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Abstract

The theory of presentations of enriched monads was developed by Kelly, Power,
and Lack, following classic work of Lawvere, and has been generalized to apply to
subcategories of arities in recent work of Bourke-Garner and the authors. We argue
that, while theoretically elegant and structurally fundamental, such presentations of
enriched monads can be inconvenient to construct directly in practice, as they do
not directly match the definitional procedures used in constructing many categories of
enriched algebraic structures via operations and equations.

Retaining the above approach to presentations as a key technical underpinning, we
establish a flexible formalism for directly describing enriched algebraic structure borne
by an object of a V -category C in terms of parametrized J -ary operations and dia-

grammatic equations for a suitable subcategory of arities J →֒ C . On this basis we in-
troduce the notions of diagrammatic J -presentation and J -ary variety, and we show
that the category of J -ary varieties is dually equivalent to the category of J -ary V -
monads. We establish several examples of diagrammatic J -presentations and J -ary
varieties relevant in both mathematics and theoretical computer science, and we define
the sum and tensor product of diagrammatic J -presentations. We show that both J -

relative monads and J -pretheories give rise to diagrammatic J -presentations that
directly describe their algebras. Using diagrammatic J -presentations as a method
of proof, we generalize the pretheories-monads adjunction of Bourke and Garner be-
yond the locally presentable setting. Lastly, we generalize Birkhoff’s Galois connection
between classes of algebras and sets of equations to the above setting.
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1 Introduction

Universal algebra begins with the idea of a set A equipped with a family of finitary operations
satisfying specified equations. This is usually formalized by beginning with a signature (or
similarity type), i.e. a set Σ (whose elements we call operation symbols) equipped with
an assignment to each σ ∈ Σ a finite cardinal nσ called the arity of σ. A Σ-algebra is
then a set A equipped with a family of operations σA : Anσ → A indexed by the operation
symbols σ ∈ Σ. Syntactic expressions or terms over the signature Σ allow the specification of
equations over Σ, and by collecting together only those Σ-algebras that satisfy a specified set
of equations E we arrive at the notion of variety of algebras that is fundamental to algebra
in general. The Σ-algebras in the given variety, and their homomorphisms, form a category,
and one may then call the pair P = (Σ, E) a presentation of this category of algebras. One of
the complications inherent in this approach to algebra is that several different presentations
may present isomorphic categories of algebras. This issue was addressed by Lawvere [27],
whose algebraic theories (or Lawvere theories) classify varieties of algebras up to a suitable
notion of isomorphism, and with the insights of Linton [28] it was soon realized that Lawvere
theories are equivalently given by finitary monads on the category of sets, Set, so that each
presentation P = (Σ, E) presents a finitary monad.

It is known that universal algebraic concepts admit a generalization to a setting in which
sets are replaced by the objects of a symmetric monoidal closed category V or, more generally,
a V -enriched category C . Early contributions to this line of development in enriched category
theory include works of Kock [24], Dubuc [14, 15], Borceux and Day [9], Kelly and Power
[23], Kelly and Lack [22]. Generalizing finitary monads, a recent theme in this area has been
the study of V -enriched monads for a subcategory of arities J →֒ C , i.e. a full subcategory
that is dense in the enriched sense, and whose objects J ∈ obJ play the role of arities. In
the setting of ordinary Set-enriched category theory, this line of development originates with
Linton [29] and includes the paper of Berger, Melliès, and Weber [4], while enriched monads
for subcategories of arities have been studied by the first author [31], by Bourke and Garner
[10], and by the authors [35]; also see [26] for related work in terms of classes of weights.

In the present paper, we develop a versatile framework and methodology for directly
describing enriched algebraic structure in terms of operations and equations, relative to a
suitable small subcategory of arities J →֒ C . A technical underpinning for this paper is
provided by the authors’ recent paper [35], which generalizes certain prior contributions of
Kelly, Power, and Lack [23, 22, 25] in the study of presentations of finitary enriched monads
via signatures.

But here we depart substantially from these prior works, in that we employ a more
flexible formalism for describing enriched algebraic structure that more directly matches the
definitional procedures that are typically used in constructing specific examples of enriched
algebraic categories, thus more directly reflecting mathematical practice.

Indeed, here we formulate enriched algebraic structure borne by an object A of a suitable
V -category C as consisting of a family of parametrized J -ary operations, each of which is
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given by a morphism of the form

C (J,A)⊗ C → A

in C , where the arity J is an object of a given subcategory of arities J →֒ C and C is an
object of C that we call the parameter (while ⊗ here is the action of V on C by tensor).
Such parametrized operations can be described equivalently as morphisms

C (J,A)→ C (C,A)

in V . For example, if C = V = Set then a parametrized operation may be written in the
form AJ × C → A or AJ → AC .

We introduce the notion of free-form J -signature, which is a span obJ ← S → obC
(i.e. a span from obJ to obC ) in which S is a small set. Equivalently, a free-form J -
signature is a small set S, whose elements we call operation symbols, equipped with an
assignment to each operation symbol σ ∈ S an object Jσ of J called the arity and an
object Cσ of C called the parameter. An S-algebra is then an object A of C equipped with
a family of parametrized J -ary operations

σA : C (Jσ, A) −→ C (Cσ, A) (σ ∈ S),

and we obtain a V -category of S-algebras, S-Alg, which we show is strictly J -ary monadic
over C , i.e., isomorphic to the V -category of Eilenberg-Moore algebras for an associated
J -ary V -monad TS .

In order to impose equations on S-algebras in an intuitive and practically convenient way,
we systematically employ Lawvere’s notion of algebraic structure [27] and its enriched ana-
logue developed by Dubuc [14]. Given a free-form J -signature S, we define a diagrammatic
S-equation ω

.
= ν to be a family of parallel pairs of the form

ωA, νA : C (J,A) ⇒ C (C,A),

V -natural in A ∈ S-Alg, where J ∈ obJ and C ∈ obC . Such diagrammatic equations
correspond bijectively to parallel pairs t, u : C ⇒ TSJ (i.e., pairs of Kleisli morphisms for
TS from an object of C to an object of J ), but the formulation in terms of diagrammatic
S-equations is by far the more convenient formalism for constructing specific examples in
the enriched context, because, as the nomenclature suggests, we simply construct whatever
diagrammatic laws we want an S-algebra A to satisfy—using whatever constructions are
available in the host V -category C—and we then observe that the resulting parallel pairs of
composite morphisms are V -natural in A ∈ S-Alg by construction.

We define a diagrammatic J -presentation P = (S,E) to consist of a free-form J -
signature S together with a small family of diagrammatic S-equations E, and we say that an
S-algebra is a P-algebra if it satisfies the diagrammatic equations in E. We show that the
V -category of P-algebras, P-Alg, is strictly J -ary monadic over C , so that P determines
an associated J -ary V -monad TP on C . We define a J -ary variety to be a V -category of
the form P-Alg, regarded as an object of the slice V -CAT/C , and we show that the category
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of J -ary varieties is dually equivalent to the category of J -ary V -monads on C , thus
generalizing several results in the literature. We establish several examples of diagrammatic
J -presentations and J -ary varieties, as well as certain constructions on diagrammatic J -
presentations including the sum and tensor product. We further illustrate the versatility of
diagrammatic J -presentations by showing that the algebras of J -relative V -monads [3]
and of J -pretheories [10] may be described as algebras for diagrammatic J -presentations;
thus we establish establish new and more general results on the monadicity of these cat-
egories of structures. We pursue further applications and ramifications of diagrammatic
J -presentations and J -ary varieties, including a generalization of the pretheories-monads
adjunction of Bourke and Garner [10] beyond the locally presentable setting, as well as a
generalization of Birkhoff’s Galois connection [6] between classes of algebras and sets of
equations to the present enriched setting of free-form J -signatures S and (parametrized)
diagrammatic S-equations.

We now contrast the above concepts with the more traditional formalism for presentations
of J -ary V -monads used in the authors’ paper [35], which provides a fundamental technical
basis for this work and generalizes methods developed by Kelly, Power, and Lack [23, 22].
With this more traditional formalism, one defines a J -signature Σ to be a family of objects
ΣJ of C , indexed by the objects J ∈ obJ , thinking of ΣJ as the object of internal operation
symbols of arity J . The theoretical importance of this approach lies in the result that the
category of J -ary V -monads on C is monadic over the category of these ‘traditional’
J -signatures [35], generalizing a result for finitary monads proved by Lack [25]. Thus
every J -ary V -monad has a canonical presentation as a coequalizer, leading to a more
traditional concept of presentation, namely a parallel pair of morphisms Γ ⇒ TΣ from
a given (traditional) J -signature Γ into the J -signature underlying the free J -ary V -
monad TΣ on Σ; see [35]. This notion of J -presentation is theoretically fundamental and
yet practically inconvenient for capturing many specific examples of categories of enriched
algebraic structures, because it forces the user of the formalism to (1) explicitly construct
each object of internal operation symbols ΣJ (J ∈ obJ ), often as a coproduct, and (2)
similarly construct the objects ΓJ (J ∈ obJ ) and the morphisms ΓJ ⇒ TΣJ , a process
that is often tedious and just as often does not resemble the manner in which the given
enriched algebraic structures are defined in practice. Thus, we argue that diagrammatic
J -presentations provide an essential practical tool for enriched algebra, enabling familiar
definitional procedures to be directly employed in describing enriched algebraic structures,
and thus providing an indispensable ‘user-friendly interface’ to the fundamental theory of
presentations via monadicity of J -ary monads.

The diagrammatic J -presentations that we introduce here should also be compared
and contrasted with the term equational systems of Fiore and Hur [18] and the monadic
equational systems of Fiore [16]. Indeed, these works involve arbitrary sets of parallel pairs
of morphisms C ⇒ TB for a V -monad T on a V -category C , and the interpretation of
such morphisms as parametrized operations on T-algebras. But these works do not employ a
given subcategory of arities J →֒ C and, moreover, they are not founded on the monadicity
of any particular class of V -monads over any class of signatures, whereas the present paper
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begins with a subcategory of arities J →֒ C and is founded upon the monadicity of J -ary
V -monads over J -signatures.

We now outline the structure of the paper. In §2, we review elements of the authors’ paper
[35], which provides a theoretical underpinning for this work, and we discuss our assumptions
on the given closed category V , the V -category C , and the subcategory of arities J →֒ C ;
these relatively mild assumptions allow the theory in this paper to be applied to wide classes
of closed categories V and V -categories C that need not be locally presentable, including
the locally bounded closed categories of [21] and the locally bounded V -categories of [34]. In
§3, we delineate those aspects of parametrized operations and diagrammatic equations that
can be formulated for an arbitrary V -monad, without reference to the subcategory of arities.

In §4 we define systems of diagrammatic J -ary equations on J -ary monadic V -categories
A over C , and we show that the full sub-V -category of A described by such a system of
equations is J -ary monadic over C .

In §5, we define the fundamental concepts of free-form J -signature, diagrammatic J -
presentation, and J -ary variety, and we show not only that the V -category of algebras for
a diagrammatic J -presentation is J -ary monadic over C , but also that there is a dual
equivalence between J -ary varieties and J -ary V -monads on C .

In §6 we construct several examples of diagrammatic J -presentations and diagrammatic
systems of J -ary equations that present various V -categories of enriched mathematical
structures, including the following: internal R-modules and R-affine spaces for an internal
rig (or semiring) R in a complete and cocomplete cartesian closed category V (6.1, 8.15);
monoidal categories, regarded as Cat-enriched algebraic structures in Cat (6.2); internal
categories in a locally presentable closed category V (6.3), regarded as V -enriched algebraic
structures in the V -category of internal graphs in V ; the global state algebras of Plotkin
and Power [39] (6.5); and some of the parametrized algebraic theories of Staton [42] (6.6).
The latter two examples illustrate the applicability of diagrammatic J -presentations for
algebraic computational effects.

In §7 we further illustrate the versatility of diagrammatic J -presentations by con-
structing the sum and tensor product (when C = V ) of a given pair of diagrammatic
J -presentations; the tensor product generalizes Freyd’s tensor product of finitary algebraic
presentations [19], and it can be expressed very conveniently in this formalism, since we sim-
ply write out the diagrammatic laws that express that the operations for the first presentation
must commute with those for the second.

In §8, we show that every J -relative V -monad H (cf. [3]) gives rise to a diagrammatic
J -presentation whose algebras are precisely those ofH . We thus establish general results on
the monadicity of such algebras, deducing as a corollary that for any small full subcategory
K of a locally presentable V -category C over a locally presentable closed category V , the
V -category of algebras for any K -relative V -monad is monadic by way of an accessible
V -monad.

In §9, as one of the further main contributions of the paper, we use diagrammatic J -
presentations as a method of proof in order to generalize the pretheories-monads adjunction
of Bourke and Garner [10] beyond the locally presentable setting. We achieve this by showing
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that the algebras for a pretheory are precisely the algebras for an associated diagrammatic
J -presentation and so are the objects of a strictly J -ary monadic V -category over C .

In §10, we generalize Birkhoff’s well-known Galois connection between classes of al-
gebras and sets of equations [6] to the present setting of free-form J -signatures S and
(parametrized) diagrammatic S-equations, thus enabling the consideration of the J -ary
variety over S generated by a class of S-algebras, and we prove characterization theorems
for J -ary varieties with reference to the resulting Galois connection.

2 Background and given data

We assume that the reader has familiarity with enriched category theory, which is exposited
(for example) in [21, 14] and [8, Chapter 6]. We use the term “set” throughout to refer
to a not-necessarily-small set (which we sometimes emphasize by prepending the phrase
“possibly large” in parentheses); when we wish to specify that a set is small, we always use
the terminology “small set”. We have the category Set of small sets and the category SET of
sets. We now recall the needed background, definitions, and results from our previous work
[35], and in 2.4 we recall several examples.

2.1. Throughout, we let V be a locally small, symmetric monoidal closed category that is
complete and cocomplete. We also assume that V is a closed factegory (see [35, 6.1.2]),
meaning that V is equipped with a V -enriched factorization system (E ,M ) (see [30]) that
need not be proper.

Throughout, we let C be a V -factegory [35, 6.1.5], i.e., a V -category C equipped with an
enriched factorization system (EC ,MC ) such that each C (C,−) : C → V (C ∈ obC ) sends
MC -morphisms to M -morphisms. We assume that the V -category C is cocomplete and
cotensored and has arbitrary conical cointersections (i.e. wide pushouts) of EC -morphisms.
Also, in order to invoke certain theorems in [35], we suppose either that (EC ,MC ) is proper
or that C is EC -cowellpowered.

2.2. We assume that the V -category C is equipped with a small subcategory of arities
j : J →֒ C , i.e. a small, full, and dense sub-V -category. We suppose that j : J →֒ C is
eleutheric, which means that every V -functor H : J → C has a left Kan extension along
j that is preserved by each C (J,−) : C → V (J ∈ obJ ), or equivalently that j : J →֒ C
presents C as a free Φ-cocompletion of J for a class of small weights Φ (see [35, 3.8]). In
particular, j then presents C as a free ΦJ -cocompletion of J for the class ΦJ consisting of
the weights C (j−, C) : J op → V with C ∈ obC [35, 3.6].

We also assume that j : J →֒ C is bounded, meaning that (J is small and) there is a
regular cardinal α for which each C (J,−) : C → V (J ∈ obJ ) preserves the E -tightness of
small α-filtered M -cocones (see [35, 6.1.6, 6.1.10]). In the special case where both (EC ,MC )
and (E ,M ) are the trivial factorization system (Iso,All), this reduces to the requirement
that each C (J,−) : C → V (J ∈ obJ ) preserve small conical α-filtered colimits. See 2.4
for examples of bounded and eleutheric subcategories of arities.
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2.3. A V -endofunctor H : C → C is J -ary (or j-ary) if it preserves left Kan extensions
along j : J →֒ C , equivalently, if H is ΦJ -cocontinuous for the class of weights ΦJ of 2.2.
Moreover, if Φ is any class of small weights such that j presents C as a free Φ-cocompletion
of J (e.g. ΦJ ), then a V -functor H : C → C is J -ary iff H is Φ-cocontinuous [35,
4.2]. We let EndJ (C ) be the (ordinary) category of J -ary V -endofunctors on C , which
is a (non-symmetric) strict monoidal category under composition. A J -ary V -monad
is a V -monad T on C whose underlying V -endofunctor T is J -ary. We write MndJ (C )
to denote the category of J -ary V -monads, i.e., the category of monoids in the monoidal
category EndJ (C ). Since j : J →֒ C is eleutheric, we have an equivalence of categories
V -CAT(J ,C ) ≃ EndJ (C ) given by precomposition with j and left Kan extension along j
(see [35, 4.5]).

A V -category over C is an object of the (strict) slice category V -CAT/C , i.e., a V -
category A equipped with a V -functor G : A → C . We denote such an object of V -CAT/C
either by (A , G) or simply by A . Given a V -monad T on C , we write T-Alg to denote
the V -category of T-algebras, and we regard T-Alg as a V -category over C by way of the
forgetful V -functor UT : T-Alg→ C .

We say that a V -functor G : A → C is strictly J -monadic (or strictly J -ary
monadic), or that A is a strictly J -monadic V -category over C , if A ∼= T-Alg in
V -CAT/C for some J -ary V -monad T. It then follows that G has a left adjoint F such
that the V -monad induced by the V -adjunction F ⊣ G is precisely T. Writing J -Monadic!

for the full subcategory of V -CAT/C consisting of the strictly J -monadic V -categories over
C , we have an equivalence J -Monadic! ≃ MndJ (C )op by [35, §9.3]

Example 2.4. The following examples satisfy the blanket assumptions of 2.1 and 2.2; see
[35, 4.7, 12.3]:

1. the subcategory of arities Cα →֒ C given by a skeleton of the full sub-V -category of
enriched α-presentable objects in a locally α-presentable V -category C over a locally
α-presentable closed category V [20]; in this class of examples, Cα-ary V -monads are
precisely α-ary or α-accessible V -monads, i.e. V -monads that preserve conical α-filtered
colimits, which correspond to the α-ary variant of the enriched Lawvere theories of [38];

2. the subcategory of arities SF(V ) →֒ V consisting of the finite copowers of the unit object
in a symmetric monoidal closed π-category [9] (e.g. a complete and cocomplete carte-
sian closed category); in this class of examples, SF(V )-ary V -monads correspond to the
enriched algebraic theories of Borceux and Day [9], and, in the case where V is carte-
sian closed, SF(V )-ary V -monads are precisely the strongly finitary V -monads of Lack
and Kelly [22], since in this case SF(V ) is the free V -category on the category of finite
cardinals (with all maps between them);

3. the subcategory of arities {I} →֒ V consisting of the unit object in a complete and
cocomplete symmetric monoidal closed category V ; in this class of examples, {I}-ary
V -monads correspond to monoids in (V ,⊗, I);
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4. the subcategory of arities yX : X op →֒ [X ,V ] consisting of the representables, for a
small V -category X and a complete and cocomplete closed category V ; in the special
case where X is the discrete V -category on a set X , yX -ary V -monads on [X ,V ] = V X

correspond to V -categories with object set X ;

5. the subcategory of arities yΦ : T op →֒ Φ-Mod(T ) consisting of the representables in
the V -category of models of a Φ-theory T , where Φ is a locally small class of small
weights satisfying Axiom A of [26] and V is a locally bounded and E -cowellpowered
closed category; in this class of examples, yΦ-ary V -monads are precisely the Φ-accessible
V -monads on Φ-Mod(T ) in the sense defined by Lack and Rosický in [26];

6. any small and eleutheric subcategory of arities in a locally bounded V -category C over a
locally bounded closed category V [34].

In examples 1 through 4, both V and C carry the (Iso,All) factorization system, while in
examples 5 and 6 both V and C carry associated proper factorization systems as discussed
in [34].

2.5. In the case where C = V , the subcategory of arities J →֒ V is said to be a system
of arities if J is closed under the monoidal product ⊗ and contains the unit object I of V
[31, 3.8]. For an eleutheric system of arities J →֒ V , it was shown in [31, 11.8] that there
is an equivalence MndJ (V ) ≃ ThJ between J -ary V -monads on V and J -theories (see
[31, 4.1]) that respects semantics, in the sense that if the J -ary V -monad T and the J -
theory T correspond under this equivalence, then the V -category T -Alg of T -algebras [31,
5.1] is equivalent to T-Alg, while the V -category T -Alg! of normal T -algebras [31, 5.10] is
isomorphic to T-Alg in V -CAT/V (see [31, 11.14]). The subcategories of arities SF(V ) →֒ V
and {I} →֒ V of 2.4 are systems of arities [31, 3.6, 3.7], as is the subcategory of arities
Vα →֒ V in a locally α-presentable closed category V [31, 3.4].

2.6. A J -signature (in C ) is a V -functor Σ : obJ → C , where we write obJ to denote
the discrete V -category on obJ ; hence Σ is just an obJ -indexed family of objects of C .
We then have the ordinary category SigJ (C ) = V -CAT(obJ ,C ) of J -signatures [35, 7.1].

If Σ is a J -signature, then a Σ-algebra is an object A of C equipped with structural
morphisms αJ : C (J,A) ⊗ ΣJ → A (J ∈ obJ ), or equivalently αJ : C (J,A) → C (ΣJ,A),
or equivalently αJ : ΣJ → [C (J,A), A], where we denote the tensor and cotensor of each
object C of C by each object X of V by X ⊗ C and [X,C], respectively. We write such a
Σ-algebra either as (A, α) or simply as A. Given Σ-algebras A = (A, α) and B = (B, β),
a Σ-homomorphism f : A → B is a morphism in C that makes the following diagram
commute for each J ∈ obJ :

C (J,A)⊗ ΣJ C (J,B)⊗ ΣJ

A B

αJ

C (J,f)⊗ΣJ

βJ

f
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We then have a V -category Σ-Alg of Σ-algebras with a faithful V -functor UΣ : Σ-Alg → C
(see [35, 7.4]).

The forgetful functor U : MndJ (C ) → SigJ (C ) given by T 7→ (TJ)J∈obJ has a left
adjoint by [35, 7.9], and the free J -ary V -monad TΣ on a J -signature Σ moreover satisfies
TΣ-Alg ∼= Σ-Alg in V -CAT/C by [35, 7.9]. The forgetful functor U : MndJ (C )→ SigJ (C ) is
also monadic by [35, 8.2].

2.7. If M : K → MndJ (C ) is a small diagram of J -ary V -monads on C , then M has
a colimit TM that is algebraic (see [35, 9.3.8]), meaning that it is sent to a limit by the
semantics functor Alg : MndJ (C )op → V -CAT/C (given on objects by T 7→ T-Alg). In
particular, MndJ (C ) has algebraic coequalizers, meaning that each parallel pair T ⇒ T

′

of J -ary V -monads has a coequalizer in MndJ (C ) that is sent to an equalizer by the
semantics functor Alg.

2.8. Given a J -ary V -monad T on C , we write simply T to denote the J -signature
underlying T (2.6). A system of J -ary equations over T (see [35, 10.1.2]) is a parallel
pair E = (t, u : Γ ⇒ T) of J -signature morphisms, where Γ is a J -signature. A system
of J -ary equations is then a pair (T, E) consisting of a J -ary V -monad T and a system
of J -ary equations E over T. A J -presentation is a pair P = (Σ, E) consisting of a
J -signature Σ and a system of J -ary equations E = (t, u : Γ ⇒ TΣ) over the free J -
ary V -monad TΣ on Σ. As we also consider other notions of signature and presentation
relative to J in this paper, we refer to J -signatures, J -presentations, and systems of
J -ary equations also as traditional J -signatures, traditional J -presentations, and
traditional systems of J -ary equations for clarity.

If (T, E) is a system of J -ary equations, where E = (t, u : Γ ⇒ T), then we write T/E
to denote the algebraic coequalizer of the parallel pair t♯, u♯ : TΓ ⇒ T in MndJ (C ) induced
by t, u via the adjunction between MndJ (C ) and SigJ (C ), and we call the J -ary V -monad
T/E the quotient of T by E [35, 10.1.6]. In particular, if P = (Σ, E) is a J -presentation,
then (TΣ, E) is a system of J -ary equations, and we call TP := TΣ/E the J -ary V -
monad presented by P . We then say that a given J -ary V -monad is presented by P
if it is isomorphic to TP . Every J -ary V -monad T has a canonical J -presentation PT (see
[35, 10.1.9]), so that T-Alg ∼= PT-Alg in V -CAT/C .

2.9. Let T = (T, η, µ) be a J -ary V -monad on C . Given any object C of C , there is a
J -ary V -monad 〈C,C〉 on C with 〈C,C〉J = [C (J, C), C] for each J ∈ obJ (see [35,
10.2.9]). Given a T-algebra (A, a), which we also write simply as A, there is a canonical
V -monad morphism i

A : T→ 〈A,A〉, which we call the J -ary interpretation morphism
for A [35, 10.2.10]. For each J ∈ obJ the component iAJ : TJ → 〈A,A〉J = [C (J,A), A] is

the transpose of the composite C (J,A)
TJA−−→ C (TJ, TA)

C (TJ,a)
−−−−→ C (TJ,A) [35, 10.2.1].

Given a (traditional) system of J -ary equations (T, E), where E = (t, u : Γ ⇒ T), a
(T, E)-algebra is, by definition, a T-algebra A such that iAJ ◦tJ = i

A
J ◦uJ : ΓJ → [C (J,A), A]

for each J ∈ obJ (equivalently, such that iA◦t♯ = i
A◦u♯ : TΓ → 〈A,A〉 with the notation of

2.8). We let (T, E)-Alg be the full sub-V -category of T-Alg consisting of the (T, E)-algebras,
and we regard (T, E)-Alg as a V -category over C by means of the V -functor (T, E)-Alg → C
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obtained as a restriction of UT. Writing T/E for the quotient of T by E (2.8), we have an
isomorphism (T/E)-Alg ∼= (T, E)-Alg in V -CAT/C by [35, 10.2.13], under which each (T/E)-
algebra (A, a) corresponds to the (T, E)-algebra (A, a◦qEA) where q

E : T→ T/E is the regular
epimorphism that presents T/E as a quotient.

Given a J -presentation P = (Σ, E), where E = (t, u : Γ ⇒ TΣ), a P -algebra is a
Σ-algebra A such that iAJ ◦ tJ = i

A
J ◦uJ for all J ∈ obJ , where we write iA : TΣ → 〈A,A〉 for

the interpretation morphism obtained by regarding A equivalently as a TΣ-algebra via the
isomorphism Σ-Alg ∼= TΣ-Alg in V -CAT/C (2.6). Hence, a P -algebra is precisely a Σ-algebra
whose corresponding TΣ-algebra is a (TΣ, E)-algebra for the system of J -ary equations
(TΣ, E). We write P -Alg for the full sub-V -category of Σ-Alg consisting of P -algebras, and
we regard P -Alg as a V -category over C by means of the V -functor P -Alg→ C obtained as
a restriction of UΣ. Hence P -Alg ∼= (TΣ, E)-Alg ∼= TP -Alg in V -CAT/C [35, 10.2.14] where
TP = TΣ/E is the J -ary V -monad presented by P (2.8).

3 Parametrized operations and interpretation relative to a V -adjunction

Everything in the present section applies when C is an arbitrary tensored and cotensored
V -category, so that the full force of the assumptions in §2 is not required.

Definition 3.1. Given objects A, J, C ∈ obC , a parametrized operation on A with arity
J and parameter object (or parameter) C is a morphism ω : C (J,A) → C (C,A) in V .
Such a parametrized operation is equivalently given by a morphism ω : C (J,A) ⊗ C → A
in C , or by a morphism ω : C → [C (J,A), A] in C . When C = V , we may also write
ω : C ⊗ V (J,A)→ A.

Later we shall restrict attention to the case where the arity J is an object of the specified
subcategory of arities J →֒ C , while crucially we shall not require the parameter C to
be an object of J . It is for this reason that we deliberately choose to call the object C a
parameter rather than an (output) arity. The following generalizes 3.1 (which is recovered
in the case where A is the unit V -category):

Definition 3.2. Let G : A → C be a V -functor, so that we may regard A as a V -category
over C (2.3). Given objects J, C ∈ obC , a parametrized operation on G (or on A ) with
arity J and parameter C is a V -natural transformation ω : C (J,G−) → C (C,G−). A
diagrammatic equation on G (or on A ), written as ω

.
= ν, is a parallel pair of V -natural

transformations ω, ν : C (J,G−) ⇒ C (C,G−) for a specified pair of objects J, C of C ; an
object A ∈ obA satisfies the equation ω

.
= ν if ωA = νA.

As a variation on [14, II.3], if G : A → C is a V -functor then we write Str0(G) to denote the
(ordinary) category whose objects are those of C and whose morphisms ω : X → Y are the
parametrized operations ω : C (X,G−) → C (Y,G−) with arity X and parameter Y . The
following is a consequence of [14, Proposition II.1.5 and p. 81]:

Proposition 3.3. Let F ⊣ G : A → C be a V -adjunction with unit η and counit ε, and let
T be the induced V -monad on C . Then the category Str0(G) underlies a V -category Str(G)

10



(called the V -structure of G) that is isomorphic to the opposite of the Kleisli V -category CT

for T. Under the latter isomorphism Str(G) ∼= C op
T
, if t : C → J is a morphism in CT, given

by a morphism t : C → TJ in C with C, J ∈ obC , then the corresponding morphism in
Str(G) is the V -natural transformation C (J,G−) → C (C,G−) consisting of the composite
morphisms

C (J,GA)
TJ,GA

−−−→ C (TJ, TGA)
C (t,aA)
−−−−→ C (C,GA) (3.3.i)

associated to objects A of A , where we write aA : TGA → GA for the T-algebra structure
on GA defined as aA = GεA. In the opposite direction, if ω : C (J,G−) → C (C,G−) is a
parametrized operation on G, then the corresponding morphism C → J in CT is the morphism
C → TJ in C0 obtained as the composite I

ηJ−→ C (J, TJ)
ωFJ−−→ C (C, TJ) in V .

Definition 3.4. Given any V -monad T on C , a parametrized T-term (with arity J
and parameter C) is a morphism t : C → TJ for a pair of objects J, C ∈ obC . A
parametrized T-equation, denoted by t

.
= u : C ⇒ TJ , is a parallel pair t, u : C ⇒ TJ of

parametrized T-terms for a specified pair of objects J, C ∈ obC .1

Definition 3.5. Let G : A → C be a right adjoint V -functor, and let T be the induced
V -monad on C . Given a parametrized T-term t : C → TJ and an object A of A , we denote
the composite morphism in (3.3.i) by

JtKA : C (J,GA) −→ C (C,GA) (3.5.i)

and we call JtKA the interpretation of t in A. Hence JtKA is a parametrized operation on
GA with arity J and parameter C. In view of 3.3, the resulting family of morphisms (3.5.i)
is V -natural in A ∈ A and so is a parametrized operation on G that we write as

JtK : C (J,G−) −→ C (C,G−)

and call simply the interpretation of t (in A ). Note that JtK is the morphism in Str(G)
that corresponds to t under the isomorphism Str(G) ∼= C op

T
of 3.3. Given a parametrized

T-equation t
.
= u : C ⇒ TJ , we say that an object A of A satisfies t

.
= u, and we write

A |= t
.
= u, if JtKA = JuKA : C (J,GA) → C (C,GA). In other words, A satisfies t

.
= u iff

A satisfies the diagrammatic equation JtK
.
= JuK : C (J,G−) ⇒ C (C,G−) consisting of the

interpretations of t and u in A .

Example 3.6. Given a V -monad T on C , we may apply 3.3 and 3.5 to the right adjoint
V -functor UT : T-Alg → C . In particular, given a T-algebra A = (A, a), we may consider
the interpretation JtKA = C (t, a) ◦ TJA : C (J,A) → C (C,A) of a parametrized T-term
t : C → TJ in A, and we may ask whether A satisfies a given parametrized T-equation
t
.
= u, i.e. whether JtKA = JuKA.

Proposition 3.7. Let t
.
= u : C ⇒ TJ be a parametrized T-equation, where T = (T, η, µ) is

a V -monad on C . The following are equivalent: (1) every T-algebra A satisfies t
.
= u; (2)

the free T-algebra (TJ, µJ) satisfies t
.
= u; (3) t = u.

1Fiore and Hur [18] use the terms generalised term and generalised equation to refer to these concepts.
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Proof. (1) holds iff JtK = JuK, and the result now readily follows from 3.3.

3.8. Let λ : T→ S be a morphism of V -monads on C , and let A = (A, a) be an S-algebra.
Then (A, a ◦ λA) is a T-algebra, which we also denote simply by A, by abuse of notation.
In particular, if t : C → TJ is a parametrized T-term then we write JtKA to denote the
interpretation of t in the T-algebra (A, a ◦ λA), and if t

.
= u is a parametrized T-equation

then we say that that A satisfies t
.
= u if (A, a ◦ λA) satisfies t

.
= u.

Proposition 3.9. Let λ : T → S be a morphism of V -monads on C , and let A be an S-
algebra. With the notation of 3.8, JtKA = JλJ ◦tKA for each parametrized T-term t : C → TJ .
Hence, with the terminology of 3.8, A satisfies a parametrized T-equation t

.
= u : C ⇒ TJ if

and only if A satisfies the parametrized S-equation λJ ◦ t
.
= λJ ◦ u : C ⇒ SJ .

Proof. For the first claim, we may use 3.6 and the V -naturality of λ to compute that JtKA =
C (t, a◦λA)◦TJA = C (t, a)◦C (TJ, λA)◦TJA = C (t, a)◦C (λJ , SA)◦SJA = C (λJ ◦t, a)◦SJA =
JλJ ◦ tKA. The second claim follows from the first.

Corollary 3.10. Let λ : T → S be a morphism of V -monads on C , and let t
.
= u : C ⇒

TJ be a parametrized T-equation. Then the following are equivalent, where we employ the
terminology of 3.8: (1) every S-algebra A satisfies t

.
= u; (2) the free S-algebra on J satisfies

t
.
= u; (3) λJ ◦ t = λJ ◦ u.

Proof. This follows immediately from 3.9 and 3.7.

4 Systems of diagrammatic equations on J -monadic V -categories over C

4.1. A parametrized J -ary operation is a parametrized operation whose arity J is an
object of the given subcategory of arities J . Moreover, we add the word J -ary to the
various terms in 3.1, 3.2, 3.4 to signify that the arity J is an object of J , thus arriving
at the notions of diagrammatic J -ary equation, parametrized J -ary T-term, and
parametrized J -ary T-equation.

Definition 4.2. Let G : A → C be a strictly J -monadic V -functor, so that A may be
regarded as a strictly J -monadic V -category over C . A system of diagrammatic J -ary
equations on G (or on A ) is a small family E = (ωδ

.
= νδ)δ∈D of diagrammatic J -ary

equations ωδ, νδ : C (Jδ, G−) ⇒ C (Cδ, G−) on G, indexed by a small set D. An E-model
(or a model of E) is then an object A of A that satisfies every equation ωδ

.
= νδ (δ ∈ D).

We write AE for the full sub-V -category of A consisting of the E-models, and we regard AE

as a V -category over C by restricting G to AE.

We shall show in 4.9 that AE is strictly J -monadic over C in the situation of 4.2. But in
order to do this, we first consider the monad-based counterpart of the concept in 4.2:

Definition 4.3. Given a J -ary V -monad T, a system of parametrized J -ary equa-
tions over T is a small family E = (tδ

.
= uδ)δ∈D of parametrized J -ary T-equations
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tδ
.
= uδ : Cδ ⇒ TJδ (indexed by a small set D). A system of parametrized J -ary

equations is a pair (T,E) consisting of a J -ary V -monad T and a system of parametrized
J -ary equations E over T. A (T,E)-algebra is a T-algebra A that satisfies every equa-
tion in E. We write (T,E)-Alg to denote the full sub-V -category of T-Alg consisting of the
(T,E)-algebras, and we regard (T,E)-Alg as a V -category over C by means of the V -functor
(T,E)-Alg→ C obtained as a restriction of UT.

4.4. Let G : A → C be a strictly J -monadic V -functor, so that A is a strictly J -monadic
V -category over C , and let T be the induced J -ary V -monad on C . In view of 3.3, systems
of diagrammatic J -ary equations E on A are in bijective correspondence with systems of
parametrized J -ary equations E over T, so that we may identify these concepts. With this
identification, AE

∼= (T,E)-Alg in V -CAT/C , because A ∼= T-Alg and it is immediate from
3.3 and 3.6 that an object A of A satisfies a given diagrammatic equation ω

.
= ν on A

iff the associated T-algebra (GA, aA) satisfies the corresponding parametrized T-equation,
with the notation of 3.3. Hence, in order to show that AE is strictly J -monadic over C , it
suffices to show that (T,E)-Alg is so, and for this we shall need the following material.

4.5. Given a J -ary V -monad T on C and an object J of J , the identity morphism 1TJ may
be regarded as a parametrized J -ary T-term with arity J and parameter TJ , so for each
T-algebra A = (A, a) we obtain a parametrized J -ary operation J1TJKA = C (TJ, a) ◦ TJA :
C (J,A) → C (TJ,A), which may be described also as the transpose of the interpretation
morphism i

A
J : TJ → [C (J,A), A] of 2.9. Given any parametrized J -ary T-term t : C → TJ ,

the interpretation JtKA = C (t, a) ◦ TJA : C (J,A) → C (C,A) is therefore the transpose of
the composite i

A
J ◦ t : C → [C (J,A), A]. Hence, given any parametrized J -ary T-equation

t
.
= u : C ⇒ TJ , A � t

.
= u iff i

A
J ◦ t = i

A
J ◦ u. It follows that if (fλ : Cλ → C)λ∈Λ is a jointly

epimorphic family of morphisms in C , then A � t
.
= u iff A � t◦fλ

.
= u◦fλ for all λ ∈ Λ.

4.6. Given a traditional system of J -ary equations E = (t, u : Γ ⇒ T) over a J -ary V -
monad T (2.8), we may regard E as a system of parametrized J -ary equations E = (tJ

.
= uJ :

ΓJ ⇒ TJ)J∈obJ over T, and it follows immediately from 4.5 that (T,E)-Alg = (T, E)-Alg as
V -categories over C . In the other direction, every system of parametrized J -ary equations
determines a traditional system of J -ary equations, as follows:

Proposition 4.7. Let E = (tδ
.
= uδ : Cδ ⇒ TJδ)δ ∈ D be a system of parametrized J -ary

equations over a J -ary V -monad T. Then there is a traditional system of J -ary equations
E =

(

t̃, ũ : Γ ⇒ T
)

over T such that (T,E)-Alg = (T, E)-Alg as V -categories over C .

Proof. Define a traditional J -signature Γ by declaring that ΓJ =
∐

δ∈D, Jδ=J Cδ for each

J ∈ obJ , and define t̃J , ũJ : ΓJ ⇒ TJ to be the unique morphisms such that t̃J ◦ ιδ = tδ
and ũJ ◦ ιδ = uδ for all δ ∈ D with Jδ = J , where ιδ : Cδ → ΓJ is the coproduct insertion.
The result now follows readily in view of 4.5, since the ιδ are jointly epimorphic.

Theorem 4.8. Let (T,E) be a system of parametrized J -ary equations. Then there is a
J -ary V -monad T/E such that (T/E)-Alg ∼= (T,E)-Alg in V -CAT/C .
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Proof. Taking E as in 4.7 and letting T/E := T/E with the notation of 2.9, this follows from
4.7 and 2.9.

Theorem 4.9. Let E be a system of diagrammatic J -ary equations on a strictly J -monadic
V -category A over C . Then AE is a strictly J -monadic V -category over C .

Proof. This follows from 4.8, by the discussion in 4.4.

Remark 4.10. In the situation of 4.9, if we write T for the J -ary V -monad induced by
A (i.e., by the associated V -adjunction F ⊣ G, 2.3), then the J -ary V -monad induced
by AE is T/E (in view of 2.3, 4.4, and the proof of 4.9), and there is an associated regular
epimorphism q : T→ T/E in MndJ (C ) (by 2.9 and the proof of 4.8).

5 Free-form and diagrammatic J -presentations

We now study objects equipped with parametrized operations whose arities and parameters
are specified by a signature of the following kind:

Definition 5.1. A free-form J -signature is a small set S equipped with an assignment
to each σ ∈ S a pair of objects Jσ, Cσ with Jσ ∈ obJ and Cσ ∈ obC . We call each element
σ ∈ S an operation symbol with arity Jσ and parameter Cσ. We denote such a free-form
J -signature simply by S, and we then call S a free-form J -signature with arities Jσ

and parameters Cσ (σ ∈ S).

Definition 5.2. Given a free-form J -signature S, with arities Jσ and parameters Cσ

(σ ∈ S), an S-algebra is an object A of C equipped with parametrized operations σA :
C (Jσ, A) → C (Cσ, A) for all the operation symbols σ ∈ S. An S-algebra is equivalently
an object A of C with a family of morphisms σA : C (Jσ, A) ⊗ Cσ → A in C (σ ∈ S),
or equivalently, a family of morphisms σA : Cσ → [C (Jσ, A), A] in C . In the special case
where C = V , we may also write σA : Cσ ⊗ V (Jσ, A) → A. Given S-algebras A and B,
an S-homomorphism f : A → B is a morphism in C that makes the following diagram
commute for each σ ∈ S:

C (Jσ, A) C (Cσ, A)

C (Jσ, B) C (Cσ, B).

σA

C (Jσ ,f)

σB

C (Cσ ,f)

We thus have an ordinary category S-Alg0 of S-algebras and S-homomorphisms, which
underlies a V -category S-Alg in which each hom-object S-Alg(A,B) is defined as the pairwise
equalizer [33, 2.1] of the following S-indexed family of parallel pairs in V (σ ∈ S):

C (A,B)
C (Jσ ,−)AB
−−−−−−→ V (C (Jσ, A),C (Jσ, B))

V (1,σB)
−−−−→ V (C (Jσ, A),C (Cσ, B)),
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C (A,B)
C (Cσ ,−)AB
−−−−−−→ V (C (Cσ, A),C (Cσ, B))

V (σA,1)
−−−−→ V (C (Jσ, A),C (Cσ, B)) .

Composition in S-Alg is defined in the unique way that enables the resulting subobjects
US
AB : S-Alg(A,B) →֒ C (A,B) (A,B ∈ S-Alg) to serve as the structural morphisms of

a faithful V -functor US : S-Alg → C that sends each S-algebra A to its carrier object
A ∈ obC .

Definition 5.3. Let S be a free-form J -signature. Given a V -category X , an X -para-
metrized S-algebra is a V -functor A : X → C equipped with parametrized operations
σA : C (Jσ, A−)→ C (Cσ, A−) (3.2) for all σ ∈ S. Writing S-Alg[X ] to denote the (large) set
of all X -parametrized S-algebras, we obtain an evident functor S-Alg[−] : V -CATop → SET

given on objects by X 7→ S-Alg[X ].

5.4. Let S be a free-form J -signature. It readily follows from the definition of US :
S-Alg → C (5.2) that for each operation symbol σ ∈ S, the parametrized operations
σA : C (Jσ, A) → C (Cσ, A) for S-algebras A constitute a parametrized operation σUS

:
C

(

Jσ, U
S−

)

→ C
(

Cσ, U
S−

)

on the V -functor US . Thus, the V -functor US : S-Alg → C
carries the structure of an S-Alg-parametrized S-algebra. It is now straightforward to verify
the following result, which characterizes S-Alg uniquely up to isomorphism:

Proposition 5.5. Let S be a free-form J -signature. Then S-Alg is a representing object
for the functor S-Alg[−] : V -CATop → SET, and the counit of this representation (in the
sense of [21, §1.10]) is US : S-Alg → C . Thus, there is a bijective correspondence, natural
in X ∈ V -CAT, between V -functors X → S-Alg and X -parametrized S-algebras.

5.6. Every traditional J -signature Σ (2.8) determines a (rather special) free-form J -
signature SΣ that is defined by declaring that the set of operation symbols underlying SΣ
is obJ and that each operation symbol J ∈ obJ has arity J and parameter ΣJ . With
this notation, it is straightforward to verify that Σ-Alg ∼= SΣ-Alg in V -CAT/C . In fact,
if we formulate Σ-algebras equivalently in terms of structure morphisms of the form αJ :
C (J,A)→ C (ΣJ,A) as mentioned in 2.9, then in fact Σ-Alg = SΣ-Alg as V -categories over
C .

5.7. In the opposite direction from 5.6, given a free-form J -signature S with arities Jσ and
parameters Cσ (σ ∈ S), we can construct a traditional J -signature ΣS : obJ → C as
follows: for each J ∈ obJ , we set ΣSJ :=

∐

σ∈S,Jσ=J Cσ. It then follows straightforwardly
that ΣS-algebras (in the sense of 2.6) are in bijective correspondence with S-algebras, and
that we have an isomorphism of V -categories S-Alg ∼= ΣS-Alg in V -CAT/C . To prove the
latter claim, note that ΣS-Alg = SΣS

-Alg by 5.6, so that by 5.5 it suffices to show that we have
a bijective correspondence, natural in X ∈ V -CAT, between X -parametrized S-algebras
and X -parametrized SΣS

-algebras, and this readily follows from the definitions. (Note that
X -parametrized SΣS

-algebras can reasonably be called X -parametrized ΣS-algebras.)

Theorem 5.8. Given a free-form J -signature S, the V -category of S-algebras S-Alg is
strictly J -monadic over C , i.e., there is a J -ary V -monad TS on C such that S-Alg ∼=
TS-Alg in V -CAT/C .
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Proof. Letting TS := TΣS
be the free J -ary V -monad on the traditional J -signature ΣS

(2.6, 5.7), we find that S-Alg ∼= ΣS-Alg ∼= TS-Alg in V -CAT/C by 5.7 and 2.6.

Definition 5.9. We call the V -monad TS = TΣS
in 5.8 the J -ary V -monad generated

by S.

Definition 5.10. Let S be a free-form J -signature. A V -natural S-operation is a
parametrized J -ary operation on the V -functor US : S-Alg → C . Hence, a V -natural S-
operation ω with arity J ∈ obJ and parameter C ∈ obC is precisely a family of morphisms

ωA : C (J,A) −→ C (C,A) in V (A ∈ S-Alg)

that is V -natural in A ∈ S-Alg, where we write simply A to denote USA. A diagrammatic
S-equation, denoted by ω

.
= ν, is a diagrammatic J -ary equation on US , i.e. a parallel

pair of V -natural S-operations

ωA, νA : C (J,A) ⇒ C (C,A) (A ∈ S-Alg)

with a specified arity J ∈ obJ and a specified parameter C ∈ obC . In view of 3.1, a
diagrammatic S-equation may be written equivalently in the form

ωA, νA : C (J,A)⊗ C ⇒ A (A ∈ S-Alg).

With the terminology of 3.2, an S-algebra A satisfies the diagrammatic S-equation ω
.
= ν

if ωA = νA. A system of diagrammatic S-equations is a system of diagrammatic J -
ary equations on US , i.e., a small family E = (ωδ

.
= νδ)δ ∈ D of diagrammatic S-equations

ωδ
.
= νδ : C (Jδ, U

S−) ⇒ C (Cδ, U
S−), indexed by a small set D. The index set D then carries

the structure of a free-form J -signature with arities Jδ and parameters Cδ (δ ∈ D).

5.11. By 5.4, if S is a free-form J -signature, then each operation symbol σ ∈ S determines
a V -natural S-operation σA : C (Jσ, A)→ C (Cσ, A) (A ∈ S-Alg). We shall use this fact very
often in the examples of §6.

Definition 5.12. A diagrammatic J -presentation is a pair P = (S,E) consisting of a
free-form J -signature S and a system of diagrammatic S-equations E. A P-algebra is an
S-algebra A that satisfies every equation in E.

Definition 5.13. Let S be a free-form J -signature. A parametrized S-term is a
parametrized J -ary TS-term t : C → TSJ , where TS is the J -ary V -monad generated
by S. A parametrized S-equation is a parametrized J -ary TS -equation t

.
= u, i.e. a

parallel pair t, u : C ⇒ TSJ with J ∈ obJ and C ∈ obC .

5.14. Applying 3.5 to the V -functor US : S-Alg → C , we may consider the interpretation
JtKA : C (J,A)→ C (C,A) of a parametrized S-term t : C → TSJ in an S-algebra A, and we
may ask whether A satisfies a parametrized S-equation t

.
= u : C ⇒ TSJ , in which case we

write A |= t
.
= u.
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Definition 5.15. A free-form J -presentation is a pair P = (S,E) consisting of a free-
form J -signature S and a system of parametrized J -ary equations E over the J -ary V -
monad TS generated by S (i.e., a small family of parametrized S-equations). A P-algebra
is an S-algebra A that satisfies every equation in E.

Remark 5.16. By 4.4, there is a bijection between diagrammatic J -presentations and
free-form J -presentations, so that we may identify these concepts.

Definition 5.17. Given a free-form or diagrammatic J -presentation P = (S,E), we write
P-Alg to denote the full sub-V -category of S-Alg consisting of the P-algebras, and we regard
P-Alg as a V -category over C by means of the V -functor UP : P-Alg → C obtained as a
restriction of US .

Remark 5.18. The notions of free-form J -signature S and diagrammatic J -presentation
P can be defined relative to an arbitrary full sub-V -category J →֒ C , without the assump-
tions in 2.1 and 2.2, as can the notion of P-algebra and the V -category of P-algebras, P-Alg.
We shall make use of this observation in §8.

Remark 5.19. Given a diagrammatic J -presentation P = (S,E), P-algebras are precisely
E-models for the system of diagrammatic J -ary equations E on S-Alg, and moreover P-Alg =
S-AlgE as V -categories over C , so Theorems 4.9 and 5.8 (together with 4.10) entail the
following:

Theorem 5.20. Let P = (S,E) be a free-form or diagrammatic J -presentation. Then
the V -category of P-algebras P-Alg is strictly J -monadic over C , i.e., there is a J -ary
V -monad TP such that TP -Alg ∼= P-Alg in V -CAT/C . Explicitly, TP = TS/E.

Definition 5.21. Given a free-form or diagrammatic J -presentation P, we call the V -
monad TP = TS/E in 5.20 the J -ary V -monad presented by P.

Definition 5.22. Let P = (S,E) be a diagrammatic J -presentation and X a V -category.
An X -parametrized P-algebra is an X -parametrized S-algebra A : X → C whose
corresponding V -functor A : X → S-Alg (5.5) factors through P-Alg →֒ S-Alg (equiva-
lently, has the property that the S-algebra AX is a P-algebra for each object X of X ). In
particular, by 5.5, the V -functor UP : P-Alg → C (5.17) carries the structure of a P-Alg-
parametrized P-algebra that has the following universal property, which characterizes P-Alg
uniquely up to isomorphism:

Proposition 5.23. Let P be a diagrammatic J -presentation. Then P-Alg is a representing
object for the functor P-Alg[−] : V -CATop → SET that sends each V -category X to the
(large) set P-Alg[X ] of all X -parametrized P-algebras. The counit of this representation
is UP : P-Alg → C . Thus, there is a bijective correspondence, natural in X ∈ V -CAT,
between V -functors X → P-Alg and X -parametrized P-algebras.

Proposition 5.24. Let A be a strictly J -monadic V -category over C . Then A ∼= P-Alg
in V -CAT/C for some diagrammatic (or, equivalently, free-form) J -presentation P.
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Proof. By 2.8, there is a traditional J -presentation P = (Σ, E) with A ∼= P -Alg in
V -CAT/C . Here, E is a traditional system of J -ary equations over the V -monad TΣ

associated to the strictly J -monadic V -category Σ-Alg over C (2.6, 2.8). By 4.6, E may
be regarded as a system of parametrized J -ary equations E over TΣ and so, equivalently,
as a system of diagrammatic J -ary equations on Σ-Alg (4.4). But Σ-Alg = SΣ-Alg as
V -categories over C , by 5.6, and the result follows by taking P = (SΣ,E).

Definition 5.25. A V -category over C is a J -ary variety if it is of the form P-Alg for some
diagrammatic (or free-form) J -presentation P. The (ordinary) category of J -ary varieties
VarJ (C ) is the full subcategory of V -CAT/C whose objects are the J -ary varieties.

Theorem 5.26. The category VarJ (C ) of J -ary varieties is dually equivalent to the cate-
gory of J -ary V -monads on C :

VarJ (C ) ≃ MndJ (C )op.

Proof. By 5.20 and 5.24, the repletion of VarJ (C ) in V -CAT/C is the full subcategory

J -Monadic! of V -CAT/C consisting of the strictly J -monadic V -categories over C (2.3).
Hence VarJ (C ) ≃J -Monadic!, but J -Monadic! ≃ MndJ (C )op by 2.3.

Remark 5.27. Theorem 5.26 generalizes certain results in the literature. If we take V =
C = Set and J = SF(Set) (i.e. the finite cardinals), then 5.26 specializes to the classical
result that ordinary varieties (in the sense of universal algebra) are dually equivalent to
finitary monads on Set. If we take V = C = Pos (the cartesian closed category of posets
and monotone maps) and J = SF(Pos), then 5.26 specializes to the result [1, Theorem
4.6] that (SF(Pos)-ary) varieties of ordered algebras are dually equivalent to strongly finitary
(i.e. SF(Pos)-ary) enriched monads on Pos. If we take V = Set and C = Pos, and we let
J = Posf be a skeleton of the full subcategory of finite (equivalently, finitely presentable)
posets, then 5.26 specializes to the result [2, Corollary 4.5] that finitary (i.e. Posf -ary)
varieties of ordered algebras are dually equivalent to finitary (unenriched) monads on Pos.
Finally, if we take V = C = Pos and J = Posf , then 5.26 specializes to the result [2,
Corollary 4.7] that finitary (i.e. Posf -ary) varieties of coherent ordered algebras are dually
equivalent to finitary enriched monads on Pos.2

6 Examples of diagrammatic J -presentations and J -ary varieties

In the present section, we develop several examples of diagrammatic J -presentations and
J -ary varieties. We very often (implicitly) use the fact (5.11) that every operation symbol
of a free-form J -signature S canonically induces a V -natural S-operation.

In our first two examples, we employ the system of arities SF(V ) →֒ V consisting of the
finite copowers of the terminal object in a complete and cocomplete cartesian closed category

2The varieties of [1, 2] are technically defined differently than ours, in that the former varieties are defined
using syntactic inequations; but, in view of 5.6 and 5.7, it follows from [1, p. 2] and [2, Remark 2.7, Example
3.19(9)] (cf. also the discussion in [40, §5]) that the two definitions are equivalent.

18



V (2.4, 2.5). For each finite cardinal n ∈ N, we write simply n to denote the nth copower
n · 1 of the terminal object 1 of V , so that for each object A of V , the internal hom V (n,A)
may be identified with the (conical) nth power An. Hence, a parametrized operation on A
with arity n and parameter C ∈ obV is a morphism ω : C ×An → A in V , and in the case
where C = 1 we recover the notion of n-ary operation ω : An → A on A in the usual sense.

Example 6.1. Let
(

R,+R, ·R, 0R, 1R
)

be an internal rig (or internal unital semiring) in a
complete and cocomplete cartesian closed category V (see e.g. [32, 2.7]). We now provide
a diagrammatic SF(V )-presentation whose algebras will be the (left) R-modules in V . Re-
call (see [32, 2.7]) that an R-module in V is an object M of V equipped with morphisms
+M : M × M → M , 0M : 1 → M and •M : R × M → M such that

(

M,+M , 0M
)

is a
commutative monoid in V , •M is an associative, unital action of the monoid

(

R, ·R, 1R
)

on M , and •M is a bimorphism of commutative monoids from
(

R,+R, 0R
)

,
(

M,+M , 0M
)

to
(

M,+M , 0M
)

. Explicitly, we require the satisfaction of the following equations, where we
use the convenient notation employed in [32, 2.6] for expressing equations involving algebraic
operations in categories with finite products; in particular, given objects X1, ..., Xn of V , we
write expressions of the form (x1, x2, ..., xn) : X1×X2× ...×Xn to mean that xi denotes the
ith projection morphism xi = πi : X1 ×X2 × ...×Xn → Xi for each i ∈ {1, ..., n}.

1. m1 +
M

(

m2 +
M m3

)

=
(

m1 +
M m2

)

+M m3 : M ×M ×M → M , where (m1, m2, m3) :
M ×M ×M ;

2. m+M n = n+M m : M ×M →M , where (m,n) : M ×M ;

3. m+M 0M = m : M → M and 0M +M m = m : M → M , where m : M ;

4. 1R •M m = m : M →M , where m : M ;

5. r •M
(

s •M m
)

=
(

r ·R s
)

•M m : R× R×M →M , where (r, s,m) : R× R×M ;

6. 0R •M m = 0M : M → M and r •M 0M = 0M : R→ M , where m : M and r : R;

7.
(

r +R s
)

•M m =
(

r •M m
)

+M
(

s •M m
)

: R×R×M →M , where (r, s,m) : R×R×M ;
and

8. r•M
(

m+M n
)

=
(

r •M m
)

+M
(

r •M n
)

: R×M×M →M , where (r,m, n) : R×M×M .

For example, equation (8) expresses the commutativity of the following diagram

R ×M2 R2 ×M2 (R×M)× (R×M) M2

R ×M M,

∆R×1 ∼ •M×•M

+M1×+M

•M

where ∆R is the diagonal and the isomorphism ∼ exchanges the middle two factors.
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Our free-form SF(V )-signature S for R-modules will thus have one operation symbol +
of arity 2 and parameter 1, one operation symbol 0 of arity 0 and parameter 1, and one
operation symbol • of arity 1 and parameter R. As in the example of equation (8) above,
each of the listed equations describes a diagrammatic S-equation C×Mn ⇒ M (M ∈ S-Alg),
for some arity n ∈ N and parameter C ∈ obV . We thus obtain a diagrammatic SF(V )-
presentation P = (S,E) such that P-algebras are precisely R-modules in V , and we may
therefore regard R-Mod := P-Alg as the V -category of (left) R-modules in V . By 5.20, this
diagrammatic SF(V )-presentation P presents a strongly finitary V -monad TP on V with
TP-Alg ∼= R-Mod in V -CAT/V .

Example 6.2. Letting V be the complete and cocomplete cartesian closed category Cat

of small categories, we now discuss a presentation of small monoidal categories in terms of
the concepts of §4 and §5, relative to the subcategory of arities SF(Cat) →֒ Cat. A small
monoidal category is precisely a pseudomonoid in the monoidal 2-category Cat (see [37, 2.4]),
i.e., a small category A equipped with the following data, where we write 2̃ to denote the
category with exactly two objects and an isomorphism between these objects:

• Functors m : A2 → A and i : 1→ A (where 1 denotes the terminal category);

• A natural isomorphism A3 A

α1

α0

α (the associator) between the functors α0 =

m ◦ (m× 1) and α1 = m ◦ (1×m);

• A natural isomorphism A A

λ1

λ0

λ (the left unitor) between functors λ0, λ1 : A ⇒

A, where λ0 is the composite A
∼
−→ 1× A

i×1
−−→ A× A

m
−→ A and λ1 = 1A : A→ A;

• A natural isomorphism A A

ρ1

ρ0

ρ (the right unitor) between functors ρ0, ρ1 : A ⇒

A, where ρ0 = 1A : A→ A and ρ1 is the composite A
∼
−→ A× 1

1×i
−−→ A× A

m
−→ A;

such that the following monoidal coherence laws hold:

• The pentagon identity requires that the composite natural isomorphism

m(m×1)(m×1×1)
α◦1
−−→ m(1×m)(m×1×1) = m(m×1)(1×1×m)

α◦1
−−→ m(1×m)(1×1×m)

between functors A4 ⇒ A be equal to the composite natural isomorphism

m(m×1)(m×1×1)
1◦(α×1)
−−−−→ m(m×1)(1×m×1)

α◦1
−−→ m(1×m)(1×m×1)

1◦(1×α)
−−−−→ m(1×m)(1×1×m).

• The following automorphism of m : A2 → A is required to be equal to the identity on m:

m = m ◦ 1
1◦(ρ×1)
−−−−→ m(m× 1)(1× i× 1)

α◦1
−−→ m(1×m)(1× i× 1)

1◦(1×λ)
−−−−→ m ◦ 1 = m .
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The associator α clearly corresponds to a functor 2̃ → A
A3

, and hence to a parametrized
operation A3 × 2̃ → A with arity 3 and parameter 2̃; and the left and right unitors λ, ρ
clearly correspond to functors 2̃ → AA, and hence to parametrized operations A × 2̃ → A

with arity 1 and parameter 2̃.
We thus define a free-form SF(Cat)-signature S with one operation symbol m of arity 2

and parameter 1, one operation symbol i of arity 0 and parameter 1, one operation symbol
α of arity 3 and parameter 2̃, and two operation symbols λ, ρ of arity 1 and parameter 2̃.
As an intermediate step, we next provide a diagrammatic SF(Cat)-presentation P = (S,E)
for which a P-algebra will be a small category A equipped with functors mA : A2 → A, iA :
A0 = 1→ A and natural isomorphisms αA : αA

0
∼
−→ αA

1 , λ
A : λA

0
∼
−→ λA

1 , and ρA : ρA0
∼
−→ ρA1 with

the intended domains and codomains (but not necessarily satisfying the monoidal coherence
laws). So let A be an S-algebra. We want diagrammatic S-equations expressing that the
domain and codomain αA

0 , α
A

1 : A3 ⇒ A of the associator αA are the composite functors in
the following diagram:

A× A× A A× A A× A× A

A

mA×1

mA

αA

0

1×mA

αA

1

In view of 5.11, the two triangles in this diagram constitute diagrammatic S-equations
mA ◦

(

mA × 1
) .
= αA

0 , m
A ◦

(

1×mA
) .
= αA

1 : A3 ⇒ A
1 (A ∈ S-Alg). In an exactly analogous

way, we obtain diagrammatic S-equations to ensure that λA

0 , λ
A

1 , ρ
A

0 , ρ
A

1 all have their intended
interpretations. We thus obtain a diagrammatic SF(Cat)-presentation P = (S,E) for which
a P-algebra is a small category A equipped with functors mA : A2 → A, iA : A0 → A and
natural isomorphisms αA : mA ◦

(

mA × 1
) ∼
−→ mA ◦

(

1×mA
)

, λA : mA ◦
(

iA × 1
) ∼
−→ 1, and

ρA : 1
∼
−→ mA ◦

(

1× iA
)

.
We now define a further system of diagrammatic SF(Cat)-ary equations F on P-Alg whose

models (4.2) will be monoidal categories. Given a P-algebra A, we want A to be an F-model
iff A is a monoidal category, i.e. iff A satisfies the monoidal coherence laws. The pentagon
identity requires the equality of two natural isomorphisms between functors A4 ⇒ A, and
it can be expressed by a diagrammatic SF(Cat)-ary equation A4 ⇒ A

2̃ (A ∈ P-Alg) on
P-Alg. The second monoidal coherence law requires the equality of two natural isomorphisms
between functors A2 ⇒ A, and it can be expressed by a diagrammatic SF(Cat)-ary equation
A2 ⇒ A2̃ (A ∈ P-Alg) on P-Alg. We thus obtain a system of diagrammatic SF(Cat)-ary
equations F on P-Alg for which P-AlgF = MonCatstrict, the 2-category of small monoidal
categories and strict monoidal functors. Hence, MonCatstrict is a strictly SF(Cat)-monadic 2-
category over Cat, by 4.9 and 5.20, so MonCatstrict is isomorphic to the 2-category of algebras
for a strongly finitary 2-monad on Cat, as noted in [22].

Example 6.3. We now employ diagrammatic J -presentations to prove an extension of
the well-known result that (small) categories are finitary monadic over graphs [11]. Indeed,
whereas Wolff [43] extended the latter result by proving the monadicity of small V -categories
over small V -graphs under only the assumption that V is cocomplete, we now prove instead
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that internal categories in V form a V -category that is α-ary monadic over internal graphs
in V as soon as V is locally α-presentable as a closed category, which we assume for the
remainder of Example 6.3. To this end, let B⇒ be the free V -category on the ordinary
category consisting of a single parallel pair s, t : 1 ⇒ 0, and consider the presheaf V -
category C = Gph(V ) = [B⇒,V ], the V -category of internal graphs in V , which is a locally
α-presentable V -category by [20, 3.1, 7.4]. An object G of C can be regarded as a parallel
pair sG, tG : G1 ⇒ G0 in V , i.e. as an internal graph in V . Let J = Cα be a skeleton
of the full sub-V -category of C spanned by the enriched α-presentable objects, so that J
is a bounded and eleutheric subcategory of arities by 2.4. In particular, J contains the
representables [i] := B⇒(i,−) : B⇒ → V (i ∈ {0, 1}) and is closed under conical finite
colimits. In the V = Set case, the (ordinary) graph [0] consists of a single vertex and no
edges, while the graph [1] = ( · → · ) consists of a single edge between two distinct vertices.
We have the two morphisms ι1 := B⇒(s,−) : [0] → [1] and ι2 := B⇒(t,−) : [0] → [1];
in the V = Set case, ι1 sends the single vertex of [0] to the source of the unique edge of
[1], while ι2 sends the single vertex of [0] to the target of this edge. For every internal
graph G : B⇒ → V , the enriched Yoneda lemma enables us to identify C ([i], G) with Gi

(i ∈ {0, 1}), so that we may identify C (ι1, G) with sG and C (ι2, G) with tG. We shall also
need the arity [2] ∈ obCα defined via the following pushout in C = Gph(V ), which in the
V = Set case is the graph [2] = ( · → · → · ).

[0] [1]

[1] [2].

ι1

ι2

k1

k2

For every internal graph G in V we have a pullback square in V as on the left below,

C ([2], G) C ([1], G) G2 := G1 ×G0
G1 G1

C ([1], G) C ([0], G) G1 G0

C (k2,G)

C (ι1,G)C (k1,G)

C (ι2,G)

π2

π1 sG

tG

which we may identify with the pullback square on the right.
We now provide a presentation of internal categories in V in terms of the concepts of §4

and §5; for a standard reference on internal categories, see e.g. [7, §8.1]. An internal category
in V is an internal graph A = (sA, tA : A1 ⇒ A0) in V equipped with morphisms eA : A0 →
A1 and cA : A2 → A1 (identity and composition) satisfying certain axioms. The identity and
composition operations eA and cA may be written equivalently as eA : C ([0], A)→ C ([1], A)
and cA : C ([2], A) → C ([1], A) and so are parametrized J -ary operations on the object A
of C = Gph(V ), where J = obCα. We thus require a free-form J -signature S with one
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operation symbol e of arity [0] and parameter [1], and one operation symbol c of arity [2]
and parameter [1]. We now construct a diagrammatic J -presentation P = (S,E) that will
play a preliminary role, in which E consists of four diagrammatic S-equations, expressing the
interaction of the source and target morphisms with eA, cA in an S-algebra A. In particular,
we shall have a diagrammatic S-equation C ([2], A) ⇒ C ([0], A) (A ∈ S-Alg) given by the
diagram on the left below, which may be written as the more familiar diagram on the right

C ([2], A) C ([1], A) A2 A1

C ([1], A) C ([0], A) A1 A0,

cA

sAC (k1,A)

sA

cA

π1 sA

sA

and we shall also have a diagrammatic S-equation tA ◦ c
A .
= tA ◦ π2 : C ([2], A) ⇒ C ([0], A)

(A ∈ S-Alg). We shall also have two diagrammatic S-equations sA◦e
A .
= 1A0

, tA ◦e
A .
= 1A0

:
C ([0], A) ⇒ C ([0], A) (A ∈ S-Alg). We thus obtain a diagrammatic J -presentation P =
(S,E) for which P-algebras will be internal graphs A = (sA, tA : A1 ⇒ A0) in V equipped
with identity and composition operations eA, cA satisfying (just) these four diagrammatic
laws.

We now define a system of diagrammatic J -ary equations F on P-Alg whose models
(4.2) will be internal categories in V . First, given an internal graph G, we need to define
an object of paths of length three in G. This object, which we write as G3, can be defined
as the (vertex of the) pullback of sG ◦ π1 : G2 → G0 along tG : G1 → G0, or as the pullback
of sG : G1 → G0 along tG ◦ π2 : G2 → G0, since it is well known that these pullbacks
G1×G0

(G1 ×G0
G1) and (G1 ×G0

G1)×G0
G1 are canonically isomorphic. By a dual process,

we can define a further arity [3] ∈ obCα by taking the pushout of k1 ◦ ι1 : [0] → [2] along
ι2 : [0] → [1], or equivalently the pushout of ι1 : [0] → [1] along k2 ◦ ι2 : [0] → [2]. In the
V = Set case, [3] = ( · → · → · → · ). For any internal graph G in V , we may identify
C ([3], G) with G3

∼= G1 ×G0
(G1 ×G0

G1) ∼= (G1 ×G0
G1)×G0

G1.
Given a P-algebra A, we want A to be an F-model iff A is an internal category in V , i.e.

iff composition in A is associative and unital. The associativity of composition is expressed
by the following diagram

A3 A1 ×A0
(A1 ×A0

A1) A1 ×A0
A1

(A1 ×A0
A1)×A0

A1 A1 ×A0
A1 A1,

∼ 1×A0
cA

≀

cA×A0
1 cA

cA

which is a diagrammatic J -ary equation C ([3], A) ⇒ C ([1], A) (A ∈ P-Alg) on P-Alg. The
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identity axioms for an internal category are expressed by the following diagram

A1 A1 ×A0
A1 A1

A1

(1,eA◦tA)

cA
1

(eA◦sA,1)

1

which may be regarded as a pair of diagrammatic J -ary equations C ([1], A) ⇒ C ([1], A)
(A ∈ P-Alg) on P-Alg. We thus obtain a system of diagrammatic J -ary equations F on
P-Alg for which F-models are internal categories in V , so that we may regard Cat(V ) :=
P-AlgF as the V -category of internal categories in V . The following theorem now follows
from 4.9 and 5.20:

Theorem 6.4. Let V be locally α-presentable as a closed category. There is an α-accessible
V -monad T on Gph(V ) = [B⇒,V ] such that T-Alg ∼= Cat(V ) in V -CAT/Gph(V ), so that the
V -category Cat(V ) of internal categories in V is strictly α-ary monadic over Gph(V ).

Example 6.5. We now provide a diagrammatic J -presentation for Plotkin and Power’s
global state algebras [39], which they employed in treating the global state monad within
their program of algebraic computational effects. Suppose that V is cartesian closed, and
let j : J →֒ V be any bounded and eleutheric system of arities (so that J contains
the terminal object 1 and is closed under finite products, 2.5). For example, we may take
J = SF(V ), or if V is locally α-presentable as a cartesian closed category, then we may
take J = Vα, a skeleton of the full sub-V -category of V consisting of the α-presentable
objects. Let V ∈ obJ be a fixed object (the object of values), let L be a finite set (the
set of locations), and let L2 := {(ℓ, ℓ

′) ∈ L× L | ℓ 6= ℓ′}. By an abuse of notation, we write
L := L · 1 ∈ obV (the coproduct of L copies of 1) and L2 := L2 · 1 ∈ obV . We define a
free-form J -signature S with an operation symbol ℓ (“lookup”) of arity V and parameter
L, and an operation symbol u (“update”) of arity 1 and parameter L × V . An S-algebra
is thus an object A of V equipped with a lookup operation ℓA : AV → AL and an update
operation uA : A→ AL×V , as in [39, Definition 1].

Each of the seven commutative diagrams of [39, Definition 1] for global state may be
regarded as a diagrammatic S-equation AJ ⇒ AC (A ∈ S-Alg) for some arity J ∈ obJ
and parameter C ∈ obV . Specifically, the first commutative diagram can be expressed
as a diagrammatic S-equation A ⇒ AL (A ∈ S-Alg); the second as a diagrammatic S-
equation AV×V ⇒ AL (A ∈ S-Alg); the third as a diagrammatic S-equation A ⇒ AL×V×V

(A ∈ S-Alg); the fourth as a diagrammatic S-equation AV ⇒ AL×V (A ∈ S-Alg); the fifth as a
diagrammatic S-equation AV×V ⇒ AL2 (A ∈ S-Alg); the sixth as a diagrammatic S-equation
A ⇒ AL2×V×V (A ∈ S-Alg); and the last as a diagrammatic S-equation AV ⇒ AL2×V

(A ∈ S-Alg). We thus obtain a diagrammatic J -presentation P = (S,E) for which P-
algebras are (the V -based analogue of) the global state algebras of [39, Definition 1], and
by 5.20 we find that P presents a J -ary V -monad TP on V with TP -Alg ∼= P-Alg in
V -CAT/V .

24



Example 6.6. We now provide diagrammatic J -presentations corresponding to some of
Staton’s parametrized algebraic theories [42], namely the parametrized theory of reading
many bits [42, §IV] and the parametrized theory of restriction [42, §V.B], and we thereby
obtain J -ary V -monads determined by these parametrized algebraic theories. Suppose that
V is cartesian closed, and let us first define a diagrammatic SF(V )-presentation for the theory
of reading many bits, parametrized by an object α ∈ obV . The free-form SF(V )-signature S
will have one operation symbol ? of arity 2 and parameter α, so that an S-algebra is an object
A of V equipped with a morphism ?A : A2 → Aα, or equivalently ?A : A×A× α→ A. The
desired diagrammatic SF(V )-presentation P = (S,E) will have diagrammatic S-equations
corresponding to the equations of [42] annotated as (idem-?a), (dup-?a), and (?a/?b) (for
a, b : α). The first equation (idem-?a) is written there as x ≡ x ?a x for x : A and a : α, and
can be expressed as the commutativity of the diagram

A× α A× A× α A,
∆A×1 ?A

π1

which is a diagrammatic S-equation A×α ⇒ A (A ∈ S-Alg). The second equation (dup-?a)
is written as (u ?a v) ?a (x ?a y) ≡ u ?a y for u, v, x, y : A and a : α. Writing the product
projections as u, v, x, y : A4× α→ A and a : A4 ×α→ α, this equation can be expressed as
the commutativity of the diagram

A4 × α A× A× α A,
〈?A◦〈u,v,a〉,?A◦〈x,y,a〉,a〉

?A◦〈u,y,a〉

?A

which is a diagrammatic S-equation A4 × α ⇒ A (A ∈ S-Alg). The third equation (?a/?b)
is written as (u ?b v) ?a (x ?b y) ≡ (u ?a x) ?b (v ?a y) for u, v, x, y : A and a, b : α. Writing
the product projections as u, v, x, y : A4×α2 → A and a, b : A4×α2 → α, this equation can
be expressed as the commutativity of the diagram

A4 × α2 (A2 × α)× (A2 × α)× α A×A× α

(A2 × α)× (A2 × α)× α A× A× α A,

〈〈u,v,b〉,〈x,y,b〉,a〉 ?A×?A×1

?A〈〈u,x,a〉,〈v,y,a〉,b〉

?A×?A×1 ?A

which is a diagrammatic S-equation A4 × α2 ⇒ A (A ∈ S-Alg). We thus obtain a diagram-
matic SF(V )-presentation P = (S,E) for this α-parametrized theory (α ∈ obV ) of reading
many bits, and 5.20 entails that P presents a strongly finitary V -monad TP on V with
TP-Alg ∼= P-Alg in V -CAT/V .

Continuing to suppose that V is cartesian closed, now let J →֒ V be any bounded and
eleutheric system of arities; for example, as in Example 6.5, we may take J = SF(V ), or
if V is locally α-presentable as a cartesian closed category then we may take J = Vα. Let
J ∈ obJ be a fixed arity. We define a diagrammatic J -presentation for the J-parametrized
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theory of restriction [42, §V.B]. The free-form J -signature S will have a single operation
symbol ν of arity J and parameter 1, so that an S-algebra is an object A of V equipped with
a morphism νA : AJ → A. The desired diagrammatic J -presentation P = (S,E) will have
diagrammatic S-equations corresponding to the equations of [42] annotated as (idem-ν) and
(ν/ν). The first equation (idem-ν) is written there as ν(λj.x) ≡ x for x : A, and can be
expressed as the commutativity of the diagram

A AJ A
∆A νA

1

(where ∆A : A → AJ is the exponential transpose of the first projection π1 : A × J → A),
which is a diagrammatic S-equation A ⇒ A (A ∈ S-Alg). The second equation (ν/ν) is
written as ν (λj.ν (λk.f(j, k))) ≡ ν (λj.ν (λk.f(k, j))) for f : AJ×J , and it can be expressed
as a diagrammatic S-equation of the form AJ×J ⇒ A (A ∈ S-Alg) via the diagram

AJ×J
(

AJ
)J

AJ A

AJ×J
(

AJ
)J

AJ A

κJJ

∼

(νA)
J

νA

As

κJJ

∼
(νA)

J νA

‖

where κXY : AX×Y ∼
−→ (AY )X denotes the canonical isomorphism (X, Y ∈ V ), and s :

J × J
∼
−→ J × J is the ‘twist’ isomorphism. We thus obtain a diagrammatic J -presentation

P = (S,E) for this J-parametrized theory of restriction, and 5.20 entails that P presents
a J -ary V -monad TP on V such that TP-Alg ∼= P-Alg in V -CAT/V . By combining the
J-parametrized theory of restriction with the α-parametrized theory of reading many bits,
for α = J , and adding a single additional equation that requires that ν commutes with ? in
the sense of §7 below, we obtain a diagrammatic J -presentation for Staton’s parametrized
theory of instantiating and reading bits [42, §V.B], assuming that J contains SF(V ).

7 Constructions on diagrammatic J -presentations: Sum and tensor

We can define the sum and tensor of two diagrammatic (or free-form) J -presentations P1

and P2 as follows. For each i ∈ {1, 2}, let us write Pi = (Si,Ei), where Si is a free-form
J -signature with arities Jiσ and parameters Ciσ (σ ∈ Si).

To define the sum P1 +P2, we first define a free-form J -signature S1 +S2 by equipping
the disjoint union of the (small) sets of operation symbols S1 and S2 with the associated
arities Jiσ and parameters Ciσ (i ∈ {1, 2}, σ ∈ Si). An (S1 + S2)-algebra is then an object A
of C carrying the structure of both an S1-algebra and an S2-algebra, and we readily deduce
by 5.5 that moreover (S1 + S2)-Alg ∼= S1-Alg ×C S2-Alg in V -CAT/C . For each i ∈ {1, 2},
Ei is a family of diagrammatic Si-equations ωiδ .

= νiδ (δ ∈ Di), each of which consists of
morphisms ωiδ

A , ν
iδ
A : C (Jiδ, A) ⇒ C (Ciδ, A) that are V -natural in A ∈ Si-Alg (where we

assume without loss of generality that the sets Si and Di are disjoint). Given i ∈ {1, 2},
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if we denote the Si-algebra underlying each (S1 + S2)-algebra A also by A, then for each
δ ∈ Di we obtain a parallel pair of V -natural families ωiδ

A , ν
iδ
A : C (Jiδ, A) ⇒ C (Ciδ, A)

(A ∈ (S1+S2)-Alg), so that we obtain a diagrammatic (S1+S2)-equation that we may write
also as ωiδ .

= νiδ. Collectively, these equations ωiδ .
= νiδ (i ∈ {1, 2}, δ ∈ Di) constitute a

system of diagrammatic (S1 + S2)-equations that we may write as E1 + E2.
Thus we obtain a diagrammatic J -presentation P1+P2 := (S1+S2,E1+E2), for which

a (P1+P2)-algebra is an object A of C equipped with the structure of both a P1-algebra and
a P2-algebra, and moreover (P1+P2)-Alg ∼= P1-Alg×C P2-Alg in V -CAT/C as a consequence
of the above isomorphism (S1 + S2)-Alg ∼= S1-Alg ×C S2-Alg.

Now supposing that C = V and that J →֒ V is a system of arities (see 2.5), we next add
further diagrammatic (S1 + S2)-equations to the sum P1 + P2 to obtain the tensor product
P1 ⊗ P2 of the diagrammatic J -presentations P1,P2. To do this, we employ the following
terminology: given any two parametrized operations ωi : [Ji, A]→ [Ci, A] (i ∈ {1, 2}) on an
object A of V , where Ji, Ci ∈ obV and we write the internal hom in V as [−,−], we obtain
a pair of parametrized operations

ω1 ∗ ω2, ω1 ∗̃ω2 : [J1 ⊗ J2, A] ⇒ [C1 ⊗ C2, A]

that are called the first and second Kronecker products of ω1 and ω2 (cf. [33]) and are defined
as the following composites, respectively:

[J1 ⊗ J2, A] ∼= [J2, [J1, A]]
[1,ω1]
−−−→ [J2, [C1, A]] ∼= [C1, [J2, A]]

[1,ω2]
−−−→ [C1, [C2, A]] ∼= [C1 ⊗ C2, A],

[J1 ⊗ J2, A] ∼= [J1, [J2, A]]
[1,ω2]
−−−→ [J1, [C2, A]] ∼= [C2, [J1, A]]

[1,ω1]
−−−→ [C2, [C1, A]] ∼= [C1 ⊗ C2, A].

We say that ω1 commutes with ω2 if ω1 ∗ ω2 = ω1 ∗̃ω2.
Given operation symbols σ1 ∈ S1 and σ2 ∈ S2, we can consider the parametrized opera-

tions σA
i : [Jiσi

, A]→ [Ciσi
, A] (i ∈ {1, 2}) carried by each (S1 +S2)-algebra A. The first and

second Kronecker products of σA
1 and σA

2 are therefore morphisms

σA
1 ∗ σ

A
2 , σA

1 ∗̃ σ
A
2 : [J1σ1

⊗ J2σ2
, A] ⇒ [C1σ1

⊗ C2σ2
, A] (7.0.i)

that are V -natural in A ∈ (S1 + S2)-Alg, in view of their definitions above, since σA
1 and

σA
2 are V -natural in A ∈ (S1 + S2)-Alg by 5.11. Hence, the morphisms in (7.0.i) constitute

V -natural (S1 + S2)-operations σ1 ∗ σ2 and σ1 ∗̃ σ2, so we obtain a diagrammatic (S1 + S2)-
equation σ1 ∗ σ2

.
= σ1 ∗̃ σ2. Adjoining these equations σ1 ∗ σ2

.
= σ1 ∗̃ σ2 (σ1 ∈ S1, σ2 ∈ S2) to

E1 + E2, we obtain a system of diagrammatic (S1 + S2)-equations E1 ⊗ E2.
Thus we obtain a diagrammatic J -presentation P1⊗P2 = (S1 + S2,E1⊗ E2), for which

a (P1 ⊗ P2)-algebra is an object A of V equipped with both the structure of a P1-algebra
and a P2-algebra such that σA

1 commutes with σA
2 for each pair of operation symbols σ1 ∈ S1

and σ2 ∈ S2, and (P1 ⊗ P2)-Alg is isomorphic (in V -CAT/V ) to the full sub-V -category
of P1-Alg ×V P2-Alg consisting of these objects. For example, by bringing together the
diagrammatic J -presentations P1 and P2 for reading many bits and restriction (6.6) and
forming the tensor product P1⊗P2, we arrive at a diagrammatic J -presentation for Staton’s
parametrized theory of instantiating and reading bits ; the diagrammatic equation expressing
that ν commutes with ? corresponds to Staton’s syntactic equation (ν/?) [42, §V.B].
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8 J -ary varieties of algebras for K -relative monads

The notion of abstract clone of Philip Hall provides an equivalent way of encoding the data
for a Lawvere theory in terms of a family of sets H(n) indexed by the finite cardinals n, with
some further structure; see [12]. Variants and generalizations of this concept include Kleisli
triples [36], enriched clones [41, 17], and relative monads [3]. By transporting the notion of
relative monad to the setting of a subcategory of arities K →֒ C enriched in V , we obtain a
notion of K -relative V -monad (8.1). In the special case where K is eleutheric, K -relative
V -monads provide an equivalent way of describing K -ary V -monads in terms of families
of objects H = (HK)K∈ obK of C equipped with further structure (8.3). But K -relative
V -monads are of interest also in cases where K is not eleutheric, and in the present section
we do not impose such an assumption on K . Instead, we consider the case where K is
merely contained in a bounded and eleutheric subcategory of arities J →֒ C (under the
assumptions of 2.1 and 2.2), and in this case we show that for each K -relative V -monad
H , the V -category of H-algebras H-Alg is precisely the V -category of PH-algebras for a
diagrammatic J -presentation PH , so that H-Alg is a J -ary variety and hence is J -ary
monadic over C . For example, this result is applicable to any small subcategory of arities
K in a locally presentable V -category C over a locally presentable closed category V , since
in this case K is contained in the bounded and eleutheric subcategory of arities Cα →֒ C
for a suitable α (2.4, 8.11). But the presentations PH obtained in this way are important
even in the case where K = J , because by applying this construction to the J -relative
V -monad corresponding to a J -ary V -monad T we obtain a diagrammatic J -presentation
of T that is more economical than the canonical J -presentation of T obtained by way of
the monadicity of J -ary V -monads (2.6, 2.8); examples are discussed in 8.15.

Definition 8.1. Given a full sub-V -category K →֒ C , a K -relative V -monad (on
C ) is a triple (H, e,m) consisting of a V -functor H : K → C and V -natural families of
morphisms eJ : J → HJ (J ∈ K ) and mJK : C (J,HK) → C (HJ,HK) (J,K ∈ K )
making the following diagrams commute for all J,K, L ∈ obK :

I C (J,HJ) C (HJ,HJ)

C (J,HK) C (HJ,HK) C (J,HK)

C (J,HK)⊗ C (K,HL) C (HJ,HK)⊗ C (HK,HL)

C (J,HK)⊗ C (HK,HL) C (J,HL) C (HJ,HL),

eJ mJJ

1HJ

mJK C (eJ ,1)

1

mJK⊗mKL

1⊗mKL

c

c

mJL

where each c is a composition morphism of C .

Remark 8.2. In Definition 8.1, it actually suffices to just assume that we have a family
of objects (HJ)J∈obK of C and families of morphisms eJ : J → HJ (J ∈ obK ) and
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mJK : C (J,HK) → C (HJ,HK) (J,K ∈ obK ) making the diagrams of 8.1 commute,
because then (as in the ordinary context [3]) it follows straightforwardly that the object
assignment J 7→ HJ (J ∈ obK ) extends to a V -functor H : K → C , with respect to
which the families of morphisms eJ and mJK are V -natural.

8.3. In the special case where K is a subcategory of arities K = J →֒ C satisfying
the assumptions of 2.1 and 2.2 (including eleuthericity3), there is an equivalence between
J -relative V -monads and J -ary V -monads. To see this, first note that V -CAT(J ,C )
is a monoidal category, whose monoidal structure is defined by transporting the monoidal
structure of EndJ (C ) along the equivalence V -CAT(J ,C ) ≃ EndJ (C ) discussed in 2.3.
Thus, the unit of the monoidal category V -CAT(J ,C ) is the V -functor j : J →֒ C , while
the monoidal product of H,H ′ : J → C is defined by H ∗H ′ := (LanjH) ◦H ′. A monoid
in the monoidal category V -CAT(J ,C ) is thus a triple (H, e,m) consisting of a V -functor
H : J → C and V -natural transformations e : j → H and m : H ∗H → H satisfying the
associativity and unit equations. Unpacking m, we have for each K ∈ obJ a morphism

mK : (H ∗H)K → HK, where (H ∗H)K = (LanjH)HK =
∫ J∈J

C (J,HK)⊗HJ by the
coend formula for left Kan extensions [21, 4.25]. Hence m is equivalently given by a family of
morphisms mJK : C (J,HK)⊗HJ → HK or equivalently mJK : C (J,HK)→ C (HJ,HK),
V -natural in J,K ∈ J . Expressing m in this way, the unit and associativity axioms for a
monoid (H, e,m) in V -CAT(J ,C ) translate into the axioms for a J -relative V -monad in
8.1. Thus, J -relative V -monads may be identified with monoids in V -CAT(J ,C ) and so
are the objects of a category that is equivalent to the category of J -ary V -monads on C .
In particular, if (H, e,m) is a J -relative V -monad on C , then the induced V -endofunctor
LanjH : C → C underlies a J -ary V -monad on C , and if T is a J -ary V -monad on C ,
then the V -functor Tj : J → C underlies a J -relative V -monad.

The following is an enrichment (and a slight variation, 8.5) of a definition in [3]:

Definition 8.4. Let K →֒ C be a full sub-V -category, and let H = (H, e,m) be a K -
relative V -monad on C . An H-algebra is an object A of C equipped with a V -natural
family of morphisms αJ : C (J,A) → C (HJ,A) (J ∈ K ) making the following diagrams
commute for all J,K ∈ obK :

C (J,A) C (HJ,A) C (J,A)
αJ C (eJ ,1)

1

(8.4.i)

C (J,HK)⊗ C (K,A) C (HJ,HK)⊗ C (HK,A)

C (J,HK)⊗ C (HK,A) C (J,A) C (HJ,A),

mJK⊗αK

c1⊗αK

c αJ

(8.4.ii)

where each c is a composition morphism of C .

3In fact, the remarks in this paragraph apply when J is an arbitrary (possibly large) eleutheric subcat-
egory of arities in an arbitrary V -category C over an arbitrary closed category V .
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Remark 8.5. In Definition 8.4, we may omit the requirement that the morphisms αJ are
V -natural in J ∈ K , as this follows automatically from the commutativity of the diagrams
in 8.4 (cf. [3] for the same fact in the ordinary context). Note also that the structural
morphisms αJ of an H-algebra may equivalently be written as αJ : C (J,A)⊗HJ → A.

8.6. In the special case of 8.3 where K = J →֒ C , the equivalence of monoidal categories
V -CAT(J ,C ) ≃ EndJ (C ) induces an action of the monoidal category V -CAT(J ,C ) on the
V -category C , in the form of a strong monoidal functor Φ : V -CAT(J ,C )→ V -CAT(C ,C )
given by left Kan extension. If H = (H, e,m) is a J -relative V -monad, regarded as a
monoid in V -CAT(J ,C ) (8.3), then the corresponding J -ary V -monad is the monoid
Φ(H) in V -CAT(C ,C ) obtained canonically by applying Φ. An H-algebra is equivalently
given by an algebra for the V -monad Φ(H), which from the point of view of actions of
monoidal categories we may call an H-module in C for the monoid H in V -CAT(J ,C ).

The algebras for a K -relative V -monad can be described in terms of diagrammatic K -
presentations in the sense of 5.18:

Proposition 8.7. Let H = (H, e,m) be a K -relative V -monad for a small full sub-V -
category K →֒ C . Then there is a diagrammatic K -presentation PH such that PH-algebras
are precisely H-algebras.

Proof. The free-form K -signature S for H-algebras will have an operation symbol αJ of
arity J ∈ obK and parameter HJ ∈ obC for each J ∈ obK , so that an S-algebra
is an object A of C equipped with structural morphisms αA

J : C (J,A) → C (HJ,A) for all
J ∈ obK . For each object J of K , the diagram (8.4.i) describes a diagrammatic S-equation
C (J,A) ⇒ C (J,A) (A ∈ S-Alg). For each pair J,K of objects of K , the diagram (8.4.ii)
describes a diagrammatic S-equation C (K,A) ⇒ C (C (J,HK)⊗HJ,A) (A ∈ S-Alg). We
thus obtain a diagrammatic K -presentation PH = (S,E), and PH -algebras are precisely
H-algebras, in view of 8.5.

Definition 8.8. Given a K -relative V -monad H for a small full sub-V -category K →֒ C ,
the V -category of H-algebras is by definition the V -category H-Alg := PH-Alg of PH-
algebras (5.18, 8.7).

Remark 8.9. In the special case of 8.3 and 8.6, where K = J , the V -category H-Alg
is isomorphic to the V -category Φ(H)-Alg of algebras for the associated J -ary V -monad
Φ(H), which we may equally call the V -category of H-modules in C for the monoid H in
V -CAT(J ,C ).

Theorem 8.10. Let C and V be as in 2.1, and let K →֒ C be a full sub-V -category that
is contained in some bounded and eleutheric subcategory of arities J →֒ C . For each K -
relative V -monad H, the V -category H-Alg of H-algebras is strictly J -monadic over C (as
it is a J -ary variety).

Proof. Under the given hypotheses, we may regard the diagrammatic K -presentation PH

also as a diagrammatic J -presentation, and the result follows from Theorem 5.20.
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Example 8.11. Let V be a locally α-presentable closed category and C a locally α-
presentable V -category. Then any small full sub-V -category K →֒ C is contained in
a bounded and eleutheric subcategory of arities J →֒ C . Indeed, by [20, 7.4] we may
choose some regular cardinal β ≥ α such that every object of K is β-presentable in the en-
riched sense, and hence K is contained in the bounded and eleutheric subcategory of arities
J = Cβ →֒ C discussed in 2.4(1), where we noted that these data satisfy the assumptions
of 2.1 and 2.2. Hence, Theorem 8.10 entails the following:

Corollary 8.12. Let V be a locally α-presentable closed category, let C be a locally α-
presentable V -category, and let K →֒ C be a small full sub-V -category. Then there is a
regular cardinal β ≥ α such that for each K -relative V -monad H on C , the V -category of
H-algebras H-Alg is strictly β-ary monadic over C .

Definition 8.13. Returning to the setting of a given subcategory of arities J →֒ C sat-
isfying the assumptions in 2.1 and 2.2, let T be a J -ary V -monad on C , recalling that
Tj : J → C then carries the structure of a J -relative V -monad that we denote simply
by Tj (8.3). By 8.8 and 8.9, we have a diagrammatic J -presentation PTj with PTj-Alg =
Tj-Alg ∼= T-Alg in V -CAT/C . We call PTj the standardized J -presentation of T. Note
that a PTj-algebra is an object A of C equipped with morphisms C (J,A) → C (TJ,A) or
C (J,A)⊗ TJ → A (J ∈ obJ ) satisfying associativity and unit axioms (8.4, 8.5).

8.14. Let C = V , and suppose that J →֒ V is a system of arities. By 2.5, MndJ (V )
is equivalent to the category ThJ of J -theories. Let T be a J -theory with associated
identity-on-objects J -cotensor-preserving V -functor τ : J op → T . Writing T for the
J -ary V -monad on V corresponding to T , we may consider also the J -relative V -monad
on V corresponding to T, whose underlying V -functor is T (τ−, I) : J → V (see [33,
10.3]). By 8.13, this J -relative V -monad determines a diagrammatic J -presentation P
for which P-Alg is isomorphic to the V -category of T-algebras and hence to the V -category
of normal T -algebras, which is in turn equivalent to the V -category of (all) T -algebras (see
2.5). A P-algebra is then given by an object A of V equipped with structural morphisms
αA
J : T (J, I) → V (V (J,A), A) or αA

J : T (J, I) ⊗ V (J,A) → A (J ∈ obJ ) satisfying
associativity and unit axioms.

Example 8.15. As in 6.1, let V be a complete and cocomplete cartesian closed category,
and let R be an internal rig in V . Employing the system of arities SF(V ) →֒ V (2.5), in 6.1
we exhibited a diagrammatic SF(V )-presentation whose algebras are the (left) R-modules in
V . We may also regard R-modules equivalently as the normal algebras of an SF(V )-theory,
namely the V -category of R-matrices MatR, which has hom-objects MatR(m,n) = Rn×m

(m,n ∈ N), with composition given by internal matrix multiplication [32, 6.4.6]. Invoking
8.14, we thus obtain another diagrammatic SF(V )-presentation for R-modules. As in 8.14,
an algebra for this diagrammatic SF(V )-presentation is an object A of V equipped with
structural morphisms αA

n : MatR(n, 1) × An → A, i.e. αA
n : Rn × An → A, for all n ∈ N,

satisfying associativity and unit axioms, since MatR(n, 1) = R1×n = Rn. The structural
morphism αA

n : Rn×An → A can be regarded as the parametrized operation of taking n-ary
R-linear combinations in A.
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As in [32, 8.5], there is a (non-full) sub-V -category MataffR of MatR whose objects are
again the natural numbers and whose hom-objects are subobjects MataffR (m,n) →֒ Rn×m that
describe those matrices in which each row has sum 1. By [32, 8.5], MataffR is an SF(V )-theory
whose normal algebras in V are called (internal left) R-affine spaces ; also see [35, 11.2.7].
Hence, by 8.14, we obtain a diagrammatic SF(V )-presentation P for which the associated
notion of P-algebra provides an equivalent way of defining the notion of internal R-affine
space, as an object A of V equipped with structural morphisms αA

n : Rn,aff × An → A,
satisfying associativity and unit axioms, where Rn,aff := MataffR (n, 1) →֒ Rn is the subobject
of n-tuples of R whose sum is 1. The structural morphism αA

n can thus be regarded as the
parametrized operation of taking n-ary R-affine combinations in A. We call R-Aff := P-Alg
the V -category of (left) R-affine spaces.

9 A more general monad-pretheory adjunction

In the recent paper [10], Bourke and Garner fix a small subcategory of arities k : K →֒ C in
a locally presentable V -category C over a locally presentable closed category V , and they
consider the notion of a K -pretheory, which is by definition a V -category T equipped with a
V -functor τ : K op → T that is identity-on-objects4, so that K -pretheories are the objects
of a full subcategory PrethK (C ) of the coslice K op/V -Cat. Letting Mnd(C ) be the category
of V -monads on C , they define a functor Φ : Mnd(C )→ PrethK (C ) that sends a V -monad
T on C to the Kleisli K -pretheory K op

T
, i.e. the opposite of the full sub-V -category KT of

the Kleisli V -category CT on the objects of K , equipped with the V -functor K op → K op
T

obtained by restricting the Kleisli left adjoint FT : C → CT. By [10, Theorem 6], Φ has a left
adjoint Ψ : PrethK (C ) → Mnd(C ) that sends each K -pretheory T to a V -monad Ψ(T )
whose V -category of algebras Ψ(T )-Alg is isomorphic (in V -CAT/C ) to the V -category
Modc(T ) of concrete T -models. This V -category is defined5 as the following pullback in
V -CAT

Modc(T ) [T ,V ]

C [K op,V ],

UT [τ,1]

Nk

where Nk : C → [K op,V ] is the k-nerve V -functor defined by NkC = C (k−, C) (C ∈ C ). A
concrete T -model is therefore an object A of C equipped with a V -functorM : T → V that
extends the k-nerve C (k−, A) : K op → V along τ : K op → T , i.e. M◦τ = C (k−, A). Since
τ is identity-on-objects, M is then given on objects by MK = C (K,A) (K ∈ obT = obK ).

Our objective is now to employ diagrammatic J -presentations to generalize this monad-
pretheory adjunction from the locally presentable context of [10] to the more general context

4In [10], the dual notion is used, while in the present paper we employ a notion of pretheory that accords
with the concept previously studied (in the unenriched context) by Linton [29, p. 20] under the name clone,
and later by Diers [13] under the name theory.

5This definition (in the unenriched context) goes back to Linton [29] and Diers [13].
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of a small subcategory of arities K →֒ C that is contained in some bounded and eleutheric
subcategory of arities J →֒ C (2.2), where C and V need only satisfy the weaker hypotheses
of the present paper (2.1). We shall then recover the monad-pretheory adjunction of [10]
as a special case, since in the locally presentable setting of [10], every small subcategory
of arities K →֒ C is contained in a bounded and eleutheric subcategory of arities (8.11).
Towards these ends, we first prove the following result, now transporting the above notions
of pretheory and concrete model to the general setting of the present paper, under just the
assumptions of 2.1:

Theorem 9.1. Let C and V be as in 2.1, and let k : K →֒ C be a subcategory of arities
that is contained in some bounded and eleutheric subcategory of arities j : J →֒ C . For any
K -pretheory τ : K op → T , there is a diagrammatic J -presentation PT with PT -Alg ∼=
Modc(T ) in V -CAT/C , so Modc(T ) is a strictly J -monadic V -category over C .

Proof. A concrete T -model A consists of an object A of C equipped with a V -functor
MA : T → V satisfying certain conditions, including the requirement thatMAK = C (K,A)
for all K ∈ obT = obK . In particular, MA has structural morphisms MA

KK ′ : T (K,K ′)→
V (C (K,A),C (K ′, A)) (K,K ′ ∈ obK ), which are equivalently given by morphisms MA

KK ′ :
C (K,A)⊗T (K,K ′)⊗K ′ → A, since C is tensored. We now define a free-form J -signature
S consisting of an operation symbol MKK ′ of arity K ∈ obK ⊆ obJ and parameter
T (K,K ′) ⊗ K ′ ∈ obC for each pair (K,K ′) ∈ obK × obK . An S-algebra is thus an
object A of C equipped with a V -graph morphism MA : T → V given on objects by
MAK = C (K,A) (K ∈ obT = obK ), where we write simply T and V for the V -graphs
underlying T and V .

We now define a diagrammatic J -presentation PT = (S,E) for which PT -algebras
will be precisely the concrete T -models. We need diagrammatic S-equations expressing
preservation of composition and identities by a concrete T -model. For an S-algebra A to be
a concrete T -model, we need the following diagram to commute for each triple K,K ′, K ′′ of
objects of K :

C (K,A)⊗ T (K,K ′)⊗ T (K ′, K ′′)⊗K ′′ C (K,A)⊗ T (K,K ′′)⊗K ′′

A

C (K ′,C (K,A)⊗T (K,K ′)⊗K ′)⊗ T (K ′, K ′′)⊗K ′′ C (K ′, A)⊗T (K ′, K ′′)⊗K ′′,

coev⊗1

C(1,MA
KK′)⊗1

1⊗cKK′K′′⊗1

MA
KK′′

MA
KK′′

where cKK ′K ′′ is a composition morphism of T and coev is the unit morphism at C (K,A)⊗
T (K,K ′) ∈ obV of the tensor-hom adjunction (−) ⊗ K ′ ⊣ C (K ′,−) : C → V . This
diagram describes a diagrammatic S-equation C (K,A)⊗T (K,K ′)⊗T (K ′, K ′′)⊗K ′′ ⇒ A
(A ∈ S-Alg) with arity K and parameter T (K,K ′) ⊗ T (K ′, K ′′) ⊗ K ′′. For each object
K of K , we also require the commutativity of the following diagram, which describes a
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diagrammatic S-equation C (K,A)⊗K ⇒ A (A ∈ S-Alg):

C (K,A)⊗K C (K,A)⊗ I ⊗K C (K,A)⊗ T (K,K)⊗K

A,

∼ 1⊗uK⊗1

MA
KKev

where uK : I → T (K,K) is an identity morphism of T and ev is the counit morphism at
A ∈ obC of the tensor-hom adjunction (−)⊗K ⊣ C (K,−) : C → V .

Lastly, we need diagrammatic S-equations expressing that, for a concrete T -model A,
the V -functor MA : T → V extends C (k−, A) : K op → V along τ : K op → T . So for an
S-algebra A to be a concrete T -model, we need the following diagram to commute for all
objects K,K ′ of K :

C (K,A)⊗K (K ′, K)⊗K ′ C (K,A)⊗ T (K,K ′)⊗K ′

C (K ′, K)⊗ C (K,A)⊗K ′ C (K ′, A)⊗K ′ A,

1⊗τKK′⊗1

MA
KK′≀

cK′KA⊗1 ev

where cK ′KA is a composition morphism of C . This diagram describes a diagrammatic S-
equation C (K,A) ⊗ K (K ′, K) ⊗ K ′ ⇒ A (A ∈ S-Alg). We thus obtain a diagrammatic
J -presentation PT for which PT -algebras are in bijective correspondence with concrete
T -models, and it is straightforward to verify (using 5.23 and the definition of Modc(T ) as
a pullback in V -CAT) that this bijection on objects extends to an isomorphism PT -Alg ∼=
Modc(T ) in V -CAT/C . Hence Modc(T ) is strictly J -monadic over C by 5.20.

In the current general context, where C and V satisfy the background hypotheses of 2.1
and K →֒ C is a small subcategory of arities, we can again define a functor Φ : Mnd(C )→
PrethK (C ) exactly as described at the beginning of this section. Moreover, under the hy-
potheses of 9.1, we can prove the following generalization of [10, Theorem 6]:

Theorem 9.2. Let C and V be as in 2.1, and let k : K →֒ C be a subcategory of ari-
ties that is contained in some bounded and eleutheric subcategory of arities j : J →֒ C .
Then Φ : Mnd(C ) → PrethK (C ) has a left adjoint Ψ : PrethK (C ) → Mnd(C ) that sends
each K -pretheory T to a V -monad Ψ(T ) such that Ψ(T )-Alg ∼= Modc(T ) in V -CAT/C .
Furthermore, Ψ(T ) is a J -ary V -monad for each K -pretheory T .

Proof. By [10, Theorem 2], which (as Bourke and Garner emphasize) does not require the
local presentability of C or V , and (hence) still holds under the more general hypotheses
of 2.1, if the forgetful V -functor UT : Modc(T ) → C has a left adjoint for each K -
pretheory T , then Φ has a left adjoint Ψ that sends T to the V -monad Ψ(T ) induced by
this adjunction. But, under the present hypotheses, UT is strictly J -monadic by Theorem
9.1.
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Theorem 9.2 significantly generalizes [10, Theorem 6] by removing the assumptions that C
and V are locally presentable. Thus, Theorem 9.2 is applicable to all of the examples of 2.4,
in most of which V need not be locally presentable. In view of the discussion preceding 9.1,
the hypotheses of Theorem 9.2 are automatically satisfied in the locally presentable context
by taking J = Cβ for a suitable regular cardinal β, so that as a special case of 9.2 we
recover [10, Theorem 6]: If K →֒ C is a small subcategory of arities in a locally presentable
V -category C over a locally presentable closed category V , then Φ : Mnd(C ) → PrethK (C )
has a left adjoint Ψ such that Ψ(T )-Alg ∼= Modc(T ) in V -CAT/C for each K -pretheory
T .

Definition 9.3. Let C and V be as in 2.1, and let K →֒ C be a small subcategory of
arities. A V -monad T on C is K -nervous if T ∼= Ψ(T ) for some K -pretheory T .

This is not the original definition of K -nervous V -monad given in [10, Definition 17], but
it is equivalent to their definition (in their locally presentable context) by [10, Corollary 21].

Corollary 9.4. Let C and V be as in 2.1, and let K →֒ C be a subcategory of arities that
is contained in some bounded and eleutheric subcategory of arities J →֒ C . Then every
K -nervous V -monad T is J -ary.

Proof. There is some K -pretheory T with T ∼= Ψ(T ), and Ψ(T ) is J -ary by 9.2.

Corollary 9.5. Let K →֒ C be a small subcategory of arities in a locally α-presentable V -
category C over a locally α-presentable closed category V . Then there is a regular cardinal
β ≥ α such that every K -nervous V -monad on C is a β-ary V -monad (2.4).

Proof. In view of 8.11, this follows from 9.4.

10 A Birkhoffian Galois connection for J -ary varieties enriched in V

Throughout this final section, we fix a free-form J -signature S.6 If P is a free-form (or,
equivalently, diagrammatic) J -presentation of the form P = (S,E), then we say that P
is a free-form J -presentation over S, and we call P-Alg a J -ary variety over S
(cf. 5.25). Hence, a J -ary variety over S is equivalently given by a (possibly large) set of
S-algebras of the form ob(P-Alg) for a free-form J -presentation P over S, and we refer to
such sets also as J -ary varieties over S.

For the remainder of the section, we also fix a generating set G for C0, i.e. a set of objects
G ⊆ obC such that the functors C0(G,−) : C0 → Set (G ∈ G ) are jointly faithful; we do not
assume that G is small (e.g. we allow G = obC ). Finally, we assume for this section that
(in addition to the assumptions of 2.1) the category C0 is complete, so that the V -category
C is complete (being tensored and cotensored).

In this section, we establish and study a Galois connection between sets of S-algebras
and sets of G -parametrized S-equations (10.1) whose fixed points on one side are precisely

6Although we have chosen to focus on a free-form J -signature S and the J -ary V -monad TS generated
by S (5.8), the results of this section also hold when replacing TS by a general J -ary V -monad T.
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the J -ary varieties over S, thus generalizing the classical Galois connection of Birkhoff [6].
We shall conclude the section by investigating conditions under which a J -ary variety over
S is generated by a given S-algebra or a given set of S-algebras.

Definition 10.1. A G -parametrized S-equation is a parametrized S-equation t
.
= u :

G ⇒ TSJ (5.13) whose parameter G is an object of G . We then have the (possibly large) set
EqnG (S) of G -parametrized S-equations, which may also be described as the disjoint union

EqnG (S) =
∐

J∈obJ , G∈G

C0 (G, TSJ)
2 .

We let P (EqnG (S)) be the (possibly large) set of all subsets of EqnG (S) and P(S-Alg) the
(possibly large) set of all subsets of ob (S-Alg).

10.2. Note that if G = obC , then an obC -parametrized S-equation is just a parametrized
S-equation (5.13). We write

Eqn(S) := EqnobC (S)

to denote the set of all parametrized S-equations. Note also that if E ⊆ Eqn(S) is small,
then E may be regarded as a system of parametrized J -ary equations over TS (4.3), so that
P = (S, E) is a free-form J -presentation (5.15).

Definition 10.3. We now introduce some notation related to the satisfaction relation |= for
S-algebras and parametrized S-equations (5.14), recalling that |= is a binary relation from
ob (S-Alg) to Eqn(S). If A ∈P(S-Alg) and E ∈P(Eqn(S)), then we write A |= E to mean
that A |= t

.
= u (5.14) for all A ∈ A and all (t, u) ∈ E . If A = {A}, then we write A |= E

rather than {A} |= E , and if E = {(t, u)}, then we write A |= t
.
= u rather than A |= {(t, u)}.

Given a (possibly large) set E of parametrized S-equations, we write

Sat∗(E) := {A ∈ ob(S-Alg) | A |= E} . (10.3.i)

Given a (possibly large) set of S-algebras A, we write

Sat∗(A) := {(t, u) ∈ Eqn(S) | A |= t
.
= u} ,

SatG∗ (A) := {(t, u) ∈ EqnG (S) | A |= t
.
= u} . (10.3.ii)

Remark 10.4. In view of 10.2, a set of S-algebras A is a J -ary variety over S if and only
if A = Sat∗(F) for some small set F of parametrized S-equations.

As far as the satisfaction relation |= is concerned, sets of parametrized S-equations can
be represented faithfully as sets of G -parametrized S-equations, by way of the following
construction:
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Definition 10.5. Given a parametrized S-equation t
.
= u : C ⇒ TSJ , we write [t

.
= u]G

to denote the set of all G -parametrized S-equations of the form t ◦ x
.
= u ◦ x : G ⇒ TSJ

where G is an object in G and x : G → C is a morphism in C . Given instead a set E of
parametrized S-equations, we define [E ]G to be the union of the sets [t

.
= u]G associated to

the parametrized S-equations t
.
= u in E .

Proposition 10.6. Let A be a set of S-algebras, and let E be a set of parametrized S-
equations. Then A |= E if and only if A |= [E ]G .

Proof. Since G is a generating set for C0, this follows readily from 4.5.

Corollary 10.7. Let E be a set of parametrized S-equations. Then Sat∗(E) = Sat∗
(

[E ]G
)

.

Remark 10.8. Given a set A of S-algebras, each of the sets Sat∗(A) and SatG∗ (A) can
be expressed in terms of the other, as follows: firstly, SatG∗ (A) is clearly the intersection
of Sat∗(A) with EqnG (S), and secondly, it follows from 10.6 that the Sat∗(A) is the set of
all parametrized S-equations t

.
= u such that A |= [t

.
= u]G , i.e. such that [t

.
= u]G ⊆

SatG∗ (A).

Regarding P(EqnG (S)) and P(S-Alg) as (possibly large) partially ordered sets under in-
clusion, the following result now follows immediately from the definitions and is an instance
of the well-known fact that any relation between sets induces a Galois connection between
their power sets:

Proposition 10.9. There is a Galois connection

P(EqnG (S)) P(S-Alg)op
Sat∗

SatG∗

⊢

in which Sat∗ and SatG∗ are given by (10.3.i) and (10.3.ii), respectively. That is, Sat∗ and
SatG∗ are order-reversing maps, and for all A ∈P(S-Alg) and E ∈P(EqnG (S)) we have

A ⊆ Sat∗(E) ⇐⇒ E ⊆ SatG∗ (A).

In the case where G = obC , 10.9 specializes to yield a Galois connection Sat∗ ⊣ Sat∗ :
P(S-Alg)op →P(Eqn(S)).

We recover the classical Galois connection of Birkhoff [6] from 10.9 by taking C = V =
Set, J = SF(Set) (the finite cardinals), and G = {1}. In the classical setting, varieties over
a given signature S are the fixed points of the idempotent monad on P(S-Alg) induced by
this Galois connection. The same is true in our current general setting if the generator G is
small (10.30). But in general we do not assume that G is small, and while the fixed points
of the idempotent monad on P(S-Alg) induced by 10.9 are those of the form Sat∗(E) for a
set of G -parametrized S-equations E , the set E need not be small, so in view of 10.4 it is
not clear that Sat∗(E) would be a J -ary variety. Indeed, we intend to accommodate, for
example, the case where G = obC .
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For this reason, we now define certain mild size conditions on sets of parametrized S-
equations and S-algebras, and we proceed to show that the Galois connection of 10.9 restricts
to sets satisying these conditions:

Definition 10.10. A set E of parametrized S-equations is tame if there is a small set F
of parametrized S-equations such that Sat∗(E) = Sat∗ (F). A set A of S-algebras is tame if
there is a small set B of S-algebras such that Sat∗(A) = Sat∗ (B).

Remark 10.11. In view of 10.4, a set E of parametrized S-equations is tame iff Sat∗(E) is
a J -ary variety over S.

Note that Definition 10.10 does not involve G at all. But 10.8 immediately entails the
following characterization of tame sets of S-algebras in terms of G -parametrized S-equations:

Proposition 10.12. A set A of S-algebras is tame if and only if there is a small set B of
S-algebras with SatG∗ (A) = SatG∗ (B).

Lemma 10.13. If F is a small set of parametrized S-equations, then [F ]G is a tame set of
G -parametrized S-equations.

Proof. This follows immediately from 10.7.

Lemma 10.14. Let A be a small set of S-algebras. Then SatG∗ (A) is a tame set of parametrized
S-equations.

Proof. For each J ∈ obJ , let īJ : TSJ →
∏

A∈A 〈A,A〉J be the morphism in C induced
by the interpretation morphisms iAJ : TSJ → 〈A,A〉J (A ∈ A) of 2.9, where we regard each
A ∈ A equivalently as a TS-algebra (5.8), and let p1J , p

2
J : CJ ⇒ TSJ be the kernel pair

of īJ . Now let F be the set consisting of all the parametrized S-equations p1J
.
= p2J with

J ∈ obJ . Then F is small, so by 10.13 it suffices to show that SatG∗ (A) = [F ]G . For each
G -parametrized S-equation t, u : G ⇒ TSJ (J ∈ obJ , G ∈ G ), we have that (t, u) ∈ [F ]G
iff t, u factors through the kernel pair of īJ , iff īJ ◦ t = īJ ◦ u, iff i

A
J ◦ t = i

A
J ◦ u for all A ∈ A,

iff A |= t
.
= u for all A ∈ A (by 4.5), iff (t, u) ∈ SatG∗ (A), as desired.

Proposition 10.15. Let A be a tame set of S-algebras. Then SatG∗ (A) is a tame set of
parametrized S-equations.

Proof. By 10.12, there is a small set B of S-algebras with SatG∗ (A) = SatG∗ (B), and the latter
is tame by 10.14.

10.16. Let P = (S,E) be a free-form J -presentation over S, let TP be the J -ary V -
monad presented by P (5.20), and let q : TS → TP be the regular epimorphism in MndJ (C )
that presents TP = TS/E as a quotient (2.9, 4.10, 5.20). Then each TP-algebra A = (A, a)
corresponds via 5.20 to a P-algebra that we denote also by A, but then A is in particular
an S-algebra and corresponds via 5.8 to the TS-algebra (A, a ◦ qA), by 2.9. Hence, 3.10
immediately entails the following:
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Proposition 10.17. In the situation of 10.16, let t, u : C ⇒ TSJ be a parametrized S-
equation (where J ∈ obJ and C ∈ obC ). Then the following are equivalent: (1) every
P-algebra satisfies t

.
= u; (2) every free P-algebra on an object of J satisfies t

.
= u; (3) the

free P-algebra TPJ on J satisfies t
.
= u; (4) qJ ◦ t = qJ ◦ u.

Corollary 10.18. Let P be a free-form J -presentation over S. Then SatG∗ (ob(P-Alg)) =
SatG∗ ({TPJ | J ∈ obJ }).

Since J is small, 10.18 entails the following (in view of 10.12):

Corollary 10.19. Every J -ary variety over S is a tame set of S-algebras.

Corollary 10.20. Let E be a tame set of parametrized S-equations. Then Sat∗(E) is a tame
set of S-algebras (as it is a J -ary variety over S, by 10.11).

Definition 10.21. If E is a tame set of parametrized S-equations, then we call

V(E) := Sat∗(E)

the variety described by E . If A is a tame set of S-algebras, then we call

ΘG (A) := SatG∗ (A)

the equational theory of A (over S with parameters in G ). An equational theory over
S (with parameters in G ) is a set E of G -parametrized S-equations such that E = ΘG (A)
for some tame set A of S-algebras (noting that E itself is then tame by 10.15).

From 10.15 and 10.20 we now immediately obtain the following result.

Theorem 10.22. The Galois connection of 10.9 restricts to a Galois connection between
the poset P(EqnG (S))tame of all tame sets of G -parametrized S-equations and the poset
P(S-Alg)tame of all tame sets of S-algebras:

P(EqnG (S))tame P(S-Alg)optame

V

ΘG

⊢

We now show that the J -ary varieties over S are precisely the fixed points on one side of
the Galois connection (10.22):

Theorem 10.23. Let A be a (possibly large) set of S-algebras. Then the following are
equivalent: (1) A is a J -ary variety over S; (2) A is tame and A = V(ΘG (A)); (3) there
is a tame set E of G -parametrized S-equations such that A = V(E).

Proof. (2) and (3) are equivalent by 10.22, and the standard theory of Galois connections,
and (3) implies (1) by 10.11. If (1) holds, then there is a small set F of parametrized
S-equations with A = Sat∗(F) = Sat∗([F ]G ), by 10.4 and 10.7, but [F ]G is a tame set of
G -parametrized S-equations since F is small (10.13).
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Invoking 10.22 and 10.23 in the case where G = obC , we obtain the following:

Corollary 10.24. Writing Θ := ΘobC , there is a Galois connection

V ⊣ Θ : P(S-Alg)optame →P(Eqn(S))tame ,

and the following are equivalent for a set of S-algebras A: (1) A is a J -ary variety over
S; (2) A is tame and A = V(Θ(A)); (3) there is a tame set E of parametrized S-equations
such that A = V(E).

10.25. The Galois connection of 10.22 induces a closure operator (i.e. an idempotent monad)
VΘG on P(S-Alg)tame whose fixed points are precisely the J -ary varieties over S, by 10.23.
Hence, given a tame set A of S-algebras, VΘG (A) is the smallest J -ary variety over S that
contains A. As a special case, similar conclusions are obtained with regard to the idempotent
monad VΘ on P(S-Alg)tame obtained via 10.24, and we thus deduce that the monads VΘ
and VΘG are identical. For each tame set A of S-algebras, we call VΘG (A) = VΘ(A) the
J -ary variety over S generated by A. We may also consider the idempotent monad
ΘGV on P(EqnG (S))tame, whose fixed points are the equational theories of 10.21. Given a
tame set E of G -parametrized S-equations, we call ΘGV(E) the equational theory over
S generated by E (with parameters in G ), as it is the smallest equational theory over S
that contains E .

If the generating set G of C0 is small, then we can show that every set of parametrized
S-equations is tame, and that every set of S-algebras is tame. We begin with the following
observation:

Lemma 10.26. Suppose that G is small. Then every set of G -parametrized S-equations is
small.

Proof. EqnG (S) is small since G is small, J is small, and C0 is locally small, and the result
follows.

Proposition 10.27. Suppose that G is small. Then every set E of parametrized S-equations
is tame.

Proof. By 10.7, [E ]G is a set of G -parametrized S-equations with Sat∗(E) = Sat∗ ([E ]G ), and
[E ]G is small by 10.26.

Lemma 10.28. Let A be a set of S-algebras, and suppose that SatG∗ (A) is a tame set of
parametrized S-equations. Then A is tame.

Proof. By 10.20, Sat∗SatG∗ (A) is a tame set of S-algebras, so by 10.12 there is a small set
B of S-algebras such that SatG∗ Sat

∗SatG∗ (A) = SatG∗ (B). But Sat
G
∗ Sat

∗SatG∗ (A) = SatG∗ (A) by
10.22 and a general property of Galois connections, and the result follows, by 10.12.

Proposition 10.29. Suppose that G is small. Then every set A of S-algebras is tame.
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Proof. By 10.27, SatG∗ (A) is a tame set of parametrized S-equations, so A is tame by 10.28.

Theorem 10.30. Suppose that C0 has a small generating set. Then, for any (possibly large)
generating set G for C0, the Galois connections of 10.9 and of 10.22 are identical and so
may be written as V ⊣ ΘG : P(S-Alg)op → P(EqnG (S)). With this notation, the following
are equivalent, for a (possibly large) set A of S-algebras: (1) A is a J -ary variety over S;
(2) A = V(ΘG (A)); (3) there is a (possibly large) set E of G -parametrized S-equations such
that A = V(E).

Proof. By hypothesis, C0 has some small generating set H , which need not coincide with G .
Nevertheless, we may apply 10.27 and 10.29 with respect to H in order to deduce that every
set of parametrized S-equations is tame and that every set of S-algebras is tame. Hence,
the result now follows from 10.23.

Corollary 10.31. Suppose that C0 has a small generating set. Then there is a Galois
connection V ⊣ Θ : P(S-Alg)op → P(Eqn(S)) for which the fixed points of the associated
idempotent monad VΘ on P(S-Alg) are precisely the J -ary varieties over S.

Proof. This follows from 10.30 in the case where G = obC .

Definition 10.32. Let A be a tame set of S-algebras. We say that a J -ary variety B over
S is generated by A if B = VΘ(A) (equivalently, if B = VΘG (A), 10.25). As a special
case, given an S-algebra A, we say that the J -ary variety B over S is generated by A if
it is generated by {A}.

With this terminology, 10.18 entails the following:

Corollary 10.33. Every J -ary variety B = ob(P-Alg) over S is generated by the set
{TPJ | J ∈ obJ } consisting of the free P-algebras TPJ on objects J of J .

We shall conclude this section with some examples of J -ary varieties generated by a single
S-algebra, for which we shall need the following results:

Lemma 10.34. Let P be a free-form J -presentation over S. Then (1) P-Alg is closed
under (weighted) limits in S-Alg, and (2) P-Alg is closed under subobjects in S-Alg, in the
sense that if m : A → B is a monomorphism in S-Alg and B is a P-algebra, then A is a
P-algebra.

Proof. (1) follows from the fact that both US : S-Alg→ C and UP : P-Alg → C are strictly
monadic V -functors (by 5.8 and 5.20) and so preserve and create all limits. If m : A→ B is
a monomorphism in S-Alg and B satisfies a given parametrized S-equation t

.
= u, then it is

straightforward to verify that A satisfies t
.
= u, using the naturality of JtK and JuK. (2) now

follows.

Proposition 10.35. Let P be a free-form J -presentation over S, and let A be a tame
set of P-algebras. Suppose that for each J ∈ obJ , the free P-algebra TPJ is a subobject
of some (weighted) limit, in S-Alg, of objects in A. Then A generates the J -ary variety
ob(P-Alg) over S.
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Proof. Let B be the J -ary variety over S generated by A. Then B ⊆ ob(P-Alg), since A is
a subset of the J -ary variety ob(P-Alg) over S. By 10.34, B is closed in S-Alg under limits
and subobjects. Hence, our hypothesis entails that {TPJ | J ∈ obJ } ⊆ B, so by 10.33 we
deduce that ob(P-Alg) ⊆ B.

Example 10.36. Let R be an internal rig in a complete and cocomplete cartesian closed
category V , and let P = (S,E) be the diagrammatic (or, equivalently, free-form) SF(V )-
presentation of internal (left) R-modules discussed in 6.1, so that P-Alg = R-Mod. Given
a finite cardinal n, let us write also n to denote the nth copower of 1 in V and note that
the free internal R-module on n is the (conical) power Rn in R-Mod (e.g. by [32, 6.4.5]),
where R itself is regarded as an R-module by multiplication on the left. Hence, the single
R-module R generates the SF(V )-ary variety ob(R-Mod) over S, by 10.35.

Example 10.37. Again let R be an internal rig in a complete and cocomplete cartesian
closed category V , but this time let P = (S,E) be the diagrammatic SF(V )-presentation of
(internal left) R-affine spaces discussed in 8.15, so that P-Alg = R-Aff. Let us regard R itself
as a left R-affine space (taking R-affine combinations in R in the usual way, [32, 8.6]). Given
a finite cardinal n, the free R-affine space on n (or rather, on the nth copower of 1 in V ) is
the subobject Rn,aff →֒ Rn in R-Aff of n-tuples with sum 1, by [32, §8] (or by 8.15). Hence,
the single R-affine space R generates the SF(V )-ary variety ob(R-Aff) over S, by 10.35.

Noting that 10.34 involves closure properties for J -ary varieties over S that are related to
the Birkhoff variety theorem [5], it is natural to ask whether a generalization of the latter
theorem can be proved in the present general setting, perhaps under additional hypotheses;
we leave this question for future work.
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