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R-LINEAR TRIANGULATED CATEGORIES AND STABILITY

CONDITIONS

KOTARO KAWATANI

APPENDIX BY HIROYUKI MINAMOTO

Abstract. Let R be a commutative ring. We introduce the notion of support of

a object in an R-linear triangulated category. As an application, we study the non-

existence of Bridgeland stability condition on R-linear triangulated categories.

1. Introduction

Recall that a stability condition introduced by Bridgeland [Bri07] on a triangulated cat-

egory D defines a stability of objects in the category D. If the category is the bounded

derived category Db(X) of coherent sheaves on a projective variety X (over a field),

Analogously to the slope/Gieseker-Maruyama stability for coherent sheaves, one can de-

fine the stability of complexes of coherent sheaves via stability conditions on Db(X) if

it does exist. Recalling the stability of sheaves are defined by an ample line bundle on

the variety, a stability condition on Db(X) can be regarded as a huge generalization of

ample line bundles on the projecitve variety. Thus the stability condition gives a power-

ful tool to study birational geometry for moduli spaces not only of sheaves, but also of

complexes and much work has been done in this direction. For instance, moduli spaces

on K3 surfaces or abelian sufraces are studied by many authors (Arcara and Bertram in

[AB11] or [AB13], Bayer and Macri in [BM14a] and [BM14b] or Minaminde, Yanagida

and Yoshioka in [MYY18]. the case of other surfaces are studied by [ABCH13], [LZ19],

[Nue16], or [NY20]

However the existence of stability conditions a triangulated category is sensitive, even

if the category is the derived category Db(X) of a smooth projective variety X . For

instance, if dimX ≤ 2, then StabDb(X) does exists. When dimX = 3, the existence

follows from generalized Bogomolov inequality proposed by Bayer-Macri-Toda [BMT14].

Let us discuss the case where stability conditions do not exist. Since a stability condi-

tion on a triangulated category naturally induces a bounded t-structure, if the category

has no bounded t-structure, then there are no stability condition. Such a category can

be found by using schemes with singularities or varieties which are non-proper. For in-

stance, as mentioned by Antieau, Gepner, and Heller [AGH19], if the scheme X is a

nodal cubic curve, then the triangulated category Dperf(X) of perfect complexes on X
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has no bounded t-structure and hence no stability condition. They also conjecture that

the category of perfect complexes on a finite dimensional Noetherian scheme X has a

bounded t-structure if and only if X is regular. If the scheme X is affine, the conjecture

holds by Smith [Smi22]. Recently Neeman studies the conjecture for separated case (cf.

[Nee22]).

Let us introduce another example for the non-existence. Suppose that X is an affine

scheme Spec R of a Noetherian ring R. Then StabDb(X) is non-empty if and only if

dimX = 0 by the author [Kaw20]. Unlike the case of perfect complexes, the category

Db(X) has a natural bounded t-structure. In stead of the non-existence of t-structures,

our proof is based on the supports of complexes in Db(X).

The aim of this paper is to extend the results in [Kaw20] to more general R-linear

triangulated categories. The main theorem is the following:

Theorem 1.1. Let R be a Noetherian ring and let X → SpecR be a proper morphism

of schemes. If the dimension of the image is positive, then Db(X ) and Dperf(X ) have no

stability condition.

Recall that the support SuppE of a complex E of (quasi-)coherent sheaves is the union

of the support of each cohomology H i(E). To develop the argument in [Kaw20], we give a

generalization of the support for objects in an R-linear triangulated categoryD. Precisely

if E is an object in the R-linear category D, we define SuppR E as the support of the

R-module HomD(E,E) of endomorphisms. The generalized support SuppRE coincides

with SuppE if E is a bounded complex of (not necessarily finite) R-modules.

Using the generalized support SuppR E, we give a sufficient condition for the non-

existence of stability conditions under a certain finiteness assumption on D. The proper-

ness in Theorem 1.1 guarantee the finiteness.

For a familiy X → S of schemes, our theorem says that there is no “absolute” stability

conditions unless the dimension of the base is zero. On the other hand, a stability

condition is one of generalizations of slope stability of locally free sheaves on projective

varieties. Recall that the slope stability derived from an ample line bundle and that

we have relatively ample line bundles for a family X → S of projective varieties. Thus

it might be natural to introduce a notion of “relative” stability conditions so that a

stability condition over a base does exist. Interestingly the notion of stability conditions

over a base scheme for a flat family of projective varieties is introduced by Bayer et al.

in [BLM+21] which gives a kind of “relative” stability conditions, to study Kuznetsov’s

non-commutative K3 surfaces. Our theorem gives an algebraic evidence of the necessity

of relative stability conditions.

2. R-linear triangulated categories

From now on, R is a commutative ring.

Definition 2.1. Let D be an R-linear triangulated category and M an object in D.
2



(1) We denote by µ : R → HomD(M,M) the morphism defined by the following

composition:

(2.1) R× {idM} ⊂ R ×HomD(M,M) → HomD(M,M).

(2) The support of the object M is defined as the support of HomD(M,M) as R-

modules and is denoted by SuppRM :

SuppRM := SuppHomD(M,M).

Lemma 2.2. Let D be an R-linear triangulated category. Suppose that a distinguished

triangle A
i
→ B

p
→ C in D satisfies Hom0

D
(A,C) = Hom−1

D
(A,C) = 0.

(1) Any morphism ϕ : B → B uniquely indues morphisms ϕA : A→ A and ϕC : C →

C such that i · ϕA = ϕB · i and p · ϕB = ϕC · p.

(2) If ϕ = 0 then the morphisms ϕC and ϕA = 0 are zero.

Proof. We obtain the diagram of exact sequences of R-modules:

HomD(A,A)

α

��

HomD(B,B)
i∗

//

p∗

��

HomD(A,B)

��

HomD(C,C)
γ

// HomD(B,C) // HomD(A,C)

The assumptions imply both α and γ are isomorphisms. Then ϕA and ϕC are given by

ϕA = α−1(i∗ϕ) and ϕC = γ−1(p∗ϕ).

The second assertion is obvious from the above diagram. �

Proposition 2.3. Let D be an R-linear triangulated category. Suppose that a distin-

guished triangle A
i
→ B

p
→ C in D satisfies Hom0

D
(A,C) = Hom−1

D
(A,C) = 0.

Then the following holds:

(2.2) SuppRA ∪ SuppR C ⊂ SuppRB

Proof. Suppose that p 6∈ SuppRB. It is enough to show that p 6∈ SuppRA and p 6∈

SuppRC. By the assumption p 6∈ SuppRB, there exists r ∈ R − p such that r · id =

µr = 0 in End(B). Since D is R-linear, the endomorphism µr ∈ End(B) also induces the

endomorphisms of A and C which make the following diagram commutative:

A
i

//

µr
��

B
p

//

µr
��

C

µr
��

A
i

// B
p

// C

By Lemma 2.2, both µr and µr are zero. Thus the localizations End(A) ⊗R Rp and

End(C)⊗R Rp are zero. �
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Corollary 2.4. Let R be an R-linear triangulated category. The ith cohomology of E ∈ D

with respect to a bounded t-structure (D≤0,D≥1) on D is denoted by H i(E). Then the

following holds:

SuppRH
i(E) ⊂ SuppR E.

Proof. Set p and q by

p = max{i ∈ Z | H i(E) 6= 0}, and

q = min{i ∈ Z | H i(E) 6= 0}.

The proof is by induction on p− q. If p− q = 0, then the assertion is clear.

Taking the filtration with respect to the t-structure, we obtain the following triangle

Ep−1 // E // Hp(E)[−p].

where Ep−1 ∈ D≤0[1−p]. Lemma 2.2 implies SuppRE
p−1 ⊂ SuppRE and SuppRH

p(E) ⊂

SuppRE. Then the assumption of induction implies the desired assertion. �

Lemma 2.5. Let D be an R-linear triangulated category. Consider a diagram of distin-

guished triangle in D:

A
i

//

ψA

��

B
p

//

ψB

��

C

ψC

��

A
i

// B
p

// C.

If ψA = 0 and ψC = 0 then the composite ψ2
B is zero.

Proof. Since p · ψB = ψC · p = 0, there exists a ϕ : B → A such that i · ϕ = ψB. Thus we

see

ψ2
B = ψB · i · ϕ = i · ψA · ϕ = 0.

�

Lemma 2.6. Let A
i
→ B

p
→ C be a distinguished triangle in an R-linear triangulated

category D. Then the following holds:

SuppRB ⊂ SuppRA ∪ SuppR C.

Proof. Take a prime ideal p such that p 6∈ SuppRA and p 6∈ SuppRC. Then there exists

rA (resp. rC) in R−p such that rA · idA = 0 (resp. rC · idC = 0). Then r0 = rArC satisfies

r0 idA = 0 and r0 idC = 0. Since the category D is R-linear, the following diagram

commutes:

A
i

//

µr0
��

B
p

//

µr0
��

C

µr0
��

A
i

// B
p

// C.

By Lemma 2.5, we see µ2
r0
= µr2

0
: B → B is the zero morphism. Hence idB ∈ End(B) is

zero via localization to p ∈ SpecR. Thus we see p 6∈ SuppRB = SuppEnd(B). �
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Corollary 2.7. Let D be an R-linear triangulated category. The ith cohomology of E ∈ D

with respect to a bounded t-structure on D is denoted by H i(E). The the following holds:

SuppRE =
⋃

i∈Z

SuppRH
i(E).

Proof. By Corollary 2.4, it is enough to show SuppR E ⊂
⋃
i∈Z SuppRH

i(E). Set p and

q by

p = max{i ∈ Z | H i(E) 6= 0}, and

q = min{i ∈ Z | H i(E) 6= 0}.

The proof is by the induction on p− q. Similarly to the proof of Corollary 2.4, we have

the distinguished triangle

Ep−1 // E // Hp(E)[−p].

Lemma 2.6 implies

SuppRE ⊂ SuppRE
p−1 ∪ SuppRH

p(E).

Then the assumption of the induction implies

SuppRE
p−1 =

⋃

i∈Z

H i(Ep−1)

which completes the proof. �

In the last of this section, we show that the generalized support coincides with “usual

supports” of complexes of R-modules. So let us suppose a triangulated category is the

unbounded derived category D(ModR) of (not necessarily finite) R-modules. Recall

that the support of an object E in D(ModR) is the union of the supports of the ith

cohomology H i(E):

SuppE :=
⋃

i∈Z

SuppH i(E).

Lemma 2.8. Let R be commutative ring and let E be a complex of R-modules.

(1) We have SuppE ⊂ SuppRE.

(2) If the complex E is bounded, then SuppE = SuppRE.

Proof. Suppose p 6∈ SuppRE. Then there exists r ∈ R − p such that r id = µr is zero in

Hom(E,E). Taking cohomology with respect to the standard t-structure, µr does imply

the multiplication µr on H
i(E). Since µr ∈ End(E) is zero, so does µr ∈ End(H i(E)) for

any i ∈ Z. Hence p is not in SuppH i(E) for any i ∈ Z. Thus we have

SuppE =
⋃

i∈Z

SuppH i(E) ⊂ SuppRE.

Suppose that E is bounded and take a p ∈ Spec R −
⋃
i∈Z SuppH

i(E). Then there

exists ri ∈ R− p such that µri : H
i(E) → H i(E) is zero for each i with H i(E) 6= 0. Since

E is bounded, let s be the product of such ri.
5



Then the morphism µs ∈ End(H i(E)) is zero for any i ∈ Z. By the lemma below,

there exists N ∈ N such that the Nth composite µNs = µsN is the zero morphism of E.

Hence we see p 6∈ SuppRE. �

Lemma 2.9. Let E be a bounded complex of R-modules. For an r ∈ R, if µr ∈

End(H i(E)) is zero for any i ∈ Z, then there exists N ∈ N such that the composite

µNs = µsN is zero in End(E).

Proof. Set p := max{i ∈ Z | H i(E) 6= 0} and q := {i ∈ Z | H i(E) 6= 0}. The proof is by

induction on p− q.

If p − q = 0, then N is taken to be 1. Suppose the assertion holds for p − q = ℓ − 1.

Taking truncation of E, we have the following distinguished triangle:

Ep−1 // E // Hp(E)[−p].

By the assumption on induction, there exists N ∈ N such that µNs : Ep−1 → Ep−1 is

zero. Since µNs : Hp(E) → Hp(E) is zero, Lemma 2.5 implies that the endomorphism

µ2N
s : E → E is zero. �

3. Stability conditions and R-linear categories

The aim in this section is to study a property of SuppR E for σ-stable objects with

respect to a stability condition σ. The following definition reflects properties of stable

objects.

Definition 3.1. Let D be an R-linear triangulated category. An object M ∈ D satisfies

the isomorphic property if the following holds:

(Ism) ∀r ∈ R, µr : M →M is an isomorphism if µr is non-zero.

For well behavior of SuppR E, we need a finiteness assumption on the triangulated

category D.

Definition 3.2. Let D be an R-linear triangulated category. D is said to be finite over

R if the R-module HomD(E,E) is finite for any object E ∈ D.

Lemma 3.3. Assume that the commutative ring R is an integral domain with dimR > 0

and an R-linear triangulated category D is finite. If an object M in D satisfies

• the morphism µr : M → M is an isomorphism for any r ∈ R \ {0},

then M is zero.

Proof. It is enough to show HomD(M,M) = 0, since the category D is additive.

If HomD(M,M) is non-zero, then we have SuppRM = SpecR since HomD(M,M)

contains R. On the other hand, there exists a non-unit r in R. Then the assumption

implies that µr gives an isomorphism of M . Hence we have the following isomorphism

µ∗
r : HomD(M,M) → HomD(M,M).

6



Hence the R-module HomD(M,M) satisfies HomD(M,M) ⊗ R/(r) = 0 which implies

SuppRM ∩SpecR/(r) = ∅ since HomD(M,M) is finitely generated. This contradicts the

fact SuppRM = SpecR. �

Lemma 3.4. Suppose an object M in a finite R-linear triangulated category D satisfies

the condition (Ism). Then the following holds:

(1) The ideal ann(End(M)) of R is prime.

(2) If M is non-zero, then ann(End(M)) = ann(f) for any f ∈ End(M) \ {0}.

(3) If M is non-zero, then dim SuppR(M) = 0.

Proof. Let a and b be in R. Suppose the product ab is in ann(End(M)) and a 6∈

ann(End(M)). Then the endomorphism µa is non-zero and hence is invertible. Thus

µb is zero by µab = µaµb. Hence b ∈ ann(End(M)).

Take a ∈ ann(f). If µa is non-zero, then µa is an isomorphism by the assumption.

This contradicts a ∈ ann(f). Thus µa is the zero-morphism and we have ann(f) ⊂

ann(End(M)). The opposite inclusion is clear.

Put p = ann(End(M)). End(M) is an R/p-module andM satisfies the condition (Ism).

If the prime ideal p is not maximal, then dimR/p > 0 and Lemma 3.3 implies M = 0.

Hence p has to be maximal and dimSuppRM = 0. �

Lemma 3.5. Let D be a finite R-linear triangulated category and let σ be a locally finite

stability condition on D. If an object E ∈ D is σ-stable then dimSuppRE = 0.

Proof. If E is σ-stable, then the condition (Ism) holds. Lemma 3.4 implies dimSuppRE =

0. �

Proposition 3.6. Let D be a finite R-linear triangulated category and σ be a locally finite

stability condition on D. If an object E ∈ D is σ-semistable, then dimSuppRE = 0.

Proof. Let P(φ) be the slicing of σ with phase φ. Recall that P(φ) is an abelian category.

Since σ is locally finite, any object E ∈ P(φ) is given by a successive extension of finite

σ-stable objects.

The proof is induction on the number of stable factors of E ∈ P(φ). If the number is

1, the assertion follows from Lemma 3.5 since E is σ-stable.

Now E is not σ-stable but σ-semistable. Take a σ-stable subobject A of E. Then the

quotient E/A satisfies the assumption on the induction. Hence Lemma 2.6 implies

SuppR E ⊂ SuppRA ∪ SuppRE/A.

and the assumption on induction implies dimSuppRE/A = 0. Then Corollary 2.7 implies

the desired assertion. �

Theorem 3.7. Let D be a finite R-linear triangulated category. Suppose that there exists

a locally finite stability condition σ on D. For any object E ∈ D, the dimension of

the support SuppRE is zero. Moreover any ith cohomology H i(E) of E has the zero

dimensional support.
7



Proof. The proof is by induction on the length ℓ(E) of the Harder-Narasimhan filtration

of E with respect to σ. If ℓ(E) = 1, the assertion follows from Proposition 3.6.

Suppose that the assertion holds for ℓ(E) − 1. Taking the last term of the Harder-

Narasimhan filtration of E, we obtain the distinguished triangle

(3.1) En−1
// E // An,

where An is σ-semistable and ℓ(En−1) = ℓ(E)− 1. Thus we see dimSuppREn−1 = 0 and

dimSuppRAn = 0. Then Lemma 2.6 implies the desired assertion. The last assertion

follows from Corollary 2.7. �

Corollary 3.8. Let D be a finite R-linear triangulated category. If there exists an object

M ∈ D such that dimSuppRM > 0, then there exists no locally finite stability condition

on D.

Proof. If there exists a locally finite stability condition on D, the dimension the support

of any object in D is zero. This contradicts Thoerem 3.7. �

Corollary 3.9. Let f : X → SpecR be a proper morphism to the affine Noetherian

scheme SpecR. If the dimension of the image of f is positive, then both StabDb(X ) and

StabDperf(X ) are empty.

Proof. Recall that Dperf(X ) is a full subcategory of Db(X ) and the structure sheaf OX is

in Dperf(X ).

Let Z be the image of f . Note that Z is a closed subscheme of SpecR. Then the mor-

phism f̃ : X → Z is proper and hence Db(X) is linear and finite over the ring H0(Z,OZ).

Since f̃ is surjective, the ring H0(X,OX) containes H0(Z,OZ). Then the assumption

implies

dimSuppH0(Z,OZ)OX ≥ dimSuppH0(Z,OZ)H
0(Z,OZ) > 0.

Then Corollary 3.8 implies the desired assertion. �

Remark 3.10. In [Kaw20], we show that the bounded derived category of a affine Noe-

therian scheme SpecR has a locally finite stability condition. Corollary 3.9 gives a gen-

eralization.
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Appendix A. by Hiroyuki Minamoto

Inspired by main body this paper, we prove the following theorem.

Theorem A.1. Let X be a Noetherian scheme. Assume that the Krull dimension of the

ring Γ(X,OX) is positive. Then both StabDb(X) and StabDperf(X) are empty.
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We need preparations.

Lemma A.2. Let X be a Noetherian scheme, s ∈ Γ(X,OX) a global section, and Z :=

SpecOX/(s) the vanishing locus of the section s. For an objectM ∈ Db(X), we denote by

µs the multiplication map µMs : M → M . Then for M ∈ Db(X), the following assertion

hold:

(1) If µs is zero, then SuppM ⊂ Z.

(2) If µs is an isomorphism, then SuppM ⊂ X \ Z.

Proof. (1) By the assumption, the support of ith cohomology H i(M) of M with respect

to standard t-structure is contained in Z since the cohomology of the morphism µs is

zero for all i ∈ Z. This gives the proof.

(2) By the assumption, the multiplication map µis : H
i(M) → H i(M) is an isomorphism

for each i ∈ Z. Hence the localization (µis)x : H
i(M)x → H i(M)x of the map µis on each

x ∈ X is an isomorphism of OX,x modules. If x in Z, then clearly the germ sx is in

the maximal ideal mX,x of OX,x. Hence we see mX,xH
i(M)x = H i(M)x. By Nakayama’s

lemma, we have H i(M)x is zero and hence SuppM ⊂ X \ Z. �

Proposition A.3. Let X be a connected Noetherian scheme, and Z the vanishing locus

SpecOX/(s) of a global section s ∈ Γ(X,OX). Assume that s is neither nilpotent nor

invertible. Then both StabDb(X) and StabDperf(X) are empty.

Proof. We deal with Db(X). The same proof works for Dperf(X).

Suppose to the contrary that Db(X) has a locally finite stability condition. Then by

the argument of the proofs of Proposition 3.6 and Theorem 3.7, there exists finite objects

M1, · · · ,Mn ∈ Db(X) having the property (Ism) such that OX is in the thick hull of

M1, · · · ,Mn.

We set

I = {i | 1 ≤ i ≤ n, µMi
s is an isomorphism}, J = {j | 1 ≤ j ≤ n, µMj

s is zero}.

Note that I ⊔ J = {1, 2, · · · , n}. We set YI :=
⋃
i∈I SuppMi and YJ :=

⋃
j∈J SuppMj .

Then we see YI ⊂ X \ Z and YJ ⊂ Z by Lemma A.2. On the other hand, we have

X = SuppOX ⊂
⋃n

i=1 SuppMi = YI ⊔ YJ ⊂ YI ⊔ Z and hence X = YI ⊔ Z. Since

X is connected by the assumption, we have either Z = X or Z = ∅. However the

condition Z = X contradicts to the assumption s is non-nilpotent and the condition

Z = ∅ contradicts to the assumption that s is non-invertible. �

We proceed a proof of the main theorem of appendix.

Proof of Theorem A.1. Take a connected component X ′ ofX such that dimΓ(X ′,OX′) ≥

1. Then it has a global section which is neither nilpotent nor invertible. Then the assertion

follows from Proposition A.3. �
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