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Nonexistence of colimits in naive discrete homotopy theory
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Abstract

We show that the quasicategory defined as the localization of the category of (simple) graphs at the class of

A-homotopy equivalences does not admit colimits. In particular, we se�le in the negative the question of whether

the A-homotopy equivalences in the category of graphs are part of a model structure.

During a recent workshop “Discrete and Combinatorial Homotopy�eory” at the American Institute of Math-
ematics, it was asked whether A-homotopy equivalences are part of a model structure on the category of simple
graphs. In this short note, we se�le this question in the negative by considering the quasicategory associated
to the marked category (i.e., a category along with a distinguished wide subcategory) of simple graphs and A-
homotopy equivalences does not have pushouts. �e result then follows, since model categories are known to
present quasicategories that are both complete and cocomplete.

A-homotopy theory, introduced by Barcelo and collaborators [BKLW01,BBdLL06, BL05] based on the earlier
work of Atkin [Atk74, Atk76], uses methods of homotopy theory to study combinatorial properties of graphs.
In studying A-homotopy theory, one considers two classes of maps: A-homotopy equivalences, i.e., maps with
inverses up to A-homotopy, and weak A-homotopy equivalences, i.e., maps inducing isomorphisms on all A-
homotopy groups �ese two choices lead to two distinct homotopy theories, and we refer to the former of those
as the naive discrete homotopy theory and the la�er as the discrete homotopy theory.

A concise, 3-page introduction to A-homotopy theory can be found in [CKL23, §12] and we will follow the
notation established there. In particular, we write Graph for the (locally Kan) cubical category of graphs and
N�Graph for its cubical homotopy coherent nerve. As observed there, the quasicategory N�Graph is the local-
ization of the category of simple graphs at the class of A-homotopy equivalences. �e box product of graphs is
denoted ⊗ and its right adjoint by hom⊗(−,=). �e nerve of a graph G is a cubical set NG. �e geometric
product of cubical sets is also denoted by ⊗. �e right adjoint to the functor − ⊗ X (or X ⊗ −) is denoted by
homL(X,−) (respectively, homR(X,−)).

Our main theorem (�eorem 5) asserts that a certain span does not admit a colimit, revealing an inherent
rigidity of A-homotopy equivalences. From that, we deduce that A-homotopy equivalences are not part of any
model or cofibration category structure on the category of simple graphs. �is is of course not an issue with
discrete homotopy theory, but instead with the class of A-homotopy equivalences, which for independent reasons
is not useful for combinatorial applications either.

Lastly, we mention that Goyal and Santhanam have recently established similar results [GS21, GS23] in the
context of Dochtermann’s ×-homotopy theory [Doc09]. �eir techniques are more direct and do not involve
higher category theory. Our proof implies not only that there is no model/cofibration category structure on simple
graphs with A-homotopy equivalences, but also that there cannot be such a structure on any marked category DK-
equivalent to it. In other words, we identify a problem with the homotopy theory, not a presentation thereof.
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Sepcifically, we consider the following diagram

I0 ⊔ I0 I0

I0

which we denote by D : Λ2
0 → N�Graph. We will show that this diagram does not admit a pushout. Informally,

the outline of our argument is as follows.

1. We give an explicit description of the objects and morphisms (i.e. the 1-skeleton) of the quasicategory of
cones under D. A cone under D may be thought of as a graph G and a cycle in G. A morphism between
cones consists of a graph map f : G → H and a homotopy between the induced cycles in H .

2. �is description then shows there is no initial cone under D: given a cycle in a graph G of length m, its
image under any mapG → Cm+1 must be null-homotopic (whereCm+1 denotes the cycle graphwithm+1
vertices). �is implies there can be no homotopy from the image of this cycle to the tautological cycle in
the graph Cm+1. �at is, for every cone λ under D, there exists a cone λ′ for which there is no morphism
λ → λ′.

�e formal statement and proof of (1) may be found in �eorems 2 and 4. �e precise formulation of (2) is given
by �eorem 5.

We begin with a short calculation.

Lemma 1. For any graph G and set S, we have an isomorphism

cSet(�n,N hom⊗(S × I0, G)) ∼= cSet(S × �
n,NG)

natural in G.

Proof. We calculate

cSet(�n,N hom⊗(S × I0, G)) ∼= cSet(�n, homL(S × �
0,NG)) by [CK22, Prop. 3.10]

∼= cSet(�n ⊗ (S × �
0),NG)

∼= cSet(S × (�n ⊗ �
0),NG)

∼= cSet(S × �
n,NG).

For a graph map f : I∞ → G that is stable in the positive (or negative) direction, we write f(∞) (or f(−∞),
respectively) for the value of f in the stable range.

Theorem 2. �ere is a bijection between the set of objects of the quasicategory of cones underD and the set of tuples

(G, p1, p2, p3, p4), where

• G is a graph; and

• p1, p2, p3 and p4 are maps I∞ → G which are stable in both directions such that

p1(∞) = p2(∞) p1(−∞) = p3(−∞) p2(−∞) = p4(−∞) p3(∞) = p4(∞).

Proof. As Λ2
0 ∗ ∆0 ∼= ∆1 × ∆1, a cone under D is a square λ : ∆1 × ∆1 → N�Graph such that the maps

λ|id ×0, λ|0×id : ∆1 → N�Graph are both I0 ⊔ I0 → I0. Identifying ∆1 × ∆1 as the pushout

∆1 ∆2

∆2 ∆1 × ∆1

∂
1

∂
1

p
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by the C ⊣ N�-adjunction, this corresponds to a commutative square

C[1] C[2]

C[2] Graph

∂
1

∂
1

i.e. two cubical functors T, U : C[2] → Graph such that T∂2, U∂2 : C[1] → Graph are both the map I0 ⊔ I0 → I0.
We depict T and U as two homotopy-commutative triangles in the diagram,

I0 ⊔ I0 I0

I0 G

[v1,v3] v2

p12

v4

p34

where p12 : �1 → N hom⊗(I0 ⊔ I0, G) denotes the image of the non-degenerate 1-cube in C[2](0, 2) under T ,
and p34 : �1 → N hom⊗(I0 ⊔ I0, G) denotes its image under U . By Lemma 1, we may identify p12 and p34 with
maps [p1, p2], [p3, p4] : �1 ⊔ �

1 → NG respectively, and naturality gives that:

p1∂1,0 = v1 p1∂1,1 = v2 p2∂1,0 = v3 p2∂1,1 = v2

p3∂1,0 = v1 p3∂1,1 = v4 p4∂1,0 = v3 p4∂1,1 = v4.

By definition, the 1-cubes p1, p2, p3, p4 : �1 → NG are stable maps I∞ → G that satisfy the desired endpoint
equalities.

Remark 3. Let (G, p1, p2, p3, p4) be a cone under D (under the bijection in �eorem 2). One may identify each
pi : I∞ → G with a map Im → G wherem is the smallest positive integer which makes pi stable. With this, the
concatenation p1 · p−1

2 · p4 · p−1
3 gives a cycle in G,

v1
. . .

p1
v2

...
p2

v3

...
p3

v4

. . .

p4

thus justifying the intuition that a cone under D corresponds to a cycle in a graph G. However, this process does
not give a well-defined function from cones under D to tuples (G ∈ Graph, f : Cm → G). For instance, if one
modifies the cycle p1 ·p−1

2 ·p4 ·p−1
3 by repeating any endpoint of some pi then one obtains a different cycleCn → G

which corresponds to the same cone underD. However, each pi induces a well-defined path up to homotopy, thus
the cycle p1 · p−1

2 · p4 · p−1
3 represents a well-defined element of the discrete fundamental group of G.

Theorem 4. Under the bijection of �eorem 2, let (G, p1, p2, p3, p4) and (H, q1, q2, q3, q4) be two cones under D.

�ere is a bijection between the set of 1-simplices in in the quasicategory of cones underD from (G, p1, p2, p3, p4) to
(H, q1, q2, q3, q4) and the set of tuples (f, α1, α2, α3, α4) where

• f is a graph map G → H ; and
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• αi is a homotopy I⊗2
∞ → H from f ◦ pi to qi for i = 1, 2, 3, 4.

Proof. A map λ → λ′ between cones under D is a map α : Λ2
0 ∗ ∆1 → N�Graph such that α|Λ2

0
∗{0} = λ and

α|Λ2

0
∗{1} = λ′. Writing Λ2

0 ∗ ∆1 as a pushout:

∆2 ∆3

∆3 Λ2
0 ∗ ∆1

∂
1

∂
1

p

as before, this corresponds to the data of two cubical diagrams T, U : C[3] → Graph, which we depict below

G

I0 ⊔ I0 I0

H

f

[v1,v3]

[w1,w3]

v2

w2

G

I0 ⊔ I0 I0

H

f

[v1,v3]

[w1,w3]

v4

w4

(note our depiction omits the data of the 1-cubes and 2-cube in the mapping spaces of C[3]). Let α12, α34 : �2 →
N hom⊗(I0 ⊔ I0, H) denote the images of the non-degnerate 2-cube in C[3](0, 3) under T and U , respectively. By
Lemma 1, we identify α12 and α34 with maps [α1, α2], [α3, α4] : �2 ⊔�

2 → NH and apply naturality to identify
the faces of each square. We depict these 2-cubes below:

w1 w2

fv1 fv2

q1

α1

f◦p1

w3 w2

fv3 fv2

q2

α2

f◦p2

w1 w4

fv1 fv4

q3

α3

f◦p3

w3 w4

fv3 fv4

q4

α4

f◦p4

Theorem 5. For any cone λ under D, there exists a cone λ′ under D such that there is no cone map λ → λ′. In

particular, the diagram D does not have a pushout in N�Graph.

Proof. Fix a cone λ under D. By �eorem 2, we identify λ as a tuple (G, p1, p2, p3, p4). As the concatenation
p1 · p−1

2 · p4 · p−1
3 represents a well-defined element of A1(G, v1) (see Remark 3), let ϕ : Cm → G be a cycle of

minimal length which represents this concatenation.
Let ψ : I∞ → Cm+5 denote the identity cycle on Cm+5 based at 0 and const0 : I∞ → Cm+5 denote the

constant map at 0. By �eorem 2, the tuple (Cm+5, ψ, const0, const0, const0) is a cone over D. We assume there
exists a morphism of cones from (G, p1, p2, p3, p4) to (Cm+5, ψ, const0, const0, const0) and derive a contradiction.

By �eorem 4, this morphism corresponds to a tuple (f, α1, α2, α3, α4). �e horizontal concatenation α1 ·
α−1

2 · α4 · α−1
3 induces a square

0 0

fv1 fv1

ψ

γ γ

f◦ϕ

where γ denotes the restriction α1|(−∞,−) : I∞ → Cm+5 of the square α1 to its le� leg. �e cycle f ◦ϕ is (based)
homotopic to the constant path as it has length at mostm. �us, this square yields a chain of based homotopies

γ ∼ γ · (f ◦ ϕ) ∼ ψ · γ.
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�is implies ψ is based homotopic to the constant cycle, which is a contradiction as Cm+5 is a cycle of length
greater than 5.

Corollary 6. �e class of A-homotopy equivalences is not part of a model structure or a cofibration category structure

on the category of simple graphs.

Proof. By the preceding theorem, the localization of simple graphs at the class of A-homotopy equivalences does
not admit pushouts. Since the localization of a model category or a cofibration category at its weak equivalences
must be cocomplete [KS17, Szu17], the result follows.
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