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CATEGORICAL VIEW OF THE PARTITE LEMMA

IN STRUCTURAL RAMSEY THEORY

SEBASTIAN JUNGE

Abstract. We construct of the main object of the Partite Lemma as the colimit over a
certain diagram. This gives a purely category theoretic take on the Partite Lemma and
establishes the canonicity of the object. Additionally, the categorical point of view allows
us to unify the direct Partite Lemma in [13], [11], and [12] with the dual Paritite Lemma
in [17].

1. Introduction

Category theory has long been used in Ramsey theory. Leeb created a category theoretic
framework for proving Ramsey statements in lecture notes that were recorded in [7] in
1973. In [3] Graham, Rothschild, and Leeb proved a Ramsey theorem for finite vector
spaces with this framework. The influential Nešetřil–Rödl Theorem proved in [13], [11],
[12] in the 1970’s and 1980’s was expressed in the language of category theory . After
these results there was a shift back to the language of classes, though categorical ideas
were implicit in Solecki’s papers [19],[17], and [18]. In 2015 Gromov advocated for a deeper
use of category theory in Ramsey theory in [5]. More recently the work of Masulovic has
created more general categorical techniques to prove Ramsey statements, such as in [9].
We follow Gromov’s lead and reexamine a key result in the Nešetřil–Rödl Theorem using
a categorical approach.

Structural Ramsey theory was initiated by the work of Abramason–Harrington in [1] and
Nešetřil–Rödl in [13],[11], and [12] expanded upon the Abramson and Harrington result.
Recently Nešetřil and Hubička proved a version of the Nešetřil–Rödl Theorem for classes of
structures with certain closure properties in [6]. This group of theorems is fundamental to
structural Ramsey theory, which has seen a revival in the recent years [8],[2],[14],[10],[16].
At the core of these theorems is a result known as the Partite Lemma. In [17] Solecki gave
a dual version of the Partite Lemma. The present paper shows that the objects produced
in the Partite Lemma and its dual version are actually canonical category theoretic objects
called cocones and colimits. Furthermore, we emphasize that this exploration of the Partite
Lemma allows for a unification of the original Partite Lemma and the dual version of it.

The main theorem of this paper asserts that a certain categories have cocones and
colimits over diagrams that are defined using Hales–Jewett lines. While the definition of
the diagrams uses Hales–Jewett lines, our main theorem do not involve any Ramsey theory.
After establishing, in our main theorem, the existence of the colimits, we prove that the
object needed for the Partite Lemma is our colimt. All the properties in the conclusion of
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the Partite Lemma follow directly from this object being a cocone. So our main theorem
isolates the mathematical properties of the construction in the Partite Lemma through
the ideas of cocones and colimits. Apart from exhibiting the category theoretic nature of
this object, our result shows that its canonicity as colimits are canonical. Additionally,
our approach yields a unification proofs of the Partite Lemma [13], [11],[12] and the dual
Partite Lemma [17].

We now describe this paper’s organization. In Section 2 we give a generalization of struc-
tures where we add a category C to the definition of language and structures. This allows
us to unify structures as occurring in [18] and dual structures found in [17]. We then define
blocks, which are a generalization of objects in [18] and paritite systems in [13], [11], and
[12]. In Section 3 we introduce a subcategory of blocks and a diagram in the subcategory
using Hales–Jewett lines. Then we prove our main theorem which gives the existence of
colimits over these line diagrams. In Section 4 we turn our attention to Ramsey theory.
We explain how cocones can be used to transfer the Ramsey property and as a consequence
we prove the Partite Lemma using our main theorem. We discuss how to prove the Partite
Construction, which is the other main proposition in the Nešetřil–Rödl Theorem. We fin-
ish by applying the Partite Lemma to prove the results in [17] and [18] in a unified manner.

The author would like to thank S lawomir Solecki for spending ample time helping refine
the presentation of this paper.

2. Structures and blocks

We give a brief overview of the types of structures used in Ramsey theory to motivate our
definition of structures. In [13], [11], and [12] Nešetřil and Rödl prove a Ramsey result for
linearly ordered hypergraphs. Solecki expands on this result in [18] by showing a Ramsey
statement for linearly ordered structures with standard interpretation of relation symbols
and dual interpretation of function symbols. Furthermore in [17] he proves a dual Ramsey
result for linearly ordered structures with the standard interpretations function symbols
and dual interpretation of relation symbols (for more information on the interpretations
in direct and dual structures see section 4.5) . Note that [8] gives a new proof of a special
case (linearly ordered structures with interpretations of function symbols only) of results
from [17]. We give a common generalization of the results in [17] and [18], that is we unify
the dual and direct structural Ramsey theory.

There exists clear analogies between the structures and arguments in [17] and [18]. Our
aim is to make these analogies concrete and unify the idea of these two papers. To do
so we formulate a new notion of structure which includes the structures found in [17] and
[18]. A crucial point in this new notion is an addition of a category C to the definition
of structures. The structures given in [18] will arise when C = Fin and the structures
in [17] will arise when C = Finop. Next we formulate the notion of blocks which are a
generalization of objects in [18] which in turn build on the definition of partite-systems in
[13], [11], and [12].
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2.1. Structures. We develop the concept of structures with a category C by following the
standard development of structures. We start by adding a category C to the definition of
of language. Then we define structures for these new types of languages. Finally we define
homomorphisms in the natural way.

Definition. For any category C, a C-language L is a tuple (C,LF ,LR, arfunc, arrel) where
LF is a set of function symbols, LR is a set of relation symbols, arfunc : LF → Ob(C)2

assigns the arity of function symbols, and arrel : LF → Ob(C) assigns the arity of relation
symbols.

The usual definition of language has arities whose ranges are finite sets instead of objects
in a category C. Thus the definition of a Fin-language is the standard definition of a
language. Now that we have the definition of language we can define structures.

Definition. An L-structure X is an object X ∈ Ob(C) along with interpretations of the
symbols in L that are implemented as follows,
for each relation symbol R ∈ L of arity r ∈ Ob(C) the interpretation of R is a set
RX ⊆ HomC(r,X) and
for each function symbol F ∈ L of arity (r, s) ∈ Ob(C)2 the interpretation of F is a function
FX : HomC(X, r) → HomC(X, s).

The standard definition of structures lets X be a set and interpretations are functions
instead of morphisms. Furthermore if X is a structure and F is a function symbol of arity
(r, s) then under the usual definition of structure FX : Xr → Xs while in our definition
when C = Fin, FX : rX → sX . So if L is Fin-language, then L-structures have relations
which are defined in the usual manner and dual interpretations of function symbols. Thus
L-structures are defined as in [18].

If L is a Finop language then for any structure X and relation symbol R of arity r,
RX ⊂ rX . If F is a function symbol of arity (r, s) then FX : Xr → Xs. Thus function
symbols are defined in the standard way but the relation symbols are interpreted in a dual
manner. Thus L-structures are the same as dual structures found in [17].

Next we define homomorphisms in the natural way.

Definition. Let C be a category and L be a C-language. If X,Y are L-structures and
f ∈ HomC(X,Y ), then f is an L-homomorphism if:
for all relation symbols R ∈ L with arity r ∈ Ob(C) and all η ∈ HomC(r,X),

RX(η) ⇔ RY(f ◦ η)

and for all function symbols F ∈ L with arity (r, s) ∈ Ob(C)2 and all γ ∈ HomC(Y, r),

FX(γ ◦ f) = FY(γ) ◦ f.

2.2. Blocks. The objects that we consider in our main theorem are blocks. Blocks are
a categorical version of objects in [18]. We will use the term blocks instead of objects to
avoid confusion with categorical notation. Objects are a generalization of partite-systems
which are used in the Partite Lemma.
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Definition. Fix a category C and a C-language L. A block is a pair X = (X, π) where X

is an L-structure and π ∈ HomC(X,U) for some U ∈ Ob(C).

If X is a block where the morphism π has a left inverse we call X a monic block. An
example of a monic block is a structure X which can be viewed as the block X = (X, IdX).

We now define morphisms between blocks.

Definition. Fix a category C and a C-language L. Suppose X = (X, π) and Y = (Y, ρ) are
blocks so that π ∈ HomC(X,U) and ρ ∈ HomC(Y, V ). A block-homomorphism between
X and Y is a homomorphism f ∈ HomC(X,Y ) for which there is an i ∈ HomC(U, V ) such
that ρ ◦ f = i ◦ π.

X Y

U V

f

π ρ

i

A block-homomorphism is called a block-monomorphism if it has a left inverse in C.
For the remainder of this paper we will adhere to the following convention. We use the

letters U, V,W,X, Y, Z to denote objects in the underlying category C, the letters W,X,Y,Z
to denote structures with underlying objects W,X, Y,Z, and the letters W,X ,Y,Z to
denote blocks with first coordinate W,X,Y,Z.

Let Bl be the category where objects are blocks and morphisms are block-homomorphisms.
Let Blm be the subcategory of Bl with the same objects but Hom(Blm) is the class of
block-monomorphisms.

3. The main theorem

In this section we will show that a specific subcategory of blocks has colimits over certain
diagrams that are defined using Hales–Jewett lines. This result describes the construction
of the Partite Lemma in a purely category theoretic manner. We start by defining the
category and diagram that we need for our main theorem. We will then state and prove
our main result.

3.1. The category Bli0. In this section we define a subcategory of Bl which can be viewed
as a local version of Bl. We start by defining the morphisms for this category. For this
section fix a category C and a C-language L.

Definition. Suppose X = (X, π) and Y = (Y, ρ) are blocks so that π ∈ HomC(X,U) and
ρ ∈ HomC(Y, V ). If i0 ∈ HomC(U, V ), then an i0-homomorphism between X and Y is a
block-homomorphism f ∈ HomBl(X,Y ) such that ρ ◦ f = i0 ◦ π.

An i0-monomorphism is an i0-homomorphism with a left inverse.
We will now define the subcategory for our main theorem. Fix a morphism

i0 ∈ HomC(U, V ) for some U, V ∈ Ob(C). We divide the objects of Bli0 into two types of
objects, domain objects and codomain objects. Domain objects are blocks (X, π) where
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the target of π is U (the domain of i0) and Domain objects are blocks (Y, ρ) where
the target of ρ is V (the codomain of i0). Morphisms in Bli0 between a domain object
and a codomain object are i0-homomorphisms, morphisms between domain objects are
IdU -homomorphisms, and morphisms between codomain objects are IdV -homomorphisms.

Let Blmi0 be the subcategory of Bli0 with the same objects as Bli0 where all morphisms
have a left inverse in C.

3.2. The line diagram. To define the diagram that we need for our main theorem we
introduce the notion of combinatorial lines.

Definition. If P is a set and N > 0, then a line ℓ in PN is a nonempty d(ℓ) ⊆ N along
with ℓk ∈ P for each k ∈ N\d(ℓ).

If ē ∈ PN and ℓ is a line in PN we say that ē ∈ ℓ if ek = ℓk for all k /∈ d(ℓ) and ē is
constant on d(ℓ). If ē ∈ ℓ we let ℓ(ē) be the constant value of ē on d(ℓ). Note that for every
ē ∈ PN there is a line ℓ so that ē ∈ ℓ.

Given the above definition of lines we will construct a diagram.

Definition. Fix N > 0, a category C, a C-language L, i0 ∈ Hom(C), a monic domain
object X ∈ Ob(Blmi0 ), and a codomain object Y ∈ Ob(Blmi0 ) . Let J be the category with

Ob(J) = HomBlmi0
(X ,Y)N ∪ {ℓ : ℓ is a line in HomBlmi0

(X ,Y)N}

For every pair (ē, ℓ) where ē ∈ HomBlmi0
(X ,Y)N , ℓ is a line in HomBlmi0

(X ,Y)N , and ē ∈ ℓ

we let HomJ(ē, ℓ) be a set with one morphism which we denote (ē, ℓ). All other morphisms
in J are identities. Then the line diagram is the functor G : J → Blmi0 ,

G(ē) = X if ē ∈ HomBlmi0
(X ,Y)N

G(ℓ) = Y if ℓ is a line in HomBlmi0
(X ,Y)N

and on non-identity morphisms G(ē, ℓ) = ℓ(ē).

Note that the definition of the index category J only depends on N , i0, X , and Y.
Also notice that since Blmi0 is a subcategory of Bli0 , G can also be considered as a functor
G : J → Bli0 . The object of this section is to build a cocone over G in Blmi0 that is also
the colimit over G in Bli0 . In applications we only use the existence of a cocone over G in
Blmi0 . Being a colimit in Bli0 assures canonicity of the construction.

3.3. Statement and proof of the main theorem. The following theorem is the main
result of this paper. In Ramsey theoretic applications only the existence of the object from
the conclusion of Theorem 1 is used. While the proof of this theorem is purely categorical,
on a technical level we build on arguments going back to [13], [11], and [12]. Our proof is
most closely related to the arguments found in [17] and [18].

Theorem 1. Let C be a category that has colimits, let L be a C-language, and let
i0 ∈ Hom(C) have a left inverse. Then for each line diagram G, Bli0 has a colimit over G
that is also a cocone over G in Blmi0 .
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Proof. Fix N > 0, X = (X, π) a monic domain object in Blmi0 and Y = (Y, ρ) a codomain
object in Blmi0 . For ease of notation let HomBlmi0

(X ,Y) = P .

Let H : Bli0 → C be the functor defined by H(W) = W and H(f) = f . Then there is a
colimit (Z, fℓ, fē)ℓ,ē∈Ob(J) in C over the diagram H ◦G by assumption. Since the forgetful
functor creates colimits for slice categories (see [15, p.91-92]), there are interpretations of
function symbols FZ and a morphism σ ∈ HomC(Z, V ) so that if L has no relation symbols,
then (Z, fℓ, fē)ℓ,ē∈Ob(J) is the colimit in Bli0 .

Thus it remains to show that each fℓ is a split-monomorphism and to define appro-
priate interpretations RZ for all relation symbols in L. To do so we need a cocone
(Y, uℓ,i, ēi)ℓ,ē∈Ob(J) for each i < N . Fix h ∈ HomC(V,X) so that h ◦ i0 ◦ π = IdX. Such h
exists by assumption. For each i < N let

uℓ,i =

{

IdY if i ∈ d(ℓ)
ℓi ◦ h ◦ ρ otherwise

We show that (Y, uℓ,i, ēi)ℓ,ē∈Ob(J) is a cocone over H ◦G. Fix ℓ and ē so that ē ∈ ℓ. Then
we prove uℓ,i ◦ ℓ(ē) = ēi by cases. If i ∈ d(ℓ), then IdY ◦ ℓ(ē) = ēi by definition. If i /∈ d(ℓ),
then ℓi = ēi, so since ℓ(ē) is an i0-homomorphism,

ℓi ◦ h ◦ ρ ◦ ℓ(ē) = ℓi ◦ h ◦ i0 ◦ π = ℓi = ēi.

Thus (Y, uℓ,i, ēi)ℓ,ē∈Ob(J) is a cocone over H ◦ G for all i < N . So for all i < N there is a

vi so that for every line ℓ in PN and every ē ∈ PN , vi ◦ fℓ = uℓ,i and vi ◦ fē = ei. If ℓ is a

line in PN then since d(ℓ) is nonempty there is i ∈ d(ℓ) so,

vi ◦ fℓ = uℓ,i = IdY .

Thus we have shown that each fℓ has a left inverse in C.

Y

Z

Yℓ · · · Yℓ′

Xē · · · Xē′

∃vi

fℓ

vℓ,i

fℓ′

uℓ′,i

ℓ(ē)

ēi

ℓ′(ē) ℓ′(ē′)

ē′i

We define the interpretations of relation symbols on Z as follows. For each relation
symbol R in L of arity r, let RZ be such that:

RZ(δ) ⇔ there are ℓ a line in PN and η ∈ HomC(Y, r), so that δ = fℓ ◦ η and RY(η).

Clearly RY(η) implies RZ(fℓ ◦ η). So to show that fℓ is a homomorphism it remains to
prove that RZ(fℓ ◦ η) implies RY(η). So suppose RZ(fℓ ◦ η), then by definition there is a
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η′ ∈ HomC(Y, r) and a line ℓ′ so that RY(η′) and fℓ′ ◦ η
′ = fℓ ◦ η. We will let fℓ ◦ η = δ.

We show that RY(η) by two cases. If there is i ∈ d(ℓ) ∩ d(ℓ′), then

vi ◦ δ = uℓ,i ◦ η = uℓ′,i ◦ η
′.

Thus η = η′ by the definition of uℓ,i.
In the second case there is no i ∈ d(ℓ) ∩ d(ℓ′) so let i ∈ d(ℓ) and j ∈ d(ℓ′). Then by the

definition of vi,
vi ◦ δ = uℓ,i ◦ η = uℓ′,i ◦ η

′.

Then by the definition of uℓ,i and uℓ′,i, we have

IdY ◦ η = ℓ′i ◦ h ◦ ρ ◦ η′.

Note that by the definition of σ, ρ = σ ◦ fℓ′ . So

η = ℓ′i ◦ h ◦ σ ◦ fℓ′ ◦ η
′.

Thus by the definition of δ,
η = ℓ′i ◦ h ◦ σ ◦ δ.

We can construct an analogous argument by replacing i with j. So by symmetry,

η′ = ℓj ◦ h ◦ σ ◦ δ.

Now since ℓ′i and ℓj are homomorphisms,

RY(η) ⇔ RX(h ◦ σ ◦ δ) ⇔ RY(η′).

So since RY(η′) holds by assumption, RY(η) holds. Thus (Z, fℓ, fē)ℓ,ē∈Ob(J) is a cocone of
the line diagram in Bli0 .

Next we show that (Z, fℓ, fē)ℓ,ē∈Ob(J) is the colimit over the line diagram in Bli0 . If
(W, gℓ, gē)ℓ,ē∈Ob(J) where W = (W, τ) is a cocone over the line diagram G in Bli0 , by the

definition of FZ and ρ there is a unique morphism of cocones f from (Z, fℓ, fē)ℓ,ē∈Ob(J) to
(W, gℓ, gē)ℓ,ē∈Ob(J) that preserves function symbols and so that ρ = τ ◦ f . Thus all that we
need to show is that f preserves relation symbols. Fix a relation symbol R of arity r in L.
Then by the definition of RZ for any δ ∈ HomC(r, Z), RZ(δ) holds if and only if there is a
line ℓ and η ∈ HomC(r, Y ) so that fℓ ◦ η = δ and RY(η). Then since gℓ is a homomorphism
RY(η) if and only if RW(gℓ ◦ δ). Thus RZ(δ) if and only if RW(f ◦ fℓ ◦ η) = RW(f ◦ δ).
Therefore f ∈ HomBli0

(W,Z), so (Z, fℓ, fē)ℓ,ē∈Ob(J) is the colimit over the line diagram in
Bli0 .

�

4. Application to Ramsey theory

In this section, we apply Theorem 1 to obtain results in Ramsey theory. First we
define the Ramsey property for categories. Then we give a general Transfer Lemma that
uses cocones to transfer Ramsey properties between categories. Next we state the Partite
Lemma and show how the Partite Lemma follows directly from Theorem 1 and the Transfer
Lemma. We then give a categorical version of the Partite Construction. We apply our
Partite Construction to prove the results in [17] and [18] in a unified manner.
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4.1. Ramsey property. In this section we will give our notation for the standard ideas
found in a categorical approach to Ramsey theory.

Definition. For all r > 0, an r-coloring of a set S is a function χ : S → r where
r = {0, . . . , r − 1}. Any R ⊆ S is χ-monochromatic if χ(R) = {i} for some i ∈ r.

Using the above notation we define the main property we consider.

Definition. Fix a category C, if A,B,C ∈ Ob(C) and r > 0, then we say C is a Ramsey
witness for A and B (denoted C → (B)Ar ) if for any r-coloring χ of HomC(A,C) there is
f ∈ HomC(B,C) so that f ◦ HomC(A,B) is χ-monochromatic.

A category C has the Ramsey property if for all A,B ∈ Ob(C) and for all r > 0, there is
C ∈ Ob(C) so that C → (B)Ar .

The standard example of a category with the Ramsey property is the category (Fin,≤)
whose objects are finite linear orders and where morphisms are increasing injections. The
fact that (Fin,≤) has the Ramsey property is equivalent to Ramsey’s Theorem.

4.2. Transferring Ramsey Property Over Cocones. Given a category C with the
Ramsey property, a category D, and a map F : C → D it is natural to consider when D
to has the Ramsey property. This situation has already been examined in [19, Proposition
6.4] and in [9, Lemma 3.1]. In fact our Transfer Lemma is equivalent to ideas found in [19,
Proposition 6.4]. The difference between these theorems and our Transfer Lemma is that
we use the established idea of a cocone to transfer a Ramsey statement.

In [9, Lemma 3.1] the author shows that if there is a certain map C → D and C has the
Ramsey property then D has the Ramsey property, we will not be taking such a global
approach. More precisely, if A,B ∈ Ob(C), r > 0, there is a C ∈ Ob(C), D,E ∈ Ob(D),
and a certain F : HomC(A,B) → HomD(D,E) then there is a Ramsey witness for D and
E in D. This local approach allows us to use the Ramsey property of many different
categories C to prove that our target category D has the Ramsey property. Our Transfer
Lemma will show that there is a Ramsey witness for D and E if F is surjective and there
is a cocone in D over a certain diagram. First we define this diagram and then we prove
the Transfer Lemma.

Definition. Let C,D be categories. Suppose there are A,B,C ∈ Ob(C), D,E ∈ Ob(D)
and F : HomC(A,B) → HomD(D,E).

Let J be the category with

Ob(J) = HomC(A,C) ∪ HomC(B,C)

and the only non-identity morphisms in J are of the form
HomJ(h, g) = {(h, g, f) : f ∈ HomC(A,B) and g ◦ f = h} where h ∈ HomC(A,C) and
g ∈ HomC(B,C).

Then the transfer diagram H : J → D is defined on objects by

H(f) = D for all f ∈ HomC(A,C), H(g) = E for all g ∈ HomC(B,C)

and on non-identity morphisms by H(h, g, f) = F (f).

8



Now that we have defined the transfer diagram we can state the Transfer Lemma.

Lemma 2 (Transfer Lemma). Fix C,D be categories and r > 0. Suppose there are
A,B,C ∈ Ob(C) so that C → (B)Ar , D,E ∈ Ob(D) and a surjection F : HomC(A,B) →
HomD(D,E). If D has a cocone W ∈ Ob(D) over the transfer diagram, then W → (E)Dr
in the category D.

Proof. Let A,B ∈ C, D,E ∈ D, and F : HomC(A,B) → HomD(D,E). Fix a cocone
(W,φf )f∈Ob(J) over the transfer diagram in D. Thus by the definition of cocone we have
the following commutative diagram,

W

Eg · · · Eg′

Dh · · · Dh′

φg φg′

φf

F (f) F (f ′)

φf ′

Where we denote H(g) by Eg and H(h) by Dh. We will use the above diagram com-
muting to show that W → (E)Dr .

Let χ : HomD(D,W ) → r be a coloring. We define a coloring χ′ : HomC(A,C) → r by
χ′(f) = χ(φf ).

Since C → (B)Ar , there is g ∈ HomC(B,C) so that g ◦HomC(A,B) is χ′-monochromatic.
It remains to show that φg ◦ HomD(D,E) is χ-monochromatic.

Let j ∈ HomD(D,E), since F is a surjection there is h ∈ HomC(A,B) so that F (h) = j.
So by the definition of cocone,

φg◦h = φg ◦ F (h) = φg ◦ j.

Then by the definition of χ′,

χ(φg ◦ j) = χ(φg◦h) = χ′(g ◦ h).

Because g ∈ HomC(B,C) is χ′-monochromatic, φg ◦HomD(D,E) is χ-monochromatic. �

4.3. The Partite Lemma. In this section, we will state and prove the Partite Lemma.
We show that Theorem 1 gives us precisely what is necessary to apply the Transfer lemma
to the Hales–Jewett Theorem which will prove the Partite Lemma. In order to use the
Transfer Lemma we define a category which we call the Hales–Jewett category and give
a reformulation of the Hales–Jewett Theorem using the Hales–Jewett category. Then we
prove the Partite Lemma by showing that a line diagram is a transfer diagram for the
Hales–Jewett category.

Fix a finite set P . We let HJ(P ) be the category with Ob(HJ(P)) = N and
HomHJ(P)(0, N) = PN , in particular HomHJ(P)(0, 1) = P . Define HomHJ(P)(1, N) as the
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set of lines in PN and let all other morphisms be identities. For all p ∈ P , ℓ a line in PN

we define ℓ ◦ p ∈ PN by,

(ℓ ◦ p)i =

{

p if i ∈ d(ℓ)
ℓi otherwise

Note that for any line ℓ in PN and any ē ∈ PN , ē ∈ ℓ if and only if ℓ ◦ ℓ(ē) = ē in HJ(P ).
In [9] the author defines the Graham-Rothschild category, and the category HJ(P) fits

nicely as a subcategory of the Graham-Rothschild category with some modification. With
our terminology we can now give a reformulation of the Hales–Jewett Theorem.

Theorem 3 (Hales–Jewett). For all r > 0 and for each finite set P , there is N so that
N → (1)0r in HJ(P).

The version of the Partite Lemma below is a unification of the main lemmas in [17] and
[18].

Corollary 4 (Partite Lemma). Let C be a category so that for all X,Y ∈ Ob(C),
HomC(X,Y ) is finite and suppose that C has colimits over all diagrams G : J → C where
the index category J is finite. Fix a C-language L and let i0 ∈ Hom(C) have a left inverse.
Then for any r > 0, any monic domain object X ∈ Ob(Blmi0 ), and any codomain object

Y ∈ Ob(Blmi0 ) there is a Z ∈ Ob(Blmi0 ) so that Z → (Y)Xr .

Proof. Fix r > 0, X a monic domain object in Blmi0 , and Y a codomain object in Blmi0 . First
we show that we can still apply Theorem 1 even though C no longer has all colimits. Note
that the proof of Theorem 1 only used the fact that C had colimits over diagrams with
index category J where the Ob(J) = HomBlmi0

(X ,Y)N ∪{ℓ : ℓ is a line in HomBlmi0
(X ,Y)N}

for some N . Since by assumption on C the set HomC(X,Y ) is finite, HomBlmi0
(X ,Y) is

finite. Thus the set of objects in J is finite, so we can apply Theorem 1. Thus all line
diagrams have cocones in Bli0 .
If P = HomBlmi0

(X ,Y, ρ), then P is finite so by the Hales–Jewett Theorem there is a

N → (1)0r in HJ(P ). Our goal is to apply the Transfer Lemma to Id: HomHJ(P )(0, 1) →
HomBlmi0

(X ,Y). To do so we show the transfer diagram is the line diagram. Note that the

transfer diagram has index J where

Ob(J) = HomHJ(P )(0, N) ∪ HomHJ(P )(1, N) = PN ∪ {ℓ : ℓ is a line in PN}

and the non-identity morphisms are of the form
HomJ(ē, ℓ) = {(ē, ℓ, p) : p ∈ P so that ℓ ◦ p = ē} where ē ∈ PN and ℓ is a line in PN . Then
for all lines ℓ and ē ∈ PN , if there is a p ∈ P such that p ◦ ℓ = ē, then ē ∈ ℓ and ℓ(ē) = p.
Thus the only non-identity morphisms in J are HomJ(ē, ℓ) = {(ē, ℓ, ℓ(ē))} if ē ∈ ℓ. Then
the transfer diagram is G : J → Blmi0 defined by

G(ē) = X if ē ∈ PN

G(ℓ) = Y if ℓ is a line in PN

and on non-identity morphisms G(ē, ℓ, ℓ(ē)) = ℓ(ē). Thus the transfer diagram is the line
diagram.
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. �

4.4. The Partite Construction. In this section, we expand the Partite Lemma as stated
in Section 5.3 from a result in Blmi0 to a larger category that we call BlD. The category
BlD, that we define precisely below, is a subcategory of Bl. We need to cut down from Bl
to BlD since Bl does not have an analog of the Partite Lemma while we prove a version of
the Partite Lemma for BlD below. To define BlD we consider a new category D that will
have the Ramsey property and a functor G : D → C. This category D is analogous to the
category of finite linear orders in the Nešetřil –Rödl Theorem.

Definition. Let C,D be categories, G : D → C be a functor, and L be a C-language.
A D-block is a triple X = (X, π,K) where X is an L-structure, K ∈ Ob(D), and π ∈
HomC(X,G(K)).

For ease of notation if X = (X, π) we denote the D-block (X, π,K) by (X ,K). We will
also use the letters X, Y, Z to denote D-blocks with first coordinate X ,Y,Z.

We define a category BlmD of D-blocks. Let Ob(BlmD ) be D-blocks and if
X = (X ,K), Y = (Y, L) ∈ Ob(BlD), then

HomBlD(X, Y) = {f ∈ HomC(X,Y ) : there is a i ∈ HomD(K,L) so that f ∈ Hom(BlmG(i))}

We now expand the Partite Lemma to the category BlmD .

Corollary 5 (Partite Construction). Let C and D be categories and let G : D → C be a
functor so that the following hold:

(1) For all X,Y ∈ Ob(C), HomC(X,Y ) is finite. Similarly, for all K,L ∈ Ob(D),
HomD(K,L) is finite.

(2) For all f ∈ Hom(D), G(f) has a left inverse in C.
(3) If F : J → C is a functor where Ob(J) is finite, then C has a colimit over F .
(4) D has the Ramsey property.

Fix a C-language L. Then for any r > 0, any monic X ∈ Ob(BlmD ), and any Y ∈ Ob(BlmD )
there is a Z ∈ Ob(BlmD ) so that Z → (Y)Xr.

The proof of Corollary 5 follows ideas standard in the field of structural Ramsey theory,
for example see [12], though we specifically follow the formulations in [17] and [18].

Proof. Let X = (X, π,K) ∈ Ob(BlD) be monic, Y = (Y, ρ, L) ∈ Ob(BlD), and let r > 0. By
the Ramsey property of D there is M ∈ D so that M → (L)Kr in D. We now define a block
(Y0, σ0,M) where Y0 is defined as the categorical disjoint sum of copies of Y . In particular
let J be the category with Ob(J) = HomD(L,M) and the only morphisms of J are iden-
tities. Let H : J → C be defined by H(i) = Y for all i ∈ ObJ . Let (Y0, hi)i∈HomD(L,M) be
the colimit over H in C.

Note that since the only morphisms in J are identities, for any W ∈ Ob(C) and any
collection (fi)i∈HomD(L,M)

where fi ∈ HomC(Y,W ), (W,fi)i∈HomD(L,M) is a cocone over H.

In particular (G(M), G(i) ◦ ρ)i∈HomD(L,M) is a cocone over H. Thus by the definition of
colimit there is ρ0 ∈ HomC(Y0, G(M)) so that ρ0 ◦ hi = G(i) for all i ∈ HomD(L,M).
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Let γ ∈ HomC(Y0, r) and F be a function symbol in L of arity (q, s), then consider the
cocone (s, FY(γ ◦ hi))i∈HomD(L,M). By the definition of colimit there is a FY0(γ) so that

FY0(γ) ◦ hi = FY(γ ◦ hi) for all i ∈ HomD(L,M). Now given a relation symbol R in L of
arity q and δ ∈ HomC(q, Y0) define RY0 so that,

RY0(δ) ⇔ there are η ∈ HomC(q, Y ), i ∈ HomD(L,M) so that hδ = hi ◦ η and RY(η).

It is easy to check that each hi is a G(i)-monomorphism.

We enumerate HomD(K,L) by letting HomD(K,M) = {jk : k < n}. Then recursively
define (Yk,M) by the Partite Lemma so that Yk+1 → (Yk)Xr in Bljk . We show that
Z = (Yn,M) satisfies the Ramsey property.

Fix a coloring χ : HomBlD (X,Z) → r. We define morphisms gk recursively by the Partite
Lemma so that gn ◦ · · · ◦ gk ◦ HomBljk

(X ,Yk) is χ-monochromatic. We claim that if g =

gn ◦ · · · ◦ g1 then for all f ∈ HomBlD(G(K), Y0), χ(g ◦ f) depends only on the jk : K → M
so that ρ0 ◦ f = ik ◦ π. To prove the claim suppose that f is a jk-monomorphism. So since
gl is a IdM -monomorphism for all l < k, gk−1 · · · g1(f) is a jk-monomorphism. Then by
the definition of gk, gn · · · gk ◦ gk−1 · · · g1 ◦ f is a fixed color which proves the claim. Then
define a coloring χ′ so that

χ′ : HomD(K,M) → r, χ′(jk) = χ(g ◦ f) if ρ0 ◦ f = ik ◦ π

Then by the Ramsey property of D there is i0 ∈ HomD(L,M) so that i0 ◦ HomD(K,L)
is χ′-monochromatic. Then since hi0 is a G(i0)-monomorphism, gn ◦ · · · ◦ g0 ◦hi0 witnesses
that Z → (Y)Xr . �

4.5. The Theorems of Solecki. We will give the results of [17] and [18] as corollaries of
the Partite Construction. Thus we will show that the results in [17] and [18] can be proven
in a unified manner.

First we give some notation so that we can reformulate the results in [17] and [18] into
our context. Let C,D be categories, G : D → C be a functor, and L be a C-language. Then
(L,D) is the category where objects are L-structures of the form G(K) where K ∈ D which
we denote by K and if K,M ∈ Ob(L,D) then

Hom(L,D)(K,M) = {G(i) : i ∈ HomD(K,M) and G(i) is a homomorphism}

With this notation we state and prove the main result in [18].

Corollary 6 (Solecki,[18]). Let G : (Fin,≤) → Fin be defined by G(K,≤) = K and
G(f) = f . For any Fin-language L the category (L, (Fin,≤)) has the Ramsey property.

Note that the category (L, (Fin,≤)) is the category whose objects are linearly ordered
structures and morphisms are increasing injective homomorphisms. Thus Corollary 6 is an
expansion of the Nešetřil–Rödl Theorem.

Proof. Let K,M ∈ Ob(L, (Fin,≤)) and r > 0. We view K and M as the (Fin,≤)-blocks
K = (K, IdG(K),K) and M = (M, IdM ,M) respectively. Next we show that Fin, (Fin,≤),
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and G satisfy conditions (1)-(4) for the Partite Construction. The only property that is
not clear is that the category Fin has colimits over diagrams where the index category J
has a finite set of objects. This is a standard result in category theory. The colimit over
diagram F , is

Z =
⊔

S∈Ob(J)

F (S)/∼′

where ∼′ is the transitive closure of the relation given by

(s, F (S)) ∼ (t, F (T )) ⇔ there is an f ∈ J, f : S → T, F (f)(s) = t,

and φS : F (S) → Z is given by φS(s) = [s].

By the Partite Construction there is a Z = (Z, π, L) so that Z → (M)Kr in Bl(Fin,≤). We

order Z so that π becomes a weakly increasing map, then Z → (M)Kr in (L, (Fin,≤)). �

For the main result in [17] we need to define another category. (Fin,≤∗) is the category
where Ob((Fin,≤∗)) are finite linear orders and for all L,K ∈ Ob((Fin,≤∗)),

Hom(Fin,≤∗)(L,K) = {f ∈ KL : f is a rigid surjection}.

Where a rigid surjection is a map s : L → K between linear orders that is a surjection
and images of initial segments of L are initial segments of K. This definition allows us to
state the main result in [17].

Corollary 7 (Solecki,[17]). Let G : (Fin,≤∗)op → Finop be defined by G(K,≤) = K
and G(f) = f . For any Finop-language L the category (L, (Fin,≤∗)op) has the Ramsey
property.

Proof. Let K,M ∈ Ob(L, (Fin,≤∗)op) and r > 0. We view K and M as the (Fin,≤∗)op-
blocks K = (K, IdG(K),K) and M = (M, IdM ,M) respectively. We claim that Finop,
(Fin,≤∗)op, and G satisfy conditions (1)-(4) for the Partite Construction. First note that
Finop has colimts when the category J has a finite set of objects. The limit over diagram
F is

Z = {(sS)s∈J ∈
∏

S∈Ob(J)

F (S) : for all S, T ∈ Ob(J), f ∈ HomJ(X,Y ), F (f)(sS) = (sT )}

and φS : Z → F (S) is given by the projection maps πS . Also the category (Fin,≤∗)op

has the Ramsey by the Graham–Rothschild Theorem in [4]. The remaining conditions are
trivial to prove. By the Partite Construction there is a Z = (Z, ρ, L) so that Z → (M)Kr in
Bl(Fin,≤∗)op . We linearly order ρ(L) by a ≤ b if and only if min(ρ−1(a)) ≤ min(ρ−1(b)) and

order the rest of Z so that ρ(L) is an initial segment. Then Z → (M)Kr in
(L, (Fin,≤∗)op). �
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[9] D. Mašulović. A new proof of the Nešetřil-Rödl theorem. Appl. Categ. Structures, 26(2):401–412, 2018.
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