
ar
X

iv
:2

20
5.

06
89

2v
3

 [
cs

.L
O

]
 2

9
Se

p
20

23

From gs-monoidal to oplax cartesian categories:

constructions and functorial completeness

Tobias Fritz1†, Fabio Gadducci2†, Davide Trotta2*†,

Andrea Corradini2†

1Department of Mathematics, University of Innsbruck, Innsbruck,
Austria.

2Department of Computer Science, University of Pisa, Pisa, Italy.

*Corresponding author(s). E-mail(s): trottadavide92@gmail.com;
Contributing authors: tobias.fritz@uibk.ac.at; fabio.gadducci@unipi.it;

andrea.corradini@unipi.it;
†These authors contributed equally to this work.

Abstract

Originally introduced in the context of the algebraic approach to term graph
rewriting, the notion of gs-monoidal category has surfaced a few times under
different monikers in the last decades. They can be thought of as symmetric
monoidal categories whose arrows are generalised relations, with enough struc-
ture to talk about domains and partial functions, but less structure than cartesian
bicategories. The aim of this paper is threefold. The first goal is to extend the
original definition of gs-monoidality by enriching it with a preorder on arrows,
giving rise to what we call oplax cartesian categories. Second, we show that
(preorder-enriched) gs-monoidal categories naturally arise both as Kleisli cate-
gories and as span categories, and the relation between the resulting formalisms
is explored. Finally, we present two theorems concerning Yoneda embeddings on
the one hand and functorial completeness on the other, the latter inducing a
completeness result also for lax functors from oplax cartesian categories to Rel.

Keywords: gs-monoidal category, cartesian bicategory, Kleisli category, span category,
Yoneda embedding, functorial completeness

1

http://arxiv.org/abs/2205.06892v3

Contents

1 Introduction 2

2 Background on gs-monoidal categories 4

3 Oplax cartesian categories 10

4 Kleisli categories are gs-monoidal 13

5 Span categories are oplax cartesian 18

6 On functorial completeness 21

7 Conclusion and future works 28

A Lax/oplax/bilax monoidal functors 33

B Commutative monads 35

1 Introduction

The notion of gs-monoidal category was originally introduced in the context of the
algebraic approach to term graph rewriting [1, 2]. Their study was pursued in a series
of papers (see e.g. [3, 4] among others), including their application to the functorial
semantics of relational and partial algebras [5].

Briefly, gs-monoidal categories are symmetric monoidal categories equipped with
two families of arrows, a duplicator ∇A : A → A ⊗ A and a discharger !A : A → I for
each object A, subject to a few coherence axioms. These arrows are not required to
be natural in A, and this fact is precisely what accounts for the difference between
considering terms as trees or as graphs. In fact, it is often observed that if naturality
holds, then the monoidal product is the categorical product, and thus the category is
cartesian monoidal [6], a structure used in Lawvere theories [7] to represent abstractly
functional algebraic operations and their compositions. From this perspective, the
lack of naturality of duplicators and dischargers in gs-monoidal categories leads one
to think of their arrows as generalised relations and partial functions instead.

Conceptually, gs-monoidal categories are a weaker version of cartesian bicate-
gories [8, 9], lacking the dual arrows for duplicators and dischargers. The relevance of
cartesian bicategories to mathematics and computer science increased in the last years,
see e.g. [10–12], and the notion of gs-monoidality has surfaced a few times under differ-
ent monikers. The simplicity of this notion and its pervasiveness has led several authors
to investigate such structures, in some cases independently developed. This is the case
for the work by Golubtsov [13], whose categories of information transformers are very
similar to gs-monoidal categories. More recently, gs-monoidal categories appeared as
copy-discard categories [14]. Their affine variant is the basis for a recent approach
to categorical probability, where these categories are dubbed Markov categories [15]
based on the interpretation of the arrows as generalised Markov kernels.

2

There is a conceptual hierarchy of categories, from symmetric monoidal to cartesian
ones, sketched in the following diagram, with forgetful functors going upwards

symmetric monoidal

gs-monoidal

Markov
restriction

(with restriction products)

cartesian monoidal

(1)

Indeed as already mentioned, a gs-monoidal category is a symmetric monoidal cate-
gory with a duplicator ∇A and a discharger !A arrow for each object A, subject to a
few coherence axioms but not to naturality; Markov categories are gs-monoidal cate-
gories where the discharger is natural; and dually restriction categories with restriction
products [16] are precisely those where the duplicator is natural, as explained later
in Section 2. Finally, if both dischargers and duplicators are natural, the monoidal
product is the categorical product and thus we get cartesian monoidal categories.

Motivated by the current interest in these categorical structures, in this work we
aim to explore more in depth the original notion in several directions. We first provide
an overview of the main characteristics of gs-monoidality and of its preorder-enriched
version, which culminates in the introduction of oplax cartesian categories. Our pre-
sentation adopts the graphical formalism of string diagrams, and it highlights the
main properties underlying gs-monoidal categories. This also facilitates a simple treat-
ment of the connection with a well-established proposal for the categorical modelling
of partiality, restriction categories [16–18].

We then explore two different settings in which the gs-monoidal and oplax cartesian
structures naturally arise, namely, Kleisli categories and span categories. Similarly to
what was observed in [15] in the context of Markov categories and affine monads, the
Kleisli category of a commutative monad on a gs-monoidal category A is shown to
be gs-monoidal. Moreover, for a suitable notion of gs-monoidal monad T on an oplax
cartesian category A, we show that the canonical functor AT → A preserves the oplax
cartesian structure.

Moving on, we generalise an almost folklore result, namely, that the category
PSpan(A), obtained from the bicategory of spans of a category with finite limits A
by identifying arrows whenever they are isomorphic as spans and by taking the pre-
order reflection of the 2-cells, is gs-monoidal and admits a canonical oplax cartesian
structure. We thus obtain a gs-monoidal functor between Kleisli and span categories.

Finally, we turn our attention to functorial completeness questions for preorder-
enriched gs-monoidal categories: which types of functors are needed in order to
distinguish any two distinct morphisms? Our first step in this direction is to formulate
and prove a gs-monoidal Yoneda embedding. Our second one is to obtain a functo-
rial completeness theorem with respect to suitable bilax functors [19], which induces a
completeness theorem also for functors of oplax cartesian categories into Rel and thus
offers a tool for exploiting gs-monoidal and oplax cartesian categories in the setting
of functorial semantics for relational and partial algebras, much in the spirit of [5].

3

Overview

Section 2 recalls the basic notions of gs-monoidal categories and overviews their main
properties. Section 3 introduces preorder-enriched gs-monoidal categories and oplax
cartesian categories, setting the stage for our later results. Section 4 presents a char-
acterisation of Kleisli and span categories having the gs-monoidal and oplax cartesian
structure, respectively, and provides a formal link between those categories via an
oplax cartesian functor. Section 5 shows a gs-monoidal Yoneda embedding and a
completeness result for oplax cartesian categories. Section 6 discusses future work.

The reader may find some categorical background in Appendices A–B.

2 Background on gs-monoidal categories

Originally introduced in the context of algebraic approaches to term graph rewriting [1,
2], the notion of gs-monoidal category has been developed in a series of papers [3–5].
We recall here the basic definition adopting the graphical formalism of string diagrams,
referring to [20] for an overview of various notions of monoidal categories and their
associated diagrammatic calculus.
Definition 2.1 (gs-monoidal category). A gs-monoidal category C is a symmetric
monoidal category, where we denote by ⊗ the tensor product and by I the unit, such
that every object A of C is equipped with arrows

A : A→ A⊗A A : A→ I

which satisfy the commutative comonoid axioms

A A
=

A
=

A A
=

A

(2)

and the monoidal multiplicativity axioms

A⊗B
=

A

B

A⊗B
=

A

B

B

B

A

A

=
II

I
=

I

(3)

4

Symbolically, we also write ∇A : A → A ⊗ A for the first structure arrow above
and call it duplicator, and similarly !A : A→ I for the discharger.
Remark 2.2. The monoidal multiplicativity equations come in two pairs, one pair
specifying the duplicator and discharger on a tensor product object and one for doing
so on the monoidal unit I. However, the two equations for I imply each other upon
using the counitality axiom (bottom-right of (2)), thus one of them could be omitted.
Remark 2.3. Following the style of presentation of string diagrams, the axioms
are given for strict monoidal categories, i.e. where the coherence isomorphisms for
associativity and unitality are identities. This is without loss of generality, either by
considering the strictification of the categories at hand [21, Proposition 3.28] or by
adding the required coherence isomorphisms to the axioms.
Example 2.4. If C is the category of commutative comonoids in a symmetric monoidal
category A, with arrows given by the arrows of A without any further conditions,
then C is a gs-monoidal category in a canonical way: duplicators and dischargers are
given by the comultiplications and counits of the comonoids, respectively. Then the
commutative comonoid equations (2) hold by definition of commutative comonoid,
and the monoidal multiplicativity equations (3) hold by definition of the monoidal
product of commutative comonoids.

As for functors between symmetric monoidal categories, also functors between gs-
monoidal categories come in several variants. The definitions that follow refer to lax,
oplax, strong and strict monoidal functors (see e.g. [19]) recalled in Appendix A.
Definition 2.5. For gs-monoidal categories C and D, a functor F : C → D is

1. lax gs-monoidal if it is equipped with a lax symmetric monoidal structure

ψ : ⊗ ◦ (F × F)→ F ◦ ⊗, ψ0 : I → F (I)

such that the following diagrams commute

F (A) F (A⊗A) FA F (I)

F (A)⊗ F (A) I

F (∇A)

∇FA ψA,A

F (!A)

!FA ψ0

2. oplax gs-monoidal if it is equipped with an oplax symmetric monoidal structure

φ : F ◦ ⊗ → ⊗ ◦ (F × F), φ0 : F (I)→ I

such that the following diagrams commute

F (A) F (A⊗A) FA F (I)

F (A)⊗ F (A) I

F (∇A)

∇FA φA,A

F (!A)

!FA φ0

5

3. strong gs-monoidal if it is strong symmetric monoidal and the above diagrams
commute;

4. strict gs-monoidal if it is strict symmetric monoidal, thus in particular F (A ⊗
B) = F (A)⊗ F (B) and F (I) = I, and satisfies

F (∇A) = ∇F (A), F (!A) = !F (A).

As in the purely monoidal case, “gs-monoidal functor” without further qualification
refers to the strong version.

Recall also the notion of bilax symmetric monoidal functor from Definition A.3.
We then obtain the definition of bilax gs-monoidal functor upon adding the four
commutative triangles above to that definition.

2.1 Total and functional arrows, domains

In this section, we investigate the categorical structure of functional and total arrows.
This allows us to explore the connection between gs-monoidal categories, Markov cate-
gories, restriction categories [17], p-categories [22], and cartesian monoidal categories,
as depicted in (1).
Definition 2.6. Let C be a gs-monoidal category. An arrow f : A→ B is C-total if

=
A

f
BA

and C-functional if

=f
BA A

f
B

f
B

We denote the subcategory of C-functional arrows by C-Fun, the one of C-total arrows
by C-Total, and the one of C-total and C-functional arrows by C-TFun.
Example 2.7. If C is the gs-monoidal category of commutative comonoids in a sym-
metric monoidal category A, i.e. the full subcategory of A whose objects are the
commutative comonoids of A (see Example 2.4), then the total arrows are the couni-
tal ones, the functional arrows the comultiplicative ones, and therefore C-TFun is the
category of commutative comonoids and comonoid homomorphisms in A.
Example 2.8. The category Rel of sets and relations with the monoidal structure
⊗ : Rel × Rel → Rel given by the cartesian product of sets is gs-monoidal [5]. In
particular, Rel-functional arrows are precisely partial functions, Rel-total arrows are
precisely total relations, and Rel-total, Rel-functional arrows are precisely functions.
Example 2.9. Every Markov categoryM in the sense of [15, 23] is gs-monoidal. In
fact, Markov categories are exactly those gs-monoidal categories whose monoidal unit
I is terminal, or equivalently those for which every arrow isM-total. TheM-functional
arrows in the sense of Definition 2.6 are precisely those called deterministic there.

We note a useful property of C-total and C-functional arrows, which generalise
corresponding observations for Markov categories [15, Lemma 10.12].
Proposition 2.10. Let C be a gs-monoidal category. Then C-Fun and C-Total are
gs-monoidal subcategories of C.

6

Proof. Closure under composition and ⊗ is straightforward. To finish the proof, we
show that both ! and ∇ are C-total and C-functional: every arrow !A is C-total because
!I !A = idI !A since !I = idI by Definition 2.1. Moreover !A is C-functional because

=
A A

by strictness of C and by the axioms of Definition 2.1. The same calculation also
shows that every duplicator ∇A is C-total. It is C-functional by the first monoidal
multiplicativity axiom combined with the commutative comonoid equations.

We recall a few almost folklore properties (see e.g.[6, 13, 24]) needed later on.
Proposition 2.11. Let C be a gs-monoidal category. Then

1. the subcategory C-Total of C-total arrows has weak binary products given by ⊗;
2. the subcategory C-TFun of C-functional and C-total arrows is cartesian monoidal.

Proof. 1. Let us consider two objects A and B of C and show that A ⊗ B is a weak
product in C-Total with respect to the projections idA⊗ !B : A ⊗ B → A and
!A ⊗ idB : A⊗B → B, i.e.

B

A

B

A

By Proposition 2.10, these projections are C-total arrows, since they are monoidal
products of C-total arrows.

Now let us consider two C-total arrows h : C → A and g : C → B. First, observe
that the arrow

C
h

g

B

A

is C-total by Proposition 2.10. To conclude the statement, it is enough to show that

=
C C

h

h

g

B

A

A
=

C C
h

h

g

B

A

B

Now notice that the first equation holds because, since g is total, we have that

=
C C

h

h

g

B

A

AC
h

C

A

=

Similarly one checks that the second equality holds, and hence conclude the proof.

7

2. For any two objects A and B of C, we show that A⊗B is the categorical product of A
and B in C-TFun with projections idA⊗ !B : A⊗B → A and !A⊗ idB : A⊗B → B.
First, by the previous point, we know that this defines a weak product in C-Total,
and thus in particular in C-TFun, since if f and g are C-functional and C-total,
then again so is (f ⊗ g)∇C by Proposition 2.10.

We still have to prove the uniqueness part of the universal property. So suppose
that there exists another C-total, C-functional arrow h : C → A ⊗ B such that
(idA⊗ !B)h = f and (!A ⊗ idB)h = g. Then we have

(f ⊗ g)∇C = [(idA⊗ !B)h⊗ (!A ⊗ idB)h]∇C

= (idA⊗ !B ⊗ !A ⊗ idB)(h⊗ h)∇C .

Since h is C-functional, we can further evaluate to

(f ⊗ g)∇C = (idA⊗ !B ⊗ !A ⊗ idB)∇A⊗Bh = h.

Remark 2.12. Let us consider a gs-monoidal category C and a C-total arrow f : A→
B. Notice that the diagram

B B ⊗B
idB ⊗ !B

oo
!B⊗ idB

// B

A

h

OO

f

<<②②②②②②②②②②②②②

f

bb❊❊❊❊❊❊❊❊❊❊❊❊❊

commutes with both h := ∇Bf and h := (f ⊗ f)∇A. If f is non-functional, then
these arrows are different. So the subcategory C-Total has weak binary products by
Proposition 2.11, but in general these are not categorical products.

Let us also note that gs-monoidal categories have enough structure to properly
express a notion of domain of arrows.
Definition 2.13. Let C be a gs-monoidal category and f : A→ B in C. The domain

of f is the arrow dom(f) := (idA⊗ !Bf)∇A : A→ A, graphically

A

f

A

B

The motivation behind this particular definition is that in Rel, for a relation R
from A to B, the arrow dom(R) = (idA× !BR)∇A is the relation representing the
domain of definition of R, i.e.

a dom(R)a′ ⇐⇒ a = a′ and ∃b ∈ B : aRb.

As we will show, the arrow dom(f) in a gs-monoidal category enjoys several alge-
braic properties that generalise those of the usual notion of domain of a relation. A

8

first property we expect to hold from a morphism that abstracts the notion of domain
of a relation is that the domain of a total arrow has to be the identity.
Proposition 2.14. Let C be a gs-monoidal category and f : A→ B. Then

1. if f is C-functional, then dom(f) is C-functional;
2. f is C-total if and only if dom(f) = idA.

Proof. 1. By Proposition 2.10 applied to the definition of dom(f).
2. If f is C-total, then !Bf = !A, hence

A

f

A

B

=
A

A

A

A
=

by the second axiom of gs-monoidal categories. Conversely, if dom(f) = idA, then
!A dom(f) = !A, hence !A(idA⊗ !Bf)∇A = !A. Since

A

f

A

B

= f
BA

we can conclude that !Bf = !A, i.e. that f is C-total.

Remark 2.15. The notion of domain allows us to state the precise relation between
gs-monoidal categories, restriction categories [17] and p-categories [22]. Given the
remarks on commutative comonoids provided in Examples 2.4 and 2.7, we can exploit
a relevant result of Cockett and Lack [16, Thm 5.2] to conclude that when C is a
gs-monoidal category, the subcategory C-Fun of C-functional arrows is a restriction
category, with the restriction structure given by dom(−). Moreover, this category
has restriction products, which in particular implies the equation dom(f ⊗ g) =
dom(f) ⊗ dom(g). Furthermore, C-Fun also is a p-category with one-element object
(given by I), where the diagonal is given by ∇ and the two projections by the families
of arrows of the form id⊗ ! and !⊗ id, respectively.

This fact, combined with the remark in [16, p. 29] that explains how in a restric-
tion category with restriction products every object has a canonical cocommutative
comonoid structure (in the symmetric monoidal category), the duplicator is natural
and total maps are precisely the counit-preserving ones (this fact is due to an obser-
vation of Carboni [25]), allows to conclude that restriction categories with restriction
products correspond exactly to gs-monoidal categories whose duplicator is natural.
Remark 2.16. In Rel, domains have an additional property given by the equation
f dom(f) = f , namely

A

f

B

B

A
=

f

f
B

(4)

which holds even for non-functional f . However, this equation does not hold for arrows
in gs-monoidal categories in general. For example, the Kleisli category of the multiset

9

monad on FinSet is a gs-monoidal category in a canonical way (by Proposition 4.4),
and its arrows A → B can be identified with functions A × B → N that compose
via convolution. The above (4) does not hold there: already with A = B = I a one-
element set, where f is determined by a natural number, we have the number itself
on the right but its square on the left. We will return to this issue in Section 3 after
introducing preorder-enriched gs-monoidal categories.

3 Oplax cartesian categories

We have seen that gs-monoidal categories enjoy some features of Rel with respect
to total and functional arrows. Our next step is to show how to build on the notion
of gs-monoidality in order to account for the usual preorder-enrichment of Rel. This
extension will be pivotal later on, e.g. for our functorial completeness theorem. And
while the notion of domain we discussed in the previous section lacks some of the
properties of domains in Rel, in particular the one noted in Remark 2.16, we will see
that this property can be recovered in terms of preorder enrichment.
Definition 3.1. A preorder-enriched gs-monoidal category C is a gs-monoidal
category C that is at the same time a preorder-enriched monoidal category.

Recall that a preorder-enriched monoidal category consists of a preorder-enriched
category C, an object I of C, a preorder-enriched functor ⊗ : C × C → C, and enriched
natural monoidal structure isomorphisms

λ : I ⊗− → idC , ρ : − ⊗ I → idC , α : (−⊗−)⊗− → −⊗ (− ⊗−)

such that the underlying category equipped with the underlying functor ⊗, the object
I, and the natural isomorphisms λ, ρ and α is a monoidal category (see [26] for details).
Since a preorder-enriched functor is just an ordinary functor that is in addition mono-
tone, the preorder structure and the monoidal structure are required to interact by the
monotonicity of the tensor product⊗; the preorder-enrichment of the structure isomor-
phisms λ, ρ and α does not add any additional conditions since preorder-enrichment
for natural transformations between preorder-enriched functors is trivial.

In a general preorder-enriched gs-monoidal category, no further compatibility with
the gs-monoidal structure is required. However, in many (but not all) examples, also
the following compatibility holds.
Definition 3.2. An oplax cartesian category C is a preorder-enriched gs-monoidal
category C such that the following inequalities hold1 for every arrow f : A→ B

≤

A
f

BA

f
BA A

f
B

f
B

≤

1Viewing a preorder-enriched category as a 2-category, the inequalities state that the families of arrows
∇A and !A are the components of an oplax natural transformation. The connection between these
inequalities and rewriting is explored in [4].

10

The notion of oplax cartesian category is reminiscent of cartesian bicategories in
the sense of [8, Definition 1.2]. In particular, there are two differences between these
two notions: the first one is that the existence of right adjoints for ∇ and ! is not
required in Definition 3.2, while it is a crucial part of the definition of a cartesian
bicategory (see point (M) of [8, Definition 1.2]). The second one is that the hom-
categories of an oplax cartesian category are required to be preorders, while cartesian
bicategories are originally required to be poset-enriched.
Example 3.3. Rel has a natural preorder-enriched structure with the preorder given
by the set-theoretic inclusions between relations. Moreover, for every relation R : A→
B we trivially have the inequalities discussed in Definition 3.2. Hence Rel is an oplax
cartesian category. On the other hand, reversing the preorder on every hom-set of Rel
gives a preorder-enriched gs-monoidal category that is clearly not oplax cartesian.

For a more trivial example, any gs-monoidal category C is preorder-enriched with
the trivial preorder. Then C is oplax cartesian if and only if it is cartesian monoidal.
Definition 3.4. Let C be a preorder-enriched category and f, g : A→ B. Then f and
g are preorder equivalent, denoted by f ≈ g, if f ≤ g and g ≤ f .

Definition 2.6 can be generalised straightforwardly.
Definition 3.5. Let C be an oplax cartesian category. An arrow f

BA is weakly

C-total if
≈

A
f

BA

and weakly C-functional if

≈f
BA A

f
B

f
B

Definition 3.4 lets us prove that, even if f dom(f) is different from f in general,
these two arrows are preorder equivalent in any oplax cartesian category.
Proposition 3.6. Let C be an oplax cartesian category. For every arrow f : A → B
we have that dom(f) ≤ idA and f dom(f) ≈ f , graphically

A

f

A

B

A
≤

A

f

B

B

A
≈

f

f
B

Proof. 1. By definition of oplax cartesian category we have the inequality !Bf ≤ !A,
and thus

A

f

A

B

A
≤

A

A

A

=

11

2. The inequality f dom(f) ≤ f follows by the previous point. We can prove the
reverse f ≤ f dom(f) by observing that

f
BA

= f
BA

A

f

B

B

f

≤

The first equality holds by the last axiom in (2), while the inequality follows by
definition of oplax cartesian category.

We next provide a uniqueness result for duplicators and dischargers.
Proposition 3.7. Let C be an oplax cartesian category with structure arrows ∇ and
!. If C admits the structure of oplax cartesian category given by the same monoidal
structure and the same preorder, but with structure arrows ∇′ and !′, then ∇A ≈ ∇′

A

and !A ≈ !′A for every object A of C.

Proof. Let us consider the two operators ! and !′. For every object A, we have

!′A = !I !
′
A ≤ !A,

where the first equation is simply by !I = idI and the inequality is by oplax cartesianity.
We then obtain !′A ≈ !A by symmetry.

With a similar argument we can prove that ∇A ≈ ∇′
A.

Example 3.8. Given a (plain) gs-monoidal category C, one can consider the monoidal
preorder enrichment generated by the inequalities of Definition 3.2, i.e. the small-
est preorder on every hom-set which makes both composition and ⊗ monotone and
satisfies those inequalities. In this way, C becomes oplax cartesian in a canonical way.

An interesting case of this construction is FinStoch, the Markov category of finite
sets and stochastic maps. In this case, it was shown by Dario Stein (personal com-
munication) that the preorder enrichment generated like this recovers the support of
a stochastic matrix: for stochastic matrices f, g : X → Y we have f ≤ g if and only
if f(y|x) > 0 implies g(y|x) > 0 for all x ∈ X and y ∈ Y . It thus follows that
FinStoch/≈, the quotient of FinStoch by preorder equivalence, is a gs-monoidal
category isomorphic to FinRel.

We now conclude this section with a discussion of functors between preorder-
enriched gs-monoidal categories and oplax cartesian categories. The various notions
of gs-monoidal functor introduced in Definition 2.5 can be also used in the context
of preorder-enriched gs-monoidal categories, with the only difference that F is addi-
tionally required to be a preorder-enriched functor, which amounts to monotonicity
on hom-sets. On functors between oplax cartesian categories, one often has additional
inequalities, which take the following form.
Definition 3.9. Let C and D be oplax cartesian categories and F : C → D a preorder-
enriched functor. Then

12

1. F is colax cartesian2 if it is a lax symmetric monoidal functor with structure
arrows ψ, ψ0 such that the following inequalities hold

F (A) F (A⊗A) FA F (I)

F (A)⊗ F (A) I

F (∇A)

∇FA ψA,A

F (!A)

!FA ψ0

≤ ≤

2. F is colax opcartesian if it is an oplax symmetric monoidal functor with structure
arrows φ, φ0 such that the following inequalities hold

F (A) F (A⊗A) FA F (I)

F (A)⊗ F (A) I

F (∇A)

∇FA φA,A

F (!A)

!FA φ0

≤ ≤

3. F is colax bicartesian if it is colax cartesian and colax opcartesian in such a way
as to become bilax monoidal (Definition A.3).

4 Kleisli categories are gs-monoidal

In recent years, strong monads and Kleisli categories have been used to provide cate-
gorical models in several branches of computer science. The leading example is Moggi’s
work [27, 28] on an abstract approach to the notion of computation. We refer to [29–31]
for introductions to the theory of monads and to [32, 33] for more details. Appendix
B offers a short recap of the main definitions. We start by recalling some relevant and
known examples of Kleisli categories.
Example 4.1. Rel is the Kleisli category of the powerset monad, where its underlying
functor P : Set→ Set sends every set X to its powerset P (X).
Example 4.2. The category of sets and stochastic maps (with pointwise finite sup-
port) is the Kleisli category of the finite distribution monad D : Set → Set, sending
a set X to the set D(X) of finitely supported probability measures on X .
Example 4.3. The category of measurable spaces and Markov kernels is the Kleisli
category of the Giry monad G : Meas→Meas, where Meas denotes the category of
measurable spaces and measurable functions, see [34, 35].
Notation. To avoid confusion between the arrows of A and the arrows of a Kleisli
category AT , we adopt the notation f ♯ : A → T (B) for the representative in A of
an arrow f : A → B in AT [23]. We often define a Kleisli arrow f by specifying its
representative f ♯. The definition of Kleisli composition then amounts to the equation
(g ◦ f)♯ = µ ◦ T (g♯) ◦ f ♯.

Given a monad (T, µ, η) on a symmetric monoidal category A, it is well known
(see e.g. [36]) that the Kleisli category AT inherits a symmetric monoidal structure
precisely when the monad is commutative. If the base categoryA is cartesian monoidal,

2The use of “colax” here refers to the direction of the 2-cell, namely from F (∇A) to ψA,A ◦ ∇FA.

13

then the induced monoidal product in AT may not be cartesian. A simple example is
the powerset monad P : Set→ Set on the category of sets and functions of Example
4.1, whose Kleisli category SetP is exactly Rel, and the categorical product on Set
induces a monoidal product on Rel given by the cartesian product. The cartesian
product of sets is not the categorical product in Rel, but just a monoidal product.

Thus a natural question is: what is the algebraic structure that is inherited from the
base category by the Kleisli category of a commutative monad? Looking at the hier-
archy of categories sketched in the introduction, spanning from symmetric monoidal
to cartesian ones and including gs-monoidal, Markov and restriction categories (with
restriction products), we answer that gs-monoidality is inherited, while the naturality
of dischargers or duplicators is not.
Proposition 4.4. Let (T, µ, η) be a commutative monad on a gs-monoidal cate-
gory A. Then the Kleisli category AT is a gs-monoidal category with duplicators and
dischargers given for every object A by

∇♯A := ηA⊗A∇A, !♯A := ηI !A.

Proof. It is known that, under the current assumptions, the Kleisli category AT is a
symmetric monoidal category. Now let us consider an object A of the Kleisli category
AT . As mentioned in the statement, we define the arrow ∇A : A → A ⊗ A of AT as
represented by the arrow

A
∇A

// A⊗A
ηA⊗A

// T (A⊗A)

of A. Similarly, we define the arrow !A : A→ I of AT as represented by the arrow

A
!A

// I
ηI

// TI.

Although it is possible now to verify directly that the axioms of a gs-monoidal category
are satisfied, there is a more concise and more insightful argument that works as
follows.3 By definition, the duplicators and dischargers in AT are the images of those
in A under the inclusion functor A → AT , which is strict symmetric monoidal. It now
suffices to note that a strict symmetric monoidal functor maps commutative comonoids
to commutative comonoids, and the monoidal multiplicativity conditions (3) transfer
from A to AT for the same reason. Thus AT is a gs-monoidal category.

Remark 4.5. An equivalent choice for the arrow ∇♯A in Proposition 4.4 is ∇♯A :=
cA,A∇T (A)ηA, for cA,A : T (A) ⊗ T (A) → T (A ⊗ A) the canonical arrow defined via
the commutative structure of the monad T , meaning the diagonal of the diagram in
Definition B.4. It is straightforward to check that cA,A∇T (A)ηA = ηA⊗A∇A.
Remark 4.6. The above discussed example of the powerset monad on Set shows that
for a commutative monad, the naturality of the discharger is not preserved in general
by the Kleisli category construction (therefore AT is not a restriction category with

3See [15, Corollary 3.2], where this was previously used for Markov categories.

14

restriction products in general, even if A is), and likewise for the duplicator. So AT is
not a Markov category in general either, even if A is.

In fact, if A is a Markov category (Example 2.9) and (T, µ, η) is a commutative
monad on A, then the monoidal unit I is terminal in AT if and only if T (I) ∼= I
in A, a property known as T being an affine monad [37, 38]. In other words, if the
monad T preserves the terminal object, every arrow of AT is AT -total and this makes
AT into a Markov category [15, Corollary 3.2]. As an example, consider the non-
empty powerset monad P ∗ : Set → Set, associating to a set X the family of its
non-empty subsets P (X) \ ∅: the arrows of the Kleisli categories are total relations,
thus Rel-Total ∼= SetP∗ , and indeed we have that T (I) ∼= I.
Remark 4.7. For representing functional relations in terms of Kleisli categories, it
suffices to consider the lifting monad (also called maybe monad), associating with a set
X the pointed set X⊥ := X +1. Its Kleisli category is exactly Rel-Fun, the category
of sets and partial functions.
Example 4.8. The category of measurable spaces and Markov kernels of Example
4.3 is gs-monoidal, and actually a Markov category, since the Giry monad G : Meas→
Meas is an affine commutative monad with respect to the cartesian monoidal structure
on Meas. This Kleisli category is often denoted by Stoch.

Similarly, the category of quasi-Borel spaces QBS is cartesian and the monad
P : QBS → QBS of probability measures on it is an affine commutative monad, see
[39] for all the details. Therefore the Kleisli category QBSP is a gs-monoidal category,
and in fact a Markov category.

Now let us consider a commutative monad T : A → A on a gs-monoidal category
A, and let us denote by cX,Y : T (X)⊗T (Y)→ T (X⊗Y) the canonical lax symmetric
monoidal structure defined via the commutative structure of T .
Definition 4.9. A commutative monad T : A → A is called gs-monoidal monad if
T (∇A) = cA,A∇T (A) and T (!A) = ηI !T (A) for every object A of A.
Remark 4.10. Since ψX,Y := cX,Y together with ψ0 := ηI makes T into a lax sym-
metric monoidal functor (Remark B.5), Definition 4.9 can be equivalently introduced
as requiring T to be a lax gs-monoidal functor.

We have seen in Proposition 4.4 that Kleisli categories for commutative monads on
gs-monoidal categories inherit the gs-monoidal structure. In the case of gs-monoidal
monads on cartesian categories, we obtain the following result.
Lemma 4.11. Let A be a cartesian monoidal category and T : A → A a gs-monoidal
monad. Then AT is cartesian monoidal too.

Proof. Let us consider an arrow f : A→ B of AT . We first show that f is functional,
meaning ∇B ◦ f = (f ⊗ f) ◦∇A. Reasoning in terms of representing morphisms in A,
observe that

(∇B ◦ f)
♯ = µB⊗BT (ηB⊗B∇B)f

♯ = T (∇B)f
♯.

By definition of the monoidal structure on AT , it is straightforward to check that

((f ⊗ f) ◦ ∇A)
♯ = cB,B(f

♯ ⊗ f ♯)∇A.

15

Employing first the assumption that T is a gs-monoidal monad and that A is cartesian,
we have that

T (∇B)f
♯ = cB,B∇T (B)f

♯ = cB,B(f
♯ ⊗ f ♯)∇A.

Therefore we can conclude that ∇B ◦ f = (f ⊗ f) ◦ ∇A. Similarly, one can check that
!Bf = !A in AT .

Example 4.12. Let G be an abelian group. Then the functor G× − : Set→ Set is
a commutative monad in a canonical way, and it is easily seen to be a gs-monoidal
monad. And indeed the resulting monoidal structure on its Kleisli category is cartesian.

Note that starting from a Markov categoryA and a gs-monoidal monad T : A → A,
AT is also Markov since the gs-monoidality implies that !I is inverse to ηI , making T
affine. Restriction categories with restriction products are similarly preserved.

Now recall that given an arbitrary monad T : A → A, it induces a pair of functors
FT : A → AT and GT : AT → A such that FT ⊣ GT and T = GTFT , namely

• FT (X) := X and FT (f)
♯ := ηBf for f : A→ B in A;

• GT (X) := TX and GT (f) := µBT (f
♯) for f : A→ B in AT .

When A is gs-monoidal and T is commutative, the functor FT : A → AT is a strict gs-
monoidal functor by definition of the gs-monoidal structure on AT . On the other hand,
the functor GT : AT → A is not strict monoidal in general, but just lax monoidal with
structure morphisms ψX,Y := cX,Y : T (X) × T (Y) → T (X × Y) and ψ0 := ηI : I →
T (I). The functor GT is lax gs-monoidal precisely when the monad T is so.
Proposition 4.13. Let T be a commutative monad on a gs-monoidal category A.
Then the Kleisli right adjoint GT : AT → A is a lax gs-monoidal functor if and only
if T is a gs-monoidal monad.

Proof. We show first that ψ equips GT with a lax symmetric monoidal structure,
which is true for any commutative monad T on a symmetric monoidal category A.4

We start by checking the naturality of ψ, i.e. that for every arrow f1 : A1 → B1 and
f2 : A2 → B2 of AT the following square commutes

TA1 ⊗ TA2 TB1 ⊗ TB2

T (A1 ⊗A2) T (B1 ⊗B2)

µB1T (f♯
1)⊗ µB2T (f♯

2)

cA1,A2

µB1⊗B2T (cB1,B2 (f
♯
1⊗f

♯
2))

cB1,B2

First notice that, by naturality of c, we have that

µB1⊗B2T (cB1,B2(f
♯
1 ⊗ f

♯
2))cA1,A2 = µB1⊗B2T (cB1,B2)cTB1,TB2(T (f

♯
1)⊗ T (f

♯
2)).

4We expect this to be known, but we have not found a precise reference. The closest that we know of is [40,
Proposition 28], which shows the analogous statement for the forgetful functor from the Eilenberg-Moore

category A
T , but under additional assumptions on T needed to make A

T monoidal in the first place.

16

The other composite consisting of the upper horizontal arrow followed by the right
vertical arrow can also be written as

cB1,B2(µB1 ⊗ µB2)(T (f
♯
1)⊗ T (f

♯
2)).

Therefore, to conclude the proof of the naturality, it is enough to show that

cB1,B2(µB1 ⊗ µB2) = µB1⊗B2T (cB1,B2)cTB1,TB2 .

But this equation is exactly the statement that µ is a monoidal transformation, see
e.g. [41, Definition C.2], which proves this statement from the standard equivalence
between commutative monads and symmetric monoidal monads. Hence ψ provides
a natural transformation. Similarly, it is straightforward but tedious to check that
the associativity and unitality axioms of a lax symmetric monoidal functor (see
Definition A.1) are satisfied.

Now, notice that, by definition, GT : AT → A is a lax gs-monoidal functor if and
only if the following diagrams commute for all A in AT

T (A) T (A⊗A) TA T (I)

T (A)⊗ T (A) I

µA⊗AT (ηA⊗A∇A)

∇TA
cA,A

µIT (ηI !A)

!TA ηI

Since µA⊗AT (ηA⊗A) = idT (A⊗A) and µIT (ηI) = idT (I), these two diagrams commute
exactly when the monad T is a gs-monoidal monad.

Remark 4.14. If T is a gs-monoidal monad on a cartesian category A, then AT
is cartesian monoidal by Lemma 4.11, but GT : AT → A is generally just a lax
gs-monoidal functor that is not strong gs-monoidal (see Example 4.12).

4.1 The oplax cartesian structure of Kleisli categories

Now we present an “oplax cartesian version” of Proposition 4.4. To achieve this goal,
we introduce the following generalization of Definition 4.9.
Definition 4.15. Let A be an oplax cartesian category. A preorder-enriched commu-
tative monad T : A → A is called colax cartesian monad if T (∇A) ≤ cA,A∇TA and
T (!A) ≤ ηI !TA for every object A of A.

So in terms of the lax symmetric monoidal structure of T of Remark 4.10, a
preorder-enriched commutative monad is a colax cartesian monad if and only if the
underlying functor is colax cartesian (see Definition 3.9).
Proposition 4.16. Let A be an oplax cartesian category and T : A → A a colax
cartesian monad. Then the Kleisli category AT equipped with the preorder given by

f ≤AT
g ⇐⇒ f ♯ ≤A g♯ (5)

17

is oplax cartesian as well, and the functors

FT : A → AT , GT : AT → A

are colax cartesian (with FT even in the strict sense).

Proof. 1. It is direct to check that AT is preorder-enriched with the preorder given
by (5), based on the fact that A is preorder-enriched and that T is a preorder-
enriched functor. Similarly for the monotonicity of ⊗.

Checking the oplax cartesianity of AT is analogous to the proof of Lemma 4.11.
So consider an arrow f : A→ B of AT . We first show ∇B ◦ f ≤AT

(f ⊗ f)◦∇A. By
definition of ≤AT

, this holds if and only if (∇B ◦ f)♯ ≤A ((f ⊗ f) ◦∇A)♯. Note that

(∇B ◦ f)
♯ = µB⊗BT (ηB⊗B∇B)f

♯ = T (∇B)f
♯.

By definition of the monoidal structure on AT , it is direct to check that

((f ⊗ f) ◦ ∇A)
♯ = cB,B(f

♯ ⊗ f ♯)∇A.

Employing first the assumption that T is a colax cartesian functor and then that
A is oplax cartesian, we have that

T (∇B)f
♯ ≤ cB,B∇T (B)f

♯ ≤ cB,B(f
♯ ⊗ f ♯)∇A.

Therefore we can conclude that ∇B ◦ f ≤AT
(f ⊗ f) ◦∇A. Similarly, one can check

that !Bf ≤ !A in AT .
2. FT is trivially colax cartesian since FT (∇A) = ∇FT (A) and FT (!A) = !F (A) by

definition of the gs-monoidal structure on AT .
3. GT is colax cartesian by GT (∇A) = µA⊗A ◦ T (∇

♯
A) = T (∇A) and the assumption

that T is a colax cartesian functor.

5 Span categories are oplax cartesian

Proposition 4.4 shows that the Kleisli category AT of a commutative monad T on
a gs-monoidal category A is gs-monoidal. Generalising previous results developed for
specific categories (see e.g. [24]), we show now that for any category A with finite
limits, the category PSpan(A), obtained by taking the preorder reflection of the 2-
cells of the bicategory of spans and identifying two arrows when they are isomorphic
spans, is oplax cartesian.

Furthermore, we have the following comparison with Kleisli categories. By com-
posing with the functor GT : AT → A, we obtain a lax gs-monoidal functor AT →
PSpan(A), which moreover in many examples is actually faithful.

Let us start with the following standard definition.
Definition 5.1. Let A be a category with pullbacks. Then the bicategory of spans
Span(A) has the same objects as A, and its arrows are defined as

• an arrow from X to Y is a span (X ← A→ Y) of A;

18

• the identity of X is the span X
idX←−− X

idX−−→ X;

• the composition of spans X ← A
f
−→ Y and Y

g
←− B → Z is given by the span

X ← A×f,g B → Z obtained by taking the pullback of f and g;
• a 2-cell α : (X ← A→ Y)⇒ (X ← B → Y) is an arrow α : A→ B in A such that

the following diagram commutes

A

X Y

B

α

• vertical composition of 2-cells is given by composition in A;
• horizontal composition of 2-cells as well as associators and unitors are induced by

the universal property of pullbacks.

Definition 5.2. Let A be a category with pullbacks and Span(A) its bicategory of
spans. Then the preorder-enriched category PSpan(A) has

• the same objects as A;

• isomorphism classes of arrows of Span(A) as arrows: spans (X
f
←− A

g
−→ Y) and

(X
f ′

←− A′ g′

−→ Y) are isomorphic if there is an iso i : A → A′ such that f ′ ◦ i = f
and g′ ◦ i = g;

• a preorder enrichment defined as [(X
f
←− A

g
−→ Y)] ≤ [(X

f ′

←− A′ g′

−→ Y)] if there is
a 2-cell

α : (X
f
←− A

g
−→ Y)⇒ (X

f ′

←− A′ g′

−→ Y)
in Span(A).

It is straightforward to see that PSpan(A) is indeed a preorder-enriched category.
Note that it is locally small as soon as A is small.

Now, when A is also a cartesian category, it is direct to check that the categorical
product × of A induces a monoidal product ⊗ on PSpan(A). However, we have
actually more structure, as witnessed by the following result.
Proposition 5.3. Let A be a category with finite limits. Then PSpan(A) is an oplax
cartesian category with

∇sX = (X
id
←− X

∇X−−→ X ×X), !sX = (X
id
←− X

!
−→ 1).

Proof. It is well-known [24, Section 3.1]5 and also easy to check in the same way as in
Proposition 4.4 that PSpan(A) is gs-monoidal with respect to the given duplicators
and dischargers. So we just verify the axioms for oplax cartesianity in addition. Let us

consider an arrow from X to Y in PSpan(A) represented by a span (X
f
←− A

g
−→ Y).

We have to show the inequality

∇sY ◦ (X
f
←− A

g
−→ Y) ≤ ((X

f
←− A

g
−→ Y)⊗ (X

f
←− A

g
−→ Y)) ◦ ∇sX .

5Even if that reference just considers spans in Set, the proofs work for any category with finite limits.

19

First, note that by definition of composition in PSpan(A), we have that

∇sY ◦ (X
f
←− A

g
−→ Y) = (X

f
←− A

∇Y g
−−−→ Y × Y),

and since A is cartesian, and hence ∇Y g = (g × g)∇A, this evaluates further to

∇sY ◦ (X
f
←− A

g
−→ Y) = (X

f
←− A

(g×g)∇A
−−−−−−→ Y × Y).

Now, employing the universal property of pullbacks and the naturality of ∇ in A, it
is direct to check that

(X
f
←−A

(g×g)∇A
−−−−−−→ Y × Y) ≤ ((X

f
←− A

g
−→ Y)⊗ (X

f
←− A

g
−→ Y)) ◦ ∇sX ,

as was to be shown. Similarly we have the inequality

!sY ◦ (X
f
←− A

g
−→ Y) ≤ !sX

via the 2-cell obtained via f , since the left-hand side is equal to (X
f
←− A

!A−→ 1).

We may characterise weak functionality and weak totality in terms of properties
of the components of a span.

Proposition 5.4. Let (X
f
←− A

g
−→ Y) be an arrow in PSpan(A). Then

1. it is weakly PSpan(A)-functional if and only if for every h1, h2 : Z → A we have
that fh1 = fh2 implies gh1 = gh2;

2. it is weakly PSpan(A)-total if and only if f is a split epimorphism.

The first item generalises the intuition behind the use of spans with mono left leg
for modelling partial functions.

Proof. 1. By the first axiom of oplax cartesian categories, it is enough to show that
the inequality

(X ×X
f×f
←−−− A×A

g×g
−−→ Y × Y) ◦ ∇sX ≤ ∇

s
Y ◦ (X

f
←− A

g
−→ Y)

holds if and only if fh1 = fh2 implies gh1 = gh2. As in the previous proof, we have

∇sY ◦ (X
f
←− A

g
−→ Y) = (X

f
←− A

(g×g)∇A
−−−−−−→ Y × Y),

while (X ×X
f×f
←−−− A×A

g×g
−−→ Y × Y) ◦ ∇sX is given by the composite span in

20

•

X A×A

X X ×X Y × Y

id

∇X f×f

g×g

y

Thus, by the universal property of pullbacks and the definition of the preorder
≤ in PSpan(A), it is direct to check that fh1 = fh2 implies gh1 = gh2 if and only

(X ×X
f×f
←−−− A×A

g×g
−−→ Y × Y) ◦ ∇sX ≤ ∇

s
Y ◦ (X

f
←− A

g
−→ Y)

i.e. if and only if (X
f
←− Z

g
−→ Y) is weakly PSpan(A)-functional.

2. Notice that !sY ◦ (X
f
←− A

g
−→ Y) = (X

f
←− A

!A−→ 1). Hence the relevant inequality

!sX ≤!
s
Y ◦ (X

f
←− A

g
−→ Y)

holds if and only if there exists an arrow h : X → A such that fh = idX , i.e. if and
only if f is a split epimorphism.

An immediate corollary of Proposition 5.4 follows.

Corollary 5.5. Let f be an isomorphism in A. Then the span (X
f
←− Z

g
−→ Y) of

PSpan(A) is weakly PSpan(A)-functional and weakly PSpan(A)-total.
These morphisms are those that are in the image of the canonical inclusion functor

A → PSpan(A).
Finally, if we consider a gs-monoidal monad T on a category with finite limits A,

we can employ Remark 4.14 to show the following result.
Proposition 5.6. Let T : A → A be a gs-monoidal monad on a category with finite
limits A. Then the canonical functor AT → PSpan(A), obtained by composing the
right adjoint GT : AT → A and the canonical inclusion A → PSpan(A), is a lax
gs-monoidal functor.

6 On functorial completeness

In this section, we first present a gs-monoidal Yoneda embedding, and then a functorial
completeness result for oplax cartesian categories.

6.1 A gs-monoidal Yoneda embedding

For C a symmetric monoidal category, let us consider functors F : C → Set. Assuming
that C is small, these functors form a symmetric monoidal category with respect to
Day convolution ⊠ [42, 43], where for X ∈ C

(F ⊠G)(X) :=

∫ A,B∈C

C(A⊗B,X)× F (A) ×G(B),

21

and F ⊠G is defined on arrows in terms of the universal property of the coend. F ⊠G
enjoys a universal property, which states that the natural transformations F ⊠G→ H
for any functor H : C → Set are in natural bijection with the transformations

F (X)×G(Y) H(X ⊗ Y)

natural in X,Y ∈ C. Defined like this, Day convolution turns the category of functors
C → Set into a symmetric monoidal category. The associator is obvious, and with the
monoidal unit given by the hom-functor C(I,−), the left unitor component C(I,−)⊠
F → F at any F corresponds to the transformation with components

C(I,X)× F (Y) F (X ⊗ Y)

(f, α) F (f ⊗ idY)(α)

and similarly for the right unitor. The braidings are inherited from C. We denote by
LaxSymMon(C,Set) the category of lax symmetric monoidal functors C → Set and
all natural transformations.
Lemma 6.1. Let C be a small monoidal category. Then the category of lax symmetric
monoidal functors LaxSymMon(C,Set)op is a gs-monoidal category in a canonical
way. Its total and functional arrows are exactly the formal opposites of the monoidal
natural transformations.

Proof. For any F : C → Set, there is an equivalence between lax symmetric monoidal
structures on F and commutative monoid structures with respect to Day convolution,
in such a way that the monoidal natural transformations are in natural bijection with
the monoid homomorphisms6. Thus it suffices to show that the category of commuta-
tive monoids in the symmetric monoidal category of functors under Day convolution
is co-gs-monoidal in a canonical way. But this latter statement is an instance of the
fact that the category of commutative monoids in any symmetric monoidal category
is a co-gs-monoidal category in a canonical way (Example 2.4).

In any such category, the co-total and co-functional arrows are exactly the
monoid homomorphisms. This implies the claim that the total and functional arrows
in LaxSymMon(C,Set)op are exactly the formal opposites of monoidal natural
transformations.

We think of the categories LaxSymMon(C,Set)op as gs-monoidal analogues of
the functor categories in the usual Yoneda lemma. The gs-monoidal Yoneda embedding
then reads as follows.
Proposition 6.2. Let C be a small gs-monoidal category. Then there is a fully faithful
oplax gs-monoidal functor

Y : C LaxSymMon(C,Set)op

6See e.g. [43, Example 3.2.2] or [44, Proposition 22.1] for a version of the statement for presheaves with
values in topological spaces.

22

Proof. On objects, we define Y(A) := C(A,−), which is a lax monoidal functor
C → Set; for the lax monoidal structure, we refer forward to the proof of Theorem 6.3.
The action of Y on arrows f : B → A is by precomposition, and it defines a natu-
ral transformation C(B,−) → C(A,−). Full faithfulness of Y holds by the standard
Yoneda embedding.

It remains to equip Y with a oplax gs-monoidal structure, recalling that
LaxSymMon(C,Set)op carries the gs-monoidal structure introduced in Lemma 6.1.
For the oplaxator, note that we have a transformation

C(A,X)⊗ C(B, Y) C(A⊗B,X ⊗ Y)

(f, g) f ⊗ g

that is natural in all four arguments A,B,X, Y ∈ C. By the universal property of Day
convolution, this can be regarded as an arrow

C(A,−)⊠ C(B,−) C(A⊗B,−)

in LaxSymMon(C,Set). Its naturality in A and B also follows by the universal
property. Let us show that considering these transformations in the opposite category
defines the comultiplication of the claimed oplax monoidal structure on Y, while by
Y(I) = C(I,−) we have strict counitality. The coassociativity equation for the comul-
tiplication amounts exactly to the associativity of the monoidal structure of C. The
left unitality equation holds by the commutativity of the diagram

C(I,−)⊠ C(A,−)

C(A,−) C(I ⊗A,−)

laxator

unitor of
Day convolution

induced by unitor in C

and similarly for right unitality.
The preservation of duplicators amounts to the diagram

C(A,−)⊠ C(A,−)

C(A,−) C(A⊗A,−)

laxatorlax structure on C(A,−)

C(∇A,−)

which holds by definition of the lax structure on C(A,−), and similarly for the
dischargers.

6.2 Functorial completeness for oplax cartesian categories

In this section, we consider the category Preord of preordered sets and monotone
maps as a preorder-enriched cartesian monoidal category, and therefore in particular
an oplax cartesian category.

23

Here we start considering the problem of extablishing a functorial completeness
result for oplax cartesian categories with respect to the oplax cartesian category
Preord. The following theorem, in addition to demonstrating completeness for colax
bicartesian functors, will be crucial for our subsequent results: in particular, we will use
this theorem to prove Theorem 6.6 where we show a completeness result (for suitable
functors) in Rel.
Theorem 6.3 (bilax completeness toPreord). Let C be a locally small oplax cartesian
category C and f, g : X → Y arrows in C. Then we have

1. f ≤ g if and only if F (f) ≤ F (g) for every colax bicartesian functor F : C →
Preord;

2. f ≈ g if and only if F (f) ≈ F (g) for every colax bicartesian functor F : C →
Preord.

Since every colax bicartesian functor is in particular colax cartesian and colax
opcartesian, the same statements hold for these classes of functors as well.

Proof. By the usual Yoneda lemma, it is enough to show that every hom-functor
C(A,−) : C → Preord has a canonical colax bicartesian structure.

First we show that every hom-functor C(A,−) : C → Preord is colax cartesian.
The lax symmetric monoidal structure, in components, is given by

ψX,Y :
C(A,X)× C(A, Y) C(A,X ⊗ Y)

(f, g) (f ⊗ g) ◦ ∇A,
(6)

and

ψ0 :
1 C(A, I)

• !A.
(7)

It is straightforward to verify that ψX,Y is natural in X and Y and satisfies the
relevant coherences. The preservation of the braiding holds by the commutativity
assumption on ∇A. This makes C(A,−) lax symmetric monoidal. The claim that it is
colax cartesian then amounts to the inequalities

C(A,X) C(A,X ⊗X)

C(A,X)× C(A,X)

C(A,∇X)

∇C(A,X) ψX,Y

≤

(8)

and

C(A,X) C(A, I)

1

C(A,!X)

!C(A,X) ψ0

≤

(9)

which hold since they are the defining inequalities of the colax cartesianity of C.

24

Now we show that every hom-functor C(A,−) : C → Preord is colax opcartesian.
The oplax symmetric monoidal structure, in components, is given by

φX,Y :
C(A,X ⊗ Y) C(A,X)× C(A, Y)

f ((idX ⊗ !Y) ◦ f, (!X ⊗ idY) ◦ f),

and

φ0 :
C(A, I) 1

f •.

It is straightforward to check that φX,Y is natural in X and Y and that the coherence
axioms for colax monoidal functors are satisfied. This makes C(A,−) colax opcartesian
since the inequalities

C(A,X) C(A,X ⊗X)

C(A,X)× C(A,X)

C(A,∇X)

∇C(A,X) φX,Y

≤
and

C(A,X) C(A, I)

1

C(A,!X)

!C(A,X) φ0

≤

hold even with equality.
Finally, we show that C(A,−) is a bilax monoidal functor in the sense of Definition

A.3. We first check the braiding axiom. Let us consider two arrows f : A → W ⊗X
and g : A→ Y ⊗ Z of C. We have to show that

φW⊗Y,X⊗Z ◦ C(A, idW ⊗γ ⊗ idZ) ◦ ψW⊗X,Y⊗Z(f, g) (10)

is equal to
(ψW,Y × ψX,Z) ◦ (idW ×γ × idZ) ◦ (φW,X × φY,Z)(f, g). (11)

Straightforward evaluation of both sides shows that indeed both (10) and (11) are
equal to the element

((idW ⊗ !X⊗ idY ⊗ !Z)(f ⊗ g)∇A,

(!W ⊗ idX ⊗ !Y ⊗ idZ)(f ⊗ g)∇A)

of C(A,W ⊗Y)×C(A,X⊗Z). Finally, we check the unitality axioms. The first axiom
follows from the fact that both the arrows

φI,I ◦ C(A, λI) ◦ ψ0 : 1→ C(A, I)× C(A, I)

25

and
(ψ0 ⊗ ψ0) ◦ λI : 1→ C(A, I)× C(A, I)

act as • 7→ (!A, !A). Moreover, the second and third axiom hold because 1 is terminal
in Preord.

Remark 6.4. As we wrote in the proof above, by the usual Yoneda lemma,
Theorem 6.3 boils down to showing that every hom-functor C(A,−) : C → Preord
has a canonical colax bicartesian structure. However, the same proof cannot be
adapted to a functorial completeness result for gs-monoidal categories and bilax gs-
monoidal functors C → Set. Indeed, for a gs-monoidal category C, the hom-functor
C(A,−) : C → Set is a lax gs-monoidal functor with respect to the laxator of (6)
and (7) if and only if C is cartesian, since for gs-monoidality the diagrams (8) and (9)
would have to commute on the nose, implying that every arrow is total and functional.

We conclude by showing how the completeness result of Theorem 6.3 for colax
bicartesian functors into Preord can be transferred to a completeness result with
respect to a suitable class of mappings into Rel.

To achieve this goal, we first define the new class of functors we want to consider:
let us say that a mapping F : C → D between preorder-enriched categories is a lax-
on-identities functor if it is like a preorder-enriched functor with strict preservation
of binary composition, but where identities are preserved only laxly in the sense that

idF (A) ≤ F (idA)

for all objects A in C. If F : C → D is a mapping between preorder-enriched monoidal
categories, then we say that it is a lax monoidal lax-on-identities functor if it
is a lax-on-identities functor together with transformations ψX,Y and ψ0, as for a lax
monoidal functor, such that the associativity and unitality diagrams in Definition A.1
commute upon replacing every occurrence of an identity idF (A) by F (idA). Note that
this implies, for example, that the original unitality diagrams (A1) commute only
laxly, meaning with ≤ from top to bottom.
Lemma 6.5. For preorder-enriched monoidal categories A, C and D, let G : A → C
be a lax monoidal functor and F : C → D a lax monoidal lax-on-identities functor.
Then the composition F ◦G : A → D is a lax monoidal lax-on-identities functor.

Proof. Let us denote by ψF and ψF0 the lax monoidal structure of F and by ψG and
ψG0 the one of G. It is straightforward to check that F ◦ G is a lax monoidal lax-on
identities functor with ψFGX,Y given by the composite

FG(X)⊗ FG(Y) F (G(X)⊗G(Y)) FG(X ⊗ Y)
ψF

GX,GY F (ψG
X,Y)

and ψFG0 := F (ψG0)ψ
F
0 . In particular, it is easy to check that F ◦G is a lax-on-identities

functor since
idFG(A) ≤ F (idG(A)) = FG(idA),

and ψFG a natural transformation. Finally, it is straightforward to show that ψFG

satisfies the associativity axiom of lax monoidal lax-on-identity functors, i.e. for all

26

objects A,B,C in C

ψFGA,B⊗C(FG(idA)⊗ ψ
FG
B,C) = ψFGA⊗B,C(ψ

FG
A,B ⊗ FG(idC)).

and that the unitality axioms are satisfied.

As a further specialization, we also obtain a notion of colax cartesian lax-on-
identities functor as analogous to a colax cartesian functor (see Definition 3.9), but
where the underling functor is lax monoidal lax-on-identities.

Now that we fixed the class of functors we deal with, we transfer the completeness
result of Theorem 6.3 to Rel.
Theorem 6.6. Let C be a locally small oplax cartesian category C and f, g : X → Y
arrows in C. Then we have

1. f ≤ g if and only if F (f) ≤ F (g) for every colax cartesian lax-on-identities functor
F : C → Rel;

2. f ≈ g if and only if F (f) ≈ F (g) for every colax cartesian lax-on-identities functor
F : C → Rel.

Proof. To achieve this goal, we define a colax cartesian lax-on-identities functor R :
Preord→ Rel that preserves and reflects the preorder on hom-sets, in the sense that
for f, g : X → Y in Preord, we have

f ≤ g ⇐⇒ R(f) ⊆ R(g). (12)

Then post-composing any F : C → Preord as in Theorem 6.3 with R results in a
colax cartesian lax-on-identities functor R ◦ F : C → Rel by Lemma 6.5, and the
completeness follows.

One way to construct such an R : Preord→ Rel with the properties given above
is to assign to every preordered set (X,≤X) its underlying set R(X,≤X) := X and to
every monotone map f its hypograph

R(f) := {(x, y) ∈ X × Y | y ≤ f(x)}.

Then condition (12) is immediate. For f : X → Y and g : Y → Z, strict functoriality

R(g ◦ f) = R(g) ◦R(f)

is proved by showing both containments as follows. If x ∈ X and z ∈ Z are such that
x(R(g) ◦R(f))z, then this means that there is y such that

y ≤ f(x) z ≤ g(y)

But then applying monotonicity of g and transitivity of ≤ implies z ≤ g(f(x)), which
gives the desired xR(g ◦ f)z. On the other hand, if xR(g ◦ f)z holds, then we can
simply take y := f(x) as our witness of x(R(g) ◦R(f))z, since then both of the above
inequalities are satisfied.

27

The lax preservation of identities idX ⊆ R(idX) is easy to see, and it is worth
noting that equality does not hold unless X is discrete.

Now we focus on the lax monoidal structure of R. A natural choice would be that of
considering the strict monoidality of R given by the trivial components ψA,B = idA×B

and ψI = idI . However, in this case we would obtain that R(!A) = !A but, in general,
we would have just a strict inclusion ∇A ⊂ R(∇A), i.e. R would not be colax cartesian
with the lax monoidal structure given by the trivial components. So we need to consider
another lax monoidal structure for R. To this end we observe that, by definition of R,
we have

R(∇A) = R(idA×A)∇RA. (13)

Hence, we consider the lax monoidal structure of R given by ψA,B := R(idA×B) and
ψI := R(idI) = idI . It is direct to see that such a choice of ψ provides a natural
transformation ψ : ⊗◦(R×R)→ R◦⊗, and that the associativity and unitality axioms
of a lax monoidal lax-on-identities functor are satisfied. Thus, R is a lax monoidal
lax-on-identities functor. It is also colax cartesian since, by (13), we have

R(∇A) = R(idA×A)∇R(A) = ψA,A∇R(A)

and R(!) = ψ0! holds since ψ0 = idI .

7 Conclusion and future works

After a string-diagrammatic presentation of gs-monoidal categories and a few related
structures. our paper introduces their preorder-enriched extensions, and in particular
oplax cartesian categories. We show that these categories represent a core language for
relations and partial functions, hence fitting in the current interest for the use of visual
languages in modelling computational formalisms (see e.g. [45, 46] and the references
therein). Such an interest in confirmed by our proof that such categories naturally
arise in terms of Kleisli categories and span categories, thus providing a large number
of potential case studies. As for the former, we also show that the canonical functor
from the Kleisli category of a given monad back to the original category has a gs-
monoidal structure. Finally, we turn to functorial completeness, showing it for oplax
cartesian categories with respect to certain mappings into Rel, thus generalising [5].

Future work will focus on completeness with respect to Rel, in order to strengthen
our result to genuine functors instead of lax-on-identities ones, following ideas in [47].
We will also attempt to establish a stronger connection between the constructions
involving Kleisli and span categories. Furthermore, it could be interesting to address
the traced monoidal case, as well as take into account the whole 2-categorical structure
of Span(C), for a presentation of graph rewriting and of inequational deduction for
relational algebras, investigated in a set-theoretical flavour in [4, 48], and recently (at
least for the diagrammatic presentation of the monoidal closed case) in [49].

From a practical standpoint, we believe that our completeness results will find
application in rewriting theory. The idea is that a completeness result makes it pos-
sible to derive new properties of a rewriting system in a straightforward manner,
simply by analysing rewriting in a standard category like the one of preordered sets

28

as in Theorem 6.3. Indeed, in rewriting the oplax structure amounts to changing the
topology of the underlying graph [4] so that the analysis of confluence could be per-
formed simply by looking at the associated preorder in the model. Given that term
graph rewriting is frequently used in functional programming language implementa-
tions, where the sharing of sub-terms is a key issue, our result may be concretely useful
in improving such language implementations.

Declarations

Author’s Contribution. Tobias Fritz, Fabio Gadducci, Davide Trotta and Andrea
Corradini contributed equally to this work.

Conflict of interest. The authors declare that they have no conflict of interest.

Availability of Data and Materials. Not applicable

Funding. Tobias Fritz acknowledges funding by the Austrian Science Fund (FWF)
through the project “P 35992-N”. Andrea Corradini, Fabio Gadducci and Davide
Trotta acknowledge funding by the Italian Ministry of Education, University and
Research (MIUR) through the project PRIN 20228KXFN2 “STENDHAL”.

References

[1] Gadducci, F.: On the algebraic approach to concurrent term rewriting. PhD
thesis, University of Pisa (1996)

[2] Corradini, A., Gadducci, F.: A 2-categorical presentation of term graph rewriting.
In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 87–105.
Springer, Berlin (1997)

[3] Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7, 299–331 (1999)

[4] Corradini, A., Gadducci, F.: Rewriting on cyclic structures: equivalence between
the operational and the categorical description. RAIRO - Theoretical Informat-
ics and Applications - Informatique Théorique et Applications 33(4-5), 467–493
(1999)

[5] Corradini, A., Gadducci, F.: A functorial semantics for multi-algebras and partial
algebras, with applications to syntax. Theoretical Computer Science 286, 293–322
(2002)

[6] Fox, T.: Coalgebras and cartesian categories. Communications in Algebra 4, 665–
667 (1976)

[7] Lawvere, F.W.: Functorial semantics of algebraic theories. Proceedings of the
National Academy of Sciences 50(5), 869–872 (1963)

29

[8] Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and
Applied Algebra 49(1), 11–32 (1987)

[9] Carboni, A., Kelly, G.M., Walters, R.F.C., Wood, R.J.: Cartesian bicategories II.
Theory and Applications of Categories 19(6), 93–124 (2008)

[10] Bonchi, F., Seeber, J., Sobociński, P.: Graphical conjunctive queries. In: Ghica,
D., Jung, A. (eds.) CSL 2018. LIPIcs, vol. 119, pp. 13–11323. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Wadern (2018)

[11] Bonchi, F., Pavlovic, D., Sobociński, P.: Functorial semantics for relational
theories. CoRR abs/1711.08699 (2017)

[12] Fong, B., Spivak, D.: Regular and relational categories: Revisiting ‘Cartesian
bicategories I’. CoRR abs/1909.00069 (2019)

[13] Golubtsov, P.V.: Axiomatic description of categories of information transformers.
Problems of Information Transmission 35(3), 259–274 (1999)

[14] Cho, K., Jacobs, B.: Disintegration and Bayesian inversion via string diagrams.
Mathematical Structures in Computer Science 29(7), 938–971 (2019)

[15] Fritz, T.: A synthetic approach to Markov kernels, conditional independence and
theorems on sufficient statistics. Advances in Mathematics 370, 107239 (2020)

[16] Cockett, J.R.B., Lack, S.: Restriction categories III: colimits, partial limits and
extensivity. Mathematical Structures in Computer Science 17(4), 775–817 (2007)

[17] Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps.
Theoretical Computer Science 270(1), 223–259 (2002)

[18] Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification.
Theoretical Computer Science 294(1), 61–102 (2003)

[19] Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. CRM
Monograph Series, vol. 29, p. 784. American Mathematical Society, Providence,
RI (2010)

[20] Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke,
B. (ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–
355. Springer, Heidelberg (2011)

[21] Fong, B., Spivak, D.: Supplying bells and whistles in symmetric monoidal
categories. CoRR abs/1908.02633 (2019)

[22] Robinson, E., Rosolini, G.: Categories of partial maps. Information and Compu-
tation 79(2), 95–130 (1988)

30

[23] Fritz, T., Gonda, T., Perrone, P., Rischel, E.F.: Representable Markov categories
and comparison of statistical experiments in categorical probability. Theoretical
Computer Science 961, 113896 (2023)

[24] Bruni, R., Gadducci, F.: Some algebraic laws for spans (and their connections
with multirelations). In: Kahl, W., Parnas, D.L., Schmidt, G. (eds.) RelMiS 2001.
ENTCS, vol. 44, pp. 175–193. Elsevier, Amsterdam (2003)

[25] Carboni, A.: Bicategories of partial maps. Cahiers de Topologie et Géométrie
Différentielle Catégoriques 28(2), 111–126 (1987)

[26] Kelly, G.M.: Basic concepts of enriched category theory. Reprints in Theory and
Applications of Categories (10), 1–136 (2005)

[27] Moggi, E.: Computational lambda-calculus and monads. In: LICS 1989, pp. 14–23.
IEEE Press, CA, USA (1989)

[28] Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (1991)

[29] Borceux, F.: Handbook of Categorical Algebra 2: Categories and Structures.
Encyclopedia of Mathematics and its Applications, vol. 51. Cambridge University
Press, Cambridge (1994)

[30] MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. A First Introduction
to Topos Theory. Springer, New York (1992)

[31] Makkai, M., Reyes, G.: First Order Categorical Logic. Lecture Notes in Mathe-
matics, vol. 611. Springer, Berlin-New York (1977)

[32] Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cam-
bridge University Press, Cambridge (1986)

[33] Tanaka, M.: Pseudo-distributive laws and a unified framework for variable
binding. PhD thesis, The University of Edinburgh (2004)

[34] Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics,
vol. 915, pp. 68–85. Springer, Berlin-New York (1982)

[35] Jacobs, B.: From probability monads to commutative effectuses. Journal of
Logical and Algebraic Methods in Programming 94, 200–237 (2018)

[36] Kock, A.: Monads on symmetric monoidal closed categories. Archiv der Mathe-
matik 21, 1–10 (1970)

[37] Kock, A.: Bilinearity and cartesian closed monads. Mathematica Scandinavica
29(2), 161–174 (1971)

31

[38] Jacobs, B.: Semantics of weakening and contraction. Annals of Pure and Applied
Logic 69(1), 73–106 (1994)

[39] Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. In: LICS 2017, p. 12. IEEE Press, Piscataway, NJ (2017)

[40] Guitart, R.: Tenseurs et machines. Cahiers de Topologie et Géométrie
Différentielle 21(1), 5–62 (1980)

[41] Fritz, T., Perrone, P., Rezagholi, S.: Probability, valuations, hyperspace: Three
monads on Top and the support as a morphism. Math. Struct. Comput. Sci.
31(8), 850–897 (2021)

[42] Day, B.: On closed categories of functors. In: Reports of the Midwest Category
Seminar, IV. Lecture Notes in Mathematics, vol. 137, pp. 1–38. Springer, Berlin
(1970)

[43] Day, B.J.: Construction of biclosed categories. PhD thesis, University of New
South Wales (1970)

[44] Mandell, M.A., May, J.P., Schwede, S., Shipley, B.: Model categories of diagram
spectra. Proceedings of the London Mathematical Society 82(2), 441–512 (2001)

[45] Bonchi, F., Sobociński, P., Zanasi, F.: A survey of compositional signal flow the-
ory. In: Goedicke, M., Neuhold, E.J., Rannenberg, K. (eds.) Advancing Research
in Information and Communication Technology. IFIP AICT, vol. 600, pp. 29–56.
Springer, Switzerland (2021)

[46] Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: String diagram
rewrite theory I: rewriting with Frobenius structure. Journal of the ACM 69(2),
14–11458 (2022)

[47] Gadducci, F.: A term-graph syntax for algebras over multisets. In: Corradini,
A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 152–165. Springer,
Berlin, Heidelberg (2008)

[48] Corradini, A., Gadducci, F., Kahl, W., König, B.: Inequational deduction as term
graph rewriting. In: Mackie, I., Plump, D. (eds.) TERMGRAPH 2002. ENTCS,
vol. 72, pp. 31–44. Elsevier, Amsterdam (2007)

[49] Alvarez-Picallo, M., Ghica, D., Sprunger, D., Zanasi, F.: Rewriting for monoidal
closed categories. In: Felty, A. (ed.) FSCD 2022. LIPIcs, vol. 228, pp. 29–12920.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2022)

[50] Kock, A.: Strong functors and monoidal monads. Archiv der Mathematik 23,
113–120 (1972)

32

[51] Kock, A.: Monads on symmetric monoidal closed categories. Archiv der Mathe-
matik 21, 1–10 (1970)

Appendix A Lax/oplax/bilax monoidal functors

This section recalls the definitions of lax, colax, and bilax monoidal functors, see
e.g. [19]. Throughout, C and D are symmetric monoidal categories with tensor functor
⊗ and monoidal unit I, and we assume that ⊗ strictly associates without loss of
generality in order to keep the diagrams simple. Left and right unitors are denoted by
λ and ρ, respectively7, and braidings by γ.
Definition A.1. A functor F : C → D is lax monoidal if it is equipped with a natural
transformation

ψ : ⊗ ◦ (F × F)→ F ◦ ⊗

and an arrow ψ0 : I → F (I) such that the associativity diagrams

F (A)⊗ F (B)⊗ F (C) F (A) ⊗ F (B ⊗ C)

F (A⊗B)⊗ F (C) F (A⊗B ⊗ C)

id⊗ψB,C

ψA,B⊗ id

ψA⊗B,C

ψA,B⊗C

and the unitality diagrams commute

I ⊗ F (A) F (A) F (A) ⊗ I F (A)

F (I)⊗ F (A) F (I ⊗A) F (A) ⊗ F (I) F (A⊗ I).
ψI,A

F (λA)ψ0⊗ id

λFA ρFA

id⊗ψ0

ψA,I

F (ρA) (A1)

F is said to be lax symmetric monoidal if also the following diagram commutes

F (A⊗B) F (B ⊗A)

F (A)⊗ F (B) F (B)⊗ F (A)

F (γA,B)

ψA,B

γFA,FB

ψB,A

For example, if C is the terminal monoidal category with only one object I and idI
as the only arrow, then F is simply a monoid in D. We do not spell out the following
dual version in full detail.

7Strict unitality could also be assumed, but that choice would make some diagrams potentially confusing.

33

Definition A.2. A functor F : C → D is oplax monoidal if it is equipped with a
natural transformation

φ : F ◦ ⊗ → ⊗ ◦ (F ⊗ F)

and a map φ0 : F (I)→ I satisfying axioms dual to those in Definition A.1. Similarly,
an oplax symmetric monoidal functor is an oplax monoidal functor such that φ
commutes with the braiding γ.

We also have the notion of strong symmetric monoidal functor, which is a lax
symmetric monoidal functor with invertible structure arrows, or equivalently an oplax
monoidal functor with invertible structure arrows; and that of strict symmetric
monoidal functor, in which the structure arrows are identities.

A monoid and comonoid structure on an object in a symmetric monoidal category
often interact in a nice way, either such that they form a bimonoid or a Frobenius
monoid (and sometimes both). The following definition (see [19]) generalises the former
notion to functors.
Definition A.3. A functor F : C → D is bilax monoidal if it is equipped with a lax
monoidal structure ψ, ψ0 and an oplax monoidal structure φ, φ0 such that the following
compatibility conditions hold

• Braiding. The following diagram commutes

F (A⊗B)⊗ F (C ⊗D)

F (A⊗B ⊗ C ⊗D) F (A)⊗ F (B)⊗ F (C)⊗ F (D)

F (A⊗ C ⊗B ⊗D) F (A)⊗ F (C) ⊗ F (B)⊗ F (D)

F (A⊗ C)⊗ F (B ⊗D)

ψA⊗B,C⊗D φA,B⊗φC,D

F (id⊗γ⊗id) id⊗γ⊗id

φA⊗C,B⊗D ψA,C⊗ψB,D

• Unitality. The following diagrams commute

I F (I) F (I ⊗ I) I F (I) F (I ⊗ I)

I ⊗ I F (I)⊗ F (I) I ⊗ I F (I)⊗ F (I)

F (I)

I I

ψ0 F (λI)

λI φI,I ψI,I

F (λ−1
I

)φ0

φ0⊗φ0

λ−1
I

ψ0 φ0

ψ0⊗ψ0

We also say that F is bilax symmetric monoidal if in addition both the lax and
oplax structures are symmetric.

34

Appendix B Commutative monads

A strength and a costrength for a monad on a monoidal category are structures relating
the monad with the tensor product of the category at least in one direction. A monad
equipped with a strength is called a strong monad. This notion was introduced by
Kock in [50, 51] as an alternative description of enriched monads. Strong monads have
been successfully used in computer science, playing a fundamental role in Moggi’s
theory of computation [27, 28].

We recall these concepts in the following definitions.
Definition B.1. A strong monad (T, µ, η, t) on a symmetric monoidal category C
is a monad (T, µ, η) on C together with a natural transformation

tX,Y : X ⊗ T (Y)→ T (X ⊗ Y),

called strength, such that the following diagrams commute for all objects X, Y , Z of C

X ⊗ Y X ⊗ T (Y) I ⊗ T (X) T (I ⊗X)

T (X ⊗ Y) T (X)

X ⊗ Y ⊗ T (Z) T (X ⊗ Y ⊗ Z)

X ⊗ T (Y ⊗ Z)

X ⊗ T 2(Y) T (X ⊗ T (Y)) T 2(X ⊗ Y)

X ⊗ T (Y) T (X ⊗ Y)

λ−1
T (X)

tI,X

T (λ−1
X)

tX,T (Y) T (tX,Y)

idX ⊗µY

tX,Y

µX⊗Y

idX ⊗ηY

ηX⊗Y
tX,Y

tX,Y ⊗ZidX ⊗tY,Z

tX⊗Y,Z

Example B.2. The list monad Tlist : Set→ Set is strong. Given two sets X and Y ,
the strength component

tX,Y : X × Tlist(Y)→ Tlist(X × Y)

is given by the function assigning to an element (x, [y1, . . . , ym])) of X × Tlist(Y) the
element [(x, y1), . . . , (x, ym)] of Tlist(X × Y).

In fact, any monad on the cartesian category Set is strong in a unique way, where
the strength can be defined similarly to the strength of the list monad. We refer to
[50, 51] for more details.

35

Remark B.3. The braiding γ of C let us define a costrength with components

t′X,Y : T (X)⊗ Y → T (X ⊗ Y)

given by
t′X,Y := T (γY,X) ◦ tY,X ◦ γT (X),Y .

It satisfies axioms that are analogous to those of strength.
Definition B.4. A strong monad (T, µ, η, t) on a symmetric monoidal category C is
said to be commutative if the following diagram commutes for every object X and Y

T (X)⊗ T (Y) T (T (X)⊗ Y) T 2(X ⊗ Y)

T (X ⊗ T (Y)) T 2(X ⊗ Y) T (X ⊗ Y)

tT (X),Y T (t′X,Y)

t′X,T (Y)

T (tX,Y) µX⊗Y

µX⊗Y (B2)

Remark B.5. It is well-known that on a symmetric monoidal category, commutative
monads are equivalent to symmetric monoidal monads [50, Theorem 2.3]. Indeed, the
diagonal of (B2) equips the functor T with a lax symmetric monoidal structure, whose
components we denote by cX,Y : T (X)⊗ T (Y)→ T (X ⊗ Y).

36

	Introduction
	Background on gs-monoidal categories
	Total and functional arrows, domains

	Oplax cartesian categories
	Kleisli categories are gs-monoidal
	The oplax cartesian structure of Kleisli categories

	Span categories are oplax cartesian
	On functorial completeness
	A gs-monoidal Yoneda embedding
	Functorial completeness for oplax cartesian categories

	Conclusion and future works
	Author's Contribution
	Conflict of interest
	Availability of Data and Materials
	Funding

	Lax/oplax/bilax monoidal functors
	Commutative monads

