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Abstract
A Pervin space is a set equipped with a bounded sublattice of its powerset, while its pointfree
version, called Frith frame, consists of a frame equippedwith a generating bounded sublattice.
It is known that the dual adjunction between topological spaces and frames extends to a
dual adjunction between Pervin spaces and Frith frames, and that the latter may be seen
as representatives of certain quasi-uniform structures. As such, they have an underlying
bitopological structure and inherit a natural notion of completion. In this paper we start
by exploring the bitopological nature of Pervin spaces and of Frith frames, proving some
categorical equivalences involving zero-dimensional structures.We then provide a conceptual
proof of a duality between the categories of T0 complete Pervin spaces and of complete
Frith frames. This enables us to interpret several Stone-type dualities as a restriction of the
dual adjunction between Pervin spaces and Frith frames along full subcategory embeddings.
Finally, we provide analogues of Banaschewski and Pultr’s characterizations of sober and
TD topological spaces in the setting of Pervin spaces and of Frith frames, highlighting the
parallelism between the two notions.

Keywords Lattice · Pervin space · Distributive lattice · Quasi-uniform space

1 Introduction

The category of Pervin spaces is introduced in [11, 19] as an isomorph of the category of
transitive and totally bounded quasi-uniform spaces. Its pointfree analogue, whose objects
are named Frith frames, was later defined in [7]. In this setting, we have a full embedding of
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the category of Frith frames in that of transitive and totally bounded quasi-uniform frames,
which is a coreflection but not an equivalence. It is also shown in [7] that the classical dual
adjunction between topological spaces and frames naturally extends to a dual adjunction
between Pervin spaces and Frith frames. In fact, this is what justifies calling Frith frames the
pointfree version of Pervin spaces.

Since both Pervin spaces and Frith frames may be seen as quasi-uniform structures, they
come equipped with an underlying bitopological structure as well [10, Chapter 3]. The study
of such bitopological structure is themain content of Sect. 3. In Sect. 3.1, we start by assigning
a bitopological space to each Pervin space, and show that this is a functorial assignment with
a left adjoint. When studying the categorical equivalence induced by such adjunction, strong
exactness (for Pervin spaces) and zero-dimensionality (for bitopological spaces) appear as
crucial concepts. More precisely, we show that the categories of the so-called strongly exact
Pervin spaces and of zero-dimensional bitopological spaces are equivalent. We then consider
the pointfree version of these results and show that strongly exact Frith frames are a full
coreflective subcategory of the category of zero-dimensional biframes, leaving as an open
problem to describe the underlying categorical equivalence. Noting that topological spaces
and frames may be seen as bitopological spaces and biframes, respectively, in Sect. 3.2, we
specialize the results of the previous section in the monotopological setting. In particular,
we show that the categories of zero-dimensional topological spaces and of strongly exact
symmetric Pervin spaces are equivalent, and so are those of zero-dimensional frames and of
strongly exact symmetric Frith frames.

As representatives of quasi-uniform structures, Pervin spaces and Frith frames also inherit
natural notions of completeness. It is observed in [19] that T0 and complete Pervin spaces can
be identified with spectral spaces, while in [7] it is shown that complete Frith frames can be
identifiedwith bounded distributive lattices. In particular, thanks to Stone duality for bounded
distributive lattices, it follows that the categories of T0 and complete Pervin spaces and of
complete Frith frames are dual to each other. In Sect. 4, we provide a direct and conceptual
proof of this duality, which is based on a characterization of complete Pervin spaces and
of complete Frith frames, and does not invoke Stone duality. On the other hand, since the
categories of T0 complete Pervin spaces and of complete Frith frames are full subcategories
of the categories of Pervin spaces and of Frith frames, respectively, we may then see Stone
duality as a restriction of the Pervin-Frith dual adjunction along full subcategory embeddings
(unlikewhat happenswhen seeing it as a restriction of the dual adjunction between topological
spaces and frames). In Sect. 5, we exhibit several Stone-type dualities as suitable restrictions
of the dual adjunction along full subcategory embeddings. Section5.1 is devoted to the already
mentioned Stone duality, Sect. 5.2 to Priestley duality, and Sect. 5.3 to bitopological duality.
In Sect. 5.4, we provide the global picture of the results thus obtained. It is our concern in
Sects. 4 and 5 to point out where the assumption of the Prime Ideal Theorem is needed.

Finally, in Sect. 6, starting from Banaschewski and Pultr’s characterizations of sober and
TD topological spaces [5, Proposition 4.3], which highlights the parallelism between the two
notions, we state and prove analogous results for Pervin spaces, where sober is replaced by
complete and TD by its equivalent for Pervin spaces (the latter notion having been introduced
in [7, Section 4.5]). When looking for a pointfree version of such results, we are naturally
led to consider the notion of locale-based Frith frame, which will replace TD Pervin space
in our statement.

We readily warn the reader that, although we implicitly have in mind the quasi-uniform
interpretation of Pervin spaces and of Frith frames (namely,when considering their bitopolog-
ical nature and the property of being complete), we will avoid mentioning quasi-uniformities
throughout the paper. This reduces the amount of background required from the reader, leav-
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ing the details of existing connections for those already familiar with quasi-uniformities. For
a detailed study of Pervin spaces, Frith frames, and corresponding quasi-uniform structures,
we refer to [7, 11, 19].

2 Preliminaries

The material in this section is presented mostly to set up the notation. We assume the reader
to be familiar with frame and locale theory.

2.1 Basic Notation

The content of this section may be found in [13, 18].
A frame is a complete lattice L such that for every a ∈ L and {bi }i∈I ⊆ L the following

distributivity law holds:

a ∧
∨

i∈I
bi =

∨

i∈I
(a ∧ bi ).

A frame L is always a complete Heyting algebra, with the Heyting implication given by

a → b =
∨

{x ∈ L | x ∧ a ≤ b},
for every a, b ∈ L . The element a → 0, called the pseudocomplement of a, will be denoted
by a∗. When a ∨ a∗ = 1, we say that a is complemented and a∗ is the complement of a.
A frame homomorphism is a map h : L → M that preserves finite meets and arbitrary
joins. We will denote by Frm the category of frames and frame homomorphisms. A frame
homomorphism h : L → M is dense provided h(a) = 0 implies a = 0. In general, a frame
homomorphism need not preserve the Heyting implication. We have however the following:

h(a → b) ≤ h(a) → h(b), (1)

for every a, b ∈ L . Moreover, since every frame homomorphism h preserves arbitrary joins,
it has a right adjoint h∗, and the equality

a → h∗(x) = h∗(h(a) → x) (2)

holds, for every a ∈ L and x ∈ M . This is usually called the Frobenius identity.
We say that an element a ∈ L is compact if whenever a ≤ ∨

i∈I ai there exists a finite
subset I ′ ⊆ I such that a ≤ ∨

i∈I ′ ai . A frame L is compact if its top element is compact. If
the set of compact elements of L is closed under finite meets and join-generates L , then we
say that L is coherent. A frame L is zero-dimensional if it is join-generated by its sublattice
of complemented elements.

The opposite category of Frm, is usually denoted by Loc. Its objects are called locales,
and morphisms h : L → M are the right adjoints of the corresponding frame maps. Locales
will only be mentioned in Sect. 6. For our purposes, the notion of sublocale will be enough.
A sublocale of L is a subset K ⊆ L that is closed under arbitrary joins and contains every
element of the form a → x , with a ∈ L and x ∈ K . A sublocale K is itself a frame, but not a
subframe of L , as joins may be computed differently. Every sublocale is uniquely determined
by a frame quotient q : L � K whose right adjoint is the localic embedding K ↪→ L . In
particular, q(x) = x , whenever x ∈ K .
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Since sublocales correspond to frame quotients, these may also be defined via frame
congruences, which will be widely used throughout the paper. The set CL of all frame
congruences on L is itself a frame when ordered by inclusion. For every element a ∈ L , we
may define two congruences:

∇a := {(x, y) ∈ L × L | a ∨ x = a ∨ y} and �a := {(x, y) ∈ L × L | a ∧ x = a ∧ y}.
Congruences of the form ∇a are called closed, while those of the form �a are open. Open
and closed congruences suffice to generate CL , as a frame. The functions ∇ : a �→ ∇a

and � : a �→ �a from L to CL are, respectively, a frame embedding and an injection
that turns finite meets into finite joins and arbitrary joins to arbitrary meets. Given a subset
S ⊆ L , we denote by ∇S and by �S the subframes of CL generated by {∇s | s ∈ S} and by
{�s | s ∈ S}, respectively. The subframe of CL generated by ∇L ∪ �S will be denoted by
CS L . The following generalizes the well-known universal property of the congruence frame.

Proposition 2.1 ([24, Theorem 16.2]) For every frame L and subset S ⊆ L, the frame CS L
has the following universal property: whenever h : L → M is a frame map such that h(s) is
complemented for all s ∈ S, there is a unique frame homomorphism h̃ : CS L → M making
the following diagram commute.

L CS L

M

∇

h̃h

Finally, we have an idempotent adjunction � : Top � Loc : pt between the category
Top of topological spaces and continuous functions and the category of locales. Since, as
already mentioned, we will mostly work with frames, we will treat the category Loc as that
opposite to Frm. Given a topological space (X , τ ) (or simply X if no confusion arises),
�(X) is the frame �(X) consisting of the open subsets of X (ordered by ⊆) and, for a
continuous function f : X → Y , �( f ) = f −1 is the preimage frame homomorphism. In
the other direction, given a frame L , pt(L) is the set pt(L) of points of L (here seen as
frame homomorphisms p : L → 2) equipped with the topology L̂ := {̂a | a ∈ L}, where
â := {p ∈ pt(L) | p(a) = 1}, and given a frame homomorphism h : L → M , pt(h) maps
p ∈ pt(M) to p ◦ h ∈ pt(L). The fixpoints of � � pt are the so-called sober spaces and
spatial frames, respectively.

2.2 Bitopological Spaces and Biframes

We refer to [21] and to [4, 22] for further reading on bitopological spaces and on biframes,
respectively.

A bitopological space, or bispace, is a triple X = (X , τ+, τ−), where X is a set and τ+
and τ− two topologies on that set. Morphisms between bitopological spaces are functions
between their underlying sets that are continuous with respect to both topologies. We denote
byBiTop the category thus obtained. The topology τ+∨τ− on X generated by τ+∪τ− is called
the patch topology. We call τ+ the positive topology, and τ− the negative one. Accordingly,
elements of τ+ are called positive opens, and a positive open whose complement is a negative
one is called a positive clopen. The collection of positive clopen subsets of X will be denoted
by Clop+(X ). Negative (cl)opens and Clop−(X ) are defined similarly, in the obvious way.
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We say that a bispace is T0 (respectively, compact) if its patch topology is T0 (respectively,
compact). We say that a bispace (X , τ+, τ−) is zero-dimensional if every element in τ+ is a
union of positive clopens, and every element in τ− is a union of negative clopens.1

A biframe is a tripleL = (L, L+, L−) such that all three components are frames, together
with subframe inclusions L+ ⊆ L and L− ⊆ L , and such that every element of L is a
join of finite meets of elements of L+ ∪ L−. The frame L is called the main component
of the biframe, while L+ and L− are, respectively, the positive and negative components.
Accordingly, elements of L+ are positive and those of L− are negative. We say that an
element a ∈ L+ is positive bicomplemented when it is complemented in L with complement
in L−.Negative bicomplemented elements are defined similarly.We denote by B+(L) and by
B−(L) the lattices of positive and negative bicomplemented elements of L, respectively. A
morphism h : (L, L+, L−) → (M, M+, M−) between biframes is a frame homomorphism
h : L → M such that h[L+] ⊆ M+ and h[L−] ⊆ M−. The category of biframes and biframe
homomorphisms will be denoted by BiFrm. We say that h is dense if its underlying frame
homomorphism is dense.

We say that a biframe L = (L, L+, L−) is compact if its main component L is compact,
and that it is zero-dimensional if both L+ and L− are join-generated by their bicomplemented
elements.

Finally, we also have an adjunction �b : BiTop � BiFrmop : ptb between bitopological
spaces and biframes, which extends the classical adjunction between topological spaces and
frames (here, we identify a topological space (X , τ ) with the bispace (X , τ, τ ), and a frame
L with the biframe (L, L, L)). Given a bitopological space X = (X , τ+, τ−), �b(X ) is the
biframe (τ+∨τ−, τ+, τ−), while for a biframeL = (L, L+, L−),ptb(L) = (pt(L), L̂+, L̂−),
where for P ∈ {L+, L−}, we denote P̂ := {̂a | a ∈ P}. On morphisms, �b and ptb are
defined as expected.

2.3 The Prime Ideal Theorem

One of the main features of pointfree topology is that it often avoids the use of the Axiom of
Choice, thereby leading to constructive results. Sometimes, a strictly weaker version known
as the Prime Ideal Theorem is however needed. It may be stated as follows:

Let D be a bounded distributive lattice. Then, every proper ideal of D may be extended
to a prime ideal.

In Sects. 4 and 5, some results are valid only under the assumption of the Prime Ideal Theorem.
The following equivalent statements will be useful in there.

Theorem 2.2 The following statements are equivalent:

(a) The Prime Ideal Theorem holds.
(b) For every set X, every proper filter of P(X) can be extended to an ultrafilter.
(c) Every frame of the form Idl(D), where D is a bounded distributive lattice, is spatial.

Relevant references for the equivalence between these statements are [2, 9, 12, 13].

1 These notions are not consistent over all the literature. For instance, in [6] our notions of T0 and compact are
named join T0 and join compact, respectively, while compact is named pairwise compact in [21]. Moreover,
in [6, 20] our notion of zero-dimensional is named pairwise zero-dimensional.
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2.4 Pervin Spaces and Frith Frames

APervin space is a pair (X ,S)where X is a set andS a sublattice of its powerset. Amorphism
f : (X ,S) → (Y , T ) of Pervin spaces is a set function f : X → Y such that f −1(T ) ⊆ S.
Since a topology on a set X is, in particular, a bounded sublattice of its powerset, the category
Top of topological spaces fully embeds in the category Pervin of Pervin spaces.

Proposition 2.3 [7, Section 3] Let f : (X ,S) → (Y , T ) be a map of Pervin spaces. Then,

(a) f is an epimorphism if and only if its underlying set map is surjective;
(b) f is an extremal monomorphism if and only if its underlying set map is injective and

every element of S is of the form f −1(T ) for some T ∈ T .

In particular, f is an isomorphism if and only if its underlying set map is a bijection and
f [S] = T .

Recall that a join-dense subset of a complete lattice L is a subset whose closure under
(arbitrary) joins is L itself. A Frith frame is a pair (L, S), where L is a frame and S is a join-
dense bounded sublattice of L . A morphism of Frith frames h : (L, S) → (M, T ) is a frame
homomorphism between the underlying frames that satisfies h[S] ⊆ T . The category of Frith
frames and their morphisms is denoted Frith, and we have a full embedding Frm ↪→ Frith
obtained by identifying a frame L with the Frith frame (L, L).

Proposition 2.4 ([7, Section 4.4]) Let h : (L, S) → (M, T ) be a homomorphism of Frith
frames. Then,

(a) h is a monomorphism if and only if so is its underlying frame homomorphism;
(b) h is an extremal epimorphism if and only if it satisfies h[S] = T .

In particular, h is an isomorphism if and only if it is injective and satisfies h[S] = T .

The classical dual adjunction between topological spaces and framesmay then be extended
to a dual adjunction � : Pervin � Frith : pt between Pervin spaces and Frith frames as
follows. For a Pervin space (X ,S), �(X ,S) is the Pervin space (�S(X),S), where �S(X)

denotes the topology on X generated by S. For a morphism f : (X ,S) → (Y , T ), �( f )
is the preimage map f −1 : (�T (Y ), T ) → (�S(X),S). In the other direction, for a Frith
frame (L, S), pt(L, S) is the Pervin space (pt(L), Ŝ), where Ŝ := {̂s | s ∈ S}. Finally, given
a morphism of Frith frames h : (L, S) → (M, T ), pt(h) maps p ∈ pt(M) to p ◦ h ∈ pt(L).

Theorem 2.5 ([7, Proposition 4.3]) There is an adjunction � : Pervin � Frithop : pt with
� � pt, whose fixpoints are, respectively, the Pervin spaces (X ,S) such that (X , �S(X)) is
sober and the Frith frames (L, S) such that L is spatial. These will be called, respectively,
sober Pervin spaces and spatial Frith frames.

2.5 Symmetrization

Symmetrization is for Pervin spaces and Frith frames, what uniformization is for quasi-
uniform spaces and quasi-uniform frames, respectively. This has been considered in [19] for
Pervin spaces and in [7] for Frith frames. In particular, it has been shown that the categories
of symmetric Pervin spaces and of symmetric Frith frames are equivalent to the categories of
transitive and totally bounded uniform spaces and frames, respectively.
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Recall that a Pervin space (X ,B) is symmetric if B is a Boolean algebra, and the full sub-
category ofPervin determined by the symmetric Pervin spaceswill be denoted byPervinsym.
A Frith frame (L, B) is symmetric if B is a Boolean algebra, and the full subcategory of Frith
determined by the symmetric Frith frames will be denoted by Frithsym.

We define a functor SymPerv : Pervin → Pervinsym as follows. For an object (X ,S),
we let SymPerv(X ,S) be the Pervin space (X ,S), where S is the Boolean subalgebra of the
powerset P(X) generated by the elements of S. On morphisms, we simply map a function
to itself.

Proposition 2.6 ([7, Proposition 3.4]) The functor SymPerv is right adjoint to the embedding
Pervinsym ↪→ Pervin.

The pointfree version of SymPerv is defined as follows. For a Frith frame (L, S) we
set SymFrith(L, S) := (CS L, S), where S denotes the sublattice of CS L generated by the
elements of the form ∇s together with their complements. For a morphism of Frith frames
h : (L, S) → (M, T ) we set SymFrith(h) := h, where h is the unique extension of h to a
frame homomorphism h : CS L → CT M (recall Proposition 2.1).

Proposition 2.7 ([7, Proposition 6.5]) The functor SymFrith is left adjoint to the embedding
Frithsym ↪→ Frith.

2.6 Forgetful Functors

Both Pervin spaces and Frith frames encode two kinds of structures - topological and lattice-
theoretical. It is then natural to consider several forgetful functors on the categories Pervin
and Frith.

Every Pervin space (X ,S) defines a topology �S(X) on X . This assignment can be
extended to a functor UPervin : Pervin → Top which leaves functions unaltered.2 The
pointfree version of this functor is the functorUFrith : Frith → Frm, which acts as (L, S) �→
L on objects, and which leaves frame maps unaltered. The relationship between UPervin and
UFrith is depicted in the following commutative diagrams:

Pervin Top

Frithop Frmop

UPervin

��

UFrith

Pervin Top

Frithop Frmop

UPervin

ptpt

UFrith

Proposition 2.8 ([7]) The functor UPervin is right adjoint to the embedding Top ↪→ Pervin,
and the functor UFrith is left adjoint to the embedding Frm ↪→ Frith.

Given a topological property, we will often say that a Pervin space has that property
provided so does its underlying topological space. For instance, a Pervin space (X ,S) is T0 if
(X ,�S(X)) is T0. The same applies to the notion of densemorphism.We say that amorphism
f : (X ,S) → (Y , T ) is dense if the image of UPervin( f ) : (X ,�S(X)) → (Y ,�T (Y )) is
dense in (Y ,�T (Y )), that is, if f [X ] intersects every nonempty open subset of (Y ,�T (Y )).
The following characterization of density for Pervin morphisms is easy to prove. We will use
it without further mention.

2 Under the identification of Pervin spaces with transitive and totally bounded quasi-uniform spaces, this
functor forgets the quasi-uniform structure.
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Lemma 2.9 For a map f : (X ,S) → (Y , T ) of Pervin spaces, the following are equivalent.

(a) The map f is dense;
(b) f [X ] intersects every nonempty element of T ;
(c) We have f −1(T ) = ∅ implies T = ∅ for all T ∈ T .

We may also forget the topological structures, thereby obtaining functors LPervin :
Pervin → DLatop and LFrith : Frith → DLat defined in the expected way.

In [7, Proposition 4.6], we have proved that LFrith is right adjoint to the functor Idl :
DLat → Frith acting on objects as S �→ (Idl(S), S) and assigning to each morphism
f : S → T its unique extension to a frame morphism Idl(S) → Idl(T ). The component of
the counit of this adjunction at a Frith frame (L, S) is the morphism

c(L,S) : (Idl(S), S) → (L, S), J �→
∨

J . (3)

We now discuss the point-set version of this result. To define the right adjoint of LPervin,
we introduce some notation. Given a lattice D, we denote by pf(D) the set of all prime filters
of D, and we consider the map

�D : D → P(pf(D)), a �→ ã := {F ∈ pf(D) | a ∈ F}. (4)

We denote as D̃ := {̃a | a ∈ D}. It is well-known that �D is a lattice homomorphism and it
is an embedding if and only if D is isomorphic to a sublattice of the powerset P(X) for some
set X (see e.g. [9, Chapter 10]). If we further assume that the Prime Ideal Theorem holds,
then �D is always an embedding.

We define the functor pf : DLatop → Pervin as the one mapping each lattice D to the
Pervin space (pf(D), D̃), and each lattice homomorphism f : D1 → D2 to the preimage
map pf( f ) := f −1 : (pf(D2), D̃2) → (pf(D1), D̃1). This is well-defined as preimages of
prime filters are prime filters, and pf( f )−1(̃a) = ˜f (a) for every a ∈ D1.

Lemma 2.10 We have an idempotent adjunction LPervin : Pervin � DLatop : pf with
LPervin � pf .

Proof With a routine computation one can show that, given a lattice D, the co-restriction of
�D to a map D → D̃ is a universal morphism from LPervin to D and thus, the counit of the
adjunction at D. To conclude that the adjunction is idempotent, we only have to note that
�D is an isomorphism whenever D is a sublattice of some powerset and that is the case for
every lattice component of a Pervin space (X ,S). ��

We further remark that the component of the unit of the adjunctionLPervin � pf at a Pervin
space (X ,S) is the neighborhood morphism of Pervin spaces defined by

N(X ,S) : (X ,S) → (pf(S), S̃), x �→ {S ∈ S | x ∈ S}. (5)

We finish this section by providing an alternative representation of the Pervin spacepf(D),
based on the well-known correspondence between prime filters of D and points of Idl(D).

Lemma 2.11 There is a one-to-one correspondence between prime filters of D and points
of Idl(D) and, under this identification, ã corresponds to â, for every a ∈ D. In particular,
pf(D) is isomorphic to pt(Idl(D), D).
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2.7 Open Intersections and Strongly Exact Meets

For a Pervin space (X ,S) we say that an intersection of elements in S is open if it is so in
the topological space (X ,�S(X)). We will denote by [S ]op the collection of all elements
of �S(X) that are open intersections of elements of S. It is easy to see that this collection is
closed under open intersections and so, [S ]op may be seen as the closure of S under open
intersections.

Let now L be a frame and P ⊆ L . The meet
∧

P is strongly exact if the corresponding
intersection of open sublocales (=open pointfree subspaces) is open, or equivalently, if the
congruence

∨
s∈P �s is open (cf. [1, Section 4.5]). Note that, if �a = ∨

s∈P �s for some
P ⊆ L , then themeet

∧
P is, by definition, strongly exact, andwe necessarily havea = ∧

P .
Given a Frith frame (L, S), we denote by [ S ]se the set of elements of L that may be written
as a strongly exact meet of elements of S. Again, [ S ]se can be thought of as the closure of
S under strongly exact meets.

Finally, we say that a Pervin space (X ,S) (respectively, Frith frame (L, S)) is strongly
exact if the lattice S (respectively, S) is closed under open intersections of S (respectively,
strongly exact meets of S). We denote by Pervinse and by Frithse the full subcategories of
Pervin and of Frith determined by the strongly exact objects.

The next result implies that the contravariant functor � : Pervin → Frith restricts and
co-restricts to a functor Pervinse → Frithse.

Proposition 2.12 ([1, Proposition 5.3]) Let (X , τ ) be a topological space and U ⊆ �(X) be
a family of open subsets. If

∧
U is a strongly exact meet in the frame �(X), then

⋂
U is an

open subset of X.

We do not know whether the functor pt : Frith → Pervin restricts and co-restricts to a
functor Frithse → Pervinse.

3 The Bitopological Point of View

3.1 Strong Exactness and Zero-Dimensionality

A Pervin space (X ,S) defines the bitopological space (X , �S(X), �Sc (X)), where Sc

denotes the lattice {Sc | S ∈ S} formed by the complements in X of the elements of S.3 The
Skula functor SkPervin : Pervin → BiTop is thendefinedby assigning (X , �S(X), �Sc (X))

to the Pervin space (X ,S), and mapping each function to itself.
In the other direction, we may define a functor Clop+ : BiTop → Pervin by assigning

to each bitopological space X = (X , τ+, τ−) the Pervin space (X , Clop+(X )) and keeping
morphisms unchanged.

It is easily seen that these are well-defined functors. Let us prove thatClop+ is left adjoint
to SkPervin.

Lemma 3.1 The functor Clop+ is left adjoint to SkPervin : Pervin → BiTop.

Proof Let X = (X , τ+, τ−) be a bitopological space. We first observe that

SkPervin ◦ Clop+(X ) = (X , �Clop+(X )(X), �Clop−(X )(X)).

3 For the interested reader, this is the underlying bitopological space of the quasi-uniform space represented
by (X ,S).
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Since the inclusions Clop+(X ) ⊆ τ+ and Clop−(X ) ⊆ τ− hold, the identity function
on X induces a morphism of bitopological spaces ηX : X → SkPervin ◦ Clop+(X ). Let us
show that (Clop+(X ), ηX ) is a universal morphism from X to SkPervin. Let (Y , T ) be a
Pervin space and f : X → SkPervin(Y , T ) be a morphism of bitopological spaces. Since
f −1(T ) ⊆ τ+ and f −1(T c) ⊆ τ−, the underlying set function of f defines a morphism
g : Clop+(X ) → (Y , T ). Clearly, g is the uniquemorphism satisfyingSkPervin(g)◦ηX = f ,
and this proves our claim. ��

We now describe the equivalence of categories determined by Clop+ � SkPervin.

Proposition 3.2 The fixpoints of the adjunction Clop+ : BiTop � Pervin : SkPervin are,
respectively, the zero-dimensional bispaces and the strongly exact Pervin spaces.

Proof It follows from the proof of Lemma3.1 that the unit of the adjunctionClop+ � SkPervin
at a bispace X = (X , τ+, τ−) is the morphism

ηX : (X , τ+, τ−) → (X , �Clop+(X )(X), �Clop−(X )(X))

defined by the identity map on X . Thus, X is a fixpoint of the adjunction if and only if
τ+ = �Clop+(X )(X) and τ− = �Clop−(X )(X), that is, if and only if X is zero-dimensional.

Let us now exhibit the counit of Clop+ � SkPervin. It is easy to see that the positive
clopens of SkPervin(X ,S) = (X , �S(X), �Sc (X)) are the open intersections of S. Since
S ⊆ [S ]op , the identity on X defines a morphism

ε(X ,S) : (X , [S ]op) → (X ,S)

of Pervin spaces, which can be shown to be the counit of the adjunction. In particular, we
have that (X ,S) is a fixpoint if and only if S = [S ]op , that is, if and only if (X ,S) is a
strongly exact Pervin space. ��
Corollary 3.3 The categoriesBiTopZ and Pervinse of zero-dimensional bitopological spaces
and of strongly exact Pervin spaces are equivalent.

We finally remark that, since, for every Pervin space (X ,S), we have

SkPervin ◦ Clop+ ◦ SkPervin(X ,S) = SkPervin(X , [S ]op) = (X ,�[S ]op (X),�([S ]op)c (X))

= SkPervin(X ,S),

the unit ηSkPervin(X ,S) is always an isomorphism, and thus, the adjunction Clop+ � SkPervin
is idempotent.

Let us now look at the pointfree version of the Skula functor and its left adjoint. For
a Frith frame (L, S) we set SkFrith(L, S) = (CS L,∇L,�S).4 In order to define SkFrith
on morphisms, we first observe that, by Proposition 2.1, every morphism of Frith frames
h : (L, S) → (M, T ) uniquely extends to a frame homomorphism h : CS L → CT M
satisfying

h[∇L] = ∇h[L] and h[�S] = �h[S].
Therefore, h defines a biframe homomorphism h : SkFrith(L, S) → SkFrith(M, T ) and we
may set SkFrith(h) = h.

In the other direction, we define B+ : BiFrm → Frith as follows. For a biframe
L = (L, L+, L−), we set B+(L) = (〈B+(L)〉Frm, B+(L)), where 〈B+(L)〉Frm denotes the

4 As for spaces, this is the underlying biframe of the quasi-uniform frame defined by (L, S).
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subframe of L+ generated by the lattice B+(L) of positive bicomplemented elements of L.
In order to define B+ on morphisms, notice that, if h : L → K is a biframe homomorphism
then, since positive bicomplemented elements of L are mapped to positive bicomplemented
elements of K, the suitable restriction and co-restriction of h induces a morphism of Frith
frames B+h : B+(L) → B+(K).

Next wewill see that, as for Pervin spaces, the functorsSkFrith andB+ define an adjunction
between the categories of Frith frames and of biframes. However, while the fixpoints of Frith
are still easy to describe, the same does not happen with those of BiFrm. We leave it as an
open problem to describe the categorical equivalence underlying this adjunction.

Before proceeding, we prove the following technical result:

Lemma 3.4 Let (L, S) be a Frith frame and a ∈ L. Then, ∇a is a positive bicomplemented
element of (CS L,∇L,�S) if and only if a is a strongly exact meet of elements of S.

Proof Since CS L is a subframe of CL , we have that ∇a is bicomplemented if and only if
�a ∈ �S, that is, if and only if there is some P ⊆ S such that �a = ∨

s∈P �s . But this is
the same as saying that

∧
P is a strongly exact meet and a = ∧

P . ��
We are now able to prove that SkFrith is indeed the left adjoint of B+.

Lemma 3.5 The functor SkFrith is left adjoint to B+ : BiFrm → Frith.

Proof It follows from Lemma 3.4 that B+ ◦ SkFrith(L, S) = (∇L, {∇a | a ∈ [ S ]se}) and
thus, the isomorphism ∇ : L → ∇L induces an embedding of Frith frames

η(L,S) : (L, S) → B+ ◦ SkFrith(L, S).

To conclude that SkFrith � B+, it suffices to show that η(L,S) is universal from (L, S) to B+,
that is, that for every biframe K and every morphism h : (L, S) → B+(K), there exists a
unique h′ : SkFrith(L, S) → K such that B+(h′) ◦ η(L,S) = h. But the underlying frame
homomorphism of such an h′ has to be an extension h′ : CS L → K of h. Since h[S] consists
of complemented elements of K , by Proposition 2.1, there exists exactly one such morphism,
which is easily seen to define a biframe homomorphism h′ : SkFrith(L, S) → K. ��
Corollary 3.6 The fixpoints of Frith for the adjunction SkFrith � B+ are the strongly exact
Frith frames.

Proof It follows from the proof of Lemma 3.5 that the unit of the adjunction SkFrith � B+ is

η(L,S) : (L, S) → (∇L, {∇a | a ∈ [ S ]se}), a �→ ∇a .

Clearly, this is an isomorphism if and only if (L, S) is strongly exact. ��
Let L = (L, L+, L−) be a biframe and B+(L) = (M, T ). Since the elements of T are

complemented in L , by Proposition 2.1, the frame embedding M ↪→ L may be uniquely
extended to a frame homomorphism CT M → L . It is easily seen that this map induces a
biframe homomorphism εL : (CT M,∇M,�T ) → (L, L+, L−).We leave it for the reader to
verify that εL is the component atL of the counit of the adjunction SkFrith � B+. In particular,
if (L, S) is a Frith frame then, since {�s | s ∈ S} and {�a | a ∈ [ S ]se} generate the same
subframe of CL , by Lemma 3.4, we have that SkFrith ◦ B+ ◦ SkFrith(L, S) = SkFrith(L, S)

and εSkFrith(L,S) is the identity map. Therefore, the adjunction SkFrith � B+ is idempotent
and, as such, it induces an equivalence between the images of the two involved functors.

While it is clear that every biframe of the form SkFrith(L, S) is zero-dimensional, it is not
the case that every zero-dimensional biframe is of that form.
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Example 3.7 .5 Let X be a topological space such that the congruence frame of its frame
of opens is not spatial (see [16, Theorem 3.4] for a characterization of the frames whose
congruence frame is not spatial). We let L = (L, L+, L−) be the Skula biframe of X , that is:
L+ is the frame of opens of X , L− is the subframe of P(X) generated by the complements
of the elements of L+, and L is the subframe of P(X) generated by L+ ∪ L−. To show that
L is not a fixpoint of the adjunction SkFrith � B+, we first recall that the underlying frame
homomorphism of the counit of SkFrith � B+ at a biframe L = (L, L+, L−) is the unique
frame extension εL : CT M → L of the embedding M ↪→ L , where (M, T ) = B+(L).
Since, in this case, we have B+(L) = (L+, L+), L is a fixpoint if and only if the unique
frame homomorphism CL+ → L extending L+ ↪→ L is an isomorphism. But that is not the
case because L is spatial and CL+ is not.

A concrete example is given by taking for X the real line R equipped with the Euclidean
topology �(R). Since the Booleanization of �(R) is a pointless nontrivial sublocale, by the
characterization of [16], its congruence frame is not spatial.

Also, the fixpoints of SkFrith � B+ need not be compact as SkFrith(L, S) is not compact
if neither is L . We may however show that every compact and zero-dimensional biframe is
a fixpoint.

Proposition 3.8 Let L = (L, L+, L−) be a biframe and εL : (CT M,∇M,�T ) →
(L, L+, L−) be the component at L of the counit of the adjunction SkFrith � B+, where
(M, T ) = B+(L). Then,

(a) εL is dense,
(b) if L is zero-dimensional, then εL[∇M] = L+ and εL[�T ] = L−.

In particular, if L is compact and zero-dimensional, then εL is an isomorphism and thus, L
is a fixpoint of the adjunction SkFrith � B+.

Proof Let a ∈ M and t ∈ T be such that εL(∇a ∧ �t ) = 0. By definition of εL, this is the
same as having that the equality a ∧ t∗ = 0 holds in L . Since t is complemented in L , this
is equivalent to a ≤ t which, in turn, implies ∇a ∧ �t = 0. This proves that εL is dense.

Now, again by definition of εL, we have that εL[∇M] ⊇ T and εL[�T ] ⊇ T ∗. Since T
is the lattice of bicomplemented elements of L+, if L is zero-dimensional, this implies that
εL[∇M] = L+ and εL[�T ] = L−. Thus, (b) holds.

Finally, recall that εL is an isomorphism of biframes provided its underlying frame homo-
morphism is injective and satisfies εL[∇M] = L+ and εL[�T ] = L−. Thus, it suffices to
show that if L is compact and zero-dimensional then εL is injective. But it is well-known
that dense frame homomorphisms with zero-dimensional domain (which is the case of CT M)
and compact codomain are injective (see e.g. [18, Chapter VII, Proposition 2.2.2]).6 ��

The following is as close as we will get to a pointfree version of the result stated in
Corollary 3.3.

Corollary 3.9 Strongly exact Frith frames are a full coreflective subcategory of the category
of zero-dimensional biframes.

5 This example was borrowed from [7, Example 5.13] The interested reader may show that the fixpoints of
the adjunction SkFrith � B+ are precisely the underlying biframes of the quasi-uniform frames representable
by a Frith frame in the sense of [7, Proposition 5.6].
6 The result cited is stated for a regular domain, but every zero-dimensional frame is regular.
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We finish this section by relating the point-set and pointfree versions of the functors we
have considered.

Proposition 3.10 The following squares commute up to natural isomorphism.

BiTop Pervin

BiFrm Frith

Clop+

��b

B+

Pervin BiTop

Frith BiFrm

SkPervin

ptbpt

SkFrith

Proof Commutativity of the left-hand side diagram follows easily from computing the func-
tors B+ ◦ �b and � ◦ Clop+.

To show that the right-hand side diagram commutes up to natural isomorphism, we define
a natural isomorphismβ : SkPervin◦pt �⇒ ptb◦SkFrith as follows. For a Frith frame (L, S),
we define

β(L,S) : SkPervin ◦ pt(L, S) → ptb ◦ SkFrith(L, S), p �→ p̃

where p̃ is the uniquemorphismmaking the followingdiagramcommute (cf. Proposition 2.1).

L CS L

2

∇

p̃
p

By uniqueness of each p̃, this correspondence establishes a bijection between the points
of L and the points of CS L . Let us show that this is a homeomorphism with respect to
the first topology of SkPervin ◦ pt(L, S). We first note that the positive open subsets of
SkPervin ◦ pt(L, S) are the subsets of the form â, while those of ptb ◦ SkFrith(L, S) are the
subsets of the form ∇̂a , where a ∈ L . Now, given a ∈ L and p ∈ pt(L), using commutativity
of the triangle above, we have

p ∈ β−1
(L,S)(∇̂a) ⇐⇒ p̃(∇a) = 1 ⇐⇒ p(a) = 1 ⇐⇒ p ∈ â.

Since β(L,S) is a bijection, this implies that β(L,S) is both continuous and open with respect to
the first topologies, thus a homeomorphism. Showing that β(L,S) is also a homeomorphism
with respect to the second topology is analogous, and we leave it for the reader.

Now, β is a natural transformation provided the following square commutes for every
morphism h : (M, T ) → (L, S) of Frith frames.

SkPervin ◦ pt(L, S) ptb ◦ SkFrith(L, S)

SkPervin ◦ pt(M, T ) ptb ◦ SkFrith(M, T )

β(L,S)

(−) ◦ SkFrith(h)(−) ◦ h

β(M,T )
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That is indeed the case because, for every p ∈ pt(L) and x ∈ M , we have the following
equalities:

p̃ ◦ SkFrith(h)(∇x ) = p̃(∇h(x)) = p ◦ h(x) = ˜p ◦ h(∇x ).

��
Proposition 3.10 makes it natural to ask whether the corresponding diagrams for the

spectrum and open-set functors also commute. The answer is negative, as shown by the next
example.

Example 3.11 For the first diagram, consider the biframe L = (3, 3, 2), where 3 denotes the
3-element chain. Then, pt ◦B+(L) is a space with one point, while Clop+ ◦ptb(L) has two,
so these cannot be isomorphic. For the second diagram, we let X be a topological space as in
Example 3.7 and observe that�b◦SkPervin(X ,�(X)) is the Skula biframeL of X . As already
argued, L is not in the image of SkFrith, thus, �b ◦ SkPervin(X ,�(X)) is not isomorphic to
SkFrith ◦ �(X ,�(X)).

3.2 TheMonotopological Case

In this section, we will investigate the monotopological version of the results of Sect. 3.1.
Under the identifications Top ↪→ BiTop and Frm ↪→ BiFrm, these will follow as a conse-
quence of the latter.

Let us consider the restrictions Clop : Top → Pervin and B : Frm → Frith of the
functors Clop+ and B+ defined in Sect. 3.1. Explicitly, Clop maps a topological space
(X , τ ) to the Pervin space Clop+(X , τ, τ ) = (X , Clop(X , τ )), where Clop(X , τ ) denotes
the Boolean algebra of clopen subsets of X for the topology τ , and a morphism to itself.
On the other hand, given a frame L , B(L) is the pair (〈B(L)〉Frm, B(L)), where 〈B(L)〉Frm
denotes the subframe of L generated by the lattice of complemented elements B(L) of L ,
and a frame homomorphism h : L → K is sent to the morphism of Frith frames
Bh : B(L) → B(K ) induced by the suitable restriction and co-restriction of h. Then,
the adjunctions Clop+ : BiTop � Pervin : SkPervin and SkFrith : Frith � BiFrm : B+
studied in Sect. 3.1 restrict, respectively, to adjunctions Clop : Top � Pervin′ : U′

Pervin and
U′
Frith : Frith′ � Frm : B, where
• Pervin′ denotes the full subcategory of Pervin determined by the Pervin spaces (X ,S)

such that SkPervin(X ,S) belongs to the image of Top ↪→ BiTop,
• Frith′ denotes the full subcategory of Frith determined by the Frith frames (L, S) such

that SkFrith(L, S) belongs to the image of Frm ↪→ BiFrm,
• U′

Pervin is the suitable restriction and co-restriction of SkPervin, and
• U′

Frith is the suitable restriction and co-restriction of SkFrith.

The following result, whose proof is trivial, explains our choice of notation for the functors
U′
Pervin and U′

Frith: these are nothing but the suitable restrictions of the functors UPervin and
UFrith defined in Sect. 2.6.

Lemma 3.12 The following statements hold:

(a) a Pervin space (X ,S) belongs to Pervin′ if and only if �S(X) = �Sc (X),
(b) a Frith frame (L, S) belongs to Frith′ if and only if ∇L = �S.

In particular, given (X ,S) ∈ Pervin′ and (L, S) ∈ Frith′, the following equalities hold:

U′
Pervin(X ,S) = (X , �S(X)) and U′

Frith(L, S) = L.

123



Pervin Spaces and Frith... Page 15 of 29 43

Wewill now characterize the categorical equivalences induced by the adjunctionsClop �
U′
Pervin and U

′
Frith � B. Recall that we have seen in Sect. 3.1 that both Clop+ � SkPervin and

SkFrith � B+ are idempotent and, therefore, so are their restrictions.

Proposition 3.13 The categories of zero-dimensional topological spaces and that of strongly
exact symmetric Pervin spaces are equivalent.

Proof Since Clop � U′
Pervin is a restriction of Clop+ � SkPervin, by Proposition 3.2, it

induces an equivalence between the categories of topological spaces that are zero-dimensional
when seen as bitopological spaces, and the category determined by the Pervin spaces
(X ,S) ∈ Pervin′ that are strongly exact. The former are easily seen to be the zero-
dimensional topological spaces. We argue that (X ,S) ∈ Pervin′ is strongly exact if and
only if it is a strongly exact symmetric Pervin space. Clearly, Pervin′ contains all symmetric
Pervin spaces, thus the backwards implication is trivial. Conversely, if (X ,S) ∈ Pervin′ is
strongly exact then, being a fixpoint of the idempotent adjunction Clop � U′

Pervin, it belongs
to the image of Clop. Hence, it is symmetric, as required. ��
Proposition 3.14 The categories of zero-dimensional frames and that of strongly exact sym-
metric Frith frames are equivalent.

Proof Since the adjunction U′
Frith � B is idempotent, its fixpoints in Frm are the frames

of the form U′
Frith(L, S) = L , for (L, S) ∈ Frith′. Noticing that the inclusion ∇L ⊇ �S

holds if and only if S consists of complemented elements, these are easily seen to be the
zero-dimensional ones. On the other hand, an argument similar to that used in the proof of
Proposition 3.13 shows that the fixpoints ofU′

Frith � B in Frith′ are strongly exact symmetric
Frith frames. ��

4 Complete Pervin Spaces and Complete Frith Frames

In this section we will show that the dual adjunction � : Pervin � Frith : pt induces a
duality between T0 complete Pervin spaces on the one hand and complete Frith frames on
the other. We use the following definition from [11, 19].

Definition 4.1 ([11, 19]) Let (X ,S) be a Pervin space. A filter F ⊆ P(X) is a Cauchy
filter if it is proper and, for every S ∈ S, either S or its complement is in F . We say that a
Cauchy filter F converges to the point x ∈ X if every open neighborhood U ∈ �S(X) of x
belongs to F . Finally, a Pervin space (X ,S) is said to be Cauchy complete if every Cauchy
filter converges, and a Cauchy completion of (X ,S) is a dense extremal monomorphism
c : (X ,S) ↪→ (Y , T ) into a Cauchy complete Pervin space (Y , T ).7

In the following, we refer to the symmetrization of a Pervin space, defined in Sect. 2.5.
The following is an easy observation that we state for later reference.

Lemma 4.2 Let (X ,S) be a Pervin space, and F ⊆ P(X) be a Cauchy filter. Then, F
converges to x if and only if x belongs to

⋂
(F ∩ S).

Note that a filter is Cauchy with respect to (X ,S) if and only if it is Cauchy with respect to
(X ,S). Therefore, a Pervin space is Cauchy complete if and only if so is its symmetrization.

7 In [11] Cauchy complete and Cauchy completion are simply named complete and completion, respectively.

123



43 Page 16 of 29 C. Borlido, A. L. Suarez

As observed in [11, 19], one may show that this notion of Cauchy complete Pervin space
correctly captures the notion of a complete quasi-uniform space. It is known that complete
quasi-uniform spacesmay be equivalently characterized via dense extremalmonomorphisms.
In the case of Pervin spaces, the suitable definitions are the following.

Definition 4.3 A symmetric Pervin space (X ,B) is complete if every dense extremal
monomorphism (X ,B) ↪→ (Y , C), with (Y , C) a T0 symmetric Pervin space is an iso-
morphism. More generally, we say that a Pervin space (X ,S) is complete if so is its
symmetrization.

Our next goal is to show that Definitions 4.1 and 4.3 are equivalent. Before we move on,
we need to prove a couple of technical lemmas.

Lemma 4.4 Let m : (X ,S) ↪→ (Y , T ) be a dense extremal monomorphism. If F ⊆ P(Y ) is
a Cauchy filter, then so is m−1(F).

Proof Let F ⊆ P(Y ) be a Cauchy filter. Since m is dense and F is proper, m−1(F) is, by
Lemma 2.9, a proper filter too. Now, given S ∈ S, since m is an extremal monomorphism,
we have S = m−1(T ) for some T ∈ T . Since F is Cauchy, it contains either T or T c and
thus, m−1(F) contains either S = m−1(T ) or Sc = m−1(T c). This shows that m−1(F) is
Cauchy as well. ��

Recall the neighborhood mapN(X ,S) : (X ,S) → (pf(S), S̃) from (5), that is, the unit of
the adjunction LPervin � pf .

Lemma 4.5 For a T0 Pervin space (X ,S), the mapN(X ,S) is an extremal monomorphism of
Pervin spaces whose symmetrization is dense.

Proof If (X ,S) is T0, then different points have different neighborhood filters in S, and so
N(X ,S) is injective. Since, for every S ∈ S, we have N−1

(X ,S)(S̃) = S, the map N(X ,S) is an

extremal monomorphism. To show that SymPerv(N(X ,S)) is dense, suppose thatN−1
(X ,S)(S̃1 ∩

S̃2
c
) = S1 ∩ Sc2 = ∅, that is, S1 ⊆ S2. Then, there is no prime filter containing S1 and

omitting S2, which means that S̃1 ∩ S̃2
c
must be empty. ��

We remark that, for every T0 Pervin space (X ,S), the mapN(X ,S) : (X ,S) ↪→ (pf(S), S̃)

is the completion of (X ,S) (cf. [11, 19]).
We may now prove the following characterization of T0 complete Pervin spaces.

Theorem 4.6 Let (X ,S) be a T0 Pervin space. Then, the following are equivalent:

(a) (X ,S) is Cauchy complete;
(b) (X ,S) is complete;
(c) Every extremal monomorphism (X ,S) ↪→ (Y , T ) into a T0 Pervin space whose sym-

metrization is dense is an isomorphism;
(d) (X ,S) is isomorphic to pf(S);
(e) (X ,S) is isomorphic to pt(Idl(S),S);
(f) (X ,S) is isomorphic to a Pervin space of the form pt(Idl(D), D), for some lattice D;
(g) (X ,S) is isomorphic to a Pervin space of the form pf(D), for some lattice D.

Proof Noting that extremal monomorphisms are preserved under symmetrization, the equiv-
alence between (b) and (c) follows. That (c) implies (d) is a consequence of Lemma 4.5. The
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equivalences between (d) and (e) and between (f) and (g) follow from Lemma 2.11, while
that (e) implies (f) is trivial. It remains to show that (a) implies (b) and that (g) implies (a).

Suppose that (a) holds, and letm : (X ,S) ↪→ (Y , C) be a dense extremal monomorphism
into a symmetric T0 Pervin space (Y , C). We need to show that m is an isomorphism, that is,
that m is surjective. Given y ∈ Y , consider the filter Fy := ↑{C ∈ C | y ∈ C}. Since C is a
Boolean algebra, Fy is a Cauchy filter. By Lemma 4.4, the filter m−1(Fy) is Cauchy as well.
Since (X ,S) is Cauchy complete, m−1(Fy) converges to some point x ∈ X . We claim that
y = m(x). Since (Y , C) is T0 and C is a Boolean algebra, we have that y = m(x) provided
y ∈ C implies m(x) ∈ C , for every C ∈ C. We let C ∈ C be such that y ∈ C . Then, m−1(C)

belongs to m−1(Fy) ∩ S and, since m−1(Fy) converges to x , by Lemma 4.2, it follows that
x ∈ m−1(C), that is, m(x) ∈ C , as required.

Finally, let us assume that we have a Pervin space of the form pf(D) = (pf(D), D̃), with
D a distributive lattice. Suppose that F ⊆ P(pf(D)) is a Cauchy filter and set P := {a ∈
D | ã ∈ F}. Clearly, P is a filter of D. Let us show that P is prime. Let a, b ∈ D be such
that a ∨ b ∈ P , and suppose that a /∈ P . Equivalently, a, b are such that ˜a ∨ b = ã ∪ b̃ ∈ F
and ã /∈ F . Since F is Cauchy, it follows that (̃a)c belongs to F and thus, so does b̃ ⊇
(̃a)c ∩ b̃ = (̃a)c ∩ (̃a∪ b̃). This shows that b ∈ P as required. We now claim that F converges
to P . By Lemma 4.2, it suffices to show that P ∈ ã ∩ (̃b)c whenever a, b ∈ D are such that
ã ∩ (̃b)c ∈ F . Since F is proper, having ã ∩ (̃b)c ∈ F implies that ã ∈ F and b̃ /∈ F . But by
definition of P , this means that P ∈ ã ∩ (̃b)c, as required. ��

From now on, we will drop the use of Cauchy complete and call complete Pervin space
every Pervin space satisfying the equivalent conditions of Theorem 4.6.

In turn, completeness of Frith frames is discussed in [7], where a characterization of
complete Frith frames using both dense extremal epimorphisms and Cauchy maps is given.
Here, it will suffice to consider the following definitions:

Definition 4.7 ([7]) We say that a symmetric Frith frame (L, B) is complete if every dense
extremal epimorphism (M,C) � (L, B) with (M,C) symmetric is an isomorphism. More
generally, a Frith frame (L, S) is complete provided its symmetric reflection SymFrith(L, S)

is complete. A completion of (L, S) is a complete Frith frame (M, T ) together with a dense
extremal epimorphism (M, T ) � (L, S).

The fact that completeness of a Frith frame (L, S) is equivalent to completeness of the
associated quasi-uniform frame is shown in [7, Proposition 7.2]. Moreover, every Frith frame
(L, S) has a unique, up to isomorphism, completion, which is given by the counit (3) of the
adjunction Idl � LFrith. Also in [7], we have shown the following:

Theorem 4.8 ([7, Proposition 4.6 and 0 Theorem 7.7]) Let (L, S) be a Frith frame. Then,
the following are equivalent:

(a) (L, S) is complete;
(b) (L, S) is coherent;
(c) L is isomorphic to the ideal completion Idl(S) of S.

Part (c) of this characterization, together with Theorem 4.6(f), yield the following:

Corollary 4.9 A Pervin space is T0 and complete if and only if it is of the form pt(L, S), for
some complete Frith frame (L, S).

In particular, the functor pt : Frith → Pervin restricts and co-restricts to a functor
CFrith → CPervin. In order to show that �, too, restricts correctly, we will need to use the
Prime Ideal Theorem.
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Proposition 4.10 The following are equivalent.

(a) The Prime Ideal Theorem holds;
(b) If (X ,S) is a T0 complete Pervin space, then the Frith frame �(X ,S) is complete.
(c) If (X ,B) is a T0 complete symmetric Pervin space, then the Frith frame �(X ,B) is

complete.

Proof We first show that (a) implies (b). Let (X ,S) be a T0 complete Pervin space. By
Theorem 4.6, we may assume, without loss of generality, that (X ,S) = pt(Idl(S),S). Since
we are assuming that the Prime Ideal Theorem holds, by Theorem 2.2, Idl(S) is a spatial
frame, and thus so is (Idl(S),S) (cf. Theorem 2.5). Therefore, we have

�(X ,S) = � ◦ pt(Idl(S),S) ∼= (Idl(S),S),

which, by Theorem 4.8, is a complete Frith frame.
Clearly, (b) implies (c). Finally, suppose that (c) holds, and let X be a set. By Theorem 2.2,

it suffices to show that every proper filter F on X is contained in a prime filter. For the sake
of readability, we set B := P(X). Note that showing that F is contained in some prime filter
is equivalent to showing that the intersection

⋂
S∈F S̃ is nonempty. For that, we consider the

T0 symmetric Pervin space (pf(B), B̃). By Theorem 4.6, this is complete, and by hypothesis,
so is the Frith frame �(pf(B), B̃) = (�B̃(pf(B)), B̃). In particular, the topological space
(pf(B),�B̃(pf(B))) is compact, and thus, it suffices to show that {S̃ | S ∈ F} has the finite
intersection property. In turn, since F is closed under finite meets, this is the same as showing
that S̃ �= ∅ for every S ∈ F . But since F is proper, every S ∈ F is nonempty, and given
x ∈ S, we have ↑{x} ∈ S̃ and S̃ is nonempty as well. This finishes the proof. ��
Corollary 4.11 The following are equivalent.

(a) The Prime Ideal Theorem holds;
(b) If (X ,S) is a T0 complete Pervin space, then the compact open subsets of (X , �S(X))

are precisely the elements of S.

Proof By the equivalence between (a) and (b) of Proposition 4.10, it suffices to show that
�(X ,S) is a complete Frith frame if and only if the compact open subsets of (X , �S(X))

are precisely the elements of S. Observe that, by Theorem 4.8, �(X ,S) = (�S(X), S) is
complete if and only if it is coherent. Thus, S is the set of compact elements of the frame
�S(X), hence of compact open subsets of the topological space (X , �S(X)). ��

We have just proved the following:

Corollary 4.12 If the Prime Ideal Theorem holds, then the adjunction � : Pervin � Frith :
pt restricts and co-restricts to an adjunction between T0 complete Pervin spaces and complete
Frith frames.

We may now show the main result of this section.

Theorem 4.13 If the Prime Ideal Theorem holds, then the adjunction � : Pervin � Frith :
pt restricts and co-restricts to a duality between the categories CPervin of T0 complete
Pervin spaces and the category CFrith of complete Frith frames.

Proof Recall from Theorem 2.5 that the adjunction � � pt induces a duality between sober
Pervin spaces and spatial Frith frames. Thus, because ofCorollary 4.12, it remains to show that
T0 complete Pervin spaces are sober and complete Frith frames are spatial. By Theorem 4.6, a
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T0 Pervin space is complete if and only if it is isomorphic to the Pervin space pt(Idl(D), D),
for some lattice D, and thus a complete Pervin space is sober. In turn, complete Frith frames
are spatial because, by Theorem 4.8, they are of the form (Idl(D), D) for some lattice D and,
by the Prime Ideal Theorem, these are spatial Frith frames (cf. Theorems 2.2 and 2.5). ��

5 Stone-Type Dualities

In this section we will see how several Stone-type dualities relate to the duality between
T0 complete Pervin spaces and complete Frith frames shown in the previous section (cf.
Theorem 4.13). Note that the fact that every T0 complete Pervin space defines a spectral, a
Priestley, and a pairwise Stone space is already observed in [19], but no proof is provided.
Here, we will give the functorial details of this assignment, and use Theorem 4.13 to interpret
Stone-type dualities as a restriction an co-restriction of the dual adjunction � : Pervin �
Frith : pt along full subcategory embeddings.

5.1 Stone Duality

Stone duality establishes that the categories of bounded distributive lattices and of spectral
spaces are dually equivalent. We recall that a topological space is spectral if it is sober,
and its compact open subsets are closed under finite intersections and form a basis of the
topology. The category of spectral spaces together with those continuous functions such that
the preimages of compact open subsets are compact will be denoted by Spec. By identifying
each lattice with the coherent frame given by its ideal completion, Stone duality may be
seen as a restriction and co-restriction of the dual adjunction � : Top � Frm : pt, but not
along full inclusions, as not every continuous function is a morphism of spectral spaces, and
morphisms of coherent frames are required to preserve compact elements. We will now see
that this duality may also be seen as a restriction and co-restriction of the dual adjunction
� : Pervin � Frith : pt, the advantage being that spectral spaces and bounded distributive
lattices form full subcategories of Pervin and Frith, respectively.

It follows straightforwardly from Theorem 4.8 (by identifying each lattice S with the Frith
frame (Idl(S), S)) that the categories of complete Frith frames and of bounded distributive
lattices are equivalent, and by definition of morphism of Frith frames, this is indeed a full
subcategory of Frith (see also [7, Proposition 4.6]). Given the Prime Ideal Theorem, we also
have that every T0 complete Pervin space defines a spectral space.

Lemma 5.1 If the Prime Ideal Theorem holds, then the functor UPervin : Pervin → Top
restricts and co-restricts to a functor CPervin → Spec.

Proof Let (X ,S) be a T0 complete Pervin space. By Theorem 4.13, (X ,S) is a fixpoint of the
adjunction � � pt and thus, it is sober, that is to say that the topological space (X ,�S(X))

is sober (recall Theorem 2.5). By Corollary 4.11, the lattice S is the set of compact open
elements of (X , �S(X)). Therefore, (X ,�S(X)) is spectral. Finally, note that this also
implies that if f : (X ,S) → (Y , T ) is a morphism of T0 complete Pervin spaces, then is
induces a morphism f : (X ,�S(X)) → (Y ,�T (Y )) of spectral spaces. ��

It remains then to show that the categories of T0 complete Pervin spaces and of spectral
spaces are, in fact, isomorphic. Consider the functor KO : Spec → CPervin which sends a
spectral space (X , τ ) to the Pervin space X equipped with the lattice of compact open subsets
of X . It is easily seen that KO is well-defined. We may further prove the following:

123



43 Page 20 of 29 C. Borlido, A. L. Suarez

Proposition 5.2 If the Prime Ideal Theorem holds, then the functorsUPervin andKO establish
an isomorphism of categories between Spec and CPervin.

Proof Let (X ,S) be a T0 complete Pervin space. By Corollary 4.11, KO ◦ UPervin is the
identity functor on CPervin. For a spectral space (X , τ ), we have that UPervin ◦ KO(X , τ )

is the set X equipped with the topology generated by the lattice of compact open subsets of
(X , τ ). But by definition of spectral space, this is (X , τ ) itself. ��
Corollary 5.3 If the Prime Ideal Theorem holds, then Stone duality for bounded distributive
lattices may be seen as a restriction along full subcategory embeddings of the dual adjunction
� : Pervin � Frith : pt.

5.2 Priestley Duality

Another duality for bounded distributive lattices, due to Priestley, uses the so-called Priestley
spaces in place of spectral spaces. A Priestley space is a compact topological space equipped
with a partial order relation on its points satisfying the Priestley separation axiom, which
states that for points x � y there is a clopen upper set (“upset" hereon) containing x and
omitting y. A morphism of Priestley spaces is a continuous map which is monotone with
respect to the order. We denote by Priest the category of Priestley spaces and correspond-
ing morphisms. It has been shown in [8] that the category of Priestley spaces and that of
spectral spaces are isomorphic. We have already seen that T0 complete Pervin spaces form
a category equivalent to spectral spaces, and it is well-known that the latter form a category
equivalent to Priest. It is the goal of this section to explicitly exhibit the correspondence
between T0 complete Pervin spaces and Priestley spaces, thereby providing yet another way
of understanding Priestley duality.

As noticed in [19], every Pervin space (X ,S) comes naturally equipped with a preorder
given by

x ≤S y if and only if x ∈ S implies y ∈ S for all S ∈ S,

which is a partial order exactlywhen (X ,S) is T0. In the casewhere (X ,S) is T0 and complete,
this is the underlying partial order of the corresponding Priestley space, and its topology is
the patch topology of the bitopological space SkPervin(X ,S).

Lemma 5.4 If the Prime Ideal Theorem holds, then there is a well-defined functor P :
CPervin → Priest defined by P(X ,S) = (X , �S(X), ≤S) on objects, and mapping each
morphism to the morphism defined by its underlying set function.

Proof If (X ,S) is T0 complete, then so is its symmetrization (X ,S) and, by Corollary 4.11,
X ∈ S is a compact element of �S(X). Thus, (X , �S(X)) is compact. Since elements
of S are clopen upsets of (X , �S(X), ≤S), the relation ≤S satisfies the Priestley separation
axiom. Therefore, P(X ,S) is a Priestley space. It is not hard to see that P is well-defined on
morphisms, too. ��

In the other direction, we have the following:

Lemma 5.5 There is a well-defined functor CUp : Priest → CPervin that assigns to each
Priestley space (X , τ, ≤) the Pervin space X equipped with the lattice of clopen upsets of X,
and keeps morphisms unchanged.
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Proof It is easy to verify that CUp is well-defined on morphisms. Let us argue that CUp is
well-defined on objects. Fix a Priestley space (X , τ,≤). By the Priestley separation axiom,
we have that (X ,S) := CUp(X , τ,≤) is T0. To show that (X ,S) is complete, we show that
every Cauchy filter converges. Indeed, if F ⊆ P(X) is a Cauchy filter then, since it is proper,
it has the finite intersection property. Thus, F ∩S is a family of closed subsets of X with the
finite intersection property. Since Priestley spaces are compact, it follows that

⋂
(F ∩ S) is

nonempty and, by Lemma 4.2, F converges. ��
We leave it for the reader to verify that the functors P and CUp are mutually inverse. The

reader may also check that, by composing the functors

Priest
CUp−−−−→ CPervin

UPervin−−−−→ Spec and Spec
P−−−→ CPervin

KO−−−−→ Priest

one obtains the well-known isomorphism between the categories of spectral and of Priestley
spaces.

Proposition 5.6 If the Prime Ideal Theorem holds, then the functors P andCUp establish an
isomorphism of categories between Priest and CPervin.

Corollary 5.7 If the Prime Ideal Theorem holds, then Priestley duality may be seen as a
restriction along full subcategory embeddings of the dual adjunction � : Pervin � Frith :
pt.

5.3 Bitopological Duality

It has long been known [3] that the dual adjunction between bitopological spaces and biframes
restricts and co-restricts to a duality between T0, compact and zero-dimensional bitopological
spaces (denotedBiTopKZ) and compact and zero-dimensional biframes (denotedBiFrmKZ).
A few years later, Priestley duality was considered from a bitopological point of view [17],
with Priestley spaces being identified with T0, compact and zero-dimensional bitopologi-
cal spaces, and lattices being identified with compact and zero-dimensional biframes. The
point-set half of this correspondence was then rediscovered in [6], where T0 compact zero-
dimensional bitopological spaces were named pairwise Stone spaces.8 It is then clear that
CPervin and CFrith are equivalent to BiTopKZ and BiFrmKZ, respectively. In this section,
we will make these equivalences explicit, using the adjunctions derived in Sect. 3.1.

Let us start with the equivalence between T0 complete Pervin spaces and T0, compact,
and zero-dimensional bitopological spaces. Recall that we have an idempotent adjunction
Clop+ � SkPervin whose fixpoints are, respectively, the zero-dimensional bitopological
spaces and the strongly exact Pervin spaces. To conclude that this adjunction further restricts
to an equivalence between BiTopKZ and CPervin, it suffices to show that T0 complete Per-
vin spaces are strongly exact (cf. Corollary 5.9) and that the equality SkPervin[CPervin] =
BiTopKZ holds (cf. Lemmas 5.8 and 5.10). For that, we will need to assume the Prime Ideal
Theorem.

Lemma 5.8 The following are equivalent.

(a) The Prime Ideal Theorem holds.
(b) For a T0 complete Pervin space (X ,S), the bispace SkPervin(X ,S) is compact.

8 Note that pairwise Stone spaces are the same as T0, compact and zero-dimensional bitopological spaces
only under the assumption of the Prime Ideal Theorem.

123



43 Page 22 of 29 C. Borlido, A. L. Suarez

(c) For a T0 symmetric complete Pervin space (X ,B), the bispace SkPervin(X ,B) is compact.

Proof We first argue that (b) and (c) are equivalent. Clearly, (b) implies (c). For the converse,
we only need to remind the reader that a Pervin space (X ,S) is complete if and only if so is
its symmetrization (X ,S) and observe that, by definition of compact bispace, SkPervin(X ,S)

is compact if and only if so is SkPervin(X ,S).
Now, taking the equivalence between statements (a) and (c) of Proposition 4.10 into

account, it suffices to show that, for every T0 symmetric Pervin space (X ,B), the bispace
SkPervin(X ,B) is compact if and only if the Frith frame �(X ,B) is coherent (recall that, by
Theorem 4.8, a Frith frame is coherent if and only if it is complete).

If SkPervin(X ,B) is compact, that is, if the topological space (X ,�B(X)) is compact, then
every element of B is compact in the frame �B(X). Indeed, if B = ⋃

U for some family
U ⊆ �B(X), then U ∪{Bc} is an open cover of (X ,�B(X)) and, if the latter is compact, then
U ∪ {Bc} has a finite subcover U ′. This yields B = ⋃

U ′ \ {Bc}, with U ′\{Bc} finite, thereby
showing compactness of B. Thus, the Frith frame �(X ,B) = (�B(X),B) is coherent.
Conversely, suppose that �(X ,B) is coherent. In particular, its underlying frame �B(X) is
compact. But this is precisely the frame of opens of the patch topology of SkPervin(X ,B).
Thus, the latter is compact as well. ��

As a consequence, we immediately obtain that, under the Prime Ideal Theorem, every
T0 complete Pervin space is strongly exact. We do not know whether this is a necessary
hypothesis.

Corollary 5.9 If the Prime Ideal Theorem holds, then T0 complete Pervin spaces are strongly
exact.

Proof Let (X ,S) be a Pervin space. By Lemma 5.8, we only need to show that if
SkPervin(X ,S) is compact then (X ,S) is strongly exact. Let

⋂
i∈I Si be an open intersection

of S, say
⋂

i∈I Si = ⋃
j∈J S

′
j , for some {S j } j∈J ⊆ S. Then, we have

X = (
⋂

i∈I
Si )

c ∪ (
⋂

i∈I
Si ) =

⋃

i∈I
Sci ∪

⋃

j∈J

S′
j

and, by compactness of SkPervin(X ,S), it follows that there exists a finite subset J ′ ⊆ J
such that X = ⋃

i∈I Sci ∪ ⋃
j∈J ′ S′

j . But then, we have
⋂

i∈I Si = ⋃
j∈J ′ S′

j , and thus, the
intersection

⋂
i∈I Si belongs to S, as required. ��

It only remains to show the inclusion SkPervin[CPervin] ⊇ BiTopKZ.

Lemma 5.10 If X = (X , τ+, τ−) is a compact bitopological space, then the Pervin space
Clop+(X ) is complete. In particular, every T0, compact, and zero-dimensional bitopological
space is of the form SkPervin(X ,S), for some T0 complete Pervin space (X ,S).

Proof We let τ denote the patch topology of X , and we suppose that X is compact, that is,
that the space (X , τ ) is compact. We let (X ,S) = Clop+(X ) and F ⊆ P(X) be a Cauchy
filter. Since F is proper, it has the finite intersection property, and therefore, so does F ∩ S
(which is a subset of Clop(X , τ )). By compactness of (X , τ ) it follows that the intersection⋂

(F ∩ S) is nonempty. Thus, by Lemma 4.2, F converges and (X ,S) is complete.
Finally, let X = (X , τ+, τ−) be a bitopological space. By Proposition 3.2, if X is zero-

dimensional, then it is isomorphic to SkPervin ◦Clop+(X ). If furthermoreX is compact then,
by the first part of the claim, Clop+(X ) is complete. It is also easy to see that Clop+(X ) is
T0 provided X is T0 and zero-dimensional. Thus, if X is T0, compact, and zero-dimensional,
then (X ,S) = Clop+(X ) is a T0 complete Pervin space satisfying X ∼= SkPervin(X ,S). ��
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As already explained, we may thus derive the following:

Corollary 5.11 If the Prime Ideal Theorem holds, the adjunction Clop+ � SkPervin restricts
to an equivalence BiTopKZ ∼= CPervin.

Let us now consider the pointfree setting. We have seen in Sect. 3.1 the existence of
an idempotent adjunction SkFrith : Frith � BiFrm : B+. Although we were not able to
describe the underlying categorical equivalence, we have shown that the fixpoints of Frith
are the strongly exact Frith frames and that every compact zero-dimensional biframe is a
fixpoint of BiFrm. Thus, we will follow the same strategy as for Pervin spaces and show that
complete Frith frames are strongly exact (cf. Lemma5.14) and the equalitySkFrith[CFrith] =
BiFrmKZ holds (cf. Lemmas 5.15 and 5.16).

Before proceeding, we need to state a technical result. Recall that a filter F ⊆ L on a
frame L is Scott-open if whenever D ⊆ F is a directed subset whose join belongs to F , the
intersection D ∩ F is nonempty.

Proposition 5.12 ([14, 15]) Scott-open filters are closed under strongly exact meets.

Proof It is shown in [14, Lemma 3.4] that every Scott-open filter F ⊆ L is of the form
{x ∈ L | �x ⊆ ∨

a∈P �a}, for some subset P ⊆ L . In turn, filters of this form are shown in
[15, Theorem 4.5] to be closed under strongly exact meets. ��
Remark 5.13 In the proof of Proposition 5.12 we invoked [14, Lemma 3.4], whose proof uses
ordinal induction (although no choice principles are required). A constructive alternative
proof is provided in [23, Theorem 1.9].

We may now show that complete Frith frames are strongly exact.

Lemma 5.14 Complete Frith frames are strongly exact.

Proof Let (L, S) be a complete Frith frame and P ⊆ S be such that a = ∧
P is a strongly

exact meet. Since, by Theorem 4.8, P consists of compact elements and finite meets of
compact elements are compact too, the filter F ⊆ L generated by P is Scott-open. By
Proposition 5.12, a belongs to F . Thus, there exist s1, . . . , sn ∈ P such that a ≥ s1∧· · ·∧sn ,
and therefore also a = s1 ∧ · · · ∧ sn . This means that a ∈ S, as required. ��
Lemma 5.15 If (L, S) is a complete Frith frame, then the biframe SkFrith(L, S) is compact
(and zero-dimensional).

Proof By definition, (L, S) is complete if and only if so is SymFrith(L, S) = (CS L, S).
By Theorem 4.8, (CS L, S) is complete if and only if it is coherent. In particular, if (L, S)

is complete, then CS L is compact. But, by definition, this means that SkFrith(L, S) =
(CS L,∇L,�S) is compact. Finally, SkFrith(L, S) is clearly zero-dimensional, for every Frith
frame (L, S). ��
Lemma 5.16 IfL is a compact biframe, then the Frith frameB+(L) is complete. In particular,
every compact and zero-dimensional biframe is of the form SkFrith(L, S), for some complete
Frith frame (L, S).

Proof Let L = (L, L+, L−) be a compact biframe and (M, T ) = B+(L) (that is, T is the
lattice of bicomplemented elements of L+ and M is the subframe of L it generates). By
Theorem 4.8, B+(L) is complete provided T consists of compact elements of M . Since M
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is, by definition, a subframe of L+, it suffices to show that bicomplemented elements of L+
are compact in L+. Let then t ∈ L+ be bicomplemented and suppose that t ≤ ∨

P , for some
subset P ⊆ L+. Then, we have 1 = t ∨ t∗ ≤ ∨

P ∨ t∗ and, since L is compact, there exists
a finite subset P ′ ⊆ P such that 1 ≤ ∨

P ′ ∨ t∗. But this implies that t ≤ ∨
P ′, as required.

Finally, ifL is compact and zero-dimensional then, byProposition 3.8,L ∼= SkFrith◦B+(L)

and, in particular, it is of the form SkFrith(L, S) for some complete Frith frame (L, S). ��
We may thus conclude the following:

Corollary 5.17 The adjunction SkFrith � B+ restricts to an equivalenceCFrith ∼= BiFrmKZ.

Corollary 5.18 If the Prime Ideal Theorem holds, then the duality between compact zero-
dimensional bitopological spaces and compact zero-dimensional biframes may be seen as
restriction and co-restriction of the dual adjunction � : Pervin � Frith : pt along full
subcategory embeddings.

We remark that, in [17], the duality between compact zero-dimensional bispaces and
compact zero-dimensional biframes is seen as a restriction and co-restriction of the classical
dual adjunction �b : BiTop � BiFrm : ptb. However, although bitopological spaces and
biframes are related to Pervin spaces and Frith frames (namely, via the functors SkPervin
and SkFrith, respectively), as seen in Example 3.11, the two extensions of the adjunction
� : Top � Frm : pt are not comparable. The situation is different when we restrict
to T0 complete and to T0 compact and zero-dimensional structures, as in that case, both
�b : BiTop � BiFrm : ptb and � : CPervin � CFrith : pt coincide, up to equivalence.
Therefore, our duality ends up being equivalent to the duality of [17].

5.4 Summary

We summarize in the diagram below the categorical equivalences shown in Sects. 5.1–5.3,
which exhibit several Stone-type dualities as restrictions of the dual adjunction between
Pervin spaces and Frith frames. The results marked with ∗ require the use of the Prime Ideal
Theorem.

BiTop Pervin Frith BiFrm

BiTopZ

BiTopKZ

?

BiFrmKZ

Pervinse

CPervin

Frithse

CFrith

DLatSpecPriest

∼ =
T
hm

.4
.8∼=

Prop. 5.2 ∗∼=
Pr
op
. 5
.6

∗

C
or
.5

.9
∗

L
em

.5
.1
4

Pr
op
.3

.8

Clop+

�

SkPervin

�

pt

B+

�

SkFrith

Prop. 2.12

?
∼=

Cor. 3.3
∼=

Cor. 3.6

∼=
Cor. 5.11 ∗

∼=
Thm. 4.13 ∗

∼=
Cor. 5.17
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We highlight that the explicit equivalences between BiTopKZ and Priest, and between
BiFrmKZ and DLat have first been studied in [17].

6 The TD Axiom for Pervin Spaces and Locale-Based Frith Frames

In [7, Section 4.5] a Pervin equivalent of the TD axiom for topological spaces is introduced.
A Pervin space is called TD if for every x ∈ X there is S ∈ S such that x ∈ S and S\{x} ∈ S.
In there, the following slight variants of this definition were shown to be equivalent:

Lemma 6.1 Let (X ,S) be a Pervin space. Then, the following are equivalent:

(a) (X ,S) is TD,
(b) for every x ∈ X, there are distinct S1, S2 ∈ S such that S1\{x} = S2\{x},
(c) for every x ∈ X, there are S1, S2 ∈ S such that S1\S2 = {x}.

On the other hand, in [5] the TD axiom is compared to sobriety and it is highlighted that
the two axioms are, in some sense, duals of each other. In particular, the following is proven.

Proposition 6.2 ([5, Proposition 4.3]) Let X be a topological space. In the category of T0
topological spaces we have the following:

(a) The space X is sober if and only if whenever we have an extremal monomorphism
f : X ↪→ Y such that �( f ) is an isomorphism f must be an isomorphism.

(b) The space X is TD if and only if whenever we have an extremal monomorphism f : Y ↪→
X such that �( f ) is an isomorphism f must be an isomorphism.

Wewill now showaPervin version of this proposition,where sober is replaced by complete
and the TD-axiom is replaced by its equivalent for Pervin spaces, being the next lemma the key
ingredient. Recall the forgetful function LPervin : Pervin → DLatop introduced in Sect. 2.6.

Lemma 6.3 Let f : (X ,S) → (Y , T ) be a morphism of Pervin spaces. Then,

(a) LPervin( f ) : T → S is injective if and only if SymPerv( f ) : (X ,S) → (Y , T ) is dense;
(b) LPervin( f ) : T → S is surjective if and only if �( f ) : (�T (Y ), T ) → (�S(X),S) is

an extremal epimorphism of Frith frames. Moreover, if (X ,S) is T0, these are further
equivalent to f being an extremal monomorphism of Pervin spaces.

Proof Let us start by proving (a). SinceLPervin( f ) is a lattice homomorphism, being injective
is equivalent to having

∀T1, T2 ∈ T , f −1(T1) ⊆ f −1(T2) �⇒ T1 ⊆ T2,

which is easily seen to be equivalent to having

∀T1, T2 ∈ T , f −1(T1 ∩ T c
2 ) = ∅ �⇒ T1 ∩ T c

2 = ∅.

Since T consists of the finite joins of elements of the form T1 ∩ T c
2 , with T1, T2 ∈ T , this

means that SymPerv( f ) is dense, as required.
Finally, the first assertion of (b) is a trivial consequence of the characterization of extremal

epimorphisms of Frith frames (recall Proposition 2.4), while the second one is the content of
[7, Corollary 4.17]. ��
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Proposition 6.4 Let (X ,S) and (Y , T ) be T0 Pervin spaces. We have the following.

(a) The space (X ,S) is complete if and only if whenever there is a map f : (X ,S) → (Y , T )

such that LPervin( f ) is an isomorphism f must be an isomorphism.
(b) The space (X ,S) is TD if and only if whenever there is a map f : (Y , T ) → (X ,S) such

that LPervin( f ) is an isomorphism f must be an isomorphism.

Proof Since (X ,S) is T0, by Lemma 6.3, LPervin( f ) is an isomorphism if and only if f is
an extremal monomorphism and SymPerv( f ) is dense. Thus, part (a) follows from Theo-
rem 4.6(c).

To prove (b), let us first suppose that (X ,S) is TD and let f : (Y , T ) → (X ,S) be such
that (Y , T ) is T0 and LPervin( f ) is an isomorphism. Since (Y , T ) is T0, by Lemma 6.3(b),
f is an extremal monomorphism. Thus, it suffices to show that f is an epimorphism, that
is, surjective. Fix x ∈ X . Since (X ,S) is TD , by Lemma 6.1(c), the singleton {x} belongs
to S. Since, by Lemma 6.3(a), SymPerv( f ) is dense, it follows that {x} intersects f [Y ]
(recall Lemma 2.9), that is, x belongs to the image of f as we intended to show. Conversely,
let f : (Y , T ) ↪→ (X ,S) be the extremal monomorphism induced by Y := X\{x}, that
is, T = {S\{x} | S ∈ S}. Clearly, (Y , T ) is T0 and f is not an isomorphism. Thus, by
assumption, LPervin( f ) cannot be injective. That is to say that, there exist distinct S1, S2 ∈ S
such that S1\{x} = S2\{x} and thus, by Lemma 6.1(b), (X ,S) is TD . ��

We finish this section by exhibiting a pointfree version of Proposition 6.4, which will now
involve the forgetful functor LFrith : Frith → DLat (cf. Sect. 2.6). Let us start with a version
of Lemma 6.3 for Frith frames.

Lemma 6.5 Let h : (L, S) → (M, T ) be a homomorphism of Frith frames. Then,

(a) LFrith(h) : S → T is injective if and only if SymFrith(h) : (CS L, S) → (CT M, T ) is
dense;

(b) LFrith(h) : S → T is surjective if and only if h is an extremal epimorphism.

Proof By definition of SymFrith, we have that SymFrith(h) is dense if and only if for every
s1, s2 ∈ S, having ∇h(s1) ∧ �h(s2) = 0 implies that ∇s1 ∧ �s2 = 0. But this is easily
seen to be equivalent to having that h(s1) ≤ h(s2) implies that s1 ≤ s2, that is to say
that LFrith(h) is injective. This proves (a). Part (b) is a straightforward consequence of the
definition of LPervin(h) and of the characterization of extremal epimorphisms of Frith frames
(cf. Proposition 2.4). ��

We may then prove the following version of Proposition 6.4(a). In particular, note that it
provides an alternative criterion for a Frith frame to be complete, which does not depend on
its symmetrization.

Proposition 6.6 A Frith frame (L, S) is complete if and only if for every map h : (M, T ) →
(L, S) such that LFrith(h) is an isomorphism, h is an isomorphism.

Proof We first observe that (L, S) is complete if and only if every dense extremal epi-
morphisms (K ,C) → (CS L, S), with (K ,C) symmetric, is an isomorphism. Suppose that
(L, S) is complete and let h : (M, T ) → (L, S) be such that LFrith(h) is an isomor-
phism. By Lemma 6.5(b), h is an extremal epimorphism. Thus, we only need to show that
it is also a monomorphism, that is, injective. Consider the homomorphism SymFrith(h) :

123



Pervin Spaces and Frith... Page 27 of 29 43

(CT M, T ) → (CS L, S). Then, SymFrith(h) is an extremal epimorphism because so is h and,
by Lemma 6.5(a), it is dense. Thus, since (L, S) is complete, it is an isomorphism and,
in particular, injective. Thus, its restriction h is also injective as required. Conversely, let
h : (K ,C) → (CS L, S) be a dense extremal epimorphism, with (K ,C) symmetric. Since
h is already a morphism in Frithsym, and thus, SymFrith(h) = h, by Lemma 6.5, LFrith(h)

is an isomorphism. Thus, by hypothesis, h is an isomorphism, which proves that (L, S) is
complete. ��

In order to get an analogue of Proposition 6.4(b), we need to introduce the notion of
locale-based Frith frame, which will replace the TD axiom in our statement.

We say that a Frith frame (L, S) is locale-based if the smallest sublocale of L that con-
tains S is the whole frame L . It is not hard to see that such sublocale consists of the arbitrary
meets of elements of the form a → s, where a ∈ L and s ∈ S. As a consequence, we have
the following characterization of locale-based Frith frames, that we state for later reference.

Lemma 6.7 A Frith frame is locale-based if and only if, for every a ∈ L, the following
equality holds:

a =
∧

{b → s | b ∈ L, s ∈ S, and a ≤ b → s}.
The following technical result will also be useful:

Lemma 6.8 Let h : (L, S) → (M, T ) be a morphism of Frith frames. IfLFrith(h) is injective,
then h∗ ◦ h(s) = s, for every s ∈ S.

Proof Since h∗ is right adjoint to h, we have h ◦ h∗ ◦ h = h. Thus, the claim follows from
injectivity of LFrith(h). ��

We are now ready to show the already announced analogue of Proposition 6.4(b).

Proposition 6.9 AFrith frame (L, S) is locale-based if and only if for everymap h : (L, S) →
(M, T ) such that LFrith(h) is an isomorphism, h is an isomorphism.

Proof Let (L, S) be a locale-based Frith frame, and h : (L, S) → (M, T ) be a homomor-
phism such thatLFrith(h) is an isomorphism. By Lemma 6.5(b), we know that h is an extremal
epimorphism. It remains to show it is injective or, equivalently, that h∗ ◦ h(a) ≤ a, for every
a ∈ L . It remains to show it is injective or, equivalently, that h∗ ◦ h(a) ≤ a, for every a ∈ L .
By Lemma 6.8 we know that S ⊆ h∗[M]. This is also a sublocale inclusion, as S ⊆ L is, L
being locale-based. As h∗[M] ⊆ L is a sublocale then it must be L , as L is locale-based.

For the converse, suppose that (L, S) is such that all maps h : (L, S) → (M, T ) such that
LFrith(h) is an isomorphism are isomorphisms. We let 〈S〉Loc be the smallest sublocale of L
that contains S. Since 〈S〉Loc is a subposet of L , each join computed in 〈S〉Loc is greater than
or equal to the same join computed in L . Thus, (〈S〉Loc, S) is also a Frith frame. Finally, we
let q : L � 〈S〉Loc be the frame quotient defined by the sublocale embedding 〈S〉Loc ↪→ L .
Since the restriction of q to 〈S〉Loc is the identity, q induces a morphism of Frith frames
q : (L, S) → (〈S〉Loc, S). Clearly we have that LFrith(q) is an isomorphism, and so, by
hypothesis, h is an isomorphism. This proves that (L, S) is locale-based, as required. ��
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