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Abstract

We prove and explain several classical formulae for homotopy (co)limits
in general (combinatorial) model categories which are not necessarily sim-
plicially enriched. Importantly, we prove versions of the Bousfield–Kan
formula and the fat totalization formula in this complete generality. We
finish with a proof that homotopy-final functors preserve homotopy lim-
its, again in complete generality.
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IfC is amodel category and Γ a category, we denote byC Γ = Fun(Γ,C ) the cat-
egory of functors Γ → C , which we shall also refer to as “diagrams” of shape Γ .
It is natural to call a map of diagrams α : F → G in C Γ a weak equivalence if
αγ : F(γ)→ G(γ) is a weak equivalence in C for all objects γ ∈ Γ . We shall re-
fer to such weak equivalences as componentwiseweak equivalences. But then
we immediately run into the problem that the limit functor lim

←−−−
: C Γ →C

does not in general preserve weak equivalences. Since lim
←−−−

is a right adjoint,
this leads us into trying to derive it. The right derived functor of lim

←−−−
is called

the homotopy limit and is denoted holim
←−−−−−−

: C Γ → C . Dually, the left derived
functor of lim

−−−→
is called the homotopy colimit and is denoted holim

−−−−−−→
.

For many purposes, the abstract existence of homotopy limits is all you
need. However, there are also many cases where a concrete, minimalistic re-
alization of them is useful for working with abstract notions. For instance,
this paper grew out of an attempt to concretize a concept from derived alge-
braic geometry. More specifically, we wanted to develop a homological algebra
model for the dg-category of quasi-coherent sheaves on a dg-scheme which
are equivariant with respect to the action of a group dg-scheme. This ques-
tion was addressed in Block, Holstein, and Wei (2017) where a partial result
was obtained under serious restrictions (Proposition 13). The general case was
stated as a conjecture, see Conjecture 1 in the same paper. In the companion
paper to this one, Arkhipov and Ørsted (2018), we cover the general case and
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prove that conjecture (see Theorem 4.1.1), and the key result of homotopical
nature is proved in the present note (see Example 6.4).

Quillen’s model category machinery tells us how to derive the limit: We
must equip the diagram category C Γ with a model structure with component-
wise weak equivalences and in which the limit functor lim

←−−−
: C Γ → C is a right

Quillen functor. In this case, the derived functor is given by holim
←−−−−−−

F = lim
←−−−

R(F)
for some fibrant replacement R(F) in C Γ . Indeed, Corollary 2.4 below shows
that such a model structure on C Γ exists e.g. if the model category C is
combinatorial. More precisely, we introduce the injective model structure C Γ

Inj

where weak equivalences and cofibrations are calculated componentwise. De-
noting by const : C → C Γ the constant functor embedding, we clearly see
that const : C ⇄ C Γ

Inj : lim←−−− is a Quillen adjunction since const preserves (triv-
ial) cofibrations.

The injective model structure being in general rather complicated, calcu-
lating such a replacement of a diagram in practice becomes very involved for
all but the simplest shapes of the category Γ . Therefore, traditionally, other
tools have been used. One of the most popular techniques involves adding a
parameter to the limit functor lim

←−−−Γ
before deriving it. The result is the end bi-

functor
∫

Γ
: Γop × Γ → C (introduced below) which is in general much easier

to derive.

One of the classical accounts of this technique is Hirschhorn (2003) who
mainly works in the setting of simplicial model categories, which are model
categories enriched over simplicial sets, and which furthermore are equipped
with a powering functor

SSet
op ×C −→ C , (K,c) 7−→ cK ,

and a copowering functor

SSet×C −→ C , (K,c) 7−→ K ⊗ c,

satisfying some compatibility relations with the model structure. He then es-
tablishes the classical Bousfield–Kan formula

(0.1) holim
←−−−−−−

F =

∫

γ∈Γ
F(γ)N (Γ/γ),

where we write N (Γ/γ) for the nerve of the comma category of maps in Γ
with codomain γ . Or rather, he uses this formula as his definition of homotopy
limits (see definition 18.1.8). A proof that this formula agrees with the general
definition of homotopy limits is due to Gambino (2010, equation (2)) using the
machinery of Quillen 2-functors.

Hirschhorn then generalizes this formula to arbitrary model categories in
chapter 19, definition 19.1.5. He shows that even for non-simplicial model
categories, one can replace simplicial powerings and copowerings by a weaker
notion, unique up to homotopy in a certain sense. He then again takes the
formula (0.1) to be his definition of a homotopy limit. This paper is devoted
to proving why this formula agrees with the general definition of a homotopy
limit (similarly to what Gambino did in the simplicial setting). To the authors’
knowledge, such a proof has not been carried out in the literature before.
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1 The end construction

Let Γ and C be categories, C complete and cocomplete, and let H : Γop×Γ →
C a bifunctor. The end of H is an object

∫

Γ
H =

∫

γ∈Γ
H(γ,γ)

in C , together with morphisms
∫

Γ
H → H(γ,γ) for all γ ∈ Γ , such that for

any f : γ → γ ′, the following diagram commutes:

∫

Γ
H H(γ,γ)

H(γ ′ ,γ ′) H(γ,γ ′).

H(γ,f )

H(f ,γ ′ )

Furthermore,
∫

Γ
H is universal with this property, meaning that if A is an-

other object of C with a collection of arrows A → H(γ,γ) for all γ , subject
to the same commutativity conditions, then these factor through a unique ar-
row A→

∫

Γ
H :

A

∫

Γ
H H(γ,γ)

H(γ ′ ,γ ′) H(γ,γ ′).

H(γ,f )

H(f ,γ ′ )

Clearly, we may obtain the end by the formula

∫

Γ
H = Eq

(
∏

γ∈Γ

H(γ,γ)⇒
∏

f : γ→γ ′

H(γ,γ ′)
)

.

Here, the second product runs over all morphisms f : γ → γ ′ in Γ , and the
two arrows are given by f∗ : H(γ,γ)→ H(γ,γ ′) resp. f ∗ : H(γ ′ ,γ ′)→ H(γ,γ ′).
There is a dual notion of a coend, denoted instead by

∫ Γ
H, which we shall not

spell out.

1.1. Example. Given functors F,G : Γ → Γ ′, we obtain a bifunctor

H = HomΓ ′ (F(−),G(−)) : Γ
op × Γ → Set,

and the universal property shows that

∫

Γ
H = HomFun(Γ,Γ ′)(F,G)

is the set of natural transformations between F and G. ©
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1.2. Example. A diagram F ∈ C Γ may be regarded as a diagram in C Γop×Γ

which is constant with respect to the first variable. In that case, it follows
from the universal property of the end that

∫

Γ
F = lim

←−−−Γ
F recovers the limit of

the diagram. ©

1.3. Proposition. The end fits as the right adjoint of the adjunction

∐

HomΓ
: C C Γop×Γ :

∫

Γ
.

The left adjoint takes A ∈ C to the bifunctor
∐

HomΓ (−,−)
A : Γop × Γ → C .

Proof. Clear from the definition. �

This is equivalent to the statement that we have an adjunction

Set
Γop×Γ

(

HomΓ ,C (A,F)
)

� C
Γop×Γ

(

A,
∫

Γ
F
)

for A ∈ C . This says that the end is the weighted limit C Γop×Γ → C with
weight HomΓ . The dual statement for coends is that the coend functor

∫ Γ
: C Γop×Γ −→C

is left adjoint to
∏

HomΓ
.

2 The projective and injective model structures

If C is a model category and Γ any category, there is no completely gen-
eral way to turn the functor category C Γ = Fun(Γ,C ) into a model category.
The naïve approach, calculating weak equivalences, cofibations, and fibra-
tions componentwise, will not in general yield a model structure. It is natural
to demand that at least the weak equivalences must be calculated componen-
twise for any model structure to be satisfactory. In general, however, at least
one of the other two classes will in return become more complicated. The two
most natural model structures one can hope for (which may or may not exist)
are

• The projective model structure C Γ
Proj where weak equivalences and fi-

brations are calculated componentwise.

• The injective model structure C Γ
Inj where weak equivalences and cofi-

brations are calculated componentwise.

Existence of these model structures depends heavily on the structure of the
target category C (see Proposition 2.5 below). We shall also use the attributes
“projective(ly)” and “injective(ly)” when referring to these model structures,
so e.g. “projectively cofibrant” means cofibrant in the projective model struc-
ture.
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2.1. Proposition (Lurie 2009, Proposition A.2.8.7).
If C is a model category and f : Γ → Γ ′ a functor, denote by f ∗ the restriction
functorC Γ ′ → C Γ . Then f ∗ fits as the right and left adjoint of Quillen adjunctions

f! : C
Γ
Proj C Γ ′

Proj : f
∗ resp. f ∗ : C Γ ′

Inj C Γ
Inj : f∗

whenever the model structures in question exist.

The adjoints f! and f∗ are the usual left and right Kan extensions along f ,
which are given by limits

(2.2) f!F(γ
′) = lim

−−−→
f (γ)→γ ′

F(γ) and f∗F(γ
′) = lim

←−−−
γ ′→f (γ)

F(γ).

These limits are taken over the categories of maps f (γ)→ γ ′ (resp. γ ′ → f (γ))
in Γ ′ for varying γ ∈ Γ .

Proof. Since the adjunctions in question exist, their being Quillen follows
from the observation that f ∗ clearly preserves (trivial) projective fibrations
and (trivial) injective cofibrations. �

2.3. Corollary. Assume in the following that the relevant model structures exist.

(i) If ϕ : c→ c′ is a (trivial) cofibration in C and γ0 ∈ Γ is an object, then the
coproduct map

∐

Γ(γ0 ,−)
ϕ :

∐

Γ(γ0,−)
c→

∐

Γ(γ0,−)
c′ is a (trivial) cofibration

in C Γ
Proj. We shall refer to such (trivial) cofibrations as simple projective

cofibrations.

(ii) If f : Γ → Γ ′ is a functor, then f! : C
Γ
Proj → C

Γ ′

Proj preserves simple (trivial)

projective cofibrations, taking
∐

Γ(γ0,−)
ϕ to

∐

Γ ′(f (γ0),−)
ϕ.

(iii) Ifψ : c→ c′ is a (trivial) fibration inC and γ0 ∈ Γ is an object, then the prod-
uct map

∏

Γ(−,γ0)
ψ :

∏

Γ(−,γ0)
c →

∏

Γ(−,γ0)
c′ is a (trivial) fibration in C Γ

Inj.
We shall refer to such (trivial) fibrations as simple injective fibrations.

(iv) If f : Γ → Γ ′ is a functor, then f∗ : C
Γ
Inj → C

Γ ′

Inj preserves simple (trivial)

injective fibrations, taking
∏

Γ(−,γ0)
ψ to

∏

Γ ′(−,f (γ0))
ψ.

Proof. Applying Proposition 2.1 to the embedding ι : γ0 →֒ Γ of the full sub-
category with γ0 as the only object, we get that ι!ϕ is a (trivial) cofibration.
Now ι!ϕ =

∐

Γ(γ0,−)
ϕ by the above colimit formula for left Kan extension. The

statement (ii) follows by applying Kan extensions to the diagram

γ0 Γ

f (γ0) Γ ′
f

and using that Kan extensions, being adjoints to restriction, respect composi-
tions. The other statements are dual. �

2.4. Corollary. Denote by const : C → C Γ the functor taking c ∈ C to the con-
stant diagram at c.
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(i) If C Γ
Proj exists, then lim

−−−→
: C Γ

Proj⇄ C : const is a Quillen adjunction.

(ii) If C Γ
Inj exists, then const : C ⇄ C Γ

Inj : lim←−−− is a Quillen adjunction.

Proof. Apply Proposition 2.1 to the functor Γ → ∗. �

2.5. Proposition (Lurie 2009, Proposition A.2.8.2).
If C is a combinatorial model category, both the projective and injective model
structures on C Γ exist and are combinatorial.

Given a generating set of (trivial) cofibrations in C , the corresponding simple
(trivial) cofibrations in C Γ

Proj, for all choices of γ0 ∈ Γ , form a generating set of
cofibrations.

Sketch of proof. For the projective model structure, one checks by hand that
simple (trivial) cofibrations have the left lifting property with respect to all
degreewise fibrations (trivial fibrations). One then checks that the mentioned
simple (trivial) cofibrations form a generating set. The injective model struc-
ture, on the other hand, requires more work and has a less explicit set of gen-
erating cofibrations. �

2.6. Proposition (ibid., Remark A.2.8.6).
A Quillen adunction F : C ⇄ D :G between combinatorial model categories in-
duces Quillen adjunctions

C Γ
Proj D Γ

Proj and C Γ
Inj D Γ

Inj

which are Quillen equivalences if (F,G) are.

3 The Reedy model structure

A third approach exists to equip diagram categories C Γ with a model struc-
ture, provided the category Γ has the structure of a Reedy category. Remark-
ably, unlike the projective and injective cases, this does not rely on any inter-
nal structure of C .

A category Γ is called Reedy if it contains two subcategories Γ+,Γ− ⊂ Γ ,
each containing all objects, such that

• there exists a degree function ObΓ → Z, such that non-identity mor-
phisms from Γ+ strictly raise the degree and non-identity morphisms
from Γ− strictly lower the degree (more generally, an ordinal number
can be used instead of Z);

• each morphism f ∈ Γ factors uniquely as f = gh for g ∈ Γ+ and h ∈ Γ−.

We note that a direct category is Reedy with Γ+ = Γ , and that an inverse
category is Reedy with Γ− = Γ .

3.1. Remark. If Γ is Reedy, then so is Γop, with (Γop)+ = (Γ−)
op and (Γop)− =

(Γ+)
op. △
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3.2. Example. The simplex category ∆ is Reedy with ∆+ consisting of injec-
tive maps and ∆− consisting of surjective maps. The degree function does the
obvious thing, [n] 7→ n. ©

If Γ is a Reedy category and C is any model category, and if F ∈ C Γ is a
diagram, we define the latching andmatching objects by

LγF = lim
−−−→

(α→
,

γ)∈Γ+

F(α) and MγF = lim
←−−−

(γ→
,

α)∈Γ−

F(α).

In other words, the limit (resp., colimit) runs over the category of all non-
identity maps α → γ in Γ+ (resp., γ → α in Γ−). The latching map is the
canonical map LγF → F(γ), and the matching map is the canonical map
F(γ)→MγF.

If f : F→ G is a map in C Γ , then the relative latching map is the map

F(γ)
∐

LγF
LγG −→ G(γ)

given by the universal property of the pushout. We say that f is a (trivial)
Reedy cofibration if the relative latching map is a (trivial) cofibration in C .
If F = ∅, we recover the latching map. Dually, the relative matching map is
the map

F(γ) −→ G(γ)
∏

MγG
MγF

given by the universal property of the pullback. We say that f is a (trivial)
Reedy fibration if the relative matching map is a (trivial) fibration in C . If
F = ∗, we recover the matching map.

3.3. Proposition (Hirschhorn 2003, Theorem 15.3.4).
If C is an arbitrary model category and Γ is a Reedy category, then this defines a
model structure on C Γ , called the Reedy model structure. The weak equivalences
are componentwise weak equivalences. We shall write C Γ

Reedy when we equip the
diagram category with this model structure.

3.4. Proposition (Lurie 2009, Example A.2.9.22).
Let C be a model category and Γ a Reedy category. Then

(i) If Γ = Γ+ is a direct category, the projective model structure C Γ
Proj exists and

coincides with the Reedy model structure.

(ii) If Γ = Γ− is an inverse category, the injective model structure C Γ
Inj exists and

coincides with the Reedy model structure.

Furthermore, a map f : F→ G in C Γ is a

(iii) (trivial) cofibration if and only if the restriction f |Γ+ : F |Γ+ →G|Γ+ is a (triv-
ial) projective cofibration in C

Γ+
Proj.

(iv) (trivial) fibration if and only if the restriction f |Γ− : F |Γ− → G|Γ− is a (trivial)
injective fibration in C

Γ−
Inj.
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3.5. Proposition (Hirschhorn 2003, Theorem 15.5.2).
If Γ and Γ ′ are both Reedy categories, then so is Γ ×Γ ′, and the three possible Reedy

model structures one can put on C Γ×Γ ′ agree, i.e.

C
Γ×Γ ′

Reedy =
(

C
Γ
Reedy

)

Γ ′

Reedy =
(

C
Γ ′

Reedy

)

Γ
Reedy.

4 Homotopy limits

The following theorem is the basis for all our homotopy limit formulae:

4.1. Theorem. Let C be a model category and Γ a category. Regard the functor
category C Γop×Γ as a model category in any of the following ways:

(i) as C Γop×Γ = (C Γop

Proj )
Γ
Inj (assuming this model structure exists);

(ii) as C Γop×Γ = (C Γ
Proj)

Γop

Inj (assuming this model structure exists);

(iii) as C Γop×Γ = C Γop×Γ
Reedy (assuming Γ is Reedy).

Then the end functor
∫

Γ
: C Γop×Γ →C is right Quillen.

Proof. We initially prove the first statement and obtain the second one by du-
ality. By Proposition 1.3, it suffices to check that the left adjoint

∐

HomΓ
takes

(trivial) cofibations in C to (trivial) cofibations in (C Γop

Proj )
Γ
Inj. If c→ c′ is a (triv-

ial) cofibration in C , then we must therefore consider the map
∐

Γ(−,−) c →
∐

Γ(−,−) c
′ in (C Γop

Proj )
Γ
Inj. Checking that this is a (trivial) injective cofibration

over Γ amounts, by definition, to checking this componentwise. But for a
fixed γ0 ∈ Γ , this component is

∐

Γ(−,γ0)
c→

∐

Γ(−,γ0)
c′, which is a simple (triv-

ial) projective cofibration in C Γop .
For the Reedy case, we recall from Propositions 3.4 and 3.5 that being a

(trivial) cofibration in the model category C Γ×Γop

Reedy = (C Γ
Reedy)

Γop

Reedy is equivalent
to the restriction being a (trivial) cofibration in

(

C
Γ+
Proj

)(Γop)+
Proj =

(

C
Γ+
Proj

)(Γ−)
op

Proj .

But we have, by the unique factorization property of Reedy categories, that

∐

Γ(−,−)

c =
∐

γ0∈Γ

∐

Γ−(−,γ0)

∐

Γ+(γ0,−)

c

for any c ∈ C . These consist of coproducts of exactly the same form as the ones
appearing in the definition of simple (trivial) projective cofibrations (Corol-
lary 2.3(i)). Thus we find that for any (trivial) cofibration c → c′ in C , the
map

∐

Γ(−,−) c→
∐

Γ(−,−) c
′ is a (trivial) cofibration in C Γop×Γ

Reedy . �

Thus we can derive the end using any of these three model structures,
when available. Write R

∫

Γ
: C Γop×Γ → C for the derived functor, which we

shall call the homotopy end.
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4.2. Corollary. If C is a combinatorial model category and Γ a category, then for
a diagram F ∈C Γ ,

holim
←−−−−−−Γ

F = R

∫

Γ
F =

∫

Γ
R(F),

where R is a fibrant replacement with respect to the model structure (C Γ
Proj)

Γop

Inj or,
if Γ is Reedy, in C Γop×Γ

Reedy .

Proof. First write holim
←−−−−−−

F = lim
←−−−

RΓ (F) for some fibrant replacement functorRΓ
in C Γ

Inj. Now Corollary 2.4(i) and Proposition 2.6 show that the constant func-
tor embedding C Γ

Inj →֒ (C Γop

Proj )
Γ
Inj is right Quillen and thus preserves fibrant

objects. Thus RΓ (F) is also fibrant in (C Γop

Proj )
Γ
Inj. This proves the first equality

sign. The second one is clear. �

Of course, even though F as a diagram inC Γop×Γ was constant with respect
to the first variable, R(F) is in general not. Remarkably, since ends calculate
naturality between the two variables, this often makes calculations of homo-
topy limits more manageable, compared to resolving the diagram inside C Γ

Inj.

4.3. Corollary. Suppose Γ is a direct category, and let R : C → C Γop

Inj be a functor
that takes c ∈C to a fibrant replacement of the constant diagram at c. Then

holim
←−−−−−−Γ

F =
∫

γ∈Γ
R(F(γ))(γ).

Proof. Clearly, R(F) is a fibrant replacement inside (C Γop

Inj )ΓProj. By Proposi-
tions 3.4 and 3.5, this model category is equal to

(

C
Γop

Inj

)

Γ
Proj =

(

C
Γop

Reedy

)

Γ
Reedy =

(

C
Γ
Reedy

)

Γop

Reedy =
(

C
Γ
Proj

)

Γop

Inj ,

so the result follows from Theorem 4.1. �

5 Bousfield–Kan formula

In Hirschhorn (ibid., chapter 19), homotopy limits are being developed for ar-
bitrary model categories via a machinery of simplicial resolutions. In this sec-
tion, we use Theorem 4.1/Corollary 4.2 to explain why this machinery works.
Throughout, we denote by SSet the category of simplicial sets endowed with
the Quillen model structure.

If C is a (complete) category and X· ∈ C
∆op

a simplicial diagram in C ,
we may extend X· to a continuous functor X : SSetop → C via the right Kan
extension along the Yoneda embedding ∆

op →֒ SSet
op:

XK = lim
←−−−
∆n→K

Xn, K ∈ SSet.

If C is a model category, the matching object at [n] is MnX· = X∂∆
n
, and so

X· being Reedy-fibrant is equivalent to the map Xn = X
∆
n
→ X∂∆

n
being a fi-

bration in C for all n.

5.1. Theorem (Bousfield–Kan formula). Suppose C is a combinatorial model
category, Γ a category, and F ∈ C Γ . Let R : C → C ∆

op
be a functor that takes c ∈

9



C to a Reedy-fibrant replacement of the constant ∆op-diagram at c. Let further-
more K ∈ SSetΓProj be a projectively cofibrant resolution of the point. Then

holim
←−−−−−−Γ

F =

∫

γ∈Γ
R(F(γ))K(γ).

One may prove (see e.g. Hirschhorn 2003, Proposition 14.8.9) that the di-
agram K(−) = N (Γ/−) ∈ SSetΓProj, taking γ to the nerve N (Γ/γ) of the comma
category Γ/γ of all maps in Γ with codomain γ , is a projectively cofibrant
resolution of the point. Thus we have

(5.2) holim
←−−−−−−Γ

F =

∫

γ∈Γ
R(F(γ))N (Γ/γ),

which is the classical form of the Bousfield–Kan formula.
The proof relies on the following standard lemma:

5.3. Lemma (Hovey 1999, Proposition 3.6.8).
Let C be a model category and F : SSet → C a functor preserving colimits and
cofibrations. Then F preserves trivial cofibrations if and only if F(∆n)→ F(∆0) is a
weak equivalence for all n.

Proof of Theorem 5.1. Clearly, R(F(−))· is a fibrant replacement of F with re-
spect to the model structure (C ∆

op

Reedy)
Γ
Proj. The theorem will follow if we prove

that R(F(−))K(−) is a fibrant replacements of F in (C Γ
Proj)

Γop

Inj . This will follow
from Ken Brown’s Lemma if we prove that the continuous functor

(

SSet
Γ
Proj

)op
−→

(

C
Γ
Proj

)

Γop

Inj , K(−) 7−→ R(F(−))K(−),

takes opposites of (trivial) cofibrations to (trivial) fibrations. (Trivial) cofibra-
tions in SSet

Γ
Proj are generated from simple (trivial) projective cofibrations via

pushouts and retracts, c.f. Proposition 2.5. Thus by continuity of the functor,
it suffices to prove the statement for simple (trivial) cofibrations. We therefore
let

∐

Γ(γ0,−)
K →֒

∐

Γ(γ0 ,−)
L be one such, where K →֒ L is a (trivial) cofibration

and γ0 ∈ Γ . This is mapped to
∏

Γ(γ0,−)
R(F(−))L→

∏

Γ(γ0,−)
R(F(−))K .

Thus we must show that the composition

SSet
op

∏

Γ (γ0 ,−)
−−−−−−−→

(

SSet
Γop

Proj

)op
−→

(

C
Γ
Proj

)

Γop

Inj , K 7−→
∏

Γ(γ0,−)
R(F(−))K ,

takes (trivial) cofibrations to (trivial) fibrations. Checking that it takes cofi-
brations to fibrations amounts to checking this for the generating cofibra-
tions ∂∆n →֒ ∆

n in SSet. This holds by the assumption that R(F(−))· is compo-
nentwise Reedy-fibrant. Since the functor takes colimits to limits, the claim
now follows from the (dual of) the lemma. �

6 Homotopy-initial functors

A functor f : Γ → Γ ′ is called homotopy-initial if for all objects γ ′ ∈ Γ ′, the
nerve N (f /γ ′) is contractible as a simplicial set; here f /γ ′ denotes the comma
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category whose objects are pairs (γ,α) where α is a map f (γ) → γ ′. A mor-
phism (γ1,α)→ (γ2,α) is a morphism γ1→ γ2 in Γ making the diagram

f (γ1)

γ ′

f (γ2)

commute. We aim to reprove the statement

6.1. Theorem (Hirschhorn 2003, Theorem 19.6.7).
Suppose C is a combinatorial model category and Γ,Γ ′ two categories. If f : Γ →
Γ ′ is homotopy-initial, then we have

holim
←−−−−−−Γ ′

F = holim
←−−−−−−Γ

f ∗F

for all F ∈ C Γ ′ .

This relies on a few technical lemmas:

6.2. Lemma. If f : Γ → Γ ′ is a functor, then f!N (Γ/−) = N (f /−) ∈ SSet
Γ ′ . In

particular, since N (Γ/−) ∈ SSetΓProj is cofibrant, N (f /−) ∈ SSetΓ
′

Proj is cofibrant by
Proposition 2.1.

Proof. Since colimits in diagram categories over cocomplete categories can be
checked componentwise, this boils down to the observation

lim
−−−→

f (γ)→γ ′
N (Γ/γ)n =N (f /γ ′)n.

�

The following lemma is inspired by Hirschhorn (ibid., Proposition 19.6.6).
See also Riehl (2014, Lemma 8.1.4).

6.3. Lemma.
Suppose that C is a complete category and that Γ and Γ ′ are two categories with a
functor f : Γ → Γ ′. Then we have

∫

γ∈Γ
F(f (γ))N (Γ/γ) =

∫

γ ′∈Γ ′
F(γ ′)N (f /γ ′ )

for F ∈ (C ∆
op
)Γ (see the previous chapter for an explanation of the power notation).

Proof. For the purpose of the proof, we recall that the Kan extension formulas
in (2.2) may be equivalently written in terms of (co)ends:

f!F(γ
′) =

∫ γ∈Γ

Γ ′(f (γ),γ ′)× F(γ) and f∗F(γ
′) =

∫

γ∈Γ
F(γ)Γ

′(γ ′ ,f (γ)).

Here we are using the natural copowering and powering of Set on C , given
by S × c =

∐

S c and c
S =

∏

S c for S ∈ Set and c ∈ C , which make sense when-
ever C is complete resp. cocomplete. We shall furthermore make use of the
so-called “co-Yoneda lemma” which says that

G(f (γ)) =

∫

γ ′∈Γ ′
G(γ ′)Γ

′(f (γ),γ ′) for all G ∈C Γ ′ .
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Finally, we use “Fubini’s theorem” for ends, which says that ends, being limits,
commute. This together yields

∫

γ∈Γ
F(f (γ))N (Γ/γ) =

∫

γ∈Γ

∫

[n]∈∆
F(f (γ))

N (Γ/γ)n
n

=

∫

γ∈Γ

∫

[n]∈∆

∫

γ ′∈Γ ′

(

F(γ ′)
Γ ′(f (γ),γ ′ )
n

)N (Γ/γ)n

=

∫

γ∈Γ

∫

[n]∈∆

∫

γ ′∈Γ ′
F(γ ′)

Γ ′(f (γ),γ ′ )×N (Γ/γ)n
n

=

∫

[n]∈∆

∫

γ ′∈Γ ′
F(γ ′)

∫ γ∈Γ
Γ ′(f (γ),γ ′ )×N (Γ/γ)n

n

=

∫

γ ′∈Γ ′
F(γ ′)

f!N (Γ/−)(γ ′)
n =

∫

γ ′∈Γ ′
F(γ ′)N (f /γ ′ )

where the last equality sign is due to Lemma 6.2. �

Proof of Theorem 6.1. Theorem 5.1 and equation (5.2) show that

holim
←−−−−−−Γ

f ∗F =

∫

γ ′∈Γ ′
R(F(γ ′))N (f /γ ′ ).

Since N (f /γ ′) is contractible for all γ ′, N (f /−) is a projectively cofibrant reso-
lution of the point by Lemma 6.2. Thus the right-hand side is exactly holim

←−−−−−−Γ ′
F

by Theorem 5.1. �

6.4. Example: Fat totalization formula.
Recall from Example 3.2 that the simplex category ∆ is Reedy with ∆+ be-
ing the subcategory containing only injective maps. The inclusion ι : ∆+ →֒ ∆

is homotopy-initial (see e.g. Riehl 2014, Example 8.5.12 or Dugger 2008, Ex-
ample 21.2), hence holim

←−−−−−−∆
X· = holim

←−−−−−−∆+
X· for all X· ∈C ∆. As ∆+ is a direct

category, we obtain from Corollary 4.3 that we may calculate holim
←−−−−−−∆

X· as

holim
←−−−−−−∆

X· =
∫

∆+
R(Xn)n

for some functor R : C → C ∆
op
+ that takes x to an injectively (i.e. Reedy-) fi-

brant replacement of the constant diagram at x. This is the so-called fat total-
ization formula for homotopy limits over ∆. The dual formula for homotopy
colimits over ∆op is called the fat geometric realization formula. ©
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