and let J be any small index category. For any M ∈ TJmod we
then clearly have Aut(IdJ )M = Aut(IdJ ), and hence we obtain the following simplification of earlier results:

Corollary 5.2. Let T be any single-sorted quasi-equational theory with single-indeterminate isotropy such
that every M ∈ Tmod has non-trivial diagram theory, and let J be any small index category.

• For any M ∈ TJmod we have ZTJ (M) ∼=
(
∏

iZT

(

M i
))J

× Aut(IdJ ), naturally in M .

• Let F : J → Tmod and let π = (πµ : cod(µ) → cod(µ))µ∈Dom(F ) be any Dom(F )-indexed family of

endomorphisms in TmodJ . Then π ∈ ZTJ (F ) iff there is a (uniquely determined) compatible family
(

φi
)

i∈J
∈
∏

i∈J ZT(F (i)) and a (uniquely determined) element ψ ∈ Aut(IdJ ) such that π is determined

by
(

φi
)

i∈J
and ψ, in the sense that

πµ(k) = G(ψ(k)) ◦ φkµ(k) : G(k)
∼
−→ G(k)

for every morphism µ : F → G in TmodJ and every k ∈ obJ .
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We note that Corollary 5.2 specializes to the characterization of covariant isotropy for presheaf categories
SetJ obtained in [4, Corollary 22]. Namely, if T is the single-sorted theory with no operations and no axioms,
so that Tmod = Set, then since T has trivial and hence single-indeterminate isotropy (see [7, Corollary 3.1.6])
and clearly satisfies the other assumptions of Corollary 5.2, it follows that for any presheaf F : J → Set we
have ZSetJ (F )

∼= Aut(IdJ ), since ZSet(F (i)) is trivial for each i ∈ obJ . This is precisely what is stated in [4,
Corollary 22].

As promised, we now use Corollary 5.2 to provide an explicit characterization of the covariant isotropy
group of GroupJ for any small category J . The quasi-equational theory T of groups is single-sorted, has
single-indeterminate isotropy (see [3, Example 4.1] or [7, Proposition 3.2.7]), and the diagram theory of
any group is non-trivial (if G is any group, then the group G 〈x〉 is non-trivial). Now let F : J → Group

be any functor. Then for any i ∈ obJ and any Dom(F (i))-indexed family of group endomorphisms φi =
(

φif : cod(f) → cod(f)
)

f∈Dom(F (i))
, we have φi ∈ ZGroup(F (i)) iff there is a unique element gi ∈ F (i) such

that for every outgoing group homomorphism f : F (i) → G, the endomorphism φif : G → G is the inner
automorphism innf(gi) induced by the element f(gi) ∈ G (see [1, Theorem 1] or [7, Corollary 3.2.8]). We
then have:

Claim 5.3. A family
(

φi
)

i∈J
∈
∏

i∈J ZGroup(F (i)) is compatible in the sense of Definition 4.2 iff F (h)(gi) =

gj for any morphism h : i→ j in J , i.e. iff (gi)i∈J ∈ lim F .

Proof. Suppose first that
(

φi
)

i∈J
∈
∏

i∈J ZGroup(F (i)) is compatible, let h : i → j be a morphism of J ,

and let us show F (h)(gi) = gj. We have the inclusion group homomorphism η : F (j) → F (j) 〈x〉, so

by compatibility it follows that φjη = φiη◦F (h) : F (j) 〈x〉
∼
−→ F (j) 〈x〉, and hence innη(gj) = innη(F (h)(gi)) :

F (j) 〈x〉
∼
−→ F (j) 〈x〉. We then obtain

gjxg
−1
j = innη(gj)(x) = innη(F (h)(gi))(x) = F (h)(gi)xF (h)(gi)

−1

in F (j) 〈x〉, which forces F (h)(gi) = gj , as desired. Conversely, if (gi)i∈J ∈ lim F and h : i→ j is a morphism

of J , then for any group homomorphism f : F (j) → G we have φjf = innf(gj) = inn(f◦F (h))(gi) = φif◦F (h), as
desired.

We now have the following application of Corollary 5.2:

Corollary 5.4. Let J be any small index category.

• For any F : J → Group we have ZGroupJ (F )
∼= lim F × Aut(IdJ ), naturally in F .

• Let F : J → Group and let π = (πµ : cod(µ) → cod(µ))µ∈Dom(F ) be any Dom(F )-indexed family of

endomorphisms in GroupJ . Then π ∈ ZGroupJ (F ) iff there is a uniquely determined family (gi)i∈J ∈
lim F and a uniquely determined element ψ ∈ Aut(IdJ ) such that π is determined by ψ and (gi)i∈J in
the sense that

πµ(k) = G(ψ(k)) ◦ innµk(gk) : G(k)
∼
−→ G(k)

for every morphism µ : F → G in GroupJ and every k ∈ obJ .

• Thus, an automorphism π : F
∼
−→ F of F : J → Group is inner iff there are (gi)i∈J ∈ lim F and

ψ ∈ Aut(IdJ ) such that π(k) = F (ψ(k)) ◦ inngk : F (k)
∼
−→ F (k) for each k ∈ obJ .

Proof. The first claim follows from the first claim of Corollary 5.2 because (
∏

iZT (F (i)))
J

= lim (ZGroup ◦ F ) ∼=
lim F , since ZGroup

∼= Id by [1, Theorem 2]. The second claim follows from the second claim of Corollary
5.2 by the preceding observations (including Claim 5.3), and the last claim follows from the second and the
definition of inner automorphisms in terms of ZGroupJ (F ) (see the Introduction).
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Thus, while Bergman’s [1, Theorem 1] shows that the categorical inner automorphisms in Group are
precisely the conjugation-theoretic inner automorphisms, our Corollary 5.4 shows that the categorical in-
ner automorphisms in any category GroupJ of presheaves of groups can be characterized in terms of the
conjugation-theoretic inner automorphisms of the component groups, together with natural automorphisms
of IdJ .
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